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Introduction

Nowadays, cardiovascular disease has become one of the major cause of death in the world.
In this context, an important role is played by coronary stenosis, a narrowing in the lumen
blood vessel which, depending on its severity, can lead to myocardium infarction. Clinicians
base the decision for medical treating principally on a diagnostic index: the FFR (Fractional
Flow Reserve). This value is obtained in hospitals through invasive measurements of the
trans-stenotic pressure drops by means of a pressure guide wire.

The aim of our work is to evaluate, with numerical experiments, the possible effects of
the guide wire on the pressure drop in a real coronary stenosis. On this purpose, we com-
pare numerical results obtained with two different configutations: a stenotic model with and
without guide wire. To carry out this kind of work we firstly proceed by reconstructing the
stenotic vessel from clinical radiological images, then we generate the meshes necessary for
the computer simulations and, finally, we perform the simulations with appropriate bound-
ary conditions, collecting the results obtained. More precisely, we divide our work in five
chapters.

In Chapter 1 we present the physiological features of the clinical problem, specifying how
the cardiovascular system works. Then we describe the diseases linked to the formation of
atherosclerotic plaques and the diagnostic indexes used by clinicians to understand the grav-
ity of the situation.

In Chapter 2 we translate the medical problem into the mathematical one. We describe
the Navier-Stokes equations and the steps necessary to reach the weak formulation of the
problem, which represent the starting point towards a Finite Element approximation. Then,
in the second part, we describe our choices regarding the numerical approximation of the
problem.

In Chapter 3 we present the tools and the steps necessary for the reconstruction of the
stenotic vessel from medical images and for the generation of the mesh for the two case ana-
lyzed: our model with and without guide wire.

In Chapter 4 we describe the physical and computational settings, explaining in details
our choices regarding boundary conditions. Then, we present our numerical results and we
make some considerations on them.

Finally, in Chapter 5 we conclude our work by describing the limitations of our study and
the possible future developments which could lead to better results.

The realization of this work was possible thanks to the collaboration with the MOX Labora-
tory of the Politecnico di Milano, which provided the tools for the numerical simulation and,
in general, help and support for the computational part. Another important contribute for us
comes from the collaboration with the Santa Chiara Hospital in Trento and U.O Multizonale
di Radiologia del Distretto Est dell’APSS di Trento. In particular, we want to thank Doctor
Roberto Bonmassari for his hints and support in the clinical part.
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Chapter 1

The clinical problem

In this first chapter we are going to describe the main physiological properties of the cardio-
vascular system with the aim of better understanding the clinical problem of our interest.
We focus our attention on heart’s functions and coronary disease, presenting the implications
for human life and the measures adopted by clinicians to treat and prevent these situations.

1.1 The cardiovascular system

The cardiovascular system consists of three components: blood, the heart and blood vessels.
We can describe its work by listing its three main functions: it delivers oxygen and nutrients
to the tissues and carries waste products to the organs responsible for elimination, it defends
the body against foreign microbes and it regulates the body temperature.

According to the blood’s path, the cardiovascular circulation consists of two different
closed circuits, the systemic circulation and the pulmonary circulation, which are arranged
in series: the output of one becomes the input of the other. The pulmonary circuit trans-
ports blood to and from the lungs, where it picks up oxygen and delivers carbon dioxide for
exhalation. The systemic circuit, instead, transports oxygenated blood to all of the tissues
of the body and returns deoxygenated blood to the heart to be sent back to the pulmonary
circulation.

In the following subsections we try to give a brief description of the main features of these
three important components of human body.

1.1.1 The blood

Blood is a liquid connective tissue, which has three general functions: it contributes to
homeostasis by transporting oxygen, carbon dioxide and nutrients to and from body’s cells
(transportation), it helps regulate body pH and temperature (regulation) and it provides
protection against diseases (protection).

Blood is denser and more viscous than water and it is composed by two components:
blood plasma (55%) and formed elements (45%), see Figure 1.1. Blood plasma is about
91.5% water and 8.5% solutes, most of which are proteins, which includes albumins, globulins
and fibrogen. The formed elements includes three principal components: red blood cells
(RBCs), white blood cells (WBCs) and platelets. RBCs are biconcave discs with a diameter
of 7-8 micron. They are highly specialized for the oxygen transport function because they
have no nucleous and so all their internal space is available for oxygen transport. WBCs
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have nuclei, do not contain hemoglobin and cover an important role in protecting the body
against infectious diseases (they are the cells of the immune system). The platelets are cells
fragments without cell nucleus, whose main function is to react to bleeding from blood vessels
injury [3].

Figure 1.1: Composition of the blood.
Figure 1.2: Scanning electron micro-
graph of the formed elements.

1.1.2 The heart

The heart is a powerful muscle slightly larger than a clenched fist located within the thoracic
cavity. It works as a pump to send oxygen-rich blood through all the parts of the body.

It consists of four chambers and it is divided in two parts, the left side and the right side,
each have one atrium and one ventricle. Each of the two superior chambers (the right atrium
and the left atrium) acts as a receiving chamber and contracts to push blood into the lower
chambers, the right ventricle and the left ventricle, whose role is to be the primary pump of
the heart.

The so-called atrioventricular valves are the connection between atria and ventricles, in
particular we have the mitral valve in the left heart and the tricuspid valve in the right heart.
These valves play an important role, because, depending on their state (open or close), they
allow or prevent the blood transfer form the atria to ventricles. All the four chambers are
connected to the circulatory system. These connections are provided by the aorta for the the
left ventricle, by the pulmonary artery for the right ventricle, by the pulmonary veins for the
left atrium and by the superior and inferior venae cavae for the right atrium. Moreover, we
have the aortic valve and pulmonary valve, which separate the circulatory system from the
left ventricle and the right ventricle respectively.

The wall of the heart consists of three layers: the endocardium (inner layer), the my-
ocardium (middle layer), which is the most thickest layer of the heart wall and which is the
cardiac muscle responsible for heart pumping action, and the epicardium (external layer). In
addition, there is the pericardium, the outermost membrane which surrounds and protects
the heart.

Figure 1.3 gives a schematic representation of the components of the heart and the circu-
latory system.
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Figure 1.3: Schematic representation of the human heart and of the circulatoty system.

The period of time that begins with contraction of the atria and ends with ventricular relax-
ation is known as cardiac cycle. One cardiac cycle lasts about 0.8 seconds and it consists
of two periods: systole is the period of contraction that the heart undergoes while it pumps
blood into circulation, diastole instead is the period when the heart muscle is relaxed and
the chambers fill with blood. In each cardiac cycle both atria and ventricles undergo systole
and diastole.

We would like to give a description about the events that occur during a cardiac cicle,
considering the left side of the heart. Recalling that blood flows according to pressure gra-
dients, that is it moves from regions that are higher in pressure to regions that are lower in
pressure, we can distinguish four different phases:

(1) Ventricular filling. At the beginning, both the atria and ventricles are relaxed (diastole).
Blood flows into the left atrium from the pulmonary veins. Due to the continuos
inflation of blood, when the pressure of the atrium exceeds the ventricular pressure,
the mitral valve opens. In this way blood flows unimpeded from the atrium into the
ventricle. Next up an active phase takes place, the so-called atrial systole, where the
atrium contracts actively pumping extra blood in the ventricle.

(2) Isovolumic contraction. After atrial systole, the muscle in the ventricle contracts and
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the pressure of the blood within the chamber rises, but it is not high enough to open
the aortic valve. The increase in pressure quickly rises above that of the atria. This
fact causes blood to flow back toward the atrium, closing the mitral valve. This initial
phase of ventricular systole is known as isovolumic contraction, because during this
time there is continuos and fast increase of ventricular pressure without any change of
blood volume.

(3) Ventricular ejection. As soon as the ventricular pressure is greater than the aortic
pressure (about 70 mmHg) the aortic valve opens and ejection begins. In addition to
this, the ventricular pressure continues to increase, because the ventricular contraction
carries on after the valve opens. The aortic pressure increases too due to the adapta-
tion of the vessel wall. However, there is still a pressure difference that allows blood
to accelerate. When the ventricle stops its active contraction, this pressure difference
reduces and after a short period becomes zero. In this moment blood flow rate reaches
its maximum. Then the pressure difference start to become negative, the blood de-
celarates but continues to enter the aorta. When the flow rate becomes negative the
aortic valve closes and blood ejection stops.

(4) Isovolumic relaxation. The release of energy of the ventricle continues despite of the
closure of the valve, even when the aortic valve closes. So there is no changes in
ventricular volume, resulting in a fast decrease of the ventricular pressure.

The cardiac cycle could be well described by the Wiggers diagram (Figure 1.4) which shows
a temporal relationship between left ventricular pressure, left ventricular volume, left atrial
pressure and aortic pressure.

Figure 1.4: Wiggers diagram.
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1.1.3 The blood vessels

Blood is carried through the human body via blood vessels. There are five types of blood
vessels, which are arteries, arterioles, capillaries, venules and veins.

Arteries carry blood away from heart to other regions. They branch into ever-smaller
vessels, the arterioles, which further branch into tiny capillaries where nutrients and wastes
are exchanged. Then, groups of capillaries reunite to form small veins called venules. Then
venules merge to form progressively larger blood vessels, the veins, which returns blood to
the heart. Capillaries are the smallest blood vessels with a diameter of approximately 5µm.
In the capillaries takes place an important function of the circulation, that is the exchange of
material between circulation and cells. In fact these microvessels are the sites of the transfer
of oxygen and other nutrients from the bloodstream to other tissues in the body.

Altough different types of blood vessels differ structurally and functionally, they share
the same general features. First of all, each type of blood vessel has a lumen, a hollow
passageway through which blood flows. To maintain the pressure of blood moving through
the system, in general, the lumen of arteries is smaller than that of veins. Moreover all blood
vessels have the same wall’s structure. It consists of three distinct tissue layers, called tunics.
From the most interior layer to the outer there are: the tunica intima, which is in direct
contact with blood and is made mainly of endothelial cells, the tunica media, a middle layer
consisting of smooth muscle and elastic fiber and the tunica adventitia, the covering layer
mainly made of connective tissue, see Figure 1.5.

Figure 1.5: Structure of capillary, vein and artery.

1.2 The coronary circulation

Our field of study is on the coronary arteries. We know that the myocardium is a working
muscle that needs a continuous supply of oxygen and nutrients to function efficiently. In fact
it is the contraction of this muscle that pumps blood through the heart and into the major
arteries. For this reason, the myocardium has its own network of blood vessels: the coronary
circulation. This set of vessels provides to bring oxygen to the contracting cells and to remove
waste products.

As we can see in Figure 1.6, the coronary arteries depart from the aorta and encircle
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the heart. There are two main arteries which are the right coronary artery and the
left coronary artery. The right coronary artery proceeds along the coronary sulcus and
supplies blood to the right atrium. It divides into the posterior interventricular artery and
other marginal branches. The left coronary artery distributes blood to the left side of the
heart. It divides into the left anterior descending (LAD) artery and the circumflex
artery (LCX). The LCX follows the coronary sulcus to the left, whereas the LAD follows
the anterior interventricular sulcus around the pulmonary trunk. The LAD gives rise to
numerous smaller branches that interconnect with other vessels forming anastomosis, which
is a connection between two blood vessels that are normally diverging. This new structure
allows blood to circulate to a region even if there may be a partial blockage in another branch
[1].

Figure 1.6: Coronary circulation.

We would like to remark that about two-thirds of the coronary arterial system is intramural,
that is, inside the myocardium, and so, intramural vessels are compressed during systole. In
particular, when coronary blood pressure is minimal, coronary artery flow stops briefly or
even reverses and full flow is only restored during diastole. For this reason we find that about
80% of coronary blood flow occurs in diastole, contrary to what happens in other arteries
where the peak is reached during systole.

1.3 Coronary artery disease

Coronary artery disease (CAD) is the number one cause of death in the world. CAD is due
to changes in the coronary physiology, in fact it is caused by the formation of atherosclerotic
plaques in the coronary vessel wall, due to the accumulation of lipids within the arterial
intima. These plaques form a decrease in the vessel lumen which is called stenosis (Figure
1.7).

This pathology has two main consequences: the blood tends to descrease, resulting in a
reduction of oxygen supply to the heart, and the pressure in the arteries gets higher. To face
this new situation, the system reacts trying to dilate in order to assure the same amount of
blood flowing before developing the stenosis. This is done by the so-called microcirculation,
that is the vessels of the coronary tree with a diameter smaller than 0.5 mm. But this
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mechanism of autoregolation is limited and it is possible that, at a certain point, the coronary
flow is not sufficient anymore to irrorate the myocardial cells with blood. The result is an
imbalance perfusion between supply and demand of oxygen and for this reason the myocardial
cells die, leading to myocardial ischemia.

Figure 1.7: Detail of a coronary stenosis.

Coronary artery diseases can be seen as an “injury” of the inner layer of coronary artery. This
damage may be caused by various factors. Some of these factors, including smoking, obesity,
diabet and a sedentary lifestyle, are modificable, others not and in this case we refer to age,
genetic factors [9] and personality. As for symptoms, we could have chest pain, usually refer
to angina and also felt in the neck, arm or back, shortness of breath and heart attack.

Of sure, an healty lifestyle is a good way in order to try to prevent CAD.

1.4 Diagnosis

There are several different tools that aid in the treatment of coronary artery disease. The
traditional procedures include coronary angiography, intravascular ultrasound (IVUS) and
Magnetic Resonance Imaging (MRI). In the last thirty years another advanced tool was
developed. We refer to a next-generation imaging technology called Optical Coherence To-
mography (OCT).

Coronary angiography

Coronary angiography is a minimally invasive medical test that uses a special dye and x-rays
to see how blood flows through coronaries. This test shows the extent and severity of any
heart disease (it is possible to recognize occlusion, stenosis and thrombosis of coronary artery
lumens) and can help doctors to figure out how well the heart is working.

The procedure is done using a catheter, a thin, flexible tube which reaches the desired
artery from an access point, usually located in the arm or in the groin. The catheter is
inserted using a sheath and a guide wire, a special guide which has a small sensor at its tip
which measures blood pressure. Once the catheter is guided into the area being examined,
the contrast material is injected through the tube and images are captured using x-rays (see
Figure 1.8). Then, in order to perform the pressure wire test, an infusion of special drug (the
adenosine) is given in order to increase blood flow and to ensure a minimal resistance by the

9



microcirculation. This is a very important factor involved in this procedure, we explain it
better in the next subsection. The pressure across the artery is then recorded by positioning
the pressure wire beyond the stenosis.

Figure 1.8: Coronary angiography.

From the information collected through this procedure, doctors determine which is the best
treatment for the case analyzed. One possible treatment is the coronary angioplasty, a non
surgical tecnique used to open clogged heart arteries, which involves the insertion and infla-
tion of a tiny balloon-tipped catheter where the artery is clogged. This stent allows blood
to flow more freely. In the most severe cases a surgical procedure is necessary, the coronary
bypass surgery. It is a procedure that diverts flow of blood around a section of blocked artery
creating a new pathway to the heart.

It is important to say that, in order to understand the severity of the case analysed,
doctors base the decision for medical treating of a coronary stenosis on two important hemo-
dynamic diagnostic indices: the fractional flow reserve (FFR) and the coronary flow reserve
(CFR). We present these two important indices in the next subsections.

Optical Coherence Tomography (OCT)

Intracoronary Optical Coherence Tomography is a light-based imaging modality able to vi-
sualize with high resolution (∼ 10µm) the vascular morphology. It is a tecnique similar to
Intravascular Ultrasound (IVUS), but it uses light rather than ultrasound and has 10-fold
higher resolution than IVUS. The infrared light (wavelength of about 1300) is absorbed by
blood cells, water, lipids and protein, and high-resolution in vivo images of coronary arteries
are produced. In this way OCT can differentiate the internal and external elastic laminae, as
well as distinguish the different layers of the vessel, a thing that was impossible to do with
the low resolution of IVUS [6].

