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What the talk is about

This talk provides a formal proof of the conjecture stating that

optimal colorings in max k-cut games over unweighted and undirected

graphs do not allow the presence of any strongly divergent coalition.

Specifically, we formally prove that do not exist any subsets of nodes

able to increase their own payoffs simultaneously.

The result is obtained by splitting the nodes of the graph into three

subsets: the coalition itself, the coalition boundary and the nodes

without relationship with the coalition.
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What the talk is about

Moreover, we prove an intermediate result highlighting the fact that

any payoff improvement will correspondingly imply a larger payoff

reduction and we propose a novel approach based on discrete

geometry and algorithms on graphs to study the properties of the

adjacency matrix of the graph.
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Introduction, The problem

The max k-cut problem consists in assigning colors to the vertices of

a graph with the aim of ensure the highest heterogeneity of colors in

the graph, that is, by partitioning the vertices of the graph, in such a

way that each of them has the largest possible number of nodes

having a different color from its own.

This problem is particularly interesting not only from a theoretical

point of view, but also from the applicative perspective. Indeed, it

is linked to significant real-life applications with selfish agents and,

moreover, it is related to fundamental classes of games.
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Introduction, Applications

In many contexts, individuals may find themselves wanting to choose from

multiple options set, the least popular, so as not to overlap with the

choices of others in order to have a global maximum reward society.

Some

examples are:

drilling companies that have to choose a land in which to dig by

minimizing the number of competitors digging in the same terrain;

the choice of frequencies on which to operate by several telematic

operators;
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Introduction, Applications

Some examples are:

a company that has to decide which products to develop in order to

minimize the redundancy between these;

biodiversity in the environmental field, where to have a greater number

of animal species e plants in the same ecosystem guarantees better

resistance to perturbations.
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Introduction, State of the art

A strong equilibrium corresponds to assign colorings in which no

coalition, assuming the actions of its complements as given, can

cooperatively deviate in a way that benefits all of its members, in

other words each player of the coalition strictly improves its utility.

The most important existing result has been provided by Carosi et al.,

who showed that on undirected unweighted graphs, optimal colorings

are 5-Strong Equilibria (5-SE ), i.e. colorings in which no coalition of

at most 5 vertices can profitably deviate.
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Introduction, Our results

In this talk we consider a max k-cut game played by n individuals or

players. The individuals are assumed to be arranged on an undirected

and unweighted graph; specifically, nodes of the graph represent the

individuals, while the edges describe the connections among them.

The strategy space of each player is composed by a set of k available

colors (i.e. {1, . . . , k}).

Given a strategy profile or a coloring, the utility (or payoff) of a player

g is the sum of the weights of edges {g , v} incident to g , such that

the color chosen by g is different from the one chosen by v .
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Main approaches

1 Set as a goal for each individual to share the chosen strategy with the

fewer individuals, it is natural to model this type of problem through

Game Theory, which allows to combine the strategies of individuals

in relation to the strategies of others.

2 Instead of formulating a basic approach based only on the notions and

tools of game theory, we can use a novel approach based on Discrete

Geometry and algorithms on graphs to study the properties of the

adjacency matrix of the graph and obtain significant information on

the coalition and its boundary.
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Main notions and notations

The population

V = {1, . . . ,N} is the set of nodes, with N ≥ 2.

A = {av ,w} ∈ {0, 1}N×N is the undirected adjacency matrix (A = A>)

δv =
∑
w∈V

av ,w is the degree of node v

δv (S) =
∑
w∈S

av ,w , with S ⊂ V

Given S1 ⊆ S2, then δv (S2 \ S1) = δv (S2)− δv (S1)
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Main notions and notations

The colorings

K = {1, . . . ,M} is the set of colors, with M ≥ 2.

Given a set S ⊆ V, the set of colors in S is K(S) ⊆ K.

