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A distance-mean function measures the average distance of points from the
elements of a given set of points (focal set) in the space. The level sets of
a distance-mean function are called generalized conics.

Polyellipses (polyellipsoids): the level sets of a function measuring the arith-
metic mean of distances from finitely many focal points (constant distance
sum).

Polynomial lemniscates: the level sets of a function measuring the geometric
mean of distances from finitely many focal points (constant distance pro-
duct). In case of infinite focal points the average distance is typically given
by integration over the focal set: the level sets (generalized conics) are
Hausdorff limits of polyellipsoids (partitions, integral sums).

2



I. Taxicab distance-mean functions (reconstruction of planar bodies from

the coordinate X-rays and some related results).

1. A theoretical approach. The general form of the functions we are

interested in is

x 7→ fD(x) :=
1

µ(D)

∫
D
u ◦ d(x, y) dµy, (1)

where d measures the distance between the points, D ⊂ Rn is a compact

subset with a finite positive measure with respect to µ, u:R→ R is a strictly

monote increasing convex function satisfying the initial condition u(0) =

0. Suppose that the distance function comes from a norm. According to

the convexity of the integrand, the distance-mean function is a convex and,

consequently, a continuous function. Using the increasing slope property of

convex functions, we have that

lim inf
t→∞

u(t)

t
> 0. (2)

Therefore the distance-mean function inherits a growth property of the form

lim inf
‖x‖→∞

fD(x)

‖x‖
≥
(

lim inf
r→∞

u(r)

r

)
µ(D) > 0. (3)
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The increasing slope property of convex functions

Theorem 1 The sublevel sets of the distance-mean function are convex and

compact.

According to the convexity (⇒ continuity) of the distance-mean function it is

enough to prove that the sublevel set CD := {x | fD(x) ≤ c} ⊂ Rn is bounded:

the existence of a sequence xn ∈ CD such that limn→∞ ‖xn‖ =∞ implies that

lim
n→∞

fD(xn)

‖xn‖
≤ lim
n→∞

c

‖xn‖
= 0

which contradicts to the growth property (3).
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Theorem 2 The distance-mean function has a global minimizer.

Weierstrass theorem: if all the level sets of a continuous function defined on

a non-empty closed set in Rn are bounded, then it has a global minimizer.

Cs. Vincze and Á. Nagy, On the theory of generalized conics with applications in geometric

tomography, J. of Approx. Theory 164 (2012), 371-390.

Cs. Vincze and Á Nagy, On the average taxicab distance function and its applications, Acta

Appl. Math. 161, 201–220 (2019). https://doi.org/10.1007/s10440-018-0210-1.

2. Bisection of bodies by coordinate hyperplanes Let us choose u(t) = t

in formula (1) and suppose that distance measuring and integration are taken

with respect to the taxicab distance

d1(x, y) =
n∑
i=1

|xi − yi| (4)

and the Lebesgue measure µn on Rn, respectively.
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Let K be a compact subset in Rn, µn(K) = 1 and consider the taxicab

distance-mean function

fK(x) =
∫
K
d1(x, y) dy =

n∑
i=1

∫
K
|xi − yi| dy.

Since the derivative of the integrand at xi is ±1 depending on yi < xi or

xi < yi, we can conclude that the value 1 occurs as many times as many

points y ∈ K is on the left hand side of x with respect to the i-th coordinate:

K ≤i xi := {y ∈ K | yi ≤ xi}.

In a similar way, −1 occurs as many times as many points y ∈ K is on the

right hand side of x with respect to the i-th coordinate:

xi ≤i K := {y ∈ K | xi ≤ yi}.

Since the set

K =i x
i := {y ∈ K | yi = xi} (i = 1, . . . , n)

is of measure zero with respect µn we have that

DifK(x) = µn(K ≤i xi)− µn(xi ≤i K) (i = 1, . . . , n). (5)

6



Theorem 3 The point x ∈ Rn is a minimizer of fK if and only if each coor-

dinate hyperplane at x divides K into two parts of equal measure.

The partial derivative D1fK(x) > 0, x = (5,3).

