U-net based deep neural networks for transmission tomography

Csaba Olasz*, László G. Varga, Antal Nagy University of Szeged, Árpád tér 2., Szeged, Hungary Department of Image Processing and Computer Graphics

Contact*: olaszcs@inf.u-szeged.hu

References:

Csaba Olasz, László G. Varga, Antal Nagy: Beam Hardening Artifact Removal by the Fusion of FBP and Deep Neural Networks; The 13th International Conference on Digital Image Processing (ICDIP 2021), May 20-23, Singapore.

Olasz Csaba, Varga László Gábor, Nagy, Antal: Novel U-net based deep neural networks for transmission tomography. Journal of X-Ray Science and Technology, vol. 30, no. 1, pp. 13-31, 2022. DOI: 10.3233/XST-210962

The structure of the presentation

- Basics of computed tomography
- Beam hardening
- Neural networks and tomography
- Tested neural network structures
- Dataset for the neural networks
- Training and evaluation of the neural networks
- Results
- Conclusions

Basics of computed tomography I.

- Tomography is an imaging procedure such that the cross-sections of the studied 3D object are determined from their projections.
- The collection of projection lines having the same rotation angle are called projection.
- In real life the projections are mesaurements, where the values correspond to the summed attenuation coefficients along the Xray beams (projection lines).
- The mathematical description of the projections is given by the Radon transformation.

Basics of computed tomography II.

- It is possible to calculate the attenuation coefficients of the material at each position of an image of a cross-sections, if:
 - ✓ we acquire projections from many different directions,
 - ✓ the path taking by the lines are known
 - ✓ and the measurements were taken perfectly.

Basics of computed tomography III.

Beam hardening I.

- A phyisical phenomena causing distorsion on the projection data.
- The lower energy photons of the polychromatic radiation are more likely to be absorbed.
- Beam hardening artifacts appear as cupping and dark or light streaks on the reconstructed image.

Beam hardening I.

• Cupping

Neural networks and tomography

- We focused on methods using U-net.
- We studied the effect of the location of the U-net in the tomographic workflow.

Before reconstuction

After reconstuction

Neural network structures I.

SinoNet

Input: projection data Output: projection data

ReconNet

Input: reconstructed images Output: reconstructed images

Neural network structures II.

TomoNet1 Input: projection data Output: reconstructed images Additional elements:

- convolution with a Ram-Lak filter
- Back-projection
- ReLU activation layer

Neural network structures III.

TomoNet2

Input: projection data Output: reconstructed images

TomoNet3

Input: projection data Output: reconstructed images

Dataset A

- Consists of 5000 artificial computer phantoms.
- Parallel beam GATE simulation.
- Random geometrical shapes (circles, ellipses, and rectangles)
- Splitted into 70 % training, 20 % validation and 10 % testing randomly.

Dataset B

- Only for testing.
- 11 different phantoms.

- In total 66 images in Dataset B, which can be partitioned into three groups with 22 phantom in each. (11 images with and without cracks)
- I. Group: Binary images
- II. Group: materials from the materials of the Dataset A.
- III. Group: every phantom contains one or two material, that was never seen by the networks during training or validation.

Training and evaluation

- Error measurements:
 - Peak-Signal-to-Noise-Ratio (PSNR),
 - Mean-Squared-Error (MSE),
 - Structural Similarity (SSIM).
- Best hyperparameters:

Parameters Network type	Loss function	Optimizer	AMS Grad	Early Stopping	Activation function	Initial learning rate	Batch size
SinoNet							43
ReconNet	Mean Squared Error	Adam	True	True	ReLU	0.0001	7
TomoNet1							
TomoNet2						0.001	43
TomoNet3						0.0001	

Results: error measurements averages

• The average values of the test phantoms of the datasets.

