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Abstract
We introduce the concept of locally homogeneous space, and prove in
this context LP and C“ estimates for singular and fractional integrals,
as well as L? estimates on the commutator of a singular or fractional
integral with a BMO or VMO function. These results are motivated by
local a-priori estimates for subelliptic equations.

1 Introduction

Motivation

The theory of singular integrals has been usefully applied to local a priori esti-
mates for PDEs in several contexts of increasing generality, in the last decades.
The abstract framework of spaces of homogeneous type, introduced by Coifman-
Weiss in [19], has proved to be a suitable framework in many cases, so far: we
have a set (which in concrete applications is usually a bounded domain of R™),
a distance or a quasidistance adapted to the differential operator (the Euclidean
distance for classical elliptic equations, parabolic distance for parabolic equa-
tions, Carnot-Carathéodory distance -or some variation of it- for operators built
on Hormander$ vector fields -see [26]-, and so on), and a measure (usually the
Lebesgue measure) which is doubling with respect to the metric balls. In these
situations the quasidistance p is usually defined in some 2y which is either the
whole R™ or some domain which is larger than the bounded domain 2 where we
want to prove our estimates. Since the balls B (z,r) are, by definitions, subsets
of Qg, that is

B(z,r)={y € Q:p(z,y) <r},
if we want to apply the theory of spaces of homogeneous type to the set 2, the
doubling condition we have to check is

w(B(x,2r)NQ) <cu(B(z,r)NQ) for any z € Q,r > 0. (1)

On the other hand, the doubling condition that reasonable p and p usually
satisfy is

(B (x,2r) < cu(B(x,r)) for any z € Q,0 <r < rg (2)



for some small ry. Passing from (2) to (1) requires some “smoothness” property
of 0L, a property which, however, is not a natural requirement for our original
local problem, but more a technical complication due to the fact that, in order
to apply the theory of spaces of homogeneous type, we are regarding the set €2,
which in our problem is a subset of a larger universe, as the universe itself. If
p is the Lebesgue measure and p is the Euclidean distance, in order to fulfil (1)
it is enough to require OS2 Lipschitz; if p is the Carnot-Carathéodory distance
induced by a set of Hérmanders vector fields X, X», ..., X, which is naturally
attached to the study of the operator

iX? (3)
=1

then (1) is satisfied for instance when € is itself a metric ball, as was first proved
in [21] (see also [4, Lemma 4.2] for a more self-contained proof); this result
basically relies on the fact that this quasidistance has the segment property,
which essentially means that for any couple of points z1,zs at distance r and
for any number § < r there exists a point xy having distance ¢ from x; and r— 9§
from zo. An analog result of regularity for the metric ball has been proved in
[5] for the “parabolic Carnot-Carathéodory distance” attached to the operator

q
0 -y X7
1=1

This distance has no longer the segment property, but the simple way in which
the time variable is involved allows to do explicit (but nontrivial!) computations
and show that when € is a metric ball, (1) still holds.

If we now pass to consider Hérmanders operators of the kind

q
Z X7+ Xo (4)
=1

(where the drift term Xy is part of the set Xo, X1, ..., X, which satisfies Hor-
mander$ condition), the corresponding quasidistance p is the one defmed by
Nagel-Stein-Wainger in [26]; this quasidistance has been much less studied than
the usual Carnot-Carathéodory distance (we can quote, in the context of non-
smooth Hormander$ vector fields, the two papers [6], [7]). Although a local
doubling condition (2) holds, as proved in [26], this quasidistance does not sat-
isfy the segment property and, as far as we know, a condition of kind (1) has
never been proved for 2 a metric ball, or for any other special kind of bounded
domain 2. Therefore the existing results do not allow to apply the theory of
spaces of homogeneous type to the space (2, p, ) when Q is some bounded
domain of R™, p is the Nagel-Stein-Wainger distance attached to the set of
Hormander3 vector fields X1, Xo, ..., Xy (with Xy of “weight” two), and p the
Lebesgue measure. This problem has been sometimes overlooked, apparently;
for instance, in the famous paper [27], L? estimates are proved for operators (3),



and stated for operators (4), without any reference to the mere existence of the

problem of assuring the validity of condition (1). On the other hand, as already

suggested, one feels that if our final goal is that of proving local estimates, no

kind of “smoothness” of the domain €2 with respect to the quasidistance should

be a crucial requirement; in other words, it is reasonable that this diffi culty
could be bypassed. The basic scope of the present paper is to build up a local
theory of singular integrals which does not require checking condition (1), when
(2) is known.