The clinical exam is done in an invasive way, by inserting a catheter. During the proce-
dure, the OCT data are projected in real time on a screen. From these images it is possible
to see the lumen profile, which is generated after automated lumen detenction in all OCT
cross-sectional images. This view provides a lot of information such as minimal lumen diam-
eter and also degree of area or diameter of a stenosis. These information are simoultaneously
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projected on the screen, providing a fast assessment of the severity of luminal stenosis. More-
over, OCT information is also reconstructed in 3D and can be displayed in parallel to view
the shape of a vessel. In Figure 1.9 we can see a typical OCT image.

OCT is a new important tecnique that can provide detailed information about the ves-
sel that can not be obtained with other procedure and is still a field of research for better
improvement.

Figure 1.9: Typical OCT image provided by Doctor Roberto Bonmassari, “Santa Chiara Hospital,
Trento”.

1.4.1 The FFR - Fractional Flow Reserve

The Fractional Flow Reserve (FFR) is an index which provides a quantification of a stenosis
severity. It is independent of hemodynamic loading conditions [12] (such as blood pres-
sure and heart rate) and it is obtained by coronary pressure measurements during coronary
catheterization.

FFR is defined as the ratio of maximum blood flow in a stenotic artery to normal max-
imum blood flow in the same artery, assuming that these measurements are obtained in the
state of maximal hyperemia when the microvasculature resistance is minimal and constant.
This is very important because the system must be studied at maximum vasodilation, cor-
responding to myocardial hyperemia when myocardial resistance is minimal (and therefore
constant) and blood flow is proportional to driving pressure. If maximal vasodilation is not
achieved, the pressure gradient across the lesion will be smaller and FFR will be overstimated.
In order to reach this condition, a potent vasodilator, the adenosine, is administrated.
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To sum up,

FFR =
Maximum myocardial flow in presence of a stenosis

Normal maximum flow
=
QmaxS

QmaxN

. (1.1)

In other words FFR shows how far maximal myocardial flow is limited when a stenosis is
present, representing that fraction of maximum flow which can still be maintained despite
the presence of the stenosis. For example, an FFR of 0.60 means that, due to the presence
of the stenosis, maximum achievable blood flow to the myocardium is only 60% of what it
would be if the coronary artery was completely normal.

In particular, we can write

QmaxN =
Pa − Pv

R
(1.2)

and

QmaxS =
Pd − Pv

R
, (1.3)

where R is the myocardial resistance at maximum vasodilation, Pa is the mean aortic pressure,
Pv the mean central venous pressure and Pd the hyperemic distal coronary pressure.

Now, because we are in condition of maximal hyperemia, the myocardial vascular bed is
maximally vasodilated and its resistance is minimal and constant, we obtain

FFR =
QmaxS

QmaxN

=
Pd − Pv
Pa − Pv

. (1.4)

Moreover, the central venous pressure Pv is generally closed to zero, so the equation simplified
in

FFR =
Pd
Pa
. (1.5)

The ratio of the two pressure can be easily measured by a pressure wire for the Pd and by a
guiding catheter for the Pa [10].

Figure 1.10: FFR measurement.

In a normal coronary artery there is no decrease in pressure, so the theoretical normal value
of FFR is 1. In general, an FFR > 0.80 predicts non significant stenosis, whereas FFR < 0.75
indicates lesions and interventions are needed. FFR values between 0.75 and 0.80 are referred
to as the FFR gray zone, an area which could affect decisions about clinical procedure because
there is uncertainty regarding the actual degree of ischemia.
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1.4.2 The CFR - Coronary Flow Reserve

The coronary circulation has an intrinsic mechanism of autoregulation, which can be describe
as “the ability of an organ to maintain a constant blood flow despite changes in perfusion
pressure”. This is achieved by dilatation, mainly in the microvascular coronary arterial bed.

Coronary Flow Reserve (CFR) is an index which describes the myocardial blood supply,
specifically the ability of the coronaries to increase blood flow when metabolic requirements
demand it. It is defined as maximal hyperemic flow divided by resting flow

CFR =
QSh
QSrest

, (1.6)

where QSh is the hyperemic flow in presence of stenosis, while QSrest is the basal stenotic flow.
In other words CFR can be thought of as the capacity of the coronary circulation to dilate
and increase flow following an increase in myocardial metabolic demand.

Even this index is measured in an invasive way in the catheterization laboratory and in
patients with normal artery it usually exceeds the value of 3.0. It is important to say that,
differently from the FFR, CFR depens on hemodynamic conditions, like blood pressure and
heart rate, and for this reason it is not so used for medical predictions.

1.5 The use of computational methods

Computational models are models which try to understand and solve complex problem by
means of computer simulations. They can be considered one of the best currently-available
tools that allows researchers to make predictions of system’s behaviour under different con-
ditions, often for cases in which the analytical solutions are not available.

In this context, a primary role is played by computers. In fact, researchers always have to
deal with a large number of equations that have to be constructed and solved and this is very
impratical to do by hand. With the use of computers, specific codes could be implemented to
approximate and solve these equations which often evolve in time, thus requiring the solution
at several discrete time steps.

The first thing to do for the construction of a computational model is the analysis of the
physical problem, that is the formulation of a set of ideas about the basic operations of the
system of interest and the possible assumptions that can simplify the model. The second
step involves translating the ideas into mathematical form. Each kind of interaction must
be expressed as a mathematical relationship and the result is a mathematical model which
includes all the variables useful for the investigations. Since often the analytical solution of
the mathematical equations is not known, the third step involves the development of appro-
priate numerical methods in order to find an approximate solution of the problem. The final
step is converting the mathematical relationships into computer code. This process involves
the choice of suitable computer framework and algorithms for the implementation.

Computational methods and tecniques came to play an increasing central role in various
field such as engineering, medical research and biology. In particular we are interested in the
mathematical approach for the modeling of cardiovascular system. In this field mathematical
models and numerical simulations are very useful for understanding the mechanisms influenc-
ing cardiovascular system’s physiological and pathological processes. This modeling research
can be used by doctors for decisions about therapy selection and intervention planning, col-
lecting informations without the necessity of invasive procedures. We provide a panoramic
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view of the state-of-art on this argument in Section 1.6.
However, mathematical modeling presents challenging problems due to the complexity

of the cardiovascular system. A lot of assumptions should be considered and each of these
assumptions introduce a possible reason that the model will not match the physical system
it tries to mimic.

Computational science is at the heart of modern material research and is a field which
holds much future potential.

1.6 State of the art of computational studies on coronaries

One of the main interests in cardiovascular mathematics is modeling blood flow. Reaserchers
can in fact obtain useful data in a non-invasive way by constructing blood vessels geometries
and by solving blood flow simulations in them. Accurate modeling of the circulatory system
is still a challenging objective, however, in the last few years big steps have been taken in
this direction, see [15], [19], [24], [50] and [51].

There are many technical difficulties in simulating blood flow. The first one is the recon-
struction of the model from clinical radiological images which requires advanced mathematical
and numerical tools. In fact, sometimes, if the resolution of the imaging device is too small,
it may be difficult to identify some components of the model or it may be hard to detect the
vessel wall. In a second step, a lot of attention may be put in the creation of the mesh for the
geometrical model. Mesh generation is the starting point of any finite element method and
this task must be carefully done as the mesh is responsible for the accuracy of the solution. It
means that the characteritics of the mesh, in terms of shape, size and density of its elements,
must be adeguate in order to capture the hemodynamics of the problem as accurately as
possible. Finally, the prescription of suitable and physically consistent boundary conditions
is a crucial issue. We have to consider that the computational domains always results from
an artificial truncation and it is only a part of the entire cardiovascular system. In this
way, suitable data (such as fluid velocity and pressure) must be provided at those numerical
boundaries that does not correspond to physical boundaries. This could be done for example
by using measures or by coupling the 3D system with geometrically reduced models.

The literature on the mathematical and numerical modeling of the cardiovascular system
is huge, in fact this is a research topic that has attracted remarkable interest from the math-
ematical communities.

In primis, over the last years much effort has been made to reconstruct image-based mod-
els of coronary arteries to be used in computational studies, see [36] and [37]. In [34] the
authors propose a semi-automatic method to reconstruct the actual configuration of coronary
arteries after stent implantation from OCT images.

In the context of fluid dynamics instead, we cite [15], [19], [23], [39], and [50] that review
the methods and challenges associated with the adoption of computational fluid dynamics
(CFD) modeling within cardiovascular medicine. Furthermore, the authors of [35] suggest a
3D fluid-structure interaction model based on patient specific data in order to predict coro-
nary plaque progression considering both morphological and biomedical factors, whereas in
[38] they explore the tecniques for simulating intracoronary flows on a real coronary geometry.
In [40] instead, the study highlights the value of numerical simulations applied in 3D models
for assessing hemodynamic factors such as coronary artery pressure.

Another field of reasearch, in the context of fluid dynamics and blood flow, is about the
diagnostic index FFR for coronary stenosis. As we have already said in Chapter 1, image-
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based non-invasive fractional flow reserve (FFR) is an emergent approach to determine the
functional relevance of coronary stenosis. The literature on this argument is huge. Some ar-
ticles report the development of computational methods that accurately predict myocardial
fractional flow reserve from angiographic images in patients with coronary artery disease, see
[42], [43] and [44]. Moreover, in [41] the authors try to determine the feasibility of using a
method based on coronary tomography angiography and reduced-order models for the eval-
uation of coronary stenosis.

Other studies aim to investigate the influence of the pressure guide wire on the velocity
and pressure values, factors which modify the FFR value. On this argument we can find
some studies of the effect of the pressure guide wire in the work provided by Stella [21] and
Zerbini [22], but which do not consider a real geometry.

In addition to this, another field of research is about investigating the effects of medical
operations, such as coronary stenting and bypasses. For example, the authors of [47] make a
study to determine the effect of coronary stent on in-hospital mortality, whereas Guerciotti
et al. [18] try to find a possible relationship between coronary stenosis degree and the risk of
graft failure.

1.7 The aim of our work

In the previous sections we have introduced the FFR index and we have highlighted its im-
portance in clinical decisions. We have said that this index is obtained in an invasive way
through pressure measurements with a guide wire. Since from the value of this index can
depend patients’ life, it is important to understand the possible factors that can influence its
measure.

For example, in Figure 1.11 we report a graph that shows the correlation between some
FFR measurements and the stenosis diameter. These data are collects from about 200 pa-
tients [1]. The dispersion and variability of the data suggest that there are several variables
that can influence measurements such as the shape and position of the stenosis along the
stenotic branch, the presence of the guide wire and even the position where the pressures’
measure is taken.

In particular, cardiologists think that the influence of the pressure guide wire can be
negligible due to the small dimensions of the instrument they use. We would like to study
the reliability of this assumption developing a computational study to investigate if and how
much a pressure guide wire influences the pressure of the blood on a real stenotic coronary
artery. Our computer simulations try to simulate the guide wire effect in pressure measure-
ments, making a comparison between results obtained with and without the presence of the
guide.
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Figure 1.11: Real FFR values as a function of the degree of stenosis [1].

Of course we make a lot of assumptions to simplify the model and there are also a lot
of limitations that will be discussed later on, but our results can be promising for future
researches in FFR accuracy.
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Chapter 2

Mathematical and numerical
modeling

Mathematical and numerical modeling of the cardiovascular system is a research topic that
has attracted interest from the mathematical communities over the last years. The driving
motivation is the increasing impact of cardiovascular diseases in our lives which are the major
cause of death worldwide. In this chapter we will focus our attention on the mathematical
modeling of blood flow and its corresponding numerical approximation.

2.1 Mathematical aspects

2.1.1 Models for blood

In this section we consider the main physical features of the blood as a fluid. We are interesting
in the so called constitutive relations (also known as rheological relations), which describe the
response of the material to external forces and assess the dependence of the stress tensor
from the strain rate tensor.

According to the different form of the rheological relation we can distinguish different
kinds of fluid [23], in particular:

Figure 2.1: Different fluid rheological behaviours.
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• Newtonian fluid : the shear stress is related linearly to the shear rate.

• Dilatant fluid : the apparent viscosity (i.e. the ratio between the shear stress and the
strain rate) increases when the strain rate increases. The strain rate-stress curve is
convex.

• Pseudoplastic fluid : the apparent viscosity decreases as the strain rate increases. The
strain rate-stress curve is concave.

• Bingham plastic: the relationship between stress and strain rate is linear. Despite this
fact there is a threshold value of the stress beyond which there is deformation.

As we seen in Chapter 1, blood is a heterogeneous mixture of solid corpuscles (red blood cells,
white blood cells and platelets) suspended in a liquid plasma which is a solution of proteins,
organic molecules and minerals. The properties of these components and their interaction
with each other determines the rheological characteristics of blood. While the plasma is es-
sentially a Newtonian fluid, the blood as a whole behaves as a non-Newtonian fluid. Most
non-Newtonian effects originate from the red blood cells due to their high concentration
and their ability to aggregate forming three-dimensional structures at low deformation rates,
which are known as ”rouleaux”.

Nevertheless, in order to simplify the flow models and their computational implementa-
tion, blood is generally assumed Newtonian and its non Newtonian effects are ignored (see,
for example, [26]). This approximation is well accepted for medium and large vessels, for
small vessels such as capillaries instead, cells dimensions could not be ignored and so blood
should be considered as non Newtonian (see [18], [19] and [27]). In literature we can find
several studies which try to compare Newtonian and non-Newtonian modeling research. For
example, Gijsen et al. [25] showed that applying non-Newtonian fluid flow in arteries with
bifurcations greatly affects the flow features compared to Newtonian fluid flow.

In our work we have to make some assumptions in order to simplify the model and the
formulation of the equations governing the blood flow. In particular:

• we are going to consider blood as a Newtonian fluid, aware that this is not entirely
correct from a physical point of view;

• we consider blood an incompressible, that is the density ρ is constant, and an homo-
geneous fluid, despite the presence of its solid components whose dimension could be
negligible.

We now introduce the dimensionless parameter called Reynolds number, defined in this way
[8]:

Re =
inertial forces

viscous forces
=
ρUd

µ
=
Ud

ν
,

where d is a characteristic dimension of the vessel (such as the diameter), U is the charac-
teristic velocity of the fluid, µ is the viscosity and ρ the density of the fluid. Moreover, ν is
the kinematic viscosity of the fluid (defined as µ/ρ). The Reynolds number helps to predict
flow patterns in different fluid flow situations. In fact when Re is less than 2300 the flow is
everywhere laminar, but when Re is greater than 2500 the flow shows continuous turbulence.
In the region between 2300 and 2500, transition occurs and it is possible to observe intermit-
tent turbulence [8].
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We add other two important assumptions:

• for semplicity, in the mathematical modeling, we will constantly assume a laminar flow.
The value of the Reynolds number in the coronaries is about 400, so we are in this
condition. Despite this fact, we are aware that we are dealing with stenotic coronaries
and so it is possible that flow undergoes transition to turbolence;

• the wall of the coronaries will be considered rigid and not elastic. This is a significant
approximation because it is known that the vessels’ walls in our body are elastic, but
this choice is justified by noticing that the coronary vessel wall displacements are quite
small.

Now we are ready to write the mathematical formulation of our work, i.e. the Navier-Stokes
equations for an incompressible, homogeneous and Newtonian fluid.

2.1.2 Derivation of the Navier-Stokes equations

The Navier-Stokes equations are at the heart of fluid flow modeling. These equations govern
the motion of fluids and their resolution for a particular set of boundary conditions can be
used to predict the fluid velocity and its pressure in a given geometry.

In order to write the Navier-Stokes equations with the hypothesis of the previous section,
it is necessary to introduce the continuity and momentum equations, which put together
composed the equations we are waiting for. We are going to describe the procedure, mainly
following the approach we find in [24] and for more details we refer the reader to this article.

