

POLITECNICO MILANO 1863

Brain Connectivity through Graph Theory: SPIDER-NET a New Tool to Explore Sub-Networks

Davide Coluzzi

About myself

- PhD student in Bioengineering
- Dipartimento di Elettronica, Informazione e Bioingegneria at Politecnico di Milano
- Brain connectivity, MRI/f-MRI, biomedical/sensor signal processing and applied machine/deep learning
- davide.coluzzi@polimi.it

Omics and big data

- Development of OMICS disciplines integrating **large amount of data** with the aim of mapping complex systems;
- Connectomics development thanks to the advanced MRI sequences providing data on brain **structure** and **function**
- The brain is depicted in term of fondamental **units** and their pairwise **connections**, forming a **graph**
- Brain regions are strongly connected, determining a **complex system**

Brain connectomics: a frontier problem

- Since Broadmann we know that brain is organized in specialized areas
- Neurology focused the main "circuits", alias subnetworks: speech, sensorimotor, visual etc.
- The whole connectomics integration is still a question mark. E.g.: How is our consciousness generated?

Connectomics: brain as a complex network

Davide Coluzzi, PhD candidate, DEIB.

Connectomics: brain as a complex network

POLITECNICO MILANO 1863

The connectogram

• Method of connectome mapping and visualization [Irimia et al., 2012]

- Circular graphs where all nodes are represented along the perimeter of the circle, while the edges are shown as arcs connecting pairs of nodes
- "The connectogram" bridge the gap between quantitative connectivity analyses and intuitive visualization of the results
 - Although connectograms with high number of nodes and connections may be anyway difficult to be analyzed

Connectogram of a normal brain

Investigation of connectivity pattern

- Investigation of human brain networks and sub-networks can provide insight of functioning in physiological and pathological conditions
- Segregation/Integration balance for information processing
 - Synchronous and asynchronous activity of specific brain regions (**specialized circuits**) allows for complex cognitive functions
- Focal lesions

POLITECNICO MILANO 1863

Phineas Gage's estimated connectogram

- One of the most notable clinical neuroanatomy case
- Widely discussed for prefrontal function and its relation to personality and behaviour

POLITECNICO MILANO 1863

Open issues

- 1. Difficulty in interpretation of large amounts of data
- 2. Brain sub-network extraction and analysis
- 3. Quality check of processing pipelines

SPIDER-NET (Software Package Ideal for Deriving Enhanced Representations of brain NETworks)

POLITECNICO MILANO 1863

SPIDER-NET (Software Package Ideal for Deriving Enhanced Representations of brain NETworks)

- Motivations:
 - 1. Qualitative analysis of **connectograms** revealed valuable indications of focal lesions
 - 2. Quantitative analysis of the connectivity revelead significant changes of **topological properties** in brain disorders
 - 3. Complete brain network is made of thousands of links and softwares for connectivity pattern visualization do not allow selections and **sub-network extraction**, although the great interest
 - 4. Softwares for connectogram generation have **no interface** and are **noninteractive**

SPIDER-NET: Interactive visualization based on the selection of anatomical areas, functional networks and/or attributes for an easier interpretation of the maps

SPIDER-NET Workflow

POLITECNICO MILANO 1863

SPIDER-NET input

1

2

Browse your Atlas File

Browse your labels File

1	A	В	C	D	E	F	G
1	PARCELLATION	DESCRIPTION	GROUP-PARCELLATION	ATTRIBUTE	ATTRIBUTE	ATTRIBUTE	ATTRIBUTE
2	BSt	Brain stem	BSt	Attr1			
3	CS	Central sulcus (Rolando's fissure)	Fro	Attr2	Attr1		
4	FMarG/S	Fronto-marginal gyrus (of Wernicke) and sulcus	Fro	Attr2	Attr1		
5	InfFGOpp	Opercular part of the inferior frontal gyrus	Fro	Attr2	Attr1		
6	InfFGOrp	Orbital part of the inferior frontal gyrus	Fro	Attr2	Attr1		
7	InfFGTrip	Triangular part of the inferior frontal gyrus	Fro	Attr2	Attr1		
8	InfFS	Inferior frontal sulcus	Fro	Attr2	Attr1		
9	InfPrCS	Inferior part of the precentral sulcus	Fro	Attr2	Attr1		
10	LOrS	Lateral orbital sulcus	Fro	Attr2	Attr1		
11	MedOrS	Medial orbital sulcus (olfactory sulcus)	Fro	Attr2	Attr1		
12	MFG	Middle frontal gyrus	Fro	Attr2	Attr1		
13	MFS	Middle frontal sulcus	Fro	Attr2	Attr3	Attr1	
14	OrG	Orbital gyri	Fro	Attr2	Attr3	Attr1	
15	OrS	Orbital sulci (H-shaped sulci)	Fro	Attr2	Attr3	Attr1	