How to bisect a set of two parts of equal measure? Formula (5) shows that

|DifK(x)−DifK(y)| = 2µn
(
min{xi, yi} <i K <i max{xi, yi}

)
and the compactness of K implies that fK has a Lipschitzian gradient.
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Therefore the gradient descent method can be used to find the minimizer

bisecting the measure of the integration domain K in the sense that each

coordinate hyperplane passing through the minimizer divides the set into two

parts of equal measure. Let us present the gradient descent method in terms

of a stochastic algorithm: let Pk be a sequence of K-valued independent

uniformly distributed random variables and consider the recursion

Xk+1 = Xk − tk+1Qk+1, (6)

where X0 := x0 ∈ K is a starting point,

Qk+1 :=
(
sgn (X1

k − P
1
k+1), . . . , sgn (Xn

k − P
n
k+1)

)
(7)

and the step size is a decreasing sequence of positive real numbers tk satisfying

conditions
∞∑
k=1

tk =∞ and
∞∑
k=1

t2k <∞. (8)

Assuming µn(K) = 1 we have the conditional probability

P (Qk+1 = (1, . . . ,1)|Xk) = µn
(
(K < X1

k ) ∩ . . . ∩ (K < Xn
k )
)

(9)
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because Qk+1 = (1, . . . ,1) means that Xk is greater than Pk+1 with respect
to the coordinatewise partial ordering x ≺ y ⇔ x1 < y1, . . . , xn < yn and Pk+1
is a uniformly distributed K-valued random variable In a similar way we have
the conditional probability

P (Qk+1 = (1,−1,1, . . . ,1)|Xk) = (10)

µn
(
(K < X1

k ) ∩ (X2
k < K) ∩ (K < X3

k ) ∩ . . . ∩ (K < Xn
k )
)
, . . .

and so on. A direct computation shows that E(Qk+1|Xk) = grad fK(Xk).

Theorem 4 Let K ⊂ Rn be a connected compact body*. The sequence
of the random variables Xk converges almost surely to the unique global
minimizer x∗ of the function fK.

Cs. Vincze and Á. Nagy, On the theory of generalized conics with applications in geometric

tomography, J. of Approx. Theory 164 (2012), 371-390.

M. Barczy, Á Nagy, Cs. Noszály and Cs. Vincze, A Robbins-Monro type algorithm for

computing the global minimizer of generalized conic functions, Optimization 64 (9) (2015),

1999-2020.

Cs. Vincze and Á Nagy, On the average taxicab distance function and its applications, Acta

Appl. Math. 161, 201–220 (2019). https://doi.org/10.1007/s10440-018-0210-1.

*A nonemty compact set is called a body if it is the closure of its interior.
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The step Xk 7→ Xk+1 = Xk − tk+1Qk+1.

The lines parallel to the coordinate axis at Xk divide the plane into four

quadrants. The value of Pk+1 is the position of the highest probability, i.e.

it is in the quadrant containing the part of K of the highest measure. The

gradient of fK at Xk is pointed in the first quadrant represented by the value

(1,1) of the stochastic vector Qk+1.
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Therefore the step of the highest probability is taken into the opposite direc-

tion.

3. Applications in geometric tomography The function fK is strongly

related to the parallel X-rays as follows: by the Cavaliéri principle, the formula

DifK(x) = µn(K ≤i xi)− µn(xi ≤i K) (i = 1, . . . , n)

of the first partial derivatives implies that

DiDifK(x) =a.e. 2XiK(xi) (i = 1, . . . , n), (11)

where XiK(xi) := µn−1(xi =i K) is the (n−1)-dimensional Lebesgue measure

of the set

xi =i K := {y ∈ K | yi = xi}. (12)

The functions

XiK(t) := µn−1(t =i K) (t ∈ R and i = 1, . . . , n)

are called the coordinate X-rays of K (X-rays parallel to the coordinate hy-

perplanes).
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The case of compact convex planar bodies (X-rays measure the length of

the chords parallel to the coordinate axis):

12



13



In terms of the coordinate X-rays

fK(x) =
∫
K
d1(x, y) dy =

n∑
i=1

∫
K
|xi − yi| dy =

n∑
i=1

∞∫
−∞
|xi − t|XiK(t) dt. (13)

Theorem 5 fK = fL iff the coordinate X-rays of K and L coincide almost

everywhere.

