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Why digital convexity ?

I no (infinitesimal) differential geometry for digital shapes
I convexity: a fundamental tool to analyze the geometry of shapes
I identifies convex/concave/flat/saddle regions
I gives locally its piecewise linear geometry
I facets give normal estimations



How well convexity remains meaningful in lattice spaces ?

Some expectations when defining convexity in Zd :
I simple and elegant definition in arbitrary dimension
I straight lines, planes, half-spaces, balls, ..., are convex
I convex sets are connected, and even simply connected
I intersections of convex sets are convex
I deciding if a set X ⊂ Zd is convex must be fast (polynomial time)
I convex hull leaves convex sets unchanged
I convex hull builds a convex set and is idempotent
I computing a convex hull must be fast
I convex hull is increasing, i.e. A ⊂ B ⇒ Cvxh (A) ⊂ Cvxh (B)



Natural digital convexity is not satisfactory

Definition (Natural digital convexity (or H-convexity))
X ⊂ Zd is digitally convex iff Cvxh (X ) ∩ Zd = X

= ⇒ convex

X Cvxh (X ) ∩ Zd

Digital convexity does not imply digital connectedness !
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Summary

Properties of natural digital convex sets (H-convexity)
simple, generic + (indeed, X = Cvxh (X ) ∩ Zd)

classical convex objects ≈ (but weird sets are convex)
connectedness − (many convex sets are disconnected)

simple connectedness − (of course no)
intersection property +
fast convexity test + (quickhull+lattice enumeration)



Usual digital convexity adds connectedness

Definition (Usual digital convexity)
X ⊂ Zd is digitally convex iff Cvxh (X ) ∩ Zd = X and X connected

I many more or less equivalent definitions in 2D: straight segment
convexity, triangle convexity, . . . [Minsky, Papert 88], [Kim, Rosenfeld 82a],
[Hübler, Klette, Voss89], . . .

I none extends well to 3D or more

convex convex !
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Pros and cons

properties H-convexity H-convexity
+ connectedness

simple, generic + −
classical convex objects ≈ ≈

connectedness − ≈ (slices unconnected)
simple connectedness − − (unclear)
intersection property + −
fast convexity test + +



Proposal: full convexity

properties H-convexity H-convexity
+ connect.

Full convexity

simple, generic + − +
classical convex objects ≈ ≈ +

connectedness − ≈ +
simple connectedness − − +
intersection property + − − (but...)
fast convexity test + + +
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Cubical grid, intersection complex

I cubical grid complex Cd
I Cd0 vertices or 0-cells = Zd

I Cd1 edges or 1-cells = open unit segment joining 0-cells
I Cd2 faces or 2-cells = open unit square joining 1-cells
I . . .

I intersection complex of Y ⊂ Rd

C̄dk [Y ] := {c ∈ Cdk , c̄ ∩ Y 6= ∅}

Y cells C̄d0 [Y ], C̄d1 [Y ], C̄d2 [Y ]



Full convexity

Definition (Full convexity)
A non empty subset X ⊂ Zd is digitally k-convex for 0 6 k 6 d whenever

C̄dk [X ] = C̄dk [Cvxh (X )]. (1)

Subset X is fully convex if it is digitally k-convex for all k, 0 6 k 6 d .

=

C̄d0 [X ] C̄d0 [Cvxh (X )]
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Full convexity

Definition (Full convexity)
A non empty subset X ⊂ Zd is digitally k-convex for 0 6 k 6 d whenever

C̄dk [X ] = C̄dk [Cvxh (X )]. (1)

Subset X is fully convex if it is digitally k-convex for all k, 0 6 k 6 d .

Full convexity eliminates too thin digital convex sets in arbitrary
dimension.



Elementary properties

Lemma
Digital 0-convexity is classical digital convexity (H-convexity).

Lemma
A finite non-empty subset X ⊂ Zd is digitally k-convex for 0 6 k 6 d iff
#
(
C̄dk [X ]

)
> #

(
C̄dk [Cvxh (X )]

)
.

Lemma
If Z ⊂ Zd is digitally k-convex for 0 6 k < d , it is also digitally
d-convex, hence fully convex.

Proof.
Use Jordan-Brouwer surface separation theorem.
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Digital connectedness

Theorem
If the digital set X ⊂ Zd is fully convex, then X is d-connected.

Proof.
I for x , y ∈ X , segment [x , y ] intersects cells c0, c1, . . . , cm,
I full convexity ⇒ each ci touches at least one corner zi ∈ X ,
I each ci is a face of ci+1 or inversely,
I implies zi and zi+1 shares a unit cube, hence d-connected

[x , y ] intersected cells ci points zi



Simple connectedness
Theorem
If the digital set X ⊂ Zd is fully convex, then the body of its intersection
complex is simply connected.

Proof.
I let A := {x(t), t ∈ [0, 1]} be a closed curve in

∥∥C̄d [X ]
∥∥

I sequence of intersected cells ci ∈ C̄d [X ]

I sequence of associated corners zi ∈ X

I homotopy between A and path z0 − z1 − · · · − zn − z0
I path z0 − z1 − · · · − zn − z0 subset of Cvxh (X ) ⇒ contractible

A intersected cells (ci ) path z0 − z1 − · · · − zn − z0



Discrete Minkowski sum Uα

I let X ⊂ Zd , denote ei (X ) the translation of X with axis vector ei
I let I d := {1, . . . , d} be the set of possible directions
I let U∅(X ) := X , and, for α ⊂ I d and i ∈ α, recursively

Uα(X ) := Uα\i (X ) ∪ ei (Uα\i (X )).

U∅(X ) = X U{1}(X ) = U∅(X ) ∪ e1(U∅(X ))

U{2}(X ) = U∅(X ) ∪ e2(U∅(X )) U{1,2}(X ) = U{1}(X ) ∪ e2(U{1}(X ))



A morphological characterization

Theorem
A non empty subset X ⊂ Zd is digitally k-convex for 0 6 k 6 d iff

∀α ∈ I dk ,Uα(X ) = Cvxh (Uα(X )) ∩ Zd . (2)

It is thus fully convex if the previous relations holds for all k, 0 6 k 6 d .

6=
X U{1}(X ) Cvxh

(
U{1}(X )

)
∩ Zd

Algorithm in arbitrary dimension

Uα(X ) easily computed while convex hull algorithms exist in arbi-
trary dimension. Slowest part is lattice point enumeration in convex
hull.
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