SPIDER-DET

Continue

Esc

69	lh.PosTrCoS	87	rh.LOrS	2
70	lh.Cun	88	rh.SbOrS	∠
71	lh.MOcG	89	rh.OrS	
72	lh.MOcS/LuS	90	rh.RG	
73	lh.SupOcG	91	rh.InfFGOrp	Topan 1
74	lh.OcPo	92	rh.MFG	0
75	lh.Amg	93	rh.OrG	\sim ,
76	lh.CaN	94	rh.InfFGTrip	177 4
77	lh.Hip	95	rh.InfFS	11
78	lh.NAcc	96	rh.MedOrS	2012
79	lh.Pal	97	rh, SupFG	11
80	lh.Pu	98	rh SupFS	T T
81	lh.Tha	99	rh InfEGOpp	
82	lh.CeB	100	rh InfPrCS	0.
83	BSt	101	rh SupPrCS	- /
84	rh.TrFPoG/S	101	rh PrCG	
85	rh.FMarG/S	102	rh chcc/c	
86	rh MFS	TUD	C/DUGGIII	

Return to the initial menu

Compute topological properties

Visualize a property of the nodes C Keep connections within group parcels

Show weights in the figure

(i)

(i)

0

JS

PaCL/S

SuMarG

Extract a

subgraph

 \odot

POcS

SunPl

Davide Coluzzi, PhD candidate, DEIB.

POLITECNICO MILANO 1863

CeB-L

Fro-r

Ins-r

SbC-r

CeB-r

Explore from

current selected

subset

0

Atlases construction

1	A	В	С	D	E	F	G
1	PARCELLATION	DESCRIPTION	GROUP-PARCELLATION	ATTRIBUTE	ATTRIBUTE	ATTRIBUTE	ATTRIBUTE
2	BSt	Brain stem	BSt	Attr1			
3	CS	Central sulcus (Rolando's fissure)	Fro	Attr2	Attr1		
4	FMarG/S	Fronto-marginal gyrus (of Wernicke) and sulcus	Fro	Attr2	Attr1		
5	InfFGOpp	Opercular part of the inferior frontal gyrus	Fro	Attr2	Attr1		
6	InfFGOrp	Orbital part of the inferior frontal gyrus	Fro	Attr2	Attr1		
7	InfFGTrip	Triangular part of the inferior frontal gyrus	Fro	Attr2	Attr1		
8	InfFS	Inferior frontal sulcus	Fro	Attr2	Attr1		
9	InfPrCS	Inferior part of the precentral sulcus	Fro	Attr2	Attr1		
10	LOrS	Lateral orbital sulcus	Fro	Attr2	Attr1		
11	MedOrS	Medial orbital sulcus (olfactory sulcus)	Fro	Attr2	Attr1		
12	MFG	Middle frontal gyrus	Fro	Attr2	Attr1		
13	MFS	Middle frontal sulcus	Fro	Attr2	Attr3	Attr1	
14	OrG	Orbital gyri	Fro	Attr2	Attr3	Attr1	
15	OrS	Orbital sulci (H-shaped sulci)	Fro	Attr2	Attr3	Attr1	

- Flexible sub-network extraction according to brain structure and/or function
 - Selection of anatomical areas, functional networks or attributes

Atlases construction and guided GUI

Brow

承 SPIDER-NET

Welcome to SPIDER-NET

Please select areas or attributes to visualize the links that you want in the connectogram. If you do not want to manually select node/nodes or use attribute/attributes, click Undefined. Indicate if you are using a structural or functional brain connectivity matrix, so that SPIDER-NET will show you the most relevant properties of the network. Then, browse your brain connectivity matrix file and the corresponding labels. You can also change your atlas replacing the attributes file. If you are not sure about all functionalities or you want to have additional info, please hover on the 'i' or take a look at the manual.

