### An alternative definition for digital convexity

Jacques-Olivier Lachaud<sup>1</sup>

<sup>1</sup>Laboratory of Mathematics University Savoie Mont Blanc

May 2nd, 2022 Meeting on Tomography and Applications (TAIR2022) Politecnico di Milano

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

An alternative definition for digital convexity

Context and objectives

Full convexity

Some applications of full convexity

Fully convex enveloppe and polyhedral models

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

## Why digital convexity ?



- no (infinitesimal) differential geometry for digital shapes
- convexity: a fundamental tool to analyze the geometry of shapes

(日) (四) (日) (日) (日)

-

- identifies convex/concave/flat/saddle regions
- gives locally its piecewise linear geometry
- facets give normal estimations

How well convexity remains meaningful in lattice spaces ?

Some expectations when defining convexity in  $\mathbb{Z}^d$ :

- simple and elegant definition in arbitrary dimension
- straight lines, planes, half-spaces, balls, ..., are convex
- convex sets are connected, and even simply connected
- intersections of convex sets are convex
- deciding if a set  $X \subset \mathbb{Z}^d$  is convex must be fast (polynomial time)
- convex hull leaves convex sets unchanged
- convex hull builds a convex set and is idempotent
- computing a convex hull must be fast
- convex hull is increasing, i.e.  $A \subset B \Rightarrow \operatorname{Cvxh}(A) \subset \operatorname{Cvxh}(B)$

Definition (Natural digital convexity (or *H*-convexity))  $X \subset \mathbb{Z}^d$  is digitally convex iff  $\operatorname{Cvxh}(X) \cap \mathbb{Z}^d = X$ 



▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

Definition (Natural digital convexity (or *H*-convexity))  $X \subset \mathbb{Z}^d$  is digitally convex iff  $\operatorname{Cvxh}(X) \cap \mathbb{Z}^d = X$ 



▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

Definition (Natural digital convexity (or *H*-convexity))  $X \subset \mathbb{Z}^d$  is digitally convex iff  $\operatorname{Cvxh}(X) \cap \mathbb{Z}^d = X$ 



▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

Definition (Natural digital convexity (or *H*-convexity))  $X \subset \mathbb{Z}^d$  is digitally convex iff  $\operatorname{Cvxh}(X) \cap \mathbb{Z}^d = X$ 



▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Digital convexity does not imply digital connectedness !

## Summary

#### Properties of natural digital convex sets (H-convexity)

| simple, generic          | + (indeed, $X = \operatorname{Cvxh}(X) \cap \mathbb{Z}^d$ ) |
|--------------------------|-------------------------------------------------------------|
| classical convex objects | pprox (but weird sets are convex)                           |
| connectedness            | — (many convex sets are disconnected)                       |
| simple connectedness     | — (of course no)                                            |
| intersection property    | +                                                           |
| fast convexity test      | + (quickhull+lattice enumeration)                           |

## Usual digital convexity adds connectedness

### Definition (Usual digital convexity)

 $X \subset \mathbb{Z}^d$  is digitally convex iff  $\operatorname{Cvxh}(X) \cap \mathbb{Z}^d = X$  and X connected

many more or less equivalent definitions in 2D: straight segment convexity, triangle convexity, ... [Minsky, Papert 88], [Kim, Rosenfeld 82a], [Hübler, Klette, Voss89], ...

## Usual digital convexity adds connectedness

### Definition (Usual digital convexity)

 $X \subset \mathbb{Z}^d$  is digitally convex iff  $\operatorname{Cvxh}(X) \cap \mathbb{Z}^d = X$  and X connected

- many more or less equivalent definitions in 2D: straight segment convexity, triangle convexity, ... [Minsky, Papert 88], [Kim, Rosenfeld 82a], [Hübler, Klette, Voss89], ...
- none extends well to 3D or more



convex

## Pros and cons

| properties               | H-convexity | H-convexity<br>+ connectedness |
|--------------------------|-------------|--------------------------------|
| simple, generic          | +           | —                              |
| classical convex objects | $\approx$   | $\approx$                      |
| connectedness            | —           | pprox (slices unconnected)     |
| simple connectedness     | —           | — (unclear)                    |
| intersection property    | +           | —                              |
| fast convexity test      | +           | +                              |

# Proposal: full convexity

| properties               | <i>H</i> -convexity | <i>H</i> -convexity + connect. | Full convexity |
|--------------------------|---------------------|--------------------------------|----------------|
| simple, generic          | +                   | _                              | +              |
| classical convex objects | $\approx$           | 8                              | +              |
| connectedness            | —                   | 8                              | +              |
| simple connectedness     | —                   | —                              | +              |
| intersection property    | +                   | —                              | — (but)        |
| fast convexity test      | +                   | +                              | +              |

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

An alternative definition for digital convexity

Context and objectives

Full convexity

Some applications of full convexity

Fully convex enveloppe and polyhedral models

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

## Cubical grid, intersection complex

• cubical grid complex  $C^d$ 

...