Let K ⊂ Rn be a compact set and consider the function

f
p
K:Rn → R, x 7→ f

p
K(x) :=

∫
K
dp(x, y) dy, (14)

where dp is the distance function coming from the p-norm

dp(x, y) =
p
√

(x1 − y1)p + . . .+ (xn − yn)p (p ≥ 1).

The sublevel sets of type

C := {x ∈ Rn | fpK(x) ≤ c}

are called generalized p-conic bodies. (They are convex compact subsets in

the space.)
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Theorem 6 Let C be a generalized p-conic and suppose that C∗ is a compact

set of the same measure as C. If the distance-mean functions f
p
C and f

p
C∗

associated to C and C∗ coincide then C ≈ C∗, i.e. C is equal to C∗ except

on a set of measure zero.

Let C be defined by the inequality f
p
K(x) ≤ c. Observe that the decompo-

sitions C = (C \ C∗) ∪ (C ∩ C∗) and C∗ = (C∗ \ C) ∪ (C∗ ∩ C) imply that

µn(C \C∗) = µn(C∗ \C) because of µn(C∗) = µn(C). On the other hand, the

double integral form ∫
C
f
p
K(x) dx =

∫
C

∫
K
dp(x, y) dy dx (15)

shows that
∫
C f

p
K =

∫
C∗ f

p
K because of fpC = f

p
C∗. Therefore∫

C\C∗
f
p
K =

∫
C
f
p
K −

∫
C∩C∗

f
p
K =

∫
C∗
f
p
K −

∫
C∩C∗

f
p
K =

∫
C∗\C

f
p
K. (16)

The sublevel rate c is working as an upper bound for f
p
K on C \ C∗ but it

is a (strict) lower bound for fpK on C∗ \ C and we have that µn(C \ C∗) =

µn(C∗ \ C) = 0.
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Corollary 1 Generalized 1-conic bodies are determined by their X-rays pa-

rallel to the coordinate hyperplanes among compact sets.

The coordinate X-rays determine both the measure and the taxicab distance-

mean function fK = f1
K of the sets.

Example. Circles are determined by their X-rays in the coordinate directions

among compact bodies in the plane. They are level sets of the taxicab

distance-mean function fB associated to the circumscribed square: if B :=

conv {(0,0), (1,0), (1,1), (0,1)}; then we have that

fB(x) = (x1 − (1/2))2 + (x2 − (1/2))2 + (1/2)

for any interior point (x1, x2) ∈ B

Cs. Vincze and Á. Nagy, On the theory of generalized conics with applications in geometric

tomography, J. of Approx. Theory 164 (2012), 371-390.

Cs. Vincze and Á Nagy, On the average taxicab distance function and its applications, Acta

Appl. Math. 161, 201–220 (2019). https://doi.org/10.1007/s10440-018-0210-1.
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Concluding remarks. The taxicab distance-mean function fK accumulates

the coordinate X-ray information. Instead of the X-rays we can investigate

a convex function independently of the convexity of the integration domain.

Technics and results based on fK are typically working in higher dimensional

spaces as well.

4. Reconstruction of planar sets by their coordinate X-rays. The prob-

lem is also motivated by Gardner’s unicity problem: Characterize those convex

bodies that can be determined by two X-rays.

R. J. Gardner, Geometric Tomography, 2nd ed. Cambridge University Press, New York

(2006).

Let K be a compact subset in the plane. The coordinate X-rays of K provide

us to construct an axis-parallel bounding box containing K. Since fK is

also given by the coordinate X-rays the reconstruction is based on the best

approximation of fK by the distance-mean functions of a special class of

sets. They are constituted by subrectangles of the bounding box under a

given resolution: fLn → fK.
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Let K∗ be the limit set of a convergent subsequence in Ln. For a convergent

reconstruction process we have to find special classes of sets to provide the

continuity of the mapping L 7→ fL. The continuity implies that the distance-

mean functions of K∗ and K coincide. So do the coordinate X-rays (almost

everywhere).

Cs. Vincze and Á. Nagy, On the theory of generalized conics with applications in geometric

tomography, J. of Approx. Theory 164 (2012), 371-390.

Cs. Vincze and Á Nagy, Reconstruction of hv-convex sets by their coordinate X-ray functions,

J. Math. Imaging and Vis. Volume 49 (3) (2014), pp. 569–582.

Cs. Vincze and Á. Nagy, Generalized conic functions of hv-convex planar sets: continuity

properties and X-rays, Aequat. Math. 89 (4) (2015), pp. 1015-1030. Arxiv:1303.4412.