connMatrix_Struct.txt Browse your BC matrix File Return to the initial menu	Group-Parcellation	Sub-Parcellation Undefined CS FMarG/S InfFG0pp InfFG0rp InfFGTrip InfFS InfPrCS LOrS MedOrS MFG MES V	Fro Sub-Parcellation Legend: CS: Central sulcus (Rolando's fissure) FMarG/S: Fronto-marginal gyrus (of Wernicke) and sulcus InfFGOp: Opercular part of the inferior frontal gyrus InfFGOrp: Orbital part of the inferior frontal gyrus InfFGTrip: Triangular part of the inferior frontal gyrus InfFCS: Inferior part of the precentral sulcus LOFS: Lateral orbital sulcus MedOrS: Medial orbital sulcus (olfactory sulcus) MFG: Middle frontal gyrus OrS: Orbital sulcus OrG: Orbital gyri OrS: Orbital sulci (H-shaped sulci) RG: Straight gyrus (gerus rectus) SbCG/S: Subcentral gyrus (sentral operculum) and sulci	Attribute Undefined Attr1 Attr2 Attr3 Attr4 Attr5 Attr6			
Selected Node Subset							

Davide Coluzzi, PhD candidate, DEIB.

Guided GUI – Selection and additional options

Welcome to SPIDER-NET

Please select areas or attributes to visualize the links that you want in the connectogram. If you do not want to manually select node/nodes or use attribute/attributes, click Undefined. Indicate if you are using a structural or functional brain connectivity matrix, so that SPIDER-NET will show you the most relevant properties of the network. Then, browse your brain connectivity matrix file and the corresponding labels. You can also change your atlas replacing the attributes file. If you are not sure about all functionalities or you want to have additional info, please hover on the 'i' or take a look at the manual.

Extract a

subgraph

 \bigcirc

n

	🕝 Group-Parcellati	on 😥 Sub-Parcellati	ion Fro Sub-Parcellation Legend: 🍙 😥 Attribute
	Undefined	Undefined	CS: Central sulcus (Rolando's fissure)
trix_Struct.txt	Fro-l	CS	InfFG0pp: Opercular part of the inferior frontal gyrus Attr1
	Ins-l	FMarG/S	InfFGOrp: Orbital part of the inferior frontal gyrus Attr2
ur BC matrix File	Lim-l	InfFGOpp	InfFGTrip: Triangular part of the inferior frontal gyrus Attr3
	Tem-l	InfFGOrp	InfPrCS: Inferior part of the precentral sulcus
	Par-l	InfFGTrip	LOrS: Lateral orbital sulcus Attr5
	Occ-l	InfFS	MedOrS: Medial orbital sulcus (olfactory sulcus) Attr6
	SbC-l	InfPrCS	MFG: Middle frontal gyrus
the initial many	CeB-l	LOrS	OrG: Orbital gyri
the mitiat menu	Fro-r	MedOrS	OrS: Orbital sulci (H-shaped sulci)
	lns-r	MFG	PrCG: Precentral gyrus
	Lim-r	MES	SbCG/S: Subcentral gyrus (central operculum) and sulci
	Selected	Node Subset	😥 🗆 Apply thresholding
	Parcellation	Attribute	
	Fro-l	Undefined	

Compute topological properties

Visualize a property of the nodes

Keep connections within group parcels

Show weights in the figure

(i)

(i)

Ċ

Delete current selection

承 SPIDER-NET

Don Carlo Gnocchi

connMa Browse voi

Return to

Davide Coluzzi, PhD candidate, DEIB.