- $C_0^d$  vertices or 0-cells =  $\mathbb{Z}^d$
- $C_1^d$  edges or 1-cells = open unit segment joining 0-cells
- $C_2^d$  faces or 2-cells = open unit square joining 1-cells

• intersection complex of  $Y \subset \mathbb{R}^d$ 

$$ar{\mathcal{C}}_k^d[Y] := \{ c \in \mathcal{C}_k^d, ar{c} \cap Y 
eq \emptyset \}$$





▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

### Definition (Full convexity)

A non empty subset  $X \subset \mathbb{Z}^d$  is *digitally k-convex* for  $0 \leq k \leq d$  whenever

$$\bar{\mathcal{C}}_{k}^{d}[X] = \bar{\mathcal{C}}_{k}^{d}[\operatorname{Cvxh}(X)].$$
(1)

Subset X is fully convex if it is digitally k-convex for all  $k, 0 \leq k \leq d$ .

#### Definition (Full convexity)

A non empty subset  $X \subset \mathbb{Z}^d$  is *digitally k-convex* for  $0 \leqslant k \leqslant d$  whenever

$$\bar{\mathcal{C}}_{k}^{d}[X] = \bar{\mathcal{C}}_{k}^{d}[\operatorname{Cvxh}(X)].$$
(1)

Subset X is fully convex if it is digitally k-convex for all  $k, 0 \le k \le d$ .



X is digitally 0-convex

### Definition (Full convexity)

A non empty subset  $X \subset \mathbb{Z}^d$  is *digitally k-convex* for  $0 \leqslant k \leqslant d$  whenever

$$\bar{\mathcal{C}}_{k}^{d}[X] = \bar{\mathcal{C}}_{k}^{d}[\operatorname{Cvxh}(X)].$$
(1)

Subset X is *fully convex* if it is digitally k-convex for all  $k, 0 \le k \le d$ .



X is digitally 0-convex, and 1-convex

### Definition (Full convexity)

A non empty subset  $X \subset \mathbb{Z}^d$  is *digitally k-convex* for  $0 \leqslant k \leqslant d$  whenever

$$\bar{\mathcal{C}}_{k}^{d}[X] = \bar{\mathcal{C}}_{k}^{d}[\operatorname{Cvxh}(X)].$$
(1)

Subset X is fully convex if it is digitally k-convex for all  $k, 0 \le k \le d$ .



X is digitally 0-convex, and 1-convex, and 2-convex, hence fully convex.

### Definition (Full convexity)

A non empty subset  $X \subset \mathbb{Z}^d$  is *digitally k-convex* for  $0 \leqslant k \leqslant d$  whenever

$$\bar{\mathcal{C}}_{k}^{d}[X] = \bar{\mathcal{C}}_{k}^{d}[\operatorname{Cvxh}(X)].$$
(1)

Subset X is fully convex if it is digitally k-convex for all  $k, 0 \le k \le d$ .



X is digitally 0-convex

### Definition (Full convexity)

A non empty subset  $X \subset \mathbb{Z}^d$  is *digitally k-convex* for  $0 \leqslant k \leqslant d$  whenever

$$\bar{\mathcal{C}}_{k}^{d}[X] = \bar{\mathcal{C}}_{k}^{d}[\operatorname{Cvxh}(X)].$$
(1)

Subset X is *fully convex* if it is digitally k-convex for all  $k, 0 \le k \le d$ .



X is digitally 0-convex, but neither 1-convex

### Definition (Full convexity)

A non empty subset  $X \subset \mathbb{Z}^d$  is *digitally k-convex* for  $0 \leq k \leq d$  whenever

$$\bar{\mathcal{C}}_{k}^{d}[X] = \bar{\mathcal{C}}_{k}^{d}[\operatorname{Cvxh}(X)].$$
(1)

Subset X is fully convex if it is digitally k-convex for all  $k, 0 \le k \le d$ .



X is digitally 0-convex, but neither 1-convex, nor 2-convex.