First of all we recall the Reynolds transport theorem, that will be often used in our
computations. The Reynolds transport theorem is a three-dimensional generalization of the
Liebniz integral rule and it is used in the formulation of the basic conservation laws of con-
tinuum mechanics, particularly fluid dynamics. In fact, it is often more convenient to work
with a control volume, as it is difficult to identify and follow a system of fluid particles.
Thus, there is the need to relate the system equations and the corresponding control volume
equations and the link between the two is given by the Reynolds transport theorem.

Figure 2.2: Domains at different times linked by the Lagrangian map L [24].

Since now on we will use this notation (see Figure 2.2): Ωt is the domain occupied by the fluid
at time t and Vt ⊂ Ωt is the material volume at time t, that is Vt = Lt(V0) where V0 ⊂ Ω0

and Lt is a Lagrangian map. Σt is the surface of Vt.
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The Reynolds theorem states that for any differentiable function f, the following relation
holds true

d

dt

∫
Vt

f dV =

∫
Vt

(
Df

Dt
+ fdivu

)
dV =

∫
Vt

(
∂f

∂t
+ div (fu)

)
dV, (2.1)

where u is the velocity of the area element and

Df

Dt
=
∂f

∂t
+ u · ∇f

is the material (or lagrangian) derivative.
Equivalently, by using the divergence theorem, equation (2.1) becomes

d

dt

∫
Vt

f dV =

∫
Vt

∂f

∂t
dV +

∫
Σt

f (u · n) dΣ, (2.2)

where n is the outward-pointing unit normal.

The continuity equation

The continuity equation is the principle of mass conservation. Conservation of mass states
that matter can neither be created or destroyed, so any increase or decrease in mass must be
due to the flux of matter through the surface bounding the volume V that moves with the
fluid. Mathematically:

dm

dt
=

d

dt

∫
Vt

ρ dV = 0, (2.3)

where m is the mass of the fluid in the volume V and ρ its density.
Applying the Reynolds transport theorem

d

dt

∫
Vt

ρ dV =

∫
Vt

(
∂ρ

∂t
+ (div (ρu))

)
dV, (2.4)

equation (2.3) becomes ∫
Vt

(
∂ρ

∂t
+ (div (ρu))

)
dV = 0. (2.5)

Assuming that the terms under the integral are continuous and since the equation (2.5) should
be true for any arbitrary volume of integration, the integrand must be zero. So the continuity
equation results

∂ρ

∂t
+ (div (ρu)) = 0. (2.6)

Recalling that we are considering an incompressible fluid, the density does not vary (it remains
constant) and equation (2.6) becomes

divu = 0. (2.7)

The momentum equation

The momentum equation relates the sum of the forces acting on an element of fluid to its rate
of change of momentum. One will probably recognise the equation F = ma, conservation of
momentum is actually an extension of the Newton’s second law to continuous medium. This
principle can be riformulated as follows:

20



”The rate of change of momentum of a body is equal to the resultant force acting on the
body and takes place in the direction of the force”.

We are going to use this notation:

• Q is the momentum, defined as Q =
∫
Vt
ρu dV ;

• FV is the sum of the external forces fV applied on volume V , FV =
∫
Vt
ρ fV dV ;

• FΣ is the sum of the surface forces fΣ acting on surface Σ, FΣ =
∫

Σt
fΣ dΣ.

So, in mathematical form, the conservation of momentum reads as follows:

dQ

dt
= FV + FΣ. (2.8)

In words, we can say that the time variation of momentum of a system coincides with the
resultant of the sum of volume and surface forces to the system.

In integral form we have

d

dt

∫
Vt

ρu dV =

∫
Vt

ρ fV dV +

∫
Σt

fΣ dΣ. (2.9)

We assume now that the surface forces fΣ may be represented through a vector field

t e : I × Γnt → R3

called applied stresses, where I = (t0, t1) is a time interval and Γnt ⊂ ∂Ωt is a measurable
subset of the domain boundary.

Principle 2.1 (Cauchy principle) There exists a vector field t, called Cauchy stress

t : I × Ωt × S 1 → R3, (2.10)

with
S 1 = {n ∈ R3 : |n| = 1},

such that its integral on the surface of any domain Vt ⊂ Ωt given by∫
Σt

t (t,x,n) dΣ (2.11)

is equivalent to the resultant of the continuity forces acting on Vt. In (2.11), n is the outward
normal of Σt. Moreover, we have that

t = t e on ∂Vt ∩ Γnt . (2.12)

In this way, formula (2.9) will be

d

dt

∫
Vt

ρ(t,x)u(t,x) dV =

∫
Vt

ρ(t,x) fV (t,x) dV +

∫
Σt

t (t,x,n) dΣ, (2.13)

where n is the outward normal to dΣ.
Now, using the Cauchy stress tensor theorem (see [24] for more details), we can relate the

21



continuity forces to tensor field. This theorem states that under some appropriate assump-
tions, there exists a continuously differentiable symmetric tensor field, called Cauchy stress
tensor

T : I × Ω̄t → R3×3,

such that
t(t,x,n) = T(t,x) · n ∀t ∈ I, ∀x ∈ Ωt, ∀n ∈ S1. (2.14)

In this way we have ∫
Σt

t dΣ =

∫
Σt

T · n dΣ (2.15)

and the princicle of momentum (2.13) becomes

d

dt

∫
Vt

ρu dV =

∫
Vt

ρ fV dV +

∫
Σt

T · n dΣ. (2.16)

Applying Reynolds transport theorem to the left hand side of (2.16), recalling that in our
case ρ is constant and divu = 0, we get

d

dt

∫
Vt

ρu dV =

∫
Vt

(
D(ρu)

Dt
+ ρudivu

)
dV =

∫
Vt

ρ
Du

Dt
dV. (2.17)

In this way, formula (2.16) results∫
Vt

ρ
Du

Dt
dV =

∫
Vt

ρ fV dV +

∫
Σt

T · n dΣ. (2.18)

Now, by using the divergence theorem and assuming that divT is integrable, we obtain∫
Vt

(
ρ
Du

Dt
− ρ fV − divT

)
dV = 0. (2.19)

Recalling that Vt is an arbitrary volume, we finally get the following differential equation

ρ
Du

Dt
− divT = ρ fV . (2.20)

Cosidering the following relation

Du

Dt
=
∂u

∂t
+ (u · ∇)u (2.21)

we get

ρ
∂u

∂t
+ ρ (u · ∇)u− divT = ρ f, (2.22)

where the non linear term ρ (u · ∇)u is called the convective term and, for sake of simplicity,
we omitt the subscript V for the volume forces.

The last step to obtain our momentum equation is find a relation between the Cauchy stress
tensor and the velocity field making use of the rheological relation. Since we considered the
fluid as Newtonian, the Cauchy stress tensor can be written as a linear function of the velocity
derivaties

T = −P I + µ (∇u +∇uT ), (2.23)
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where P is a scalar function called pressure, I is the identity matrix and µ is the dynamic
viscosity of the fluid.

Introducing the strain rate tensor of this form

D(u) =
(∇u +∇uT )

2
(2.24)

we obtain
T = −P I + 2µD(u), (2.25)

where the term 2µD(u) is the viscous stress component of the stress tensor.
Now, with some mathematical steps,

divT = −div (P I) + 2div (µD(u)) (2.26)

but, recalling that P is a scalar and I is a vector field,

div (P I) = ∇P I + P div I = ∇P (2.27)

and so we obtain
divT = −∇P + 2div (µD(u)). (2.28)

At the end, substituting in (2.22) we obtain

ρ
∂u

∂t
+ ρ (u · ∇)u +∇P − 2div (µD(u)) = ρ f. (2.29)

Since ρ is constant we can divide everything by ρ. In addition to this, by introducing ν = µ/ρ
the kinematic viscosity and p = P/ρ a scaled pressure, we obtain

∂u

∂t
+ (u · ∇)u +∇p− 2div (νD(u)) = f. (2.30)

The last thing we can do is observe that

div (νD(u)) =
ν

2
(div∇u + div∇uT ) =

ν

2
(div∇u +∇(divu)) =

ν

2
div∇u =

ν

2
∆u. (2.31)

Finally, the final equation of the conservation of momentum reads:

∂u

∂t
+ (u · ∇)u +∇p− ν∆u = f. (2.32)

2.1.3 The Navier-Stokes equation

In the previous section we explain how to get the continuity and momentum equations in
details. These two equations together compose the famous Navier-Stokes equations and they
are valid on any fixed spatial domain Ω which is for all times of interest inside the portion of
space filled by the fluid, that is Ω ⊂ Ωt.

The Navier-Stokes equations for an incompressible fluid with constant viscosity µ in a
domain Ω ∈ Rd (with d = 3 in our case) read as follows:

∂u

∂t
− ν∆u + (u · ∇)u +∇p = 0, for x ∈ Ω, t > 0,

divu = 0, for x ∈ Ω, t > 0,
(2.33)
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where u = u(x, t) is the unknown fluid velocity, p the unknown pressure, ρ the density,
ν = µ/ρ the kinematic viscosity and µ the dynamic viscosity. We assume that f = 0 because
the gravity is negligible in the context of coronary arteries.

We would like that if all the data are smooth enough, then the solution is continuous together
with its derivatives and does not develop singularities in time. In this case we say that the
problem is well posed.

In order to ensure the well posedness of problem (2.33), it is necessary to assign an initial
condition and properly boundary conditions:

u(x, 0) = u0(x) ∀x ∈ Ω, (2.34)

u(x, t) = ϕ(x) ∀x ∈ ΓD,

(ν
∂u

∂n
− pn)(x, t) = ψ(x, t) ∀x ∈ ΓN ,

(2.35)

where

- u0(x), ϕ(x, t), ψ(x, t) are prescribed functions;

- ΓD and ΓN are partition of the boundary ∂Ω of Ω such that their union is the boundary
of Ω and their intersection is empty;

- n is normal vector outgoing to Ω boundary.

In the two dimensional case, Navier-Stokes equations of this type yield well-posed problems
in the sense that the solution of the problem exists, is unique and depends with continuity
from the data. The situation is quite different in the 3D case, where existence and uniqueness
of classical solution have been proven only locally in time. For this reason it is necessary to
introduce the weak formulation of the Navier-Stokes equations which guarantee global results
in time. In fact, the weak formulation allows us to switch from a differential problem of the
second order to an integral problem of the first order, reducing, in this way, the order of
derivation required to the unknowns. Moreover, the weak formulation is the necessary step
towards Finite Element approximation [5].

2.1.4 The weak formulation

In general, the procedure to obtain the weak formulation of a differential problem is based
on multipling the equation considered by a test function that belongs to an appropriate
space and then integrate all over the domain. So we proceed in this way to obtain the weak
formulation of the Navier-Stokes equations (2.33).

Firstly we multiply the first equation of (2.33) by a test function v belonging to a suitable
space V and integrate it on the domain Ω∫

Ω

∂u

∂t
· v dΩ−

∫
Ω
ν∆u · v dΩ +

∫
Ω

[(u · ∇)u] · v dΩ +

∫
Ω
∇p · v dΩ = 0. (2.36)

Now, recalling that, given two tensor A and B, their product is

A : B =

3∑
i,j=1

AijBij (2.37)
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and by applying the Green formulas, we obtain the following relations

−
∫

Ω
ν∆u · v dΩ =

∫
Ω
ν∇u : ∇v dΩ−

∫
∂Ω
ν
∂u

∂n
· v dγ, (2.38)

∫
Ω
∇p · v dΩ = −

∫
Ω
p divv dΩ +

∫
∂Ω
pv · n dγ. (2.39)

Inserting them in (2.36) we obtain∫
Ω

∂u

∂t
· v dΩ +

∫
Ω
ν∇u : ∇v dΩ +

∫
Ω

[(u · ∇)u] · v dΩ−
∫

Ω
p divv dΩ

=

∫
∂Ω

(
ν
∂u

∂n
− pn

)
·v dγ ∀v ∈ V. (2.40)

Proceeding in the same way, we multiply the second equation of (2.33) by a test function
q ∈ Q, for a suitable Q, and integrate it on the whole domain Ω, obtaining∫

Ω
q divu dΩ = 0 ∀q ∈ Q. (2.41)

Now it is necessary to make some considerations about the two spaces V and Q to which
the test functions v and q belong respectively. The choice of these spaces is very important
because it determines if equations (2.40) and (2.41) have a solution and whether this solution
is unique. We recall that:

• L2 is the Hibert space defined in this way

L2(Ω) =

{
v : Ω→ R :

∫
Ω
v(x)2 dx < +∞

}
.

• H1 is the space of Hilbert such that

[H1(Ω)]3 = {v ∈ [L2(Ω)]3 : ∇v ∈ [L2(Ω)]3×3}.

In particular,

[H1
ΓD

(Ω)]3 = {v ∈ [H1(Ω)]3 : v|ΓD
= 0}.

Now we can describe the choice of V and Q in our case:

• V is chosen in such a way that the test functions vanish on that boundary portion
where the solution is known, so it is defined as follows

V = [H1
ΓD

(Ω)]3. (2.42)

Note that if ΓD = ∂Ω, then V = [H1
0 (Ω)]3.

• Q is chosen in such a way that, if ΓN 6= 0

Q = L2(Ω). (2.43)
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Finally, we have to choose the space of the unknowns. On this purpose, for each t > 0, we will
search a pressure p(t) ∈ Q and a velocity u(t) ∈ [H1(Ω)]3 with u = ϕ(t) on ΓD and u(0) = u0.

After these considerations about spaces V and Q we can observe that, since v ∈ V , v is such
that v|ΓD

= 0 and making use of the boundary condition on ΓN (see 2.35), we have, ∀v ∈ V∫
∂Ω

(
ν
∂u

∂t
− pn

)
·v dγ =

∫
ΓD

(
ν
∂u

∂t
− pn

)
·v dγ +

∫
ΓN

(
ν
∂u

∂t
− pn

)
·v dγ =

∫
ΓN

ψ · v dγ.

(2.44)

Finally, the weak formulation of the Navier-Stokes equations (2.33) with initial conditions
(2.34) and boundary conditions (2.35) has the following form:

given ψ ∈ L2(ΓN ), find u ∈ L2 ( R3; [H1(Ω)]3 ) ∩ C0 ( R+; [L2(Ω)]3 ) and p ∈ L2 ( R+; Q )
such that
∫

Ω

∂u

∂t
· vdΩ +

∫
Ω
ν∇u : ∇vdΩ +

∫
Ω

[(u · ∇)u] · vdΩ−
∫

Ω
pdivvdΩ =

∫
ΓN

ψ · vdγ ∀v ∈ V∫
Ω
q divu dΩ = 0 ∀q ∈ Q

(2.45)
with u|ΓD

= ϕ and u|t=0 = u0.

We can simplify the notation with the help of bilinear and trilinear forms. On this purpose
we introduce:

• the bilinear form a : V × V → R defined as

a (u,v) = ν

∫
Ω
∇u : ∇v dΩ;

• the bilinear form b : V ×Q→ R defined as

b (u, q) = −
∫

Ω
q divu dΩ;

• the trilinear form c : V × V × V → R defined as

c (w, z,v) =

∫
Ω

[(w · ∇)z] · v dΩ.

Considering the notation ∫
Ω

u · v dΩ = (u,v)

and assuming ψ = 0 on ΓN , we could rewrite the weak formulation (2.45) of the Navier-Stokes
equations in this way:

find u ∈ L2 ( R3; [H1(Ω)]3 ) ∩ C0 ( R+; [L2(Ω)]3 ) and p ∈ L2 ( R+; Q ) such that
(
∂u

∂t
,v

)
+a (u,v) + c (u,u,v) + b (v, p) = 0, ∀v ∈ V

b (u, q) = 0, ∀q ∈ Q
(2.46)
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with u|ΓD
= ϕ and u|t=0 = u0.