Let K be a compact subset in the plane. The outer parallel body Kε is the

union of closed Euclidean disks centered at the points of K with radius ε > 0.

The Hausdorff distance between compact subsets K and L is given by the

formula

H(K,L) := inf{ε > 0 | K ⊂ Lε and L ⊂ Kε}.
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Theorem 7 If Ln → K with respect to the Hausdorff metric then

lim sup
n→∞

fLn(x) ≤ fK(x).

The Hausdorff convergence Ln → K is called regular iff Ln tends to K in

measure: limn→∞ µ2(Ln) = µ2(K). Under the hypothesis of the Hausdorff

convergence the regularity is equivalent to the convergence in symmetric

difference: limn→∞ µ2(Ln 4 K) = 0.

Theorem 8 If the Hausdorff convergence Ln → K is regular then

lim
n→∞ fLn(x) = fK(x)

and the convergence fLn → fK is uniform over any compact subset in R2.

X-regularity of the Hausdorff convergence Ln → K means the convergence of

In := ∩∞n=iLi to K in measure: limn→∞ µ2(In) = µ2(K).

Theorem 9 If the Hausdorff convergence Ln → K is X-regular then it is

regular and the coordinate X-rays tend to the coordinate X-rays of the limit

set almost everywhere.
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Example 1. If each Ln is obtained from a compact set L via finitely many

Steiner symmetrizations and Euclidean isometries then the Hausdorff conver-

gence Ln → K is regular.

G. Bianchi, A. Burchard, P. Gronchi and A. Volcic, Convergence in Shape of Steiner Sym-

metrization, Indiana University Math. Journal, Vol. 61, No. 4. (2012), 1695-1709.

Example 2. Any outer Hausdorff approximation K ⊂ Ln → K is X-regular.

Cs. Vincze and Á. Nagy, On the theory of generalized conics with applications in geometric

tomography, J. of Approx. Theory 164 (2012), 371-390.

Example 3. If Ln is a sequence of compact connected hv-convex sets tending

to the limit K with respect to the Hausdorff metric then the convergence is

regular.

Cs. Vincze and Á. Nagy, Generalized conic functions of hv-convex planar sets: continuity

properties and X-rays, Aequat. Math. 89 (4) (2015), pp. 1015-1030. Arxiv:1303.4412.

Example 4. The Hausdorff convergence of compact convex subsets Ln to

K with non-empty interior is X-regular.
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Cs. Vincze and Á Nagy, On the average taxicab distance function and its applications, Acta

Appl. Math. 161, 201–220 (2019). https://doi.org/10.1007/s10440-018-0210-1.

In the sense of Example 4, the Hausdorff convergence in the class of compact

convex sets (with nonempty) interior implies X-regularity and the reconstruc-

tion can be based on direct comparisons of X-rays: the coordinate X-rays

converges to the coordinate X-rays of the limit set.

R. J. Gardner and M. Kiderlen, A solution to Hammer’s X-ray reconstruction problem,

Advances in Mathematics, 214 (2007) 323–343.

In the sense of Example 3, the Hausdorff convergence in the class of com-

pact connected hv-convex sets implies the regularity and the reconstruc-

tion can be based on direct comparisons of the distance-mean functions:

limn→∞ fLn(x) = fK(x) and the convergence fLn → fK is uniform over any

compact subset in R2.

Cs. Vincze and Á Nagy, Reconstruction of hv-convex sets by their coordinate X-ray functions,

J. Math. Imaging and Vis. Volume 49 (3) (2014), pp. 569–582.
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Theorem 10 Consider the collection of compact connected hv-convex sets

contained in the axis parallel bounding box B ⊂ R2 and let K be one of them;

for any ε > 0 there exists δ > 0 such that∫
B
|fL(x)− fK(x)| dx < δ

implies that H(L,K∗) < ε, where fK = fK∗, i.e. K and K∗ have the same

coordinate X-rays almost everywhere.

Such a continuity property allows us to reconstruct compact connected hv-

convex planar sets by the coordinate X-rays as follows.

Input: n ∈ N and X1K, X2K.