POLITECNICO MILANO 1863

Explore from

current selected

subset

©

(Optional) computation and visualization of topological features

Topological properties and thresholding method

Graph-Based Index	Graphical Representation	Mathematical Expression				
Density	24	$D = \frac{X}{(n^2 - n)/2}$				
Degree Strength		$k = avg(\sum_j a_{ij}) \ ; \ k^w = avg(\sum_j w_{ij})$				
Average clustering coefficient (binary and weighted)		$C = \frac{1}{n} \sum_{i \in \mathbb{N}} \frac{2t_i}{k_i(k_i - 1)} \; ; \; C^w = \frac{1}{n} \sum_{i \in \mathbb{N}} \frac{2t_i^w}{k_i(k_i - 1)}$				
Characteristic path length (binary and weighted)		$L = \frac{1}{n} \sum_{i \in \mathbb{N}} \frac{\sum_{j \in \mathbb{N}} j \neq i}{n-1} ; L^{w} = \frac{1}{n} \sum_{i \in \mathbb{N}} \frac{\sum_{j \in \mathbb{N}} j \neq i}{n-1} d_{ij}^{w}$				
Global Efficiency (binary and weighted)		$E = \frac{1}{n} \sum_{i \in \mathbb{N}} \frac{\sum_{j \in \mathbb{N}} {}_{j \neq i} (d_{ij})^{-1}}{n-1} ; E^{W} = \frac{1}{n} \sum_{i \in \mathbb{N}} \frac{\sum_{j \in \mathbb{N}} {}_{j \neq i} (d_{ij}^{W})^{-1}}{n-1}$				
Modularity	A A A A A A A A A A A A A A A A A A A	$Q = \frac{1}{2m} \sum_{C_h} \sum_{i,j \in C_h} \left[a_{ij} - \frac{k_i k_j}{2m} \right]$ where m is the total number of edges in the network and C_h are the communities				
Coreness statistics		$\begin{split} N &= \frac{1}{v_S} \biggl(\sum_{i,j \in V_C} (w_{ij} - \bar{w}) - \sum_{i,j \in V_P} (w_{ij} - \bar{w}) \biggr) \ where \\ V_c, V_p \ are sets \ of \ all \ nodes \ in \ the \ core, \ periphery, \ \bar{w} \ is \ the \\ average \ edge \ weight \ and \ v_s \ is \ a \ normalization \ constant \end{split}$				
Rich-club coefficients		$R_{k} = \frac{2o_{>k}}{m_{>k}(m_{>k}-1)} = \frac{n.edge\ linking\ nodes\ > k}{max\ n.edge\ linking\ nodes\ > k}$				
Small-worldness		$S = \frac{C/C_{rand}}{L/L_{rand}}$ where rand refers to measures of random network				

- Network indexes pointing out significant organizational changes in a number of brain disorders:
 - Alzheimer's Disease [Daianu et al., 2013]
 - Mild Cognitive Impairment [Baggio et al., 2014]
 - Parkinson's Disease [Göttlich et al., 2013]
 - Epilepsy [*Ji et al., 2017*]
 - Autism [Barttfeld et al., 2012]

Density thresholding

POLITECNICO MILANO 1863

Topological properties – Whole-brain network

-Structural Connectivity Matri:

Global indexes

The density of the matrix uploaded was : 20.044%, the density of the matrix shown is: 20.044% The average degree is : 32.873, the average strength is : 3.336, the average unweighted clustering coefficient is : 0.66, the average weighted clustering coefficient is 0.05 The unweighted characteristic path length is 2.095, the weighted characteristic path length is 15.742 The unweighted global efficiency is 0.553, the weighted global efficiency is 0.086 The unweighted small-worldness is 2.818 The modularity is: 0.393, the coreness statistic is: 0.365

The Mesoscale Network Analysis (Modularity - optimized community structure, Core-Periphery analysis optimized core-periphery structure, Rich-club coefficients) and the other computed indexes are contained in the ResultsFile directory.

Davide Coluzzi, PhD candidate, DEIB.

Topological properties – Whole-brain network – Interactivity

承 Structural Connectivity Matrix

Global indexes

The density of the matrix uploaded was : 20.044%, the density of the matrix shown is: 20.044% The average degree is : 32.873, the average strength is : 3.336, the average unweighted clustering coefficient is : 0.66, the average weighted clustering coefficient is 0.05 The unweighted characteristic path length is 2.095, the weighted characteristic path length is 15.742 The unweighted global efficiency is 0.553, the weighted global efficiency is 0.086 The unweighted small-worldness is 2.818 The modularity is: 0.393, the coreness statistic is: 0.365

The Mesoscale Network Analysis (Modularity - optimized community structure, Core-Periphery analysis optimized core-periphery structure, Rich-club coefficients) and the other computed indexes are contained in the ResultsFile directory.

Davide Coluzzi, PhD candidate, DEIB.