2.2 Numerical approximation

In this section we would like to look after the approximate solution of the problem (2.46).
First of all it is necessary to provide a suitable discretization of the equations in space and
time. We start from system of equations (2.46).

2.2.1 Space discretization by means of Finite Element Method

The starting point of space discretization is the so-called Galerkin approximation obtained
by substituting the Hilbert spaces V = [H1

ΓD
(Ω)]3 and Q = L2(Ω) with appropriate finite

dimensional subspaces.
On this purpose, let Vh and Qh two families of spaces such that

Vh ⊂ V, dimVh = Nh ∀h > 0, (2.47)

Qh ⊂ Q, dimQh = Mh ∀h > 0. (2.48)

In this way we obtain a semi-discrete problem, since it involves a discretization only in space
and not in time, the so-called Galerkin problem:

for each t > 0, find ( uh(t), ph(t) ) ∈ Vh ×Qh such that
(
∂uh(t)

∂t
,v

)
+a (uh(t),vh) + c (uh(t),uh(t),vh) + b (vh, ph(t)) = 0, ∀vh ∈ Vh

b (uh(t), qh) = 0, ∀qh ∈ Qh
(2.49)

with uh|ΓD
= ϕh and uh|t=0 = u0h, where ϕh and u0h are appropriate approximations

respectively of ϕ and u0 in Vh.

The problem now is how to construct in practice the two spaces Vh and Qh. This is done
following the method of the finite element approximation.

The Finite Element Method

The Finite Element Method (FEM) is a numerical method for solving problems of mathe-
matical physics such as fluid flow and mass transport. The FEM formulation of the problem
results in a system of ordinary differential equations that will be properly discretized in time.

A finite element consists of a triple (K,Pr,Σ) such that

• K is the domain of definition of the element (for example, in the one-dimensional case
it is an interval, in 2D is a polygon, in 3D a polyhedron);

• Pr is the space defined on K of polynomials of global degree less than or equal to r. In
addition dimPr = Nr and we consider {ϕj}Nr

j=1 a basisi on Pr;
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• Σ is a set of functional on Pr,

Σ = {γi : Pr → R}Nr
i=1 satisfying γi(ϕj) = δij =

{
1 if i 6= j

0 if i = j
.

The set Σ define the so-called degrees of freedom, that is Nr geometrical nodes {ai}Nr
i=1

such that γi(ϕj) = ϕj(ai).

In our case, Ω ⊂ R3, so we consider a finite decomposition Th of Ω̄ made of K tetrahedra

Ω̄ =
⋃
K∈Th

K. (2.50)

In order the mesh Th is considered admissible, three conditions have to be required:

• int(K) 6= ∅ ∀K ∈ Th ;

• int(K1) ∪ int(K2) = ∅ ∀K1,K2 ∈ Th with K1 6= K2 ;

• ∀K1,K2 ∈ Th with K1 6= K2, if F = K1 ∪K2 then F is a vertex, an edge or a face.

In other words, the tetrahedra must have not empty interior and they are such that the
intersection of two of them must be empty or reduced to a common entity, such as a vertex
or edge or face.

The mesh Th is dependent on a parameter h related to the spacing of the grid and defined
as

h = max
K∈Th

hK , (2.51)

where hK is the diameter of the element K defined in this way

hK = diam(K) = max
x,y∈K

|x− y| ∀K ∈ Th. (2.52)

In addition to this, we say that a family of grids {Th, h > 0} is regular if there exists a
constant δ > 0 such that

hK
ρK
≤ δ ∀K ∈ Th, (2.53)

where hK the largest length in the element edge and ρK the diameter of the largest inscribed
sphere.

Our aim is to choose appropriately the spaces Vh and Qh introduced previously. On this
purpose we focus our attention on the space Pr, which identifies the set of polynomials whose
degree is less or equal than r,

Pr =

{
p(x, y, z) =

∑
0≤i+j+l+≤r

aijlx
iyjzl, aijl ∈ R

}
. (2.54)

In this way, the space of finite element can be defined as

Xr
h = {vh ∈ C0(Ω̄) : vh|K ∈ Pr ∀K ∈ Th}, (2.55)

that is, the space of globally continuous functions on Ω̄ that are polynomials of degree r on
the single elements of the grid Th.

In our case we define

V r
h = {vh ∈ C0(Ω̄) : vh|K ∈ Pr ∀K ∈ Th} ∩ V, (2.56)
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Qsh = {qh ∈ C0(Ω̄) : qh|K ∈ Ps ∀K ∈ Th}. (2.57)

These are the spaces of finite elements we will use for the numerical solution of our problem.
In particular, the test function vh will be chosen in [V r

h ]3, whereas the test function q for the
pressure in Qsh. To sum up, we choose

Vh = [V r
h ]3 and Qh = Qsh.

We note that the problem (2.49) is well posed only if the spaces Vh and Qh satisfy the discrete
inf-sup condition, that is there exists a positive constant β, even dependent on h, such that

inf
qh∈Qh

sup
vh∈Vh

b(qh,vh)

||vh||[H1(Ω)]3 ||qh||L2(Ω)
≥ β. (2.58)

Considering this important condition, when looking for a compatible couple of spaces, we
note that the velocity space Vh should be larger than the pressure space Qh [5]. Considering
Pk the piecewise finite elements of degree k (k = 0, 1, · · · ), examples of finite element spaces
that fulfill the inf-sup condition are P2−P1 or P1bubble−P1. Couples like P2−P2 or P1−P1

do not satisfy the condition (2.58) and lead to instabilities, but they can still be used adding
a suitable stabilization.

Before proceeding with the time discretization, we want to provide an algebraic interpretation
of the semi-discrete problem and this is done finding an equivalent matrix formulation of
system (2.49). We introduce:

- {βj}Mh
j=1 a basis of Qh;

- {αj}Lh
j=1 a basis of V r

h ;

- {αj}Nh
j=1 a basis of Vh with αj =


(αj , 0, 0) for j = 1, ..., Lh

(0, αj , 0) for j = Lh + 1, ..., 2Lh

(0, 0, αj) for j = 2Lh + 1, ..., 3Lh

,

where 3Lh = Nh = dimVh.

We observe that, since the problem (2.49) is valid for all elements of the spaces Vh and Qh,
then it is valid also for the elements of the basis.

We decompose the unknowns uh(t) and ph(t) on their respective basis

uh(x, t) =

Nh∑
j=1

uj(t) αj(x), (2.59)

ph(x, t) =

Mh∑
J=1

pj(t) βj(x), (2.60)

where uj(t) and pj(t) are the unknowns of our problem.
In this way we can rewrite the semi-discrete problem (2.49) as a system of ordinary

differential equations:
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M
dU(t)

dt
+A U(t) + C(U(t)) U(t) +BT P(t) = 0

B U(t) = 0
, (2.61)

where [U(t)]j = uj(t), [P(t)]j = pj(t) and M , A, C and B are the finite element matrices
defined in this way

• M is the mass matrix with mj =
∫

Ωαi ·αj dΩ;

• A is the stiffness matrix with aij = a(αj ,αi);

• C is a matrix dependent on U(t) with cij = c(U(t),αj ,αi);

• B is a matrix with bij = b(αj , βi).

2.2.2 Time discretization

We consider a finite domain [0, T ] and we divide it in N intervals of length ∆t, which is
called time step. In this way T = N∆t and tn = n∆t for n = 1, · · · , N . We denote by Un

an approximation of U(tn) and by Pn an approximation of P(tn).
We notice that, by considering a first order backward Euler discretization, we would have

a non-linear algebraic system that requires a too high computational cost. For this reason,
the choice is to use the explicit Euler method with a semi-implicit treatment of the non linear
term. In other words we treat implicitly the linear part of the problem and explicitly the non
linear convective term.

In this way we obtainM
Un+1 −Un

∆t
+A Un+1 + C(Un) Un+1 +BT Pn+1 = 0

B Un+1 = 0

, (2.62)

That is, in matricial form[
M
∆t +A+ C(Un) BT

B 0

] [
Un+1

Pn+1

]
=

[
M
∆tU

n

0

]
(2.63)

or, more easily [
Ã BT

B 0

] [
Un+1

Pn+1

]
=

[
G
0

]
, (2.64)

where Ã = M
∆t +A+ C(Un) and G = M

∆tU
n.

In addition to this, we can observe that the semi-implicit scheme leads to the following
stability condition

∆t ≤ k h

max
x∈Ω
|Un|

, (2.65)

for a suitable k. This condition is not roo much restrictive.
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2.2.3 Solution of the linear system

The system (2.62) is a non symmetric linear system which is undefined, that is its eigenvalues
are positive and negative. This leads to slow convergence of iterative methods and for this
reason suitable preconditioners are required. In our case we use the iterative method called
Generalized Minimal Residual method (GMRes) and to speed up convergence we apply the
Additive Schwarz Preconditioner. In this section we are going to describe the resolving
procedure adopted.

First of all for sake of simplicity, since now on we refer to system (2.63) as the system
Ax = b, where A = (aij) ∈ Rm×n is the coefficient matrix, b = (bi) ∈ Rm is the right side
vector and x = (xi) ∈ Rn is the unknown vector.

One of the main ingredients in our procedure are Krylov subspaces. Given A ∈ Rm×m
and b ∈ Rm we consider the Krylov sequence

{b, Ab, A2b, A3b, · · · }.

The n-th order Krylov subspace is obtained starting from the Krylov sequence in this way

Kn = span{b, Ab, A2b, · · · , An−1b}. (2.66)

The GMRes method is an iterative method with the property of minimizing at every step the
norm of the residual vector over a Krylov space. In order to find step by step this vector we
use the Arnoldi iteration, an iterative procedure to obtain an orthonormal basis of a Krylov
subspace.

The GMRes method

The method of Generalizes Minimal Residuals (GMRes) was introduced in 1986 by Saad and
Schultz [28]. The GMRes method can be used for linear systems Ax = b with non singular
square matrix.

The GMRes method starts from the idea of solving a least square problem at each step
of the iteration, that is at step n we approximate the exact solution x∗ = A−1b by a vector
xn ∈ Kn = span{b, Ab, · · · , An−1b} such that the residual is minimized, that is

||rn||2 = ||Axn − b||2 → min. (2.67)

The vectors b, Ab, · · · , An−1b could be almost linearly dependent, so instead of this basis we
use the Arnoldi iteration to find {q1,q2, · · · ,qn} an orthogonal basis for Kn.

With this new basis the approximate solution xn ∈ Kn can be written as

xn = Qny, (2.68)

where Qn = [q1, · · · ,qn] ∈ Rm×n and y is an appropriate vector of Rn.
In this way, equation (2.67) becomes

||rn||2 = ||Axn − b||2 = ||AQny− b||2 → min. (2.69)

Through the Arnoldi process we find a matrix H̃n ∈ R(n+1)×n such that

AQn = Qn+1H̃n. (2.70)
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Now, inserting relation (2.70) in (2.69) we obtain

||rn||2 = ||AQny− b||2 = ||Qn+1H̃ny− b||2 → min. (2.71)

Because columns of Qn are orthogonal, we get

||Qn+1H̃ny− b||2 = ||H̃ny−Q∗n+1b||2. (2.72)

The final simplification is for the vector

Q∗n+1b =


q∗1b
q∗2b

...
q∗nb

q∗n+1b

 .

Recalling the definition of Krylov subspaces and that the columns qj ofQn form an orthogonal
basis for Kn we have

q1 =
b

||b||2
and q∗jb = 0 for j > i.

Therefore we have

Q∗n+1b = ||b||2 e1 where e1 ∈ Rn+1, e1 = (1, 0, · · · , 0)∗. (2.73)

At the end, xn can be found by minimizing

||rn||2 = ||H̃ny− ||b||2 e1||. (2.74)

Algorithm 1 GMRes algorithm

1: Let q1 = b/||b||2
2: for n = 1, 2, 3, · · · do
3: Perform step n of Arnoldi iteration, i.e. compute new entries for H̃n and Qn
4: Find y that minimizes ||H̃ny− ||b||2 e1||
5: Set xn = Qny
6: Repeat if the residual is not yet small enough with respect to a suitable tolerance
7: end for

Additive Schwarz Preconditioner

The convergence of the GMRes method depends on the spectral properties of the matrix A of
the linear system, which is often very ill-conditioned. In order to improve things, the original
system Ax = b is replaced by

P−1Ax = P−1b (left precontioning),

or
AP−1Px = b (right precontioning).

The linear operator P , called preconditioner, is used to make easier to solve the linear system
in terms of iterations and CPU time. P is an efficient preconditioner if has the following
properties:
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• P is a good approximation of A. This means that P has to act so that P−1A is
closed to be the identity matrix.

• P is efficient, in the sense that the iteration method converges much faster, in term
of CPU time, for the preconditioned system.

• P or P−1 can be constructed in parallel.

The problem is how to construct such an operator P useful for our problem. In our case we
use the method of the Additive Schwarz Preconditioner. The following information are taken
from [29]. The basic idea is to decompose the computational domain Ω in this way:

Ω̄ =
M⋃
i=1

Ω̄i.

This means that Ω is decomposed into M smaller parts Ωi, called subdomains.
In this way, the original problem can be reformulated within each subdomain Ωi of smaller

size. This family of subproblems is coupled one to another through the values of the unknown
solution at subdomain interface. This coupling is then removed at the expense of introducing
an iterative process which involves, at each step, solutions on the Ωi with additional interface
conditions ∂Ωi \ ∂Ω.

Using the Schwarz preconditioner, the computational domain is subdivided into overlap-
ping subdomains. Local Dirichlet-type problems are then solved on each subdomain and
the communication between the solutions on the different subdomains is guaranteed by the
overlapping region. The additive Schwarz preconditioner can be written as

P−1 =
M∑
i=1

PiA
−1
i Ri, (2.75)

where M is the number of subdomains which identifies the number of processors in the com-
putation, Ri is an operator that restricts the global vector to the vector lying on subdomain
∂Ωi, Pi is an operator that prolongate from subdomain Ωi to Ω and

Ai = RiAPi. (2.76)

Once matrices (2.76) have been formed, the inverse in (2.75) can be computed.
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Chapter 3

Generation of geometries

In the following chapter we are going to describe the steps necessary to obtain our volumes
and our meshes for the computer simulations presented in Chapter 4. We give some details
about the procedure we adopted for the volume extraction from medical images and for the
mesh generation in the two cases analyzed: the case of the stenotic branch of a coronary
artery with and without guide wire. We recall that our aim is to measure the effect of the
guide wire on the pressure drop in coronary stenosis.

3.1 Volume extraction

Clinical radiological images are commonly used to reconstruct the computational domain. In
this work, we use Computer Tomography (CT) scans, performed by the Radiology Division
of “Distretto EST dell’APSS di Trento”. An AS CT 28 slice system was employed and the
main parameters of the acquisition were the following: slice thickness 0.6 mm, slice spacing
0.3 mm and reconstruction matrix 512× 512 pixels.

The procedure of reconstruction requires advanced mathematical and numerical tools.
In our case, we use the Vascular Modeling Toolkit (VMTK, version 1.3, [31]). VMTK is a
collection of scripts and tools which provides segmentation of vascular segments from medical
images, geometric analysis and surface data processing of 3D models of blood vessels.

One fundamental problem in medical images analysis is image segmentation, which iden-
tifies the boundaries of the analyzed objects and extracts a surface from the image. This
procedure allows us to obtain an accurate reproduction of the geometry of the blood vessels.
The advantage of using a level-set method is given by the possibility of reconstructing the
curves given in the image without the need of parametrizing them. For more technical infor-
mation about the procedure see [32] and [33].

The patient selected for our study is a male of age 60. On his medical report we become
aware that the right coronary and the left circumflex coronary are healthy, the left anterior
descending, instead, has a substantial stenosis. In particular we read:

”Left Anterior Descending (LAD): widely ill in the proximal and intermediate tract.
Downstream of the eccentric calcific plaque recognizable immediately, after the emergence of
the first diagonal branch, a circumferenzial stenosis sustained by circumferential fibrolipid

plaque. Other thin fibrolipid plaques also upstream of the stenotic tract, but without
significant stenosis”.
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For this reason, the left anterior descending coronary (LAD) will be the stenotic branch that
we are going to reconstruct. In Figure 3.1 the initial DICOM image acquired is reported.
We could detect the aorta (1), the left anterior descending coronary (2) with the calcification
and the left circumflex coronary (3).

Figure 3.1: CT scan.

We want to extract the surface model of the LAD from the CT scan at our disposal. On this
purpose, we follow the instructions of the VMTK Level Set Segmentation procedure. The in-
teractive method substantially consists of placing two seeds on the image and automathically
the region between the seeds will be selected. It is possible to proceed by steps, reconstructing
the vessel in separate chunks and then merge the results of the different chunks into a single
final model. In this process some parameters, which control the deformation of the level set,
have to be chosen. For more technical informations see [31], in the Tutorials section. In
Figure 3.2 we can see some steps of our reconstruction:

(a) (b) (c)

Figure 3.2: Stenotic branch extraction.
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Image segmentation can result in bumpy surfaces. These bumps can affect some results of
the hemodynamic simulations (such as wall shear stress distributions) and, for this reason,
there is the possibility to increase surface smoothness to improve the surface result.

Another thing to do in order to be able to perform numerical simulations, is to open
the model in correspondence of the boundaries through which blood flows. In fact, from the
reconstruction procedure, these boundaries are closed. We proceed by opening the surface
by clipping the blobby endcaps.

The final .vtp file of the stenotic branch is reported in Figure 3.3.

Figure 3.3: Final reconstruction of the stenotic branch with an enlargement of the stenotic tract.

3.2 The guide wire and its insertion in the model

Once the stenotic branch model is obtained, we want to virtually insert the guide wire.
In order to simulate at best the medical practice in the FFR detection, we firstly have
to learn some physical properties of the instrument used for the pressure measurements in
hospitals. Dr. Roberto Bonmassari of the ”Santa Chiara Hospital” in Trento makes use of
the Verrata Pressure Guidewire. This pressure guide wire is a steerable guide wire with a
pressure transducer mounted 3 cm proximal to the tip and has a diameter of 0.014 inch, that is
0.36 mm. It is a device indicated for use to measure pressure in blood vessels during diagnostic
angiography and any interventional procedures. As we seen in Chapter 1, these blood pressure
measurements provide hemodynamic informations for the diagnosis and treatment of blood
vessel disease. We can see the structure of this instrument in Figure 3.4.
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Figure 3.4: The Verrata Pressure Guidewire.

So, the guide could be described by a tube of radius 0.18 mm. The position of the catheter
inside the vessel is arbitrary, in the sense that the coronary arteries are curved and tortuous
and it is impossible for the transducer to be always located at the center of the vessel.

So, our aim is to create a curvilinear tube of radius 0.18 mm and insert it in our stenotic
vessel model. On this purpose, we use Paraview, an open-source, multi-platform data
analysis and visualization application. This software is principally used for the analysis and
the visualization of scientific data sets, but it is also a useful tool to create various geometries,
such as cylinders, spheres, cones, etc. The procedure is quite simple: it is sufficient to set
some points in the internal model (Figure 3.5) and the radius of the desired tube (0.18 mm
in our case). With these elements Paraview returns the tube.

We could see the final result in Figure 3.6.

Figure 3.5: Points for the guide creation.
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Figure 3.6: Stenotic branch with the guide wire.

3.3 Mesh generation

Once the lumen surface model has been recontructed, the next step consists obtaining the
mesh for the computer simulations we will present in Chapter 4. We recall that we want to
simulate the presence of the pressure guide wire and its effects on pressure results. We would
like also to make a comparison between results with and without guide wire, in order to see
if and how FFR is affected by its presence. For this reason we have to construct two meshes,
one with and one without the pressure wire.

The meshes were obtained through the use of the code fsimeshgenerator.py, a Python
code developed in the MOX laboratory at Politecnico di Milano. This code takes as input
the .vtp file of the geometry and returns two types of meshes: the first one, that we call
“fluid mesh”, is the mesh of the internal vessel and the second one, the “structure mesh”,
is instead the mesh of the vessel’s wall. In order to obtain the structure mesh, the code starts
from the fluid mesh and proceeds extruding this one.

The guided procedure to obtain the .mesh file is quite simple. The code is linked to
VMTK, which provides a clear interface. For this reason it is sufficient to follow the in-
structions which appear on the screen. During the procedure, we are asked to insert some
parameters, that define principally the length of the tetrahedra’s edges, and the mesh is cre-
ated in automatically.

So, the output of the code are two .mesh files, one for the fluid mesh and one for the
structure mesh, which contain all the informations of the grids, in particular the coordinates
of the nodes and all the connections between points and tetrahedras edges.

After this panoramic view of the tool at our disposal, in the next subsections, we explain in
details the creation of the mesh in the two cases analyzed: the stenotic branch without and
with the guide wire. As we will see, the principal problem for our work is to obtain the mesh
in the case which considers the presence of the guide. In fact, the fsimeshgenerator.py code
does not accept the geometry of Figure 3.6 as .vtp input file. For this reason, our idea is to
start from the pre-existing structure mesh and move the coordinates of the nodes through a
MATLAB code. We explain better this procedure in subsection 3.3.2.
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3.3.1 Mesh of the stenotic branch without guide wire

In this case the procedure is quite simple. The stenotic branch is turned into a volumetric
mesh of linear tetrahedra following the instructions of the fsimeshgenerator.py code. During
the procedure, we are asked to choose two different parameters α and β which define the
mesh elements’ dimensions. The two parameters are linked by the following relation:

h(R) = αRβ, (3.1)

where R is the radius of the vessel at the level of the considered mesh element. So the
element’s dimension is dependent on the vessel’s radius, allowing us to have smaller mesh
elements if the radius of the vessel decreases. This is important because, in this way, high
velocity gradients due to the presence of the stenosis can be better caught. In our case we
choose

α = 0.21,

β = 0.3,

obtaining a mesh of about 1.2M tetrahedra.
In Figure 3.7 we show our final result. We name inlet the boundary through which the

blood flow enters (see A in figure (a)) and outlet the one through which the blood goes out
(see B in figure (a)).

(a)

(b) (c) (d)

Figure 3.7: Final mesh result of the entire stenotic branch (a) and some particulars: (b) mesh elements
at the level of the stenosis, (c) the inlet face and (d) the internal mesh.
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3.3.2 Mesh of the stenotic branch with guide wire

As we already said, the fsimeshgenerator.py code does not generate the mesh with a hole for
the guide in automatic, because it does not accept the .vtp geometry of Figure 3.6 as input.
Our idea is to use the structure mesh generated automatically by the code and change the
coordinates of the nodes by means of a MATLAB code. In fact, the .mesh file which results
from the use of the code, cointains all the informations about the mesh, in particular the
coordinates of the nodes and their position in the grid. The aim is to create the guide inside
the volume.

For better understanding this procedure, we are now going to explain it on a cylinder. In
fact, we firstly test our idea on a cylinder which is more regular than our geometry (every
slice has the same diameter and the guide is not curved).

Figure 3.8 shows the final result of the structure mesh obtained through the use of the
code. During the procedure, we can choose the number of sublayers and the thickness of the
wall layer.

Figure 3.8: Final structure mesh with 9 sublayers on a cylinder.

In Figure 3.9, instead, we give a scheme of what we have (in black) and what we want to
obtain (in orange). The black circular crown is our structure mesh, whereas the orange
internal part is the part of the volume on which we want to create our mesh.
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Figure 3.9: Schematic representation of the situation.

So, our aim is to fill the orange volume using and shifting the pre-existing nodes of the
structure mesh like in Figure 3.10. We color in blue the points on the external layer, in orange
the intermedial points and in yellow the points which lay on the intenal layer. We report the
position of these points in the structure mesh (on the left) and in the new configuration (on
the right). Of course, the number of the intermedial points depends on how many sublayers
we set. In this description we consider only two sublayers, in order to simplify things.

Figure 3.10: Points shift.

Once we have clear in mind what we want to do, we are ready to describe the main idea we
use for the implementation of the MATLAB code. Firstly, we have to find a sort of “line
of reference” from which calculate the distances of the mesh nodes. This “reference line” is
provided by the centerline of the cylinder we are going to consider and it is represented in
black in Figure 3.11.
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Figure 3.11: Centerline of the cylinder.

We describe the procedure with the help of Figure 3.12:

- in picture (a) we represent the point in the structure mesh. We denote by Ri, Ro and Re
the distances between the centerline and the internal, the intermedial and the external
points respectively. In addition to this, we name a = Re − Ro the distance between
intermedial and external points and b = Re − Ri is instead the distance between the
internal and the external points (which corresponds to the thickness of the structure
mesh);

- in picture (b) we show our final configuration with the new position of the points. Ri,
Ro and Re are replaced by ri, ro and re, which are the new distances from the centerline.
Moreover, we have a′ = re − ro and b′ = re − ri instead of a and b.

Figure 3.12: Linear representation of the shift.

So, we proceed moving the nodes in this way:

• internal points (yellow points). These points are the points that have to form the
guide. We shift them in order that the radius Ri becomes

ri = 0.18 mm,

that is, the length of the radius of the guide.
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• external points (blue points). Also these points have to be shifted because the struc-
ture mesh create a thickness with respect to the fluid mesh. We know that

thickness = b = αR,

where α is a parameter which value is set during the interactive procedure of the mesh
generation. So we move external points in such a way that

re = Re − b.

• intermedial points (orange points). The basic idea in shifting these points is to
maintain constant the proportion between the distance of the intermedial points from
the external and internal ones. Mathematically, we want that

a

b
=
a′

b′
. (3.2)

We can rewrite equation (3.2) in this way:

Re −Ro
Re −Ri

=
re − ro
re − ri

, (3.3)

from which

ro = − Re −Ro
Re −Ri

(re − ri) + re. (3.4)

Implementing a MATLAB code in this way and by running it, we obtain the new coordinates
of the nodes which have to replace the original ones in the .mesh file. In this way, opening
the new .mesh file we obtain the “hollow mesh” we were searching for.

The final result for our cylinder for which we create a structure mesh with 9 sublayers, is
reported in Figure 3.14. In Figure 3.13 we show the result of the MATLAB code.

Figure 3.13: Matlab shift.
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Figure 3.14: Final result for the mesh with the guide wire on a cylinder.

Once the procedure has been successfully applied to the cylinder case, we apply it on our
stenotic branch. In this case, the “reference line” is provided by the centerline of the tube
we create in section 3.2, that is our guide reconstruction (see the black line of Figure 3.15).

Figure 3.15: Centerline of the guide.

In particular, the structure mesh is obtained extruding a fluid mesh for which we choose

α = 0.25,

β = 0.3,

we set 12 sublayers and the final mesh is composed by about 1.2M tetrahedra.
After applying the MATLAB code, we obtain our final mesh. As in Subsection 3.3.1, in

correspondence of A there is the inlet slice, where is B is instead the outlet slice. We can see
it in Figure 3.16.
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(a)

(b) (c) (d)

Figure 3.16: Final mesh result of the entire stenotic branch with guide wire (a) and some particulars:
(b) a view of the internal vessel, (c) the inlet face (A) and (d) the internal mesh.

To complete successfully the procedure described above, we needed to perform several tests
in order to find an appropriate mesh for our work.

In primis, we pay a lot of attention in setting the points for the creation of the guide in
Figure 3.5. After some tests, we understand that the guide has to start and finish in such a
way that it is perpendicular to the inlet and the outlet. If this condition is not satisfy, the
shift causes points overlays and irregular boundary slice.

Another key problem was about the dimensions of the mesh elements. These elements
had to be not too big, because in this way the mesh results very poorly refined, but also
not too little, because this situation brings to points overlay after the shift. So, from one
test to another, we change the parameter linked to element’s dimensions until we find a good
mesh. Another thing we change was the number of sublayers of the structure mesh in order
to obtain a well-refined mesh.

At the end, with the two meshes at our disposal, we are ready to run the computer simulations
for our work. In Chapter 4 we will describe the tools involved in the study and our numerical
results.

46



Chapter 4

Results

In this chapter we give an application of the theoretical aspects previously discussed in
Chapter 2. Using the geometry and the meshes obtained in Chapter 3, we describe in details
how our numerical simulations have been performed and the results of our study.

4.1 Computational aspects

This section gives some preliminary informations about the tools through which the numerical
simulations have been performed and about the choices regarding boundary conditions and
velocity profiles. Moreover, in the last subsection we give some details about the physical
and computational settings.

4.1.1 The Finite Element Library “LifeV”

The numerical simulations were performed making use of the open source library LifeV, a
software written in C++ for the finite element solution of partial differential equations in
one, two and three dimensions. LifeV was developed by a joint collaboration between the
MOX laboratory of the Department of Mathematics of the Politecnico in Milano, the École
Polytechnique Fédérale of Lausanne in Switzerland, the INRIA, Paris in France and the
Emory University in the U.S.A..

The library includes solvers for incompressible fluid dynamics, linear structural problems,
transport in porous media, fluid-structure interaction and electrical conduction in the heart.
One of the main field of application is cardiovascular mathematics. There are two versions
of LifeV, see [52]; in our thesis we will use the parallel version in order to give the numerical
solution of the Navier-Stokes equations in three dimensions.

We mainly work on two files, the file data and the file cylinder.cpp. The features of
these files can be summarized as follows:

• in the file data we have the possibility to set the time discretization, the space dis-
cretization and all the physical parameters related to the fluid (such as the density ρ
or the viscosity µ). Later on we will discuss our choices. The .mesh file is considered
here, LifeV reads the mesh and partitions it using the Parmetis library. It is possible
to choose the solver and the preconditioner, in our case we solve the algebraic system
with GMRes method combined with an Additive Schwarz preconditioner, as we have
already explained in Chapter 2. We select a tolerance of τ = 10−6 for the solver and
100 maximum iterations.
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• the file cylinder.cpp uses the informations contained in the file data for the simula-
tions. It is in this file that is possible to define the appropriate boundary conditions for
the problem of interest. Each part of the mesh boundary is marked with a label (such
as Inlet = 2, Outlet = 3, ...) and this is used to impose different kinds of boundary
conditions for the different pieces of the domain. It is possible to choose principally
between Dirichlet (related to the velocity) or Neumann boundary conditions (related
instead to the pressure). This file cointains also the velocity profiles. All our choices in
this context will be explained in details in the next subsections.

The results of the numerical simulations are then visualized using Paraview, a tool useful to
visualize and postprocess the results of the numerical experiments, with or without computed
quantities (which could be the pressure or the velocity field) displayed on it. Thus, with the
help of this application, it is possible to analyze the data using qualitative and quantitative
techniques and to produce 3D figures and graphs.

4.1.2 Computational domains, boundary conditions and velocity profiles

In our work we consider two different scenarios. Firsly, we make a brief study on a simple
cylinder considering both the cylindrical case and the cylindrical perforated case. This kind
of study is useful to become familiar with the codes at our disposal. Then, we focus our
attention on our reconstruction of the stenotic vessel, considering the two configurations
with and without guide wire. We refer to the first model as coronary stenotic case and to
the second model as coronary stenotic pwg case (pwg stands for Pressure Guide Wire).

The aim of this section is to describe the four computational domains, specifying the
boundary conditions imposed in each part. In addition, we make some considerations about
the velocity profiles prescribed at the inlet.

(a) The cylindrical case.

In Figure 4.1 we can see the configuration of the cylindrical case.

Figure 4.1: Computational domain for the cylindrical case.