STEP 1: Let B and the function fK associated to K be given by the formulas

B = supp (X1K)× supp (X2K), (17)

fK(x) =

∞∫
−∞

∣∣∣x1 − t
∣∣∣X1K(t) dt+

∞∫
−∞

∣∣∣x2 − t
∣∣∣X2K(t) dt. (18)
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STEP 2: Let t1i ∈ [a, b] and t2i ∈ [c, d] be equally spaced points with t10 = a,

t1n = b and t20 = d, t2n = c.

t1i = a+ i
b− a
n

, t2i = d− i
d− c
n

(i = 0, . . . , n)

STEP 3: Bnij = [t1i−1, t
1
i ]× [t2j , t

2
j−1], where i, j = 1, . . . , n.

STEP 4: The control grid Gn(K) :=
{
yij ∈ BK | i, j = 1, . . . , n

}
consists of

the centers of the subrectangles.

STEP 5: The feasible set Hn consists of compact connected hv-convex sets

given by the union of some subrectangles such that

fL(yij) ≥ fK(yij) (i, j = 1, . . . , n). (19)

STEP 6: Choose Ln ∈ Hn that minimizes

n∑
i,j=1

fLn(yij)− fK(yij)

n2

Output: Ln.
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The procedure can be formulated in terms of a linear 0 - 1 programming

because any element L in the feasible set can be represented as a 0 − 1

interval matrix by the variables xkl, where xkl = 1 if Bnkl ⊂ L and xkl = 0

otherwise (k, l = 1, . . . , n).

The applications of the greedy or the antigreedy algorithmic paradigms are

also possible. They are based on deleting the subrectangle which causes

the extremal (the greatest or the least) average descent of fLn at the control

points. In general the antigreedy version increases the number of the possible

outputs for making some voting processes more effective. The algorithm is

adapted to finitely many and/or noisy measurements of the coordinate X-rays

as well.

Cs. Vincze and Á Nagy, Reconstruction of hv-convex sets by their coordinate X-ray functions,

J. Math. Imaging and Vis. Volume 49 (3) (2014), pp. 569–582.

Cs. Vincze and Á Nagy, An algorithm for the reconstruction of hv-convex planar bodies

by finitely many and noisy measurements of their coordinate X-rays, Fund. Inf. 141 (2-3)

(2015) pp. 169-189.
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The set we are looking for.
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The coordinate X-rays.
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The optimal solution.
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The greedy version.
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Comparing figures.
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5. Reconstruction by the least average values. The discrete version of

the presented tomographic tools can be found in

Cs. Vincze, On the taxicab distance sum function and its applications in discrete tomography,

Period. Math. Hung. 79 (2019), pp. 177–190.

It is a special case of the general theory with counting measure in the integral

formulas.

5.1. Summary. Let F = {xi ∈ Rn | i = 1, . . . ,m} be a finite set of different

points in the coordinate space and consider the taxicab distance sum function

f(x) :=
m∑
i=1

d1(x, xi) =
m∑
i=1

n∑
j=1

|xj − xji |. (20)

Introducing the one-sided partial derivatives

D+
j f(x) := lim

ε→0+

f(x1, . . . , xj + ε, . . . , xn)− f(x)

ε
,

D−j f(x) := lim
ε→0−

f(x1, . . . , xj + ε, . . . , xn)− f(x)

ε
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we have the following collection of formulas:

D+
j f(x) =

∣∣∣F ≤j xj∣∣∣− ∣∣∣F >j x
j
∣∣∣ ,

D−j f(x) =
∣∣∣F <j x

j
∣∣∣− ∣∣∣F ≥j xj∣∣∣ ,

where

F >j t := {xi ∈ F | x
j
i > t}, F =j t := {xi ∈ F | x

j
i = t},

F <j t := {xi ∈ F | x
j
i < t},

F ≥j t := {xi ∈ F | x
j
i ≥ t}, F ≤j t := {xi ∈ F | x

j
i ≤ t},

D+
j f(x)−D−j f(x)

2
=
∣∣∣F =j x

j
∣∣∣ (j = 1, . . . , n).