Network type Error type	FBP	SinoNet	ReconNet	TomoNet1	TomoNet2	TomoNet3	Network type Dataset
PSNR	27.5021	31.9951	33.0133	33.9611	38.1958	36.4728	
SSIM	0.9372	0.9865	0.9935	0.9897	0.9977	0.9972	A
MSE	0.0032	0.0010	0.0009	0.0007	0.0003	0.0005	
PSNR	25.5087	25.0291	14.4519	26.4300	27.7960	27.0588	
SSIM	0.9519	0.9771	0.9581	0.9808	0.9886	0.9875	В
MSE	0.0034	0.0037	0.7063	0.0027	0.0018	0.0023	

Results: error mesaurements Dataset B detailed

Network type Error type	FBP	SinoNet	ReconNet	TomoNet1	TomoNet2	TomoNet3	Network type	Group
PSNR	22.9847	23.4377	7.6204	25.2104	26.8979	26.0787		
SSIM	0.9373	0.9728	0.9517	0.9756	0.9875	0.9878	l.	
MSE	0.0051	0.0048	1.9855	0.0033	0.0022	0.0027		
PSNR	25.0866	25.3617	14.6258	26.9704	27.6045	27.8985		
SSIM	0.9476	0.9796	0.9584	0.9823	0.9901	0.9896	II.	
MSE	0.0033	0.0031	0.1230	0.0021	0.0018	0.0018		
PSNR	28.4547	26.2879	21.1095	27.1091	28.8856	27.1993		
SSIM	0.9706	0.9789	0.9642	0.9845	0.9881	0.9850	l III.	
MSE	0.0017	0.0031	0.0105	0.0027	0.0015	0.0025		

Results: Dataset A images

SinoNet

FBP

TomoNet1

Results: Dataset A images

SinoNet

FBP

Results: Dataset A images

ReconNet

SinoNet

TomoNet3

Ground truth

FBP

TomoNet1

TomoNet2

Results: Dataset B images

SinoNet

FBP

Results: Dataset B images

SinoNet ReconNet TomoNet3

FBP

Results: Dataset B images

SinoNet

ReconNet

TomoNet3

FBP

Results: Dataset A intensity profiles

Results: Dataset A intensity profiles

Results: Dataset B intensity profiles

Results: Dataset B intensity profiles

Results: ranking I.

- For the better insight we checked the perfomance of every method for every phantom of the testing phase individually.
- We summed up, how many 1st, 2nd, 3rd, 4th, 5th and 6th best result were achieved by the methods.

Results: ranking II.

Results: ranking III.

• A so-called total score was calculated by the formula Total Score = $\sum_{rank=1}^{5} N_i rank$, where rank $\in [1, 2, 3, 4, 5, 6]$ is the number corresponds to the rank and N_i is the number of the test cases at the given method and rank.

Final score	Error type	FBP	SinoNet	ReconNet	TomoNet1	TomoNet2	TomoNet3
Dataset A	PSNR and MSE	2917	2316	1940	1641	633	1053
	SSIM	2996	2427	1634	1911	633	899
Dataset B	PSNR and MSE	251	291	396	196	111	141
	SSIM	364	256	343	198	99	126

Conclusions

- Our experimental results showed that the reconstruction step used as an inner part of the U-nets improves the quality of the reconstructions.
- The phantoms of our database showed strong signs of beam hardening and a high level of electrical noise, but we were able to reduce the distorsions with U-net based methods, from which we would highlight our method called TomoNet2.
- We observed, that the usage of the back-projection at every level of the Unet as skip connections was benefical according to the results of TomoNet2.
- TomoNet2 were able to learn general enough to gain good results on the unseen phantoms of Dataset B.
- TomoNet2 proved to be a reliable method as all of our analysis showed the dominance of TomoNet2.

Future Work

- Real data.
- Implementing fan-beam or cone-beam projection geometry.
- Replacing the non-trainable Ram-Lak filter with a trainable one.
- Improving the structures of the networks.
- More testing with hyperparameters, especially try out more loss function during training.

ACKNOWLEDGEMENTS

- This research was supported by grant TUDFO/47138-1/2019-ITM of the Ministry for Innovation and Technology, Hungary.
- This research was supported by the project "Integrated program for training new generation of scientists in the fields of computer science", no. EFOP-3.6.3-VEKOP16-2017-00002.
- This research was supported by the projects "Extending the activities of the HU-MATHS-IN Hungarian Industrial and Innovation Mathematical Service Network" EFOP- 3.6.2-16-2017-00015.
- Project no. TKP2021-NVA-09 has been implemented with the support provided by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-NVA funding scheme.