The domain is composed by a plane inlet surface Σin, a plane outlet surface Σout and by a
surface defined by the external wall Σwall.
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Regarding boundary conditions we impose a velocity profile at the inlet Σin, a no-slip
boundary condition on Σwall and a zero-traction condition at the outlet Σout. To sum up,
the boundary conditions will be:

u = uin on Σin, (4.1)

u = 0 on Σwall, (4.2)(
ν
∂u

∂n
− pn

)
= 0 on Σout, (4.3)

where u is the fluid velocity and p is the pressure.
At the inlet we impose a velocity distribution given by uin. The inlet slice of our cylinder

is oriented in such a way that it has the normal in the y-direction. We have assumed a
parabolic profile, also known as Poiseuille profile, in order that:

uin(x, t) =


0

2uz(t)

(
1− r2

R2

)
0

 , (4.4)

where t is the time, R is the radius of the inlet surface and r =
√
x2 + z2 is the radial

coordinate. We denote by uz the average spatial velocity on the inlet cross sectional area
A = πR2, defined as:

uz(t) =
Q(t)

A
, (4.5)

where Q is the flow rate which, in general, is a function of time.
In Figure 4.2 we show representative adimensional images of the velocity field prescribed

at the inlet section. These profiles are qualitatively independent of the choice of Q(t), which
will be described later on.

Figure 4.2: Adimensional images of the velocity field (left) and of the shape of the parabolic velocity
profile (right) at the inlet for the cylindrical case.

(b) The cylindrical perforated case.

The geometrical configuration of the cylindrical perforated case is shown in Figure 4.3:
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Figure 4.3: Computational domain for the cylindrical perforated case.

The parts of the domain are the same considered in the cylindrical case, apart from Σint

which is the internal wall of the perforated cylinder.
Considering the boundary conditions, they are the same than in the cylindrical case and

we have only to add a requirement on the new part of the domain. In particular, on Σint we
impose a no-slip condition. We have:

u = uin on Σin,

u = 0 on Σwall,(
ν
∂u

∂n
− pn

)
= 0 on Σout,

u = 0 on Σint.

As in the previous case, at the inlet we impose a Poiseuille velocity profile, which, in this
case, considers fluid flow through two concentric cylinders. We set:

uin(x, t) =


0

2ugz(t)
1(

1−k4

1−k2
− 1−k2

ln( 1
k
)

)(1− ( rR)2 − 1−k2
ln( 1

k
)
ln(Rr )

)
0

 . (4.6)

In (4.6), k is a scaling factor defined in this way:

k =
Rint
R

, (4.7)

where Rint is the radius of the internal cylinder, whereas R is the radius of the inlet slice.
In this case we have that, in formula (4.6),

ugz(t) =
Q(t)

Aper
, (4.8)
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where
Aper = π(R2 −R2

int)

is the area of the inlet section which considers the presence of the internal cylinder.
In Figure 4.4 we show again representative adimensional images of the velocity field

prescribed at the inlet section of the perforated cylindrical case.

Figure 4.4: Adimensional images of the velocity field (left) and the shape of the parabolic profile for
the velocity (right) at the inlet for the cylindrical perforated case.

The following (c) and (d) cases consider the model with and without guide wire of the
real coronary stenotic vessel from clinical radiological images (the reconstruction has been
described in Chapter 3).

(c) The coronary stenotic case.

From now on we refer to this case as Stenotic case.
In Figure 4.5 we can see its configuration. See also the corresponding mesh in Figure 3.7

(Chapter 3).

Figure 4.5: Computational domain for the Stenotic case.

As in the cylindrical case, the domain is composed by a plane inlet surface Σin (through
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which blood enters), a plane outlet surface Σout (through which blood goes out) and by a
surface defined by the external wall of the vessel Σwall.

The boundary conditions are the same as in (4.1), (4.2) and (4.3), that is we impose
a velocity profile at the inlet Σin, a no-slip boundary condition on Σwall because, since we
assume to have rigid walls, the velocity on this layer has to be zero, and a zero-traction
condition at the outlet Σout.

We now make some considerations about the velocity distribution imposed at the inlet.
To make our study physically reliable, it is important to impose that this distribution gives
rise to physiological flow rates. The inlet slice of our geometry is oriented in such a way that
it has the normal in the z-direction. Since in our model the inlet section is not perfectly
circular, we have assumed a parabolic velocity profile in order that:

uin(x, t) =




0
0

2uz(t)

(
1− r2

R2

)
 if r ≤ R

0 elsewhere

, (4.9)

where t is the time, R is the radius of the inlet surface and r =
√

(x− x0)2 + (y − y0)2 is the
radial coordinate with respect to an origin O = (x0, y0, z0) fixed at the center of the slice. In
order to fix the coordinate of this origin, we find the centerline of our model using VMTK
and we take as origin O the point of the centerline which lays on the inlet surface.

We have to make some considerations about the choice of the radius R, which in this case
is the approximate radius of the inlet slice (it is not perfectly circular). We set R = 2.2 mm, as
a mean value of different distances from the origin O and points located on the inlet external
ring. In this way, we impose the velocity profile of system (4.9), i.e. the parabolic profile
where r ≤ R and velocity equal to zero in the other points. Moreover, on the external ring of
the inlet slice we impose velocity equal to zero, satisfying the no-slip condition imposed on
Σwall.

In this way, in formula (4.9), uz is the average spatial velocity on the approximate inlet
cross sectional area A = πR2, defined as:

uz(t) =
Q(t)

A
. (4.10)

The choice of Q(t) will be descibed later on.
In Figure 4.6 we show representative adimensional images of the velocity field prescribed

at the inlet section of the Stenotic case.
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Figure 4.6: Adimensional images of the velocity field (left) and the shape of the parabolic profile for
the velocity (right) at the inlet for the Stenotic case.

(d) The coronary stenotic pwg case

From now on we refer to this case as Stenotic pwg case.
The geometrical configuration of this case with guide wire is shown in Figure 4.7. See

also the corresponding mesh in Figure 3.16 (Chapter 3).

Figure 4.7: Computational domain for the Stenotic pwg case.

The parts of the domain are the same considered in the Stenotic case, apart from Σpwg which
identifies the external wall of the guide.

Considering the boundary conditions, we have to add a requirement on this new part of
the domain. Since Σpwg is, from a physical point of view, the wall of the guide, we impose
a no-slip condition. The mathematical equations will be as (4.1), (4.3) and (4.2), with in
addition

u = 0 on Σpwg. (4.11)

As in the Stenotic case, at the inlet we impose a Poiseuille velocity profile, but its formulation
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is different because we have to consider the presence of the guide. We set:

uin(x, t) =




0
0

2ugz(t)
1(

1−k4

1−k2
− 1−k2

ln( 1
k
)

)(1− ( rR)2 − 1−k2
ln( 1

k
)
ln(Rr )

)
 if r ≤ R

0 elsewhere

, (4.12)

We set:

k =
Rpwg
R

=
0.18 mm

2.2 mm
= 0.082, (4.13)

where Rpwg is the radius of the guide, whereas R is the approximate radius of the inlet slice
(the same considerations as before are valid).

In formula (4.12),

ugz(t) =
Q(t)

Ag
, (4.14)

where

Ag = π(R2 −R2
pwg)

is the approximate area of the inlet section with the presence of the guide.
In Figure 4.8 we show again representative images of the velocity field prescribed at the

inlet section.

Figure 4.8: Adimensional images of the velocity field (left) and of the shape of the parabolic profile
(right) for the velocity at the inlet for the Stenotic pwg case.

For more details we refer to the work of Stella [21], which reports the mathematical steps to
obtain the velocity profiles (4.4) and (4.6).

4.1.3 Physical and computational settings

As for the physical parameters, in the file data we have to impose the density ρ and the
viscosity µ. The coordinates of our meshes nodes are expressed in millimeters, so these
parameters are related to millimeters too. We set:

- density (ρ) : 0.001056 g
mm3 ,

- viscosity (µ) : 0.0035 g
mm s .
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We now make some considerations about the computational settings.
Regarding the space discretization, in our simulations we always use P1bubble Finite Ele-

ments for the velocity and P1 Finite Elements for the pressure. This is a choice that guarantees
the stability of the discrete problem (it is a couple of spaces which functions satisfy the inf-sup
condition (2.58)) and permits reasonable calculation times, but we have to take in account
that it is only first order in space. Surely, more accurate results could be obtained using
second order numerical simulations.

As for time discretization, we use the BDF 1 scheme. We consider a time step of
∆t = 0.01 s for all the simulations.

In our study we consider two types of numerical experiments depending on the value in time
of the flow rate Q, which we have to impose. We consider:

• Steady simulations: the flow rate Q assumes a constant value k at each time step

Q = k,

and, in this way, it does not depend on time. For these kind of simulations we fix
Tend = 0.2 s.

• Unsteady simulations: the flow rate Q = Q(t) is a function of time. We consider
a physiological flow rate taken from literature [18]. In Figure 4.9 we show the flow
waveform.

Figure 4.9: Physiological flow rate.

So, in this case we prescribe at the inlet section a flow rate Q(t) which depends on time
assuming a parabolic profile.

4.2 Numerical results in the cylinder

As we already said, we firstly make a preliminary study on a cylinder for which we know the
analytical value of the solution for the pressure drop in the case of steady flow (see [21]).

We consider a geometry of a cylinder with diameter D = 4 mm, so with radius R = 2 mm,
and length L = 40 mm. The radius of the internal cylinder in the cylindrical perforated case
is set as Rint = kR = 0.18 mm.
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Figure 4.10: Geometries of the cylinder (left) and perforated cylinder (right).

We consider the two domains of the cylindrical case and the cylindrical perforated case.
We obtain the mesh for these models using the code fsimeshgenerator.py and following the
procedure described in Chapter 3.

We run steady simulations using LifeV codes and imposing Q = 2000mm
3

s for both cases.
As for boundary conditions, we consider those introduced in Subsection 4.1.2. All the results
are collected at the end time.

We know the analytical solution of the pressure drop:

- for the cylindrical case:

∆P a =
8µLQ

πR4
, (4.15)

- for the cylindrical perforated case:

∆P a =
8µLQ

πR4 (1− k2)

1(
1−k4
1−k2 −

1−k2
ln( 1

k
)

) , (4.16)

where we denote by ∆P a the pressure gradient between the pressure at a distance L from
the outlet and the pressure at the outlet.

We can compute in this way the relative error as follows

e =
||∆P a −∆Pn||L2

||∆P a||L2

, (4.17)

where ∆P a denotes the analytical solution whereas ∆Pn the numerical one.

We perform our simulations and we compare our numerical results of the mean gradient
pressure with the analytical solution of the pressure drop (see Figure 4.11 and Figure 4.12).

(a) The cylindrical case - Steady

We consider a mesh of 449592 tetrahedra and in Figure 4.11 we show the comparison between
results from the numerical simulations and the analytical solution of the pressure drop.
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Figure 4.11: Numerical and analytical solution for the cylindrical case.

We obtain an accurate result with an error e = 0.0141.

(b) The cylindrical perforated case - Steady

We consider in this case two different meshes, which differ for number of tetrahedra, in order
to evaluate the possible changes in the error. In Table 4.1 we show the number of tetrahedra
of the two meshes and the error obtained for each case using (4.17).

Mesh # Tetrahedra L2-error

Mesh1 286065 0.0219

Mesh2 381420 0.0181

Table 4.1: Relative errors for the perforated case computed.

We note that by refining the mesh, the relative error decreases. This fact underline the
importance of the mesh in computational studies, because, as we already said in Section
(1.6), the mesh is one of the main responsible for the accuracy of the solution.

In Figure 4.12 we show the numerical results of the pressure drop compared with the
analytical solution for Mesh2.
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Figure 4.12: Numerical and analytical solution for the perforated case. Mesh2.

4.3 Estimation of the hyperemic flow

We recall that the aim of our work is to investigate the effect of the guide wire on the pressure
drop in coronary stenosis by comparing results obtained from simulations in configurations
with and without guide wire.

Let g be a function. Its average value g̃ over a space region Γ and a finite time T is

g̃ =
1

T

1

AΓ

∫ T

0

∫
Γ
g(t′, x′) dt′dx′,

where AΓ is the area of the section considered.
In our case, the temporal average is made on a cardiac cycle, whereas the spatial average

is considered on a section Γ orthogonal to the axis. So we will denote with ∆p̃ the temporal
and spatial averaged pressure drop across the stenosis, with p̃a and p̃d the temporal and
spatial aortic and distal pressure respectively. Q̃ is instead the temporal averaged flow rate.

Our numerical results allow us to obtain the value of the mean pressure p̃a num at the
inlet slice, and thus, since the pressure at the outlet p̃d num is prescribed, we obtain also the
value of ∆p̃ = p̃a num − p̃d num. We use these informations to calculate the FFR. In fact,
since the mean aortic pressure p̃a is supposed to be known (we find its value in literature):

FFR =
p̃d
p̃a

=
p̃a −∆p̃

p̃a
.

In Figure 4.13 we give a schematic representation of ∆p̃.
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Figure 4.13: Schematic representation of ∆p̃.

We know that FFR is an important hemodynamic index that has to be considered in hy-
peremic conditions. In fact, it is only during myocardial hyperemia that the myocardial
resistance could be considered constant and blood flow is proportional to driving pressure.

For this reason, the fundamental problem for our work is to find a suitable boundary
condition at the inlet which simulates the state of hyperemia. In fact, we do not have any
medical measurement about blood flow rate at the inlet section and so the problem is to find
a reasonable value for it.

On this purpose, we firstly have to do some considerations about how pressure drop
changes in the presence of a stenosis. A normal healthy coronary artery is normally able to
accomodate large increases in coronary flow without producing any significant pressure drop.
But with the presence of an atherosclerotic plaque, resistance across a stenosis can influence
the coronary flow and can limit maximal myocardial perfusion. In particular, the relationship
between mean pressure drop and mean flow rate in an epicardial stenosis may be described
by the following relation [46]:

∆p̃ = bQ̃2 + aQ̃, (4.18)

where b and a are two coefficients that derive from stenosis geometry and rheological prop-
erties of blood. So we understand that the pressure drop across a stenosis not only contains
a linear term, but also a quadratic component with respect to flow rate: the linear term aQ̃
is the outcome of the Poiseuille equation in straight conduits, whereas bQ̃2 is caused by the
area reduction through the stenosis.

For the estimation of suitable hyperemic boundary conditions, we decide to follow the proce-
dure suggested by Banerjee et al. [46], in which we find a description of an in vitro experimen-
tal and computational study. We are now going to describe the steps of this methodology;
for more details we refer the reader to [46], see also [22].

This procedure starts noting that the flow rate imposed at the inlet section influences the
pressure drop, and consequently the FFR. In fact, increasing the flow rate Q̃ it is expected
that there is also an increase in the pressure drop ∆p̃. The critical issue is now how to
estimate the hyperemic flow rate Q̃h, where subscript h stands for hyperemic.

To reach this aim, our starting point is what has been proposed in [46], where the authors
introduced a methodology which involves the use of a fundamental tool, that is the so-called
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CFR − p̃d,h straight line, where CFR = Q̃h

Q̃b
is the Coronary Flow Reserve defined as maxi-

mal hyperemic flow Q̃h divided by the basal flow Q̃b and p̃d,h is the mean distal hyperemic
pressure. Starting from clinical measurements of a court of patients with different stenosis
severity range, the authors find a relationship between the CFR and the corresponding p̃d,h.
The equation, found with a linear regression of the data, is:

CFR = 0.0645 p̃d,h − 1.2461. (4.19)

We describe now the two steps of the methodology through which we will find an estimate
of the hyperemic flow rate Q̃h, explaining how the stright line (4.19) is used. This procedure
requires some computational simulations, which in our case will be carried out through the
use of LifeV codes. For both the cases of our interest, i.e. the Stenotic and the Stenotic pwg
case, we proceed following these steps:

(1) Plot of the ∆p̃− Q̃ characteristic curves.
This step consists in the determination of the coefficient a and b of (4.18). On this
purpose, we perform different simulations, prescribing different flow rates Q̃ at the
inlet. Then, we compute the pressure gradients ∆p̃ for each case. We plot the values of
Q̃ and the corresponding ∆p̃ in a 2D plane and, using MATLAB, we make a quadratic
regression in order to find the best second degree curve that fits the points:

∆p̃ = bQ̃2 + aQ̃ (4.20)

In this way, both for the Stenotic and the Stenotic pwg case, we will be able determine
the coefficient a and b that we were looking for.