The cardinality
∣∣∣F =j x

j
∣∣∣ is the number of the points in the intersection of

F with the hyperplane x + Hj, where Hj := {x ∈ Rn | xj = 0}. The (n − 1)-

dimensional X-ray function parallel to the coordinate hyperplane Hj is defined

as
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Xj:R→ R, Xj(t) :=
∣∣∣F =j t

∣∣∣ (j = 1, . . . , n). (21)

X-rays take the zero value except at finitely many t ∈ R. In terms of X-rays

f(x) =
m∑
i=1

d1(x, xi) =
m∑
i=1

n∑
j=1

|xj − xji | =
n∑

j=1

∑
t∈R

Xj(t)|xj − t| (x ∈ Rn).

Therefore the taxicab distance sum function accumulates the coordinate X-

ray information.

A 2 - dimensional X-ray in 3D: X2(3) = 12.
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5.2. The least avarege value principle: reconstruction of finite pla-

nar sets by the coordinate X-rays. Taking a finite set of points F =

{x1, . . . , xm} ⊂ R2 in the plane let

G = {t11, . . . , t
1
m1
} × {t21, . . . , t

2
m2
} ⊂ R2

be the grid determined by the coordinates of the focal points in F . The

problem is to reconstruct F by the number of points

X1(t11), . . . , X1(t1m1
) and X2(t21), . . . , X2(t2m2

)

along the vertical and the horizontal directions, respectively.

At first we reconstruct the taxicab distance sum function

f(x) =
m1∑
j1=1

X1(t1j1)|x1 − t1j1|+
m2∑
j2=1

X2(t2j2)|x2 − t2j2|. (22)

associated with F . The least avarege value principle means that points of

the grid with low taxicab sum values are preferred to be focal points pro-

vided that the X-rays show free positions in the rows (or columns). For the

reconstruction we use the following subsequent steps:
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(i) Focal points due to the least average distance: choose the point (points)
of the grid, where the taxicab distance sum function attains its least value
at,

(ii) Focal points due to the X-rays: after choosing a point due to the least
average value, we use the X-rays to choose or disqualify the points in the
row and the column of the selected point - it depends on the number of
the free positions,

(iii) Repeat (ii) as far as possible. Otherwise return to (i).

The algorithm (i)-(iii) has polynomial time complexity because it is based on
the quicksort of the values of the taxicab distance sum function.

Example. Let the taxicab distance sum function be given as

f(x1, x2) = 2
∣∣∣x1 − 0

∣∣∣+
∣∣∣x1 − 1

∣∣∣+ 2
∣∣∣x1 − 3

∣∣∣+ 3
∣∣∣x1 − 4

∣∣∣+ 4
∣∣∣x1 − 5

∣∣∣+∣∣∣x2 − 0
∣∣∣+ 4

∣∣∣x2 − 1.5
∣∣∣+ 2

∣∣∣x2 − 2
∣∣∣+ 2

∣∣∣x2 − 3
∣∣∣+ 3

∣∣∣x2 − 4.2
∣∣∣ ,
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i.e.

t11 = 0, t12 = 1, t13 = 3, t14 = 4, t15 = 5,

t21 = 0, t22 = 1.5, t23 = 2, t24 = 3, t25 = 4.2

and

X1(0) = 2, X1(1) = 1, X1(3) = 2, X1(4) = 3, X1(5) = 4,

X2(0) = 1, X2(1.5) = 4, X2(2) = 2, X2(3) = 2, X2(4.2) = 3.

The matrix

M :=



60.8 52.8 40.8 38.8 42.8

53.6 45.6 33.6 31.6 35.6

51.6 43.6 31.6 29.6 33.6

52.6 44.6 32.6 30.6 34.6

67.6 59.6 47.6 45.6 49.6


.

shows the values of the taxicab distance sum function f at the points of the

grid

G = {0,1,3,4,5} × {0,1.5,2,3,4.2}.
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In the sense of (i), the steps 1-3 are

x x x x x

x x x x x

x x x 29.6 x

x x x x x

x x x x x


−→



x x x x x

x x x x x

x x x 29.6 x

x x x 30.6 x

x x x x x


−→



x x x x x

x x x 31.6 x

x x 31.6 29.6 x

x x x 30.6 x

x x x x x


,

where the least values of M are choosen.