Topological properties – Selected sub-network

Selected Structural Connectivity Submatrix

The Mesoscale Network Analysis (Modularity - optimized community structure, Core-Periphery analysis - optimized core-periphery structure, Rich-club coefficients) and the other computed indexes are contained in the ResultsFile directory.

Davide Coluzzi, PhD candidate, DEIB.

POLITECNICO MILANO 1863

X

POLITECNICO MILANO 1863

Connectogram generation

POLITECNICO MILANO 1863

Connectogram generation

Going into connectograms - Examples

- **Destrieux** 150 cortical atlas [Destrieux et al., 2010]
- 7 subcortical ROIs per hemisphere and the brainstem were also segmented using the FreeSurfer automatic labeling process [Fischl et al., 2002] for a total of 165 parcels

1	PARCELLATION	DESCRIPTION	GROUP-PARCELLATION
2	CS	Central sulcus (Rolando's fissure)	Fro
3	FMarG/S	Fronto-marginal gyrus (of Wernicke) and sulcus	Fro
4	InfFGOpp	Opercular part of the inferior frontal gyrus	Fro
5	InfFGOrp	Orbital part of the inferior frontal gyrus	Fro
6	InfFGTrip	Triangular part of the inferior frontal gyrus	Fro
7	InfFS	Inferior frontal sulcus	Fro
8	InfPrCS	Inferior part of the precentral sulcus	Fro
9	LOrS	Lateral orbital sulcus	Fro
10	MedOrS	Medial orbital sulcus (olfactory sulcus)	Fro
11	MFG	Middle frontal gyrus	Fro
12	MFS	Middle frontal sulcus	Fro
13	OrG	Orbital gyri	Fro
14	OrS	Orbital sulci (H-shaped sulci)	Fro
15	PrCG	Precentral gyrus	Fro

Davide Coluzzi, PhD candidate, DEIB.

Going into connectograms - Examples

- Desikan-Killiany-Tourville (DKT) cortical atlas [Desikan et al., 2006]
- 62 ROIs divided into the two hemispheres and 4 lobes

1	PARCELLATION	DESCRIPTION	GROUP-PARCELLATION
2	CACg	caudal anterior cingulate	Fro
3	CMF	caudal middle frontal gyrus	Fro
4	LOrF	lateral orbitofrontal cortex	Fro
5	MOrF	medial orbitofrontal cortex	Fro
6	PaC	paracentral lobule	Fro
7	Op	pars opercularis	Fro
8	Or	pars orbitalis	Fro
9	Tr	pars triangularis	Fro
10	PreC	precentral gyrus	Fro
11	RoACg	rostral anterior cingulate	Fro
12	RoMF	rostral middle frontal gyrus	Fro
13	SF	superior frontal gyrus	Fro
14	Ins	insula	Ins
15	MT	middle temporal gyrus	Tem

Davide Coluzzi, PhD candidate, DEIB.

Going into connectograms - Examples - Interactivity

- Desikan-Killiany-Tourville (DKT) cortical atlas [Desikan et al., 2006]
- 62 ROIs divided into the two hemispheres and 4 lobes

1	PARCELLATION	DESCRIPTION	GROUP-PARCELLATION
2	CACg	caudal anterior cingulate	Fro
3	CMF	caudal middle frontal gyrus	Fro
4	LOrF	lateral orbitofrontal cortex	Fro
5	MOrF	medial orbitofrontal cortex	Fro
6	PaC	paracentral lobule	Fro
7	Op	pars opercularis	Fro
8	Or	pars orbitalis	Fro
9	Tr	pars triangularis	Fro
10	PreC	precentral gyrus	Fro
11	RoACg	rostral anterior cingulate	Fro
12	RoMF	rostral middle frontal gyrus	Fro
13	SF	superior frontal gyrus	Fro
14	Ins	insula	Ins
15	MT	middle temporal gyrus	Tem

Davide Coluzzi, PhD candidate, DEIB.