### Definition (Full convexity)

A non empty subset  $X \subset \mathbb{Z}^d$  is *digitally k-convex* for  $0 \leqslant k \leqslant d$  whenever

$$\bar{\mathcal{C}}_{k}^{d}[X] = \bar{\mathcal{C}}_{k}^{d}[\operatorname{Cvxh}(X)].$$
(1)

- 日本 - 4 日本 - 4 日本 - 日本

Subset X is *fully convex* if it is digitally k-convex for all  $k, 0 \le k \le d$ .

Full convexity eliminates too thin digital convex sets in arbitrary dimension.



## Elementary properties

### Lemma

Digital 0-convexity is classical digital convexity (H-convexity).

#### Lemma

A finite non-empty subset  $X \subset \mathbb{Z}^d$  is digitally k-convex for  $0 \leq k \leq d$  iff  $\#\left(\overline{C}^d_k[X]\right) \geq \#\left(\overline{C}^d_k[\operatorname{Cvxh}(X)]\right).$ 

#### Lemma

If  $Z \subset \mathbb{Z}^d$  is digitally k-convex for  $0 \le k < d$ , it is also digitally d-convex, hence fully convex.

### Proof.

Use Jordan-Brouwer surface separation theorem.

## Elementary properties

### Lemma

Digital 0-convexity is classical digital convexity (H-convexity).

#### Lemma

A finite non-empty subset  $X \subset \mathbb{Z}^d$  is digitally k-convex for  $0 \leq k \leq d$  iff  $\#\left(\overline{C}^d_k[X]\right) \geq \#\left(\overline{C}^d_k[\operatorname{Cvxh}(X)]\right).$ 

#### Lemma

If  $Z \subset \mathbb{Z}^d$  is digitally k-convex for  $0 \le k < d$ , it is also digitally d-convex, hence fully convex.

### Proof.

Use Jordan-Brouwer surface separation theorem.



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

## Digital connectedness

#### Theorem

If the digital set  $X \subset \mathbb{Z}^d$  is fully convex, then X is d-connected.

Proof.

- ▶ for  $x, y \in X$ , segment [x, y] intersects cells  $c_0, c_1, \ldots, c_m$ ,
- ▶ full convexity  $\Rightarrow$  each  $c_i$  touches at least one corner  $z_i \in X$ ,
- each  $c_i$  is a face of  $c_{i+1}$  or inversely,
- implies  $z_i$  and  $z_{i+1}$  shares a unit cube, hence *d*-connected







## Simple connectedness

#### Theorem

If the digital set  $X \subset \mathbb{Z}^d$  is fully convex, then the body of its intersection complex is **simply** connected.

Proof.

- ▶ let  $\mathcal{A} := \{x(t), t \in [0,1]\}$  be a closed curve in  $\left\| \bar{\mathcal{C}}^d[X] \right\|$
- ▶ sequence of intersected cells  $c_i \in \bar{C}^d[X]$
- sequence of associated corners  $z_i \in X$
- ▶ homotopy between A and path  $z_0 z_1 \cdots z_n z_0$
- ▶ path  $z_0 z_1 \cdots z_n z_0$  subset of  $Cvxh(X) \Rightarrow$  contractible



### Discrete Minkowski sum $U_{lpha}$

- ▶ let  $X \subset \mathbb{Z}^d$ , denote  $e_i(X)$  the translation of X with axis vector  $e_i$
- let  $I^d := \{1, \ldots, d\}$  be the set of possible directions
- ▶ let  $U_{\emptyset}(X) := X$ , and, for  $\alpha \subset I^d$  and  $i \in \alpha$ , recursively  $U_{\alpha}(X) := U_{\alpha \setminus i}(X) \cup e_i(U_{\alpha \setminus i}(X))$ .



## A morphological characterization

#### Theorem

A non empty subset  $X \subset \mathbb{Z}^d$  is digitally k-convex for  $0 \leqslant k \leqslant d$  iff

$$\forall \alpha \in I_k^d, U_\alpha(X) = \operatorname{Cvxh} (U_\alpha(X)) \cap \mathbb{Z}^d.$$
(2)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

It is thus fully convex if the previous relations holds for all  $k, 0 \leq k \leq d$ .



## A morphological characterization

#### Theorem

A non empty subset  $X \subset \mathbb{Z}^d$  is digitally k-convex for  $0 \leqslant k \leqslant d$  iff

$$\forall \alpha \in I_k^d, U_\alpha(X) = \operatorname{Cvxh}\left(U_\alpha(X)\right) \cap \mathbb{Z}^d.$$
(2)

It is thus fully convex if the previous relations holds for all  $k, 0 \leq k \leq d$ .



#### Algorithm in arbitrary dimension

 $U_{\alpha}(X)$  easily computed while convex hull algorithms exist in arbitrary dimension. Slowest part is lattice point enumeration in convex hull.