(2) Estimation of the hyperemic flow Q̃h.
The idea of this second (and last) step is to plot the ∆p̃−Q̃ curves found in step (1) and
the CFR − p̃d,h straight line (4.19) in the same plane. For this reason, it is necessary
to rewrite equation (4.20) in such a way to obtain a relation which expresses the mean

distal pressure p̃d as a function of the coronary flow increase Q̃

Q̃b
. The basal flow Q̃b is

supposed to be known, see later on for a discussion on this point. With some simply
mathematical steps, we obtain:

∆p̃ = bQ̃2 + aQ̃,

p̃a − p̃d = bQ̃2 + aQ̃,

p̃a − p̃d = Q̃b
2
b

(
Q̃

Q̃b

)2

+ Q̃b a

(
Q̃

Q̃b

)
,

p̃d = −Q̃b
2
b

(
Q̃

Q̃b

)2

− Q̃b a
(
Q̃

Q̃b

)
+ p̃a. (4.21)

In this way, both for the Stenotic and the Stenotic pwg case, we can plot equation

(4.21) and (4.19) in the same Q̃

Q̃b
− p̃d plane. The intersection of the straight line and

the curve returns us:

- a value of CFR = Q̃h

Q̃b
, from which we derive the value of Q̃h (we recall that Q̃b

is supposed to be known), that is the hyperemic flow we are looking for. This
will be an estimation of the hyperemic flow we have to impose as inlet boundary
condition;
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- a value of p̃d,h, that is the distal pressure in the hyperemic state. Owing to this
value, the procedure allows us to obtain also a theoretical value of the FFR, which
we will denote by FFRt. In fact, since the mean aortic pressure p̃a is known, we
can compute

FFRt =
p̃d,h
p̃a

.

In the next section we will report our numerical results. As we already said, we will apply
the two steps of the procedure to both the cases of our interest. In this way, we will obtain
two curves for the step (1) and two estimation of the hyperemic flow for the step (2), one
for the Stenotic case and the other for the Stenotic pwg case. The procedure will return also
two values of the FFRt. We will check these values imposing at the inlet the hyperemic flow
determined through the methodology and computing the FFR by means of the pressure drop
obtained from the simulation.

Before going to analyze our numerical results, we would like to add some considerations about
this procedure. Firsly, the CFR− p̃d,h straight line derives from clinical measurements which
require the insertion of a guide wire. Then, the procedure depends on the value of the basal
flow Q̃b, which is supposed to be known and which, due to the autoregulation mechanism,
does not depend on the degree of the stenosis. However, we consider this methodology to be
a valid procedure to find an estimation of the hyperemic flow rate for our study.

4.4 Numerical results in real coronaries

In this section we report our numerical results and we specify the values of the flow rates
prescribed at the inlet section. We proceed by following the two steps of the procedure
described in the previous section in order to find the hyperemic flow to impose as inlet
boundary condition. This is done for our two cases of interest, i.e. the coronary stenotic
branch with and without guide wire. We use the meshes previously created in Chapter 3
reported in Figures 3.7 and 3.16. We perform two types of simulations by means of LifeV
codes: firstly we prescribe a constant flow rate at each time step; second, we consider unsteady
simulations with a pulsatile inlet blood flow. As for the other boundary conditions we refer
to Subsection 4.1.2.

Before starting, we notice that we need to know two ingredients of the procedure for
determining the hyperemic flow: the mean aortic pressure p̃a and the basal flow rate Q̃b.
We use a physiological value for the mean aortic pressure provided in [46]. For a stenotic
branch with an intermediate stenosis, as in our case, an appropriate value is p̃a = 86 mmHg.
Regarding the basal flow, from literature we find that a typical basal physiological value for
a coronary vessel with a diameter of 3 mm is Q̃b = 50 ml

min [48]. In our case, the inlet slice

has an approximate diameter of 4.4 mm and we estimate a reasonable value of Q̃b = 110 ml
min

which guarentees the same mean velocity as in [48].

4.4.1 Steady case

We perform simulations with steady flow rate and we collect the pressure drop result ∆p at
the final time.

Following the step (1) of the procedure (see Section 4.3), we prescribe four different flow
rates Q at the inlet, running in this way four simulations for each of the two configurations:
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the Stenotic case and the Stenotic pwg case. In Table 4.2 we show our choices for the flow
rate and, for each case, the corresponding pressure drop value computed by the numerical
simulation.

Q (ml/min)
∆p (mmHg)

Stenotic case Stenotic pwg case

110 3.81 4.74

150 6.50 7.73

270 18.54 20.61

330 26.65 29.11

Table 4.2: Steady flow numerical results.

We observe that, imposing the same flow rate in the two configurations, we register higher
values of the pressure drop in the case with guide wire.

In Figure 4.14 we plot our results in a 2D plane; then in Table 4.3 we report the values of a
and b in (4.20).
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Figure 4.14: Steady flow curves.
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Case ∆p - Q curve

Stenotic case ∆p = 0.00021 Q2 + 0.012 Q

Stenotic pwg case ∆p = 0.00021 Q2 + 0.021 Q

Table 4.3: Steady flow ∆p - Q curves equations.

We observe that the quadratic term in the ∆p − Q relation is the same for the two cases
analyzed. As for the linear term, we note that it increases by a factor of 1.75 (0.021/0.012)
with the insertion of the guide wire. As expected, in fact, the insertion of the guide wire
increases the resistance to flow by elevating the viscous loss expressed by the linear term aQ.

According to step (2) in the procedure (see Section 4.3), in Figure 4.15 we plot the ∆p−Q
curves in the Q

Qb
− pd plane according to (4.21). Moreover, we draw the CFR− pd,h straight

line reported in (4.19) and, finding the intersection between the curves and the line, we
provide an estimation of the hyperemic flow Qh. Then, in Table 4.4 we collect our results.
Notice, as expected, the elevated values of the estimated hyperemic flow rates.
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Figure 4.15: Steady flow intersection of the curves with the CFR− pd,h line.
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Case Qh (ml/min) CFR pd,h (mmHg) FFRt

Stenotic case 307.17 2.79 62.61 0.728

Stenotic pwg case 299.04 2.72 61.47 0.715

Table 4.4: Steady numerical results: the hyperemic flow Qh, the CFR value, the distal pressure pd
and the FFRt.

Next, we performed two further numerical simulations (one for the Stenotic case and one for
the Stenotic pwg case) where the estimated hyperemic flow rates are prescribed at the inlet
sections. This will allow us to verify if the theoretical value FFRt of FFR estimated by the
procedure is in an accordance with the value computed owing to numerical experiments.

• Stenotic case.
We impose Qh = 307.17 ml

min , at the final time we measured ∆p = 23.34 mmHg. In this
way

FFR =
pd
pa

=
pa −∆p

pa
=

86− 23.34

86
= 0.729. (4.22)

• Stenotic pwg case.

We impose Qh = 299.04 ml
min , at the final time we measured ∆p = 24.51 mmHg. In this

way

FFR =
86− 24.51

86
= 0.715. (4.23)

These results minimally differ from values estimated and reported in Table 4.4.

4.4.2 Unsteady case

In this subsection we describe the results obtained with the analysis of a physiological un-
steady flow prescribed at the inlet. The imposition of a physiological flow rate permits us to
get closer to reality, because we know that coronary blood flow features significant changes
along the cardiac cycle. As we already said in Subsection 4.1.3, we consider the flow rate
waveform of Figure 4.9. The cardiac cycle lasts 0.8 s.

According to step (1) of the procedure for the estimation of the hyperemic flow reported
in Section 4.3, we start finding the quadratic relationship between ∆p̃ and Q̃ in both the
cases of our interest (Stenotic and Stenotic pwg case). In Table 4.5 we collect our results.
We consider three different flow rates and we report the corresponding pressure drop value
computed by the numerical simulation.

Q̃ (ml/min)
∆p̃ (mmHg)

Stenotic case Stenotic pwg case

110 5.21 6.09

150 9.15 10.28

293 32.27 32.85

Table 4.5: Unsteady flow numerical results.
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We note that the values of the pressure drop are slightly higher in the Stenotic pwg case with
respect to the Stenotic one.

In Figure 4.16, instead, we plot the ∆p̃− Q̃ curves and we show the equations of these curves
in Table 4.6, determining in this way coefficients a and b of (4.20).
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Figure 4.16: Unsteady flow curves.

Case ∆p(mmHg) - Q curve

Stenotic case ∆p = 0.00034 Q2 + 0.0095 Q

Stenotic pwg case ∆p = 0.00031 Q2 + 0.022 Q

Table 4.6: Unsteady flow ∆p̃ - Q̃ curves equations.

We observe that the difference between the two curves is minimal. It seems that by increasing
the flow rates, the value of the pressure drops, for the Stenotic and Stenotic pwg case, ends
up to be the same. Also in this case, the b coefficient of the quadratic term is similar in both
cases, the a coefficient instead increases by a factor of 2.3 (0.022/0.0095), as expected since
the insertion of the guide wire increases the resistance to flow.

As described in step (2) of the procedure (Section 4.3), we finally report the graph through

which we find the intersection between the ∆p̃ − Q̃ curve in the Q̃

Q̃b
− p̃d plane with the

CFR − p̃d,h straight line (4.19), see Figure 4.17. In Table 4.7 we collect the results of the
procedure.
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Figure 4.17: Unsteady flow intersection of the curves with the CFR− pd,h line.

Case Q̃h (ml/min) CFR p̃d,h (mmHg) FFRt

Stenotic case 273.02 2.48 57.80 0.672

Stenotic pwg case 270.72 2.46 57.46 0.668

Table 4.7: Unsteady numerical results: the hyperemic flow Q̃h, the CFR value, the distal pressure p̃d
and the FFRt.

Next, as we made for the steady case, we performed two further numerical simulations (one
for the Stenotic case and one for the Stenotic pwg case) where the estimated hyperemic flow
rates are prescribed at the inlet sections. This allow us to verify the FFRt values obtained
with the procedure whit respect to the FFR computed owing to numerical experiments.

• Stenotic case.
We impose Q̃h = 273.02 ml

min , we measured ∆p̃ = 28.23 mmHg. In this way

FFR =
p̃d
p̃a

=
p̃a −∆p̃

p̃a
=

86− 28.23

86
= 0.672. (4.24)

• Stenotic pwg case.

We impose Q̃h = 270.72 ml
min , we measured ∆p̃ = 28.61 mmHg. In this way

FFR =
86− 28.61

86
= 0.667. (4.25)

We see that, also for the unsteady case, the FFR values do not differ from those estimated
by the procedure (FFRt in Table 4.7).
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4.5 Discussion of the results

In this section we want to make some considerations about our numerical results. In the
first subsection we make a sort of quantitative analysis of what we obtain. In the second
subsection, instead, we would like to analyze the hemodynamic features of the model, in
particular in the zone of the stenosis.

4.5.1 Discussion of the numerical results

In Table 4.8 we sum up the estimates of the hyperemic flows.

Q̃h results (ml/min)

Case Stenotic case Stenotic pwg case

Steady case 307.17 299.04

Unsteady case 273.02 270.72

Table 4.8: Estimated values of the hyperemic flow Q̃h.

We note that the hyperemic flow imposed at the inlet section is different for the two config-
urations, with and without guide wire. In particular, there is a reduction of Q̃h introducing
the guide wire in both steady and unsteady case. This is correct from a theoretical point of
view, because, since we are studying a system in hyperemic conditions, any resistance added
to blood flow causes a flow decrease. The reduction is of 2.64% for the steady case, of 0.84%
for the unsteady one.

Then, we observe that the flow rate we have to impose by means of a steady simulation is,
in general, higher than the unsteady one. In particular, it increases of 11.1% for the Stenotic
case and of 9.5% for the Stenotic pwg case.

Now we focus our attention on the FFR diagnostic index. We recall that our aim is to show
the effects of the insertion of the guide wire on the pressure drop in our stenotic model.
In Table 4.9 we sum up all our results: the measure of the FFR by means of steady and
unsteady simulations and the FFR value provided by the clinicians involved in the study for
the patient of our interest.

FFR final results

Case Stenotic case Stenotic pwg case

Steady case 0.729 0.715

Unsteady case 0.672 0.667

Clinical measure — 0.680

Table 4.9: Results about FFR measurements.

Firstly, we observe that the FFR results for the Stenotic pwg case are very closed to its
clinical measure, in particular imposing at the inlet the physiological flow rate waveform 4.9
(we find 0.667 compared to the 0.680).
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Then, we observe that the FFR values for the Stenotic case are slightly larger than in the
Stenotic pwg case. If we consider the percentage variation of the FFR due to the introduction
of the pressure guide wire, we note a reduction of 1.9% in the steady case, while a reduction
of 0.7% through the use of the unsteady simulations.

We know that the unsteady simulations are surely more closed to reality from a physical
point of view, but, at the same time, they require an higher computational cost with respect
to the steady ones. This fact reduces the clinical application of the unsteady procedure.
For this reason, we conclude our numerical work by performing an unsteady simulation with
the value of Q̃h estimated by considering steady simulations in the procedure of Section 4.3
for the Stenotic pwg case. So we impose at the inlet a flow rate that follows the waveform
reported in Figure 4.9, with Q̃h = 299.04 ml

min . We obtain a pressure drop ∆p = 34.07 mmHg
corresponding to an FFR of 0.604. This measure differs of 9.4% from the FFR value ob-
tained by an unsteady simulation with the properly estimate of the hyperemic flow (0.604
versus 0.667). This means that the imposition of the steady hyperemic flow rate value in an
unsteady simulation leads to an understimation of the FFR.

We conclude that, according to our approach, the effect of the insertion of the guide wire on
the FFR measurements seems to be not so relevant in terms of FFR computation. Of course,
our study is only a preliminary approach and it is affected by several assumptions. These
results could be improved by relaxing some hypotheses, as we will show in Chapter 5.

In any case, we stress the excellent agreement found by the clinical measure of FFR and
its estimates provided by the numerical simulations. This allows us to state that our approach
based on computational simulations is accurate and suitable for this kind of analysis.

4.5.2 Discussion of blood dynamics

In this subsection we want to make an analysis of the hemodynamics in our two configurations
of interest, with and without guide wire, paying particular attention to the possible formation
of vortices and disturbed flow due to the presence of the stenosis. In this post-processing
analysis, we consider the results of our simulations obtained imposing the unsteady flow
waveform with the estimate of the hyperemic flow of Table 4.8, that is Q̃h = 273.02 ml

min for

the Stenotic case and Q̃h = 270.72 ml
min for the Stenotic pwg case.

In Figure 4.18 we report the velocity field. We consider a longitudinal slice of our stenotic
branch which highlight what happens near the stenosis. The figures are taken at different
moments of the cardiac cycle, in particular at: pre-systolic point t = 0.03 s (first row), systolic
point t = 0.07 s (second row), early diastole t = 0.48 s (third row), diatolic peak t = 0.55 s
(fourth row) and post-diastolic phase t = 0.67 s (fifth row). We recall that the systolic point
is the moment of minimum velocity, at the diastolic point instead blood velocity reaches its
maximum.

We observe that the asymmetrical shape of the stenosis influences the flow pattern of
blood and consequently, the pressure drop. We can find several work which investigate the
correlation between the shape of the stenosis and the overall pressure drop across the blockage
region of artery, we cite for example [55].