Since X1(4) = 3 and X2(2) = 2 we can not choose further values from the

fourth column and the third row:

x x x 0 x

x x x 31.6 x

0 0 31.6 29.6 0

x x x 30.6 x

x x x 0 x


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Since X1(5) = 4, X2(0) = 1, X2(3) = 2, X1(0) = 2 we have to choose all

positions in the corresponding rows and columns:

60.8 x x 0 42.8

0 0 0 31.6 35.6

0 0 31.6 29.6 0

52.6 x x 30.6 34.6

0 0 0 0 49.6


.

Since the X-rays enforce no more steps we return to the least average value

32.6 to continue the process:

60.8 x x 0 42.8

0 0 0 31.6 35.6

0 0 31.6 29.6 0

52.6 x 32.6 30.6 34.6

0 0 0 0 49.6


Since X1(3) = 2, X2(1.5) = 4, X1(1) = 1 we have the solution matrix
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

60.8 52.8 0 0 42.8

0 0 0 31.6 35.6

0 0 31.6 29.6 0

52.6 0 32.6 30.6 34.6

0 0 0 0 49.6


.

To develop the method to be a plain enumeration of the possible solutions we

have to admit shifting and skipping. Shifting refers to the starting position,

i.e. we use the same process by starting with 30.6 (for example):

60.8 0 0 38.8 42.8

0 0 0 31.6 35.6

0 0 31.6 0 33.6

0 44.6 32.6 30.6 34.6

67.6 0 0 0 0


.

It is a different solution of the problem. Skipping means that we use the

process (i)-(iii) by starting with 29.6 (for example) but skipping 30.6:
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

60.8 0 0 38.8 42.8

0 0 0 31.6 35.6

0 0 31.6 29.6 0

52.6 44.6 32.6 0 34.6

0 0 0 0 49.6


We have a new solution of the problem again*

Concluding remarks. The least avarege value principle transforms the co-
ordinate X-rays into some geometric information by the values of the taxicab
distance sum function. They are working as probability-like quantities when-
ever the subsequent step of the algorithm is not determined by the X-rays.
Completing the method with shifting and skipping it is a plain enumeration
of the possible solutions.
*By a theorem due to H. J. Ryser, two matrices of zeros and ones with equal row and
column sum vectors can be transformed into each other by changing the alternating zeros
and ones in 2 by 2 submatrices.

H. J. Ryser, Combinatorial properties of matrices of zeros and ones, Canad. J. Math. 9,
371-377 (1957).

H. J. Ryser, Matrices of zeros and ones Bull. Amer. Math. Soc. 66 (6), 442-464 (1960).
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II. Euclidean distance-mean functions and their geometric applications:

remetrization results for closed non-transitive subgroups in the orthog-

onal group.

In the preamble to his fourth problem presented at the International Mathe-

matical Congress in Paris (1900) Hilbert suggested the examination of ge-

ometries standing next to Euclidean one in the sense that they satisfy much

of Euclidean’s axioms except some (tipically one) of them. In the classi-

cal non-Euclidean geometry the axiom taking to fail is the fameous parallel

postulate. Another type of geometry standing next to Euclidean one is the

geometry of normed spaces or, in a more general context, the geometry of

Minkowski spaces*. The congruence due to the various size of the group of

linear isometries is of special interest.

Let G be a closed subgroup in the Euclidean orthogonal group. It is transitive

if any two points on the Euclidean unit sphere can be joined by an orbit

under G. In other words, the orbit of a single unit element covers the entire

Euclidean unit sphere.
*J. C. Á. Paiva and A. Thompson, On the Perimeter and Area of the Unit Disc, Amer.
Math. Monthly Vol. 112, No. 2 (2005), pp. 141-154.
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It is clear that there are no alternatives of Euclidean geometry for such a

group because any invariant convex body must be a Euclidean ball.

In contrast, for any closed non-transitive subgroup in the Euclidean orthog-

onal group there exists an invariant generalized conic body containing the

origin in its interior such that it is not a unit ball with respect to any inner

product (ellipsoid-problem) and its boundary is a smooth hypersurface (reg-

ularity condition). Working as a unit ball such a generalized conic induces a

non-Euclidean Minkowski functional such that the elements of G are still lin-

ear isometries: Minkowski geometry is an alternative of Euclidean geometry

for any closed non-transitive subgroup G in the Euclidean orthogonal group.

In the context of Riemannian geometry G is the closure of the holonomy

group of a metric linear connection ∇. If the closure of the holonomy group

is a not transitive subgroup in the Euclidean orthogonal group, then we can

construct a holonomy-invariant generalized conic body in the tangent space

at a single point such that it is not a unit ball with respect to any inner

product and its boundary is a smooth hypersurface.
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Using parallel transports with respect to ∇, a holonomy-invariant body can

be translated to any point of a connected manifold in a consistent way (in-

dependently of the connecting path).

The translates of the generalized conic induce Minkowski functionals in the

tangent spaces instead of the Riemannian inner products to measure the

length of tangent vectors. Such a smoothly varying family of Minkowski

functionals is called a Finsler metric on the manifold: Finsler geometry is an

alternative of Riemannian geometry for the linear connection ∇ because the

parallel transports obviously preserve the Finslerian length of tangent vectors.
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Example (finite groups and polyellipses). Let M be a flat compact Rieman-
nian manifold. Bieberbach’s theorem* states that the holonomy group of the
Lévi-Civita connection ∇ is finite. Therefore we can find a finite invariant
system of elements working as the focal set of an invariant polyellipsoid in
the tangent space at a single point of the manifold. Extension by parallel
transports provides a Finslerian environment for ∇.

Finsler geometry is a non-Riemannian geometry in a finite number of dimensions. The

differentiable structure is the same as the Riemannian one but distance is not uniform in all

directions. Instead of the euclidean spheres in the tangent spaces, the unit vectors form the

boundary of general convex sets containing the origin in their interiors. (M. Berger)

In general the holonomy group of a metric linear connection is not finite. To
adopt the polyellipsoids to the general situation we should develop the theory
of conics with infinitely many focal points.

Example (circular conics). Consider the parametrization c(t) := (cos t, sin t,0)
of the circle S1 in the Euclidean space of dimension three. The function

f(x, y, z) :=
1

2π

2π∫
0

√
(x− cos t)2 + (y − sin t)2 + z2 dt

*L. S. Charlap, Bieberbach groups and flat manifolds, Springer 1986.

43



measures the distance-mean from the elements of the focal set S1. The
surface of the form

f(x, y, z) =
8

2π
(23)

is a generalized conic. According to the invariance of the focal set under the
rotations about the z-axis, equation (23) gives a revolution surface.

The generalized conic surface (23).
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The generatix and its approximating ellipse can be distinguished by sharp

power mean estimations for elliptic integrals in 3D and the Gaussian hyper-

bolic function in higher dimensional spaces.

H. Alzer and S.-L- Qui, Monotonicity theorems and inequalities for the complete elliptic

integrals, Journal of Computational and Applied Mathematics 172 (2004), pp. 289-312.

K. C. Richards, Sharp power mean bounds for the Gaussian hypergeometric function, J.

Math. Anal. Appl. 308 (2005), pp. 303-313.

The generatrix (pointstyle) and its approximating ellipse.
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Concluding remarks. A generalized conic body of type (23) induces a non-
Euclidean Minkowski functional* such that the one-parameter subgroup of
Euclidean rotations about the z-axis are still linear isometries. The presented
examples (finite and reducible subgroups) are the prototypes of non-transitive
subgroups in the Euclidean orthogonal group. Suppose that M is a connected
Riemannian manifold and ∇ is a metric linear connection on M . If the closure
of the holonomy group of ∇ is a not transitive subgroup in the Euclidean
orthogonal group then there is a non-Riemannian Finsler metric such that
the parallel transports with respect to ∇ preserve the Finslerian length of
tangent vectors and the unit balls in the tangent spaces are generalized conic
bodies. Especially, Riemannian unit balls are conics (ellipsoids) in the classical
sense.

Cs. Vincze and Á. Nagy, Examples and notes on generalized conics and their applications,

Acta Math. Acad. Paedagog. Nyházi 26 (2010), pp. 359-575.

Cs. Vincze and Á. Nagy, An introduction to the theory of generalized conics and their

applications, Journal of Geom. and Phys. 61 (2011), pp. 815-828.

Cs. Vincze, Lazy orbits: an optimization problem on the sphere, J. of Geom. and Phys.

Vol. 124, pp. 180-198 (2018). arXiv:1709.06410.

*To provide smoothness we need a slight modification of the level rate for the focal circle
to be contained entirely in the interior of the level set.
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