A coloring σ ∈ KN is an assignment of colors to each node of the

graph.
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Main notions and notations

The payoff

µv (σ) =
∑
w∈V
σw 6=σv

av ,w is the payoff of node v ;

µv (S , σ) =
∑
w∈S
σw 6=σv

av ,w is the payoff of node v gained with players in

S ⊆ V;

µ(S , σ) =
∑
v∈S

µv (σ) is the payoff of the set S ⊆ V. Notice that

µ(V, σ) is the payoff of the whole population V which is using the

coloring σ.
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Main notions and notations

The payoff

∆µv (γ, σ) = µv (γ)− µv (σ) is the payoff difference for v when the

coloring of the graph is changed from σ to γ;

∆µ(S , γ, σ) =
∑
v∈S

∆µv (γ, σ) = µ(S , γ)− µ(S , σ) is the variation of

payoff of players in S ⊆ V when the coloring changes from σ to γ.

Notice that ∆µ(V, γ, σ) is the global variation of payoff the coloring

changes from σ to γ.
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Main notions and notations

Definition (Deviating coalition)
Given two colorings σ and γ and a coalition C , we say that C deviates

from σ to γ if and only if σv = γv ∀v 6∈ C and σv 6= γv ∀v ∈ C .

Definition (Strong deviation)

Given two colorings σ and γ and a coalition C , we say that C strongly

deviates from σ to γ if and only if C deviates from σ to γ and

∆µv (γ, σ) ≥ 1 ∀v ∈ C .
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Main notions and notations

Definition (Optimal coloring)

A coloring σ is optimal if and only if µ(V, σ) is maximum, or equivalently

∆µ(V, γ, σ) ≤ 0 ∀γ ∈ KN .

The equal sign holds if and only if γ is also an optimal coloring.
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Main notions and notations

Remark
If σ is an optimal coloring, then:

there are nodes such that µv (σ) = δv . In this case, v is not connected

to any player w such that σv = σw ;

there are nodes such that µv (σ) < δv . In this case, v is connected to

at least one player w such that σv = σw .
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Main notions and notations

Remark
No node such that µv (σ) = δv can belong to a strongly deviating coalition.

Definition
Given a coloring γ ∈ KN , a color a ∈ K and a set S ⊆ V, we define:

Sa(γ) = {v ∈ S : γv = a}.
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Our results, The idea of our approach

Aim: Prove that, given an optimal system, there is no group of individuals

who autonomously come to an agreement, forming a coalition, to try to

earn more at the expense of the overall system.
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Our results, The idea of our approach

To prove the impossibility of building such a coalition, we basically base on

two facts:

1 Fact 1: Given an optimal strategy setup, each individual will be

connected in the graph to at least one individual of every other

strategy available.

2 Fact 2: Given an optimal strategy setup, for each individual the

number of individuals with his own strategy connected to him is less

than number of individuals with different strategies from their own

connected to him.

These facts make us understand that optimality corresponds in a natural

way the diversification of strategies.
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Our results

Let σ be an optimal coloring. We define:

Cσ = {v ∈ V : µv (σ) < δv}, the set of the nodes candidate to

belong to a strong deviation;

Bσ = {v ∈ V : µv (σ) = δv ∧ ∃w ∈ Cσ : av ,w = 1}, the boundary set

of Cσ, i.e. it contains all nodes not in Cσ which are connected to

some node in Cσ;

Eσ = {v ∈ V : µv (σ) = δv ∧ av ,w = 0 ∀w ∈ Cσ} = V \ (Cσ ∪ Bσ),

the external set of Cσ, i.e. the set of the nodes which are not

connected to Cσ.
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An example

Consider a graph G = (V ,E ) as depicted in the figure, referred to an

optimal coloring σ. Note that vertex v1 belongs to the set Cσ, since its

degree 5 is less than its profit 4.
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An example

Similarly we reason for the vertices v2, v3 and v7.
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An example

Instead, vertex v5 belongs to the set Bσ, since its profit is exactly equal to

its degree, i.e. 3. and v5 is the neighbor of at least one vertex in Cσ, e.g.

v1.
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An example

Similarly we reason for the vertices v4 and v8.