In addition to this, we know that the presence of a stenosis, combined with high blood ve-
locity, can generate high frequency velocity fluctuations whitin the blood flow, leading to
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the formation of vortices. We analyze the stremlines in order to highlight the formation of
vortices downstrem the stenosis. The streamline distribution uses lines to indicate the flow
direction. The color and length of the line show the flow velocity, magnitude and direction.

In Figure 4.19 we show the streamlines for our cases. On the left we report the situation
of the Stenotic case, on the right of the Stenotic pwg case. The instants at which the figures
are taken are the same as for the velocity field.

If we observe what we obtain, it seems that the vortices are a bit more compact in the
Stenotic pwg case with respect to the Stenotic one, especially at the diastolic peak (t = 0.55 s).
The reason of this fact could be that the presence of the pressure guide wire limits the space
for the possible formation of vortices.

We want still to underline that our study is only a preliminary study of the influence of
the guide wire on a real coronary stenosis. As we said in Subsection 4.1.3, we always use
first order numerical simulation and surely, by running simulations of second order, we could
obtain better results. In Chapter 5 we are going to explain the limits of our procedure and
the possible improvements that could lead to better results.
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Figure 4.18: Velocity field for the Stenotic (left) and Stenotic pwg (right) case at five different instant:
pre-systolic point t = 0.03 s (first row), systolic point t = 0.07 s (second row), early diastole t = 0.48 s
(third row), diastolic peak t = 0.55 s (fourth row) and post-diastolic phase t = 0.67 s (fifth row).
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Figure 4.19: Streamlines for the Stenotic (left) and Stenotic pwg (right) case at five different instant:
pre-systolic point t = 0.03 s (first row), systolic point t = 0.07 s (second row), early diastole t = 0.48 s
(third row), diastolic peak t = 0.55 s (fourth row) and post-diastolic phase t = 0.67 s (fifth row).
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Chapter 5

Limitations and possible
improvements

In this final chapter we describe the limits of our computational work and possible future
developments of this thesis.

5.1 Limitations

Our numerical simulations have some limitations that require further examination. We recall
the assumptions made in Chapter 2: in all our work, we have considered blood as a Newtonian,
homogenous, incompressible fluid. Moreover we have assumed rigid walls of the vessels, but
we should not forget that real vessels are influenced also by the effect of the compliance. A
modeling approach for this case is to use fluid structure interaction.

Moreover, we know that our computational study was performed on the model with and
without guide wire only considering the reconstruction of the stenotic vessel, which departs
from the aorta and ends as distally as possible from the stenosis. We have neglected all the
bifurcations and therefore all the branches that depart from the nodes and do not reach the
stenotic zone. However, through the use of VMTK, it is possible to carry out a more complete
reconstruction of the coronary tree visible from the CT scan at our disposal. The final result
in our case is shown in Figure 5.1. A more complete work should consider simulations on
this geometry, because blood flow is redistributed through the different bifurcations and this
could have repercussions on the pressure drop due to the presence of the stenosis. In the
next section we show a possible way to deal with this problem, in particular we carry out
a theoretical study in order to find suitable boundary conditions to impose at the outlets.
The limitation in considering the geometry of Figure 5.1 for our numerical experiments was
the creation of the mesh for the configuration which considers the presence of the guide. In
fact, the procedure described in Subsection 3.3.2 goes well only if we consider a single vessel
without any bifurcation. For this reason, in this first preliminary study, we decide to consider
only the stenotic vessel.

Another thing to keep in mind is that, in the medical practice, the pressure guide wire is
pushed as far as possible from the stenosis (at a certain point the diameter of the coronary
is so small that the guide could not pass over). At this point, which is the more distal point
from the stenosis, the pressure value pd is recorded. We recall that our model ends as distally
as possible from the stenosis, but, anyway, it comes from a truncation of the coronary branch
and for this reason, the point in which we evaluate the pressure do not precisely correspond
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to that of the medical practice.

Figure 5.1: The reconstruction of the coronary tree from the CT scan at our disposal.

5.2 Possible improvements

In this section we describe two possible ways which could lead to a general improvement of
our results.

5.2.1 Flow extensions

The first thing we can do is to consider the so-called flow extensions, which are cylindrical
extensions added to the inlets of a model. They have an important role, because they ensure
that the flow is fully developed when it enters the computational domain and, in this way,
the solution in the vessel is not influenced by the imposed boundary conditions.

The lenght Lh that have to be added to the vessels inflow can be estimated using a
semi-empirical law valid for steady laminar flow [56]:

Lh
D

= 0.05 Re,

where Re is the Reynolds number and D is the diameter.

5.2.2 Considerations about outflow boundary conditions

In this subsection we present a possible way to choose suitable outflow boundary conditions
if we consider a model of the coronary tree with bifurcations. Often, in numerical simulation,
zero-pressure boundary conditions on all the outlets of the model is used for its semplicity,
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but this is not entirely correct from a physical point of view because it neglects the change
in pressure which happens during blood flow. In particular, we have to take in account the
mechanism of autoregulation, which, in basal conditions, allows the accomodation of the
same blood flow in a stenotic vessel and in the case of a normal one. This is a fundamental
mechanism in order to satisfy the myocardium demand of oxygen and is reached by the
vasodilatation of the microcirculation, that leads to a reduction in the microvasculature
resistance. In hyperemic conditions this reduction reaches its physiological limit and the
mechanism of autoregulation does not work as in the basal case.

For this reason, if we consider the reconstruction of the coronary tree of Figure 5.1 or, in
general, a model with some bifurcations, the value of the pressure we have to impose at the
outlet surface of the stenotic branch could not be the same as the value imposed at the end
of the healthy branches. In order to try to understand how we can find a more correct value
of the pressure at the outlets, we have to take into account how pressure changes through
an healthy or a stenotic vessel. On this purpose we make a theoretical study considering a
simplified case.

In Figure 5.2 we represent our schematic situation. We make the hypotesis to have
a coronary vessel which divides into three branches with more or less the same diameter.
The same geometrical configuration is assumed also at the outlets sections of the vessels
(positioned in correspondence of the dashed red line).

Figure 5.2: Schematic representation of the situation.

If we observe Figure 5.2, P0 is the pressure at the beginning of the branch, whereas PN is the
pressure in the node N . From the node N depart the three branches. The branch 1 and 3 are
healthy, branch 2, instead, has a stenosis. We indicate with a rectangle the pressure losses, in
red the one due to the stenosis (localized loss, expressed by ∆Psten = Rsten1(Q2)2+Rsten2Q2),
in green those due to the presence of the microcirculation (distributed losses, expressed by
∆P iperf = RiperfQi for i = 1, 2, 3). The venous pressure Pv, that is the pressure after the
microvasculare region, can be assumed equal to zero.

At the node N we can apply the continuity equation for a incompressible fluid in a steady
flow, that is, blood flow divedes into three parts, in such a way that

Q0 = Q1 +Q2 +Q3. (5.1)
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We now analyzed the pressure drop ∆P = PN − PV in the three branches. In this context,
we cite the work of Zerbini [22], which provides a qualitative energy balance when a stenotic
artery is present.

(a) Pressure drop ∆P in the healthy vessels: branch 1 and branch 3.

Figure 5.3: Representation of the pressure variation in an healthy vessel.

Since we are considering healthy branches with quite the same geometrical character-
istics (namely, diameter and length), it is reasonable to think that P1 ∼ P3.

• branch 1: the total pressure drop is detemined by the sum of distal pressure
∆P 1

dist = PN − P1 and the pressure drop due to the perfusion of the microvascu-
lature ∆P 1

perf = P1 − Pv, that is

∆P = ∆P 1
dist + ∆P 1

perf = (RdistQ1) + (R1
perfQ1). (5.2)

• branch 3: the total pressure drop is detemined by the sum of distal pressure
∆P 3

dist = PN − P3 and the pressure drop due to the perfusion of the microvascu-
lature ∆P 3

perf = P3 − Pv, that is

∆P = ∆P 3
dist + ∆P 3

perf = (RdistQ3) + (R3
perfQ3). (5.3)

(b) Pressure drop ∆P in a stenotic vessel: branch 2.
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Figure 5.4: Representation of the pressure variation in a stenotic vessel.

The total pressure drop in this case is detemined by the sum of distal pressure ∆P 2
dist =

PN − P
′
2, the pressure drop due to the presence of the stenosis ∆Psten = P

′
2 − P2 and

that due to the perfusion of the microvasculature ∆P 2
perf = P2 − Pv, that is

∆P = ∆P 2
dist + ∆Psten + ∆P 2

perf = (RdistQ2) + (Rsten1(Q2)2 +Rsten2Q2) + (R2
perfQ2).

(5.4)

We visualize the two cases, (a) and (b), in a single graph, making a distinction between the
basal and the hyperemic case. We have to take in mind that we are under the assumption of
three branches with more or less the same diameter.

Basal flow

Figure 5.5: Qualitative scheme of the pressure drop: basal case.
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In basal conditions, the resistance of the microcirculation Riperf for i = 1, 2, 3 are not the

same. We can assume R1
perf ∼ R3

perf for the similar configuration of the microcirculation

feeded by the vessels , but R2
perf in the stenotic branch has a different value. In fact, in the

presence of a stenosis, the system reacts by reducing the microvasculature resistance in order
to maintain the same amount of blood flow as in the healthy case.

The dashed red line in Figure 5.5 indicates the points where our outlet surfaces are located.
We can simply see that the pressure we have to impose at the outlet of an healthy vessel
(i.e. P1 and P3) and at the outlet of a stenotic one (i.e. P2) are not the same. The value of
P2 must be lower than that of P1 and P3. We prove this fact with mathematical relations,
considerind the branches 1 and 2. The same considerations holds also for the healty branch
3 instead of branch 1.

Comparing equations (5.2) and (5.4), we can write:

(RdistQ1) + (R1
perfQ1) = (RdistQ2) + (Rsten1(Q2)2 +Rsten2Q2) + (R2

perfQ2),

Q1(Rdist +R1
perf ) = Q2(Rdist +Rsten1Q2 +Rsten2 +R2

perf ). (5.5)

Since we are considering three vessels with quite the same geometrical configuration, due to
the autoregulation mechanism we should assume:

Q1 ∼ Q2 ∼ Q3. (5.6)

For this reason, (5.5) becomes

Rdist +R1
perf = Rdist +Rsten1Q2 +Rsten2 +R2

perf ,

in particular
R1
perf = Rsten1Q2 +Rsten2 +R2

perf .

Since Rsten1Q2 +Rsten2 > 0, we conclude that R2
perf < R1

perf and, since Q1 ∼ Q2, we have

P2 − Pv = R2
perfQ2 < R1

perfQ1 = P1 − Pv.

We conclude
P2 < P1.

We would like to know if there is a relation between these two different values of pressure.
On this purpose, we make a balance between the end of each vessel (indicated by the dashed
red line) and after the microvasculature, we obtain:

P1 − Pv = R1
perf Q1,

P2 − Pv = R2
perf Q2,

P3 − Pv = R3
perf Q3.

We conclude that, under basal flow conditions, we have to find the values of pressure which
guarantee the same flow rate in all the three branches (5.6). The value of P2 will result lower
than that of P1 and P3.
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Hyperemic flow

Figure 5.6: Qualitative scheme of the pressure drop: hyperemic case.

Now we suppose to be in hyperemic conditions. We recall that in this particular conditions
the myocardial resistance is minimal and could be considered constant, that is, we can assume
R
′

= R1
perf = R2

perf = R3
perf . If we observe Figure 5.6, we can simply detect that also in this

case the value of pressures P1 and P3 with respect to P2 is not the same. As in the basal case,
P2 must be lower than P1 and P3. We demonstrate it by means of mathematical relations.
We start comparing (5.2) and (5.4). The apex h stands for indicate that we are considering
the hyperemic flow.

(RdistQ
h
1) + (R

′
Qh1) = (RdistQ

h
2) + (Rsten1(Qh2)2 +Rsten2Q

h
2) + (R

′
Qh2),

Qh1(Rdist +R
′
) = Qh2(Rdist +Rsten1Q

h
2 +Rsten2 +R

′
). (5.7)

In this case, the autoregulation mechanism does not work as in the basal case, and, surely,

Qh1 6= Qh2 .

But, since

Rdist +R
′
< Rdist +Rsten1Q

h
2 +Rsten2 +R

′
,

from (5.7), we can conclude

Qh2 < Qh1 .

In this way

P2 − Pv = R
′
Qh2 < R

′
Qh1 = P1 − Pv.

So we can conclude that, also in the hyperemic case,

P2 < P1.

79



As done for the basal case, we would like to know if there is a relation between these two
different values of pressure. We make a balance between the end of each vessel (dashed red
line) and after the microvasculature:

P1 − Pv = R
′
Qh1 ,

P2 − Pv = R
′
Qh2 ,

P3 − Pv = R
′
Qh3 .

Now, knowing that R
′

is the same and assuming the venous pressure Pv ∼ 0, we can write

P1

Qh1
=
P2

Qh2
=
P3

Qh3
.

Assuming that P1 ∼ P3 and Qh1 ∼ Qh3 because are both healthy branch with the same
dimensions, the hyperemic condition on the pressure drop will be:

P1

P2
=
Qh1
Qh2

or
P3

P2
=
Qh3
Qh2

. (5.8)

We conclude that, in hyperemic conditions, we have to find two pressure values such that
relation (5.8) is satisfyed.

So we conclude that, when we deal with a model with bifurcations, in presence of a stenotic
branch, we must not impose the zero-pressure condition at all the outlets. If we are under the
assumptions of our theoretical considerations (that is, vessels with quite the same geometrical
configuration), we have to find the correct value of the pressure to impose at the outlet of
the stenotic branch with respect to the healthy vessels. In particular:

- in basal conditions, we have to impose different pressure values in such a way that this
choice guarantees the same flow rate in each vessel;

- in hyperemic conditions, we have to find two pressure values which ratio equals the
ratio between the two hyperemic flow measured at the outlets, in order to satisfy (5.8).

In both cases, we have to face an inverse problem and the value of the pressure at the outlet
of the stenotic branch will be lower than that at the outlet of the healthy ones.

Our analysis considers a simplified situation of three vessels with quite the same dimensions.
If we consider a real case as in Figure 5.1 where we have branches with different geometries,
things become even more complex because we need some informations about how blood flow
redistributes through different areas.
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Conclusions

Our aim was that to point out the effects of the guide wire on the pressure drop in a real
reconstructed coronary stenosis. According to our approach, the variation of the pressure
drop along the stenotic vessel minimally changes if we consider the two configurations with
and without guide wire. The influence of the latter, therefore, would seem to be negligible.

It is important to consider these results in the context of our hypothesis and approxi-
mations, namely blood as a Newtonian, homogenous, incompressible fluid and rigid walls of
the vessels. Moreover, our computational study was carried out only considering the stenotic
vessel, neglecting in this way all the bifurcations of the model and the fact that blood flow
redistributes through the different branches.

In the final chapter we have discussed some possible improvements which could make
the simulations more close to what happens in the medical practice. In particular, results
could change if we consider not only the stenotic vessel, but the reconstruction of Figure 5.1
with all the bifurcations. Our study is only a preliminary work on this field and, surely, by
relaxing some of our assumptions, we could better simulate the medical practice of the FFR
detection.

Furthermore, another thing to take in mind is that we perform only simulations first order
accurate in time and, of course, by means of second order numerical simulations, we could
get more precise results.

There are also other aspects which could be taken into account in future works in order
to try to give an explanation of the wide dispersion of the FFR data we see in Figure (1.13).
For example, it could be interesting to see if factors like the position of the stenosis in the
vessel (at the beginning of the coronary, at the end, after a bifurcation, etc) or the shape of
the stenosis itself (symmetrical or asymmetrical) somehow influence the measurement of the
pressure drop.
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