Going into connectograms - Examples

- Automated Anatomical Labeling (AAL) atlas [Tzourio-Mazoyer et al., 2002]
- 90 ROIs: 85 cortical and 5 subcortical ROIs
- Associated functional networks: Language, SensoriMotor, Default-Mode, Salience, VisuoSpatial, FrontoParietal or Visual Networks [Smitha et al., 2017]

	Α	В	C	D	E	F
	PARCELLATION	DESCRIPTION	ATTRIBUTE	ATTRIBUTE	ATTRIBUTE	ATTRIBUTE
2	SFGdor	Superior frontal gyrus, dorsolateral	Visuospatial Network	Language Network	Salience Network	
5	ORBsup	Superior frontal gyrus, orbital part	Visuospatial Network	Language Network		
ŀ	MFG	Middle frontal gyrus	FPN/Executive Network	Visuospatial Network	Language Network	Salience Network
5	ORBmid	Middle frontal gyrus, orbital part	Visuospatial Network	Language Network		
5	IFGoperc	Inferior frontal gyrus, opercular part	FPN/Executive Network	Language Network	Salience Network	
1	IFGtriang	Inferior frontal gyrus, triangular part	FPN/Executive Network	Language Network	Salience Network	
8	ORBinf	Inferior frontal gyrus, orbital part	Language Network	FPN/Executive Network	Salience Network	
)	REC	Gyrus rectus	Sensorimotor Network			
0	OLF	Olfactory cortex	Language Network	Sensorimotor Network		
1	PreCG	Precental gyrus	Language Network	Sensorimotor Network	Salience Network	
2	PoCG	Postcentral gyrus	Sensorimotor Network	FPN/Executive Network	Salience Network	
3	ROL	Rolandic operculum	Language Network	Sensorimotor Network		
4	SFGmed	Superior frontal gyrus, medial	DMN	Visuospatial Network	Language Network	FPN/Executive Network
5	ORBsupmed	Superior frontal gyrus, medial orbital	Visuospatial Network	Language Network	Salience Network	FPN/Executive Network

POLITECNICO MILANO 1863

Going into connectograms - Examples

 FSL Harvard-Oxford atlas cortical & subcortical areas and AAL atlas cerebellar areas [Desikan et al. 2006, Tzourio-Mazoyer et al., 2002]

 132 ROIs: 91 cortical and 15 subcortical ROIs from the FSL maximum likelihood cortical and ⁵ subcortical atlas, and 26 cerebellar ROIs from the AAL atlas

		В	С	D	E
1	PARCELLATION	DESCRIPTION	GROUP-PARCELLATION	ATTRIBUTE	ATTRIBUTE
2	FP	Frontal Pole	Fro	FPN	Lang
3	SFG	Superior Frontal Gyrus	Fro	FPN	Lang
4	MidFG	Middle Frontal Gyrus	Fro	FPN	Lang
5	IFG_tri	Inferior Frontal Gyrus, pars triangularis	Fro	ITG	FPN
6	IFG_oper	Inferior Frontal Gyrus, pars opercularis	Fro	Lang	FPN
7	PreCG	Precentral Gyrus	Fro	Motor	
8	SMA	Juxtapositional Lobule Cortex -formerly Supplementary Motor Corte:	Fro	Auditory	
9	FOrb	Frontal Orbital Cortex	Fro	ITG	
10	FO	Frontal Operculum Cortex	Fro	Salience	
11	IC	Insular Cortex	Ins	Auditory	
12	ТР	Temporal Pole	Tem	STG	
13	aSTG	Superior Temporal Gyrus, anterior division	Tem	STG	
14	pSTG	Superior Temporal Gyrus, posterior division	Tem	STG	
15	aMTG	Middle Temporal Gyrus, anterior division	Tem	aDMN	

POLITECNICO MILANO 1863

P

Study population: The dataset consists of 17 healthy control (HC) subjects (7 males and 10 females; mean age \pm SD : 52.5 \pm 8.3 years) and two stroke patients (males, age 44 – case study 1 and 37 – case study 2).

MRI acquisition: All the participants underwent an MRI examination performed on a 1.5 T Siemens Magnetom Avanto scanner equipped with a 12-channels head coil

Preprocessing:

- Parcellation and automatic labeling using FreeSurfer 75 cortical parcels plus 7 subcortical regions for each hemisphere and the brain stem for a total of 165 parcels (Destrieux atlas)
- Connectivity matrices derived by computing the edges as the number of the reconstructed fiber (NF)
- NF normalization by the sum of the volumes of the pair of connected parcels
- Creation of a probabilistic HC template

А

Connectogram visualization

HC Template

POLITECNICO MILANO 1863

Connectogram visualization

CASE 1

POLITECNICO MILANO 1863

Connectogram visualization

POLITECNICO MILANO 1863

Visualization of connectivity pattern altered by stroke lesion

Case 1

Long insular gyrus and central insular sulcus (LoInG/CInS)

Short insular gyri (ShoInG)

Pallidum (Pal)

Putamen (Pu)

Case 2

Caudate nucleus (CaN) Precentral gyrus (PrCG) Pallidum (Pal)

Pallidum (Pal

Putamen (Pu)

Thalamus (Tha)

POLITECNICO MILANO 1863

Visualization of connectivity pattern altered by stroke lesion (DTI)

a) HC Template

b) CASE 1

c) CASE 2

Davide Coluzzi, PhD candidate, DEIB.

DTI vs CSD structural connectomics

Limitations of DTI:

- Only simplification of diffusion inside brain, and it can represent only one major fiber direction (average direction) in voxel (fibers with crossing, kissing, fanning, and curving configurations)
- 2. Inherently low spatial resolution leads to partial volume effects
- 3. Reconstruction of fiber path is dependent on **data acquisition conditions** (including SNR and number of diffusion encoding directions), as well as axonal geometry

Visual comparison of processing pipelines (CSD)

a) HC Template

b) CASE 1

c) CASE 2

Global topological properties analysis

Graph-based indexes	HC	Case 1	HC-Case1	Case 2	HC-Case2
			Della (%)		Della (%)
Density	47.509%	18.647%	28.9%*	22.321%	25.2%*
Average Degree	77.915	30.582	60.7%	36.606	53.0%
Average Strength (W)	3.048	1.233	59.5%	1.396	54.2%
Clustering coefficient	0.76	0.614	19.2%	0.604	20.5%
Clustering coefficient (W)	0.019	0.017	10.5%	0.015	21.1%
Characteristic path length	1.542	2.092	-35.7%	1.927	-25.0%
Characteristic path length (W)	18.302	35.211	-92.4%	28.544	-56.0%
Global efficiency	0.735	0.549	25.3%	0.587	20.1%
Global efficiency (W)	0.068	0.039	42.6%	0.045	33.8%
Small-worldness	1.591	2.881	-81.1%	2.531	-59.1%
Modularity	0.193	0.38	-96.9%	0.351	-81.9%
Coreness statistic	0.321	0.402	-25.2%	0.367	-14.3%

* unnormalized by HC value

Local topological properties analysis

POLITECNICO MILANO 1863

Discussion

- 1. In the case 1 pattern of connectomics is significantly different from the case 2, mirroring the greater clinical severity of the former
- 2. The pattern of disconnection involved both the right hemisphere, where the stroke lesions were present, and the contralateral one
- 3. The impairment of the cortical areas of interest determined a decrease in both short-range and long-range connections within the hemisphere ipsilateral to the stroke lesion
- 4. Interhemispheric connectivity was particularly compromised, probably because subcortical nuclei, which are integration hubs of extrapyramidal systems, were affected by the lesions

Neurophysiological and neurological perspectives

- Better insight into cerebral circuits: integration of specific functional and structural information
- Lesional studies
- Studies on neurodegeneration
- AI methods are powerful in black-box analyses. Conversely, SPIDER-NET can help focused explorations

Conclusions and perspectives

SPIDER-NET

- will be soon employed on an entire group study to assess differences in the organization of brain connectivity between Alzheimer's Disease (AD) patients and HC subjects
 - In a recent preliminary study, we employed explainable Artificial Intelligence (XAI) to classify AD MRI slices and investigate the contribution of White Matter Hyperintensities (WMHs)
 - We are currently using XAI on connectivity data extracted from the same dataset
 - Analysis of explainability and connectivity of regions in relation to AD to identify the sub-networks which mostly explain the classification and differ from HC group

Conclusions and perspectives

SPIDER-NET

- 2. may be employed for a posteriori analysis of connectivity measures to test the robustness of the adopted procedures
 - Limitation: gold-standard methodologies are not established yet and even the most widespread connectivity measures and edge weighting are constantly object of research (e.g. DTI)
- 3. may be generalized to be used with other brain connectivity data (e.g EEG, MEG) or even in other research fields
- 4. may help in the definition of patient-tailored rehabilitative treatments

Free download: https://caditer.dongnocchi.it, infocaditer@dongnocchi.it

Thank you for your attention

Davide Coluzzi, PhD candidate, DEIB.