Finally, v9 belongs to Eσ as

its profit is exactly equal to its degree, i.e. 1 and has no neighbors in Cσ.
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Our results

Remark

Let σ ∈ KN be an optimal coloring.

Then:

δv (Bσσv (σ)) = 0 ∀v ∈ Cσ. (1)

Indeed, suppose that for a player v ∈ Cσ, there exists a w ∈ Bσσv (σ)

connected to v . But this means that µw (σ) < δw , since it is connected to

v which has the same color. This is contradiction with the membership of

w in the set Bσ.
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Our results

Remark
Hence,

δv (Bσσv (σ)) = 0 ∀v ∈ Cσ.

Moreover, similarly, from the definition of Cσ, it follows that:

δv (Cσσv (σ)) ≥ 1. (2)
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Our results

Remark
Concerning the case Cσ = ∅, we can make the following topological

observations.

If a graph is a star, then two colors are enough to have Cσ = ∅. In

fact, it is sufficient to color the central vertex of one color and the

remaining nodes of the other.

If a graph is bipartite, then two colors are enough to have Cσ = ∅.

Indeed, the vertices of such a graph can be partitioned into two sets

and it will be sufficient to color the nodes in one of the two sets of one

color and the other ones in the other set with the remaining color.
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Our results

Remark
If a graph is complete, since each node is connected to all the others,

the only possibility to have Cσ = ∅ is that the number of colors is

greater than or equal to the number of nodes.

If a graph is such that each node has a degree less than the

number of colors then there exists an optimal coloring such that

Cσ = ∅.
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Our results

Lemma

Let σ ∈ KN be an optimal coloring.

Then:

∀v ∈ Cσ,∀b ∈ K \ {σv}, δv (Cσb (σ)) + δv (Bσb (σ)) ≥ 1.
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Our results

Lemma

Let σ ∈ KN be an optimal coloring.

Then: ∀v ∈ Cσ, ∀b ∈ K \ {σv}, δv (Cσσv (σ)) ≤ δv (Cσb (σ)) + δv (Bσb (σ)).

This Lemma asserts that for every player in Cσ, the number of nodes

connected to it with the same color is always lower than the number of

connected nodes with different colors. Therefore, since no color different

from σv can provide higher payoff, v cannot change unilaterally and

with profit its own strategy.
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Our results

Remark
From the definitions of the sets Cσ, Bσ and Eσ and the previous lemmas

follow directly the following observations on the degrees of the nodes in

each of these sets, referring to an optimal coloring σ ∈ KN :

∀v ∈ Cσ, δv ≥ |K |. Indeed, we have shown that each node v

belonging to Cσ must have a neighbor in Bσ for each of the colors

different from its own; furthermore, v must have a neighbor in Cσ

with its own color, otherwise it would have profit equal to the degree,

against the definition of Cσ.
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Our results

Remark
∀v ∈ Bσ, δv ≥ M, where M is the number of colors in Cσ. Indeed,

from the definition of the set Cσ it is clear that each vertex v in Bσ

must have at least one neighbor in Cσ for each color present in Cσ,

otherwise a node in Cσ not connected to v could take the color of v

and increase its profit.

∀v ∈ Eσ, δv ≥ 0. Indeed, a vertex in Eσ could be an isolated point

and in this case have zero degree.
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Our results

Theorem

Let σ ∈ KN be an optimal coloring. Then any set C ⊆ Cσ such that

σv = c , ∀v ∈ C is not a strongly deviating coalition.
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Our results

A first theorem which constitutes a first step in proving the conjecture for

the multicolor case.

Theorem
Let γ be a deviation on Cσ. Then, γv 6= σv , ∀v ∈ Cσ, γv = σv , ∀v 6∈ Cσ.

If γ satisfies the property:

∑
v∈Cσ

δv (Cσγv (γ)) =
∑
v∈Cσ

δv (Cσσv (σ)) (3)

Then γ is not a strong deviation.
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