Another problem of a-priori estimates for PDEs in which proving that (2)
implies (1) for some domain € appears troublesome has been studied in [10]. In
that paper the Authors consider a class of Kolmogorov-Fokker-Planck operators
on R™ x [—1, 1], for which the natural quasidistance is a function p (not equiva-
lent to the Carnot-Carathéodory distance induced by a system of Hérmanders
vector fields), which satisfies the quasi-triangle inequality on any compact set
and satisfies a local doubling condition (2) for any bounded §2; again, however,
one has no idea of how to prove (1) for some particular bounded . In that
case, the Authors overcame the problem by applying an ad-hoc theory of sin-
gular integrals in nondoubling spaces, developed in [2]. The resort to theories
of singular integrals in nondoubling contexts, as have been developed in the
last decade by Tolsa, Nazarov-Treil-Volberg, and other authors (see for instance
the book [29] and references therein), is actually an alternative possibility in
order to bypass (1). However, and here another motivation of the present paper
comes in, when proving a-priori LP estimates for PDEs with VMO coefli cients
(a line of research which started with the papers by Chiarenza-Frasca-Longo
[14], [15] and developed in several directions in the last 20 years), one needs
a series of results about commutators of singular and fractional integrals with
BMO functions, which do not have a natural counterpart in the nondoubling
context; more precisely, results of this kind have been actually proved by Tolsa
[28], in the context of (R™,d,du), where p is a very general Radon measure,
but d is the Euclidean distance. Since the extension of these deep results to the
case of a general quasidistance d appears far from being obvious, it seems easier
and more natural for the problem under exam to establish these commutator
theorems in the framework of a theory of singular integrals in a locally doubling
context (instead than in a nondoubling one). More generally, we think that the
idea of proving a local version of some basic results about singular integrals is
a very natural one, and we feel that these results can be of some interest also
for other applications.

Main results

In this paper we will prove, in the context of locally homogeneous spaces (which
will be defined in the next section), results of continuity, in LP and C'* spaces,
for singular and fractional integrals, as well as LP estimates for the commutator
of a singular or fractional integral with the multiplication with a BM O function.
Also, we will state these commutator theorems in a form suitable to prove the
smallness of the LP norm of the commutator on a small ball, whenever the BMO



function actually belongs to VMO. This localized version of the commutator
theorem for a VMO function, in the original Euclidean case (exploited in [14],
[15]) relies on the possibility of approximating a VMO function by a uniformly
continuous function in BMO norm, and on the possibility of extending to the
whole space a uniformly continuous function defned on a ball, preserving the
continuity modulus. Here we manage to establish directly the localized version of
the commutator theorems for a VMO function, without the necessity of proving
the aforementioned approximation and extension results. Therefore, under this
respect, our approach conceptually simplifies also the Euclidean case. We will
also deal, very briefly, with a local version of the maximal function and its LP
continuity, another tool which is useful in the alluded applications.

Our main results are: Theorems 21 and 24 in Section 5; Theorems 29, 30,
31 in Section 7; Theorem 35 in Section 8. We also think that the basic theory
developed in Sections 2-3, particularly Theorems 6 and 15, could be useful to
prove further results in the same spirit.

All the results proved in this paper will be used in the proof of LP and C'¢
estimates for nonvariational operators structured on Hérmander$ operators of
type (4), that is for operators of the form

q
Z CLij (SC) XZXJ + an (IE) Xo
7.9=1

where Xo, X1,..., X, are a system of smooth Hormanders vector fields in a
bounded domain of R” (n > ¢+ 1), {a;;} is a uniformly positive matrix with
bounded entries, ag is bounded and bounded away from zero and all the coeffi -
cients a;j, ap belong to the suitable function space VMO or C* (respectively, to
prove LP and C* estimates on X; X;u). These estimates are proved in a separate
paper [11], and generalize the results proved in [3] and [5] when the drift X, is
lacking.

Strategy

The basic idea, in order to bypass the necessity of checking condition (1) instead
of (2), is to adapt the abstract construction of dyadic cubes in spaces of homo-
geneous type carried out by Christ in [16]. In that paper, the Author shows how
in any space of homogeneous type one can construct, for any k € Z, a family
of “dyadic cubes” of diameter comparable to ¢* (with ¢ a small fixed number).
Actually these “cubes” are open sets, defined by an abstract construction, which
nevertheless share with the classical dyadic cubes all the basic properties. The
relevant fact for us is that each of these cubes @ is, in turn, a space of homoge-
neous type, that is in [16] the Author proves that (1) actually holds for Q = Q.
Here we adapt the previous construction in a local setting. Given our space 2,
which is seen as the union of an increasing sequence of bounded subsets €2,
we construct for each n and each scale k = 1,2,3..., a family of (small) dyadic
cubes essentially covering €2, and contained in §2,41; each of these cubes can
still be proved to be a space of homogeneous type; moreover, the same is true



for any fmite union of dyadic cubes of the same scale k. The idea is then to
apply known results for spaces of homogeneous type to suitable unions of dyadic
cubes which cover a fixed small ball, and derive the corresponding result on the
ball. Since dyadic cubes are abstract objects, which in concrete applications of
the theory cannot be explicitly exhibited, our job is to use dyadic cubes just as
a tool, but to state and prove all our results in the language of balls, to make
them easily applicable.

To make more transparent the strategy of our construction, let us point out
what follows.

We will show that for any n we can cover 2, with a finite union of balls of
any prescribed small size, and for each of these balls we can construct a space
of homogeneous type F' which is contained in €,,41, “almost contains” this ball
B, and is comparable to B, both in measure and in diameter. This “almost
inclusion” is made precise in two ways:

1) F D B\ E where E is a zero measure set; this inclusion is enough to
handle LP estimates or more generally estimates which involve integral norms;

2) the closure of F' contains B; this inclusion is enough to handle C* esti-
mates, or more generally estimates which involve moduli of uniform continuity
of the functions.

The idea of exploiting Christ$ construction of dyadic cubes to prove results
in a locally doubling context has been already used by Carbonaro, Mauceri,
Meda in [12]; their context, however, is different from ours: in that paper the
Authors consider a situation where the measure of balls grows fast at infinity,
so that the doubling condition holds for balls of radius r < rg, for any fixed
ro; on the other hand, these Authors have not our problem of keeping far from
the boundary of a bounded domain, to avoid intersections. Moreover, they use
dyadic cubes to adapt the proofs which hold in the doubling case, while our
strategy is not to adapt the existing proofs but to apply the existing results
which hold in the doubling case.

The construction of a suitable family of spaces of homogeneous type is not
the only problem to overcome in our situation. The possible overlapping of
the balls B (x,r) with the boundary of the considered domain creates problems
under at least other two regards. The first is the validity of a suitable cancel-
lation property for the kernel of singular integral operator: if we know that a
singular kernel has a bounded integral over small spherical shells, this does not
imply the persistence of this property when we integrate over the intersection of
the spherical shell with some fixed domain. This problem will be solved using
suitable cutoff functions. The second problem is to suitably define and handle
BMO and VMO spaces, avoiding to take the average of a function over the
intersection of B (x,r) with a fixed domain. To this aim we will introduce a
BMO,. space adapted to a couple of domains §2,, C €,,41, which in our con-
text is a natural notion, and we will show which relation this space has with the
standard BMO.



Plan of the paper

In Section 2 we state precisely our defmition of locally homogeneous spaces
and draw some first consequences of the defition, in terms of topology and
measure. Section 3 contains the construction of dyadic cubes and the proof
of their relevant properties which will allow to apply the theory of spaces of
homogeneous type. In Section 4 we build, in a fairly standard way, Holder
continuous cutoff functions, another tool which will be useful in the following.
In Section 5 we prove our local LP and C'“ continuity results for singular and
fractional integrals. In Section 6 we introduce BMO and VMO spaces, both
in the standard and in a local version, and study the relation between the two
concepts. In Section 7 we prove local LP estimates on the commutator of a
singular or fractional integral with a BM O or VMO function. In Section 8 we
deal with the local maximal operator and its LP continuity. Finally, in Section
9 we extend the results of Sections 5 to 8 to the more general situation where
the local quasidistance is quasisymmetric but not symmetric. An Appendix
collects all the known results about spaces of homogeneous type which we need
throughout the paper.
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2 The abstract framework of locally homoge-
neous spaces

We are going to state the assumptions which will define the notion of locally
homogeneous space. (For comparison, the standard defiition of space of homo-
geneous type is recalled in the Appendix, Section 10).

(H1) Let €2 be a set, endowed with a function p:  x Q — [0,00) such that
for any z,y € Q:

(a) p(z,y) =0z =1y

(b) p(z,y) =p(y,2).

For any x € Q,r > 0, let us define the ball

B(z,r)={y€Q:p(z,y) <r}.

These balls can be used to defme a topology in 2, saying that A C 2 is open if
for any x € A there exists r > 0 such that B (z,7) C A. Also, we will say that
E C Q) is bounded if E is contained in some ball.

Let us assume that:

(H2) (a) the balls are open with respect to this topology;

(H2) (b) for any € Q and r > 0 the closure of B (z,r) is contained in

{lyeQ:p(z,y) <r}.



We will prove in a moment that the validity of conditions (H2) (a) and (b)
is equivalent to the following:

(H2) p(x,y) is a continuous function of x for any fixed y € Q.

(H3) Let p be a positive regular Borel measure in €.

(H4) Assume there exists an increasing sequence {2, },~ ; of bounded mea-
surable subsets of €2, such that:

fj Q, =0 (5)
n=1

and such for, any n =1,2,3,...:
(i) the closure of Q,, in Q is compact;
(ii) there exists €, > 0 such that

{r €Q:p(z,y) < 2, for some y € Q,} C Qpp1; (6)

(H5) there exists B, > 1 such that for any z,y,z € Q,
p(xy) < B (p(w,2) +p(2,9)); (7)
(H6) there exists C,, > 1 such that for any = € Q,,0 < r < ¢, we have
0 < p(B(z,2r) <Cyu(B(z,1)) < o0. (8)
(Note that for z € Q,, and r < ¢, we also have B (z,2r) C Q,41)-

Definition 1 We will say that (,{Q,},—,,p,p) is a locally homogeneous
space if assumptions (H1) to (H6) hold.

Dependence on the constants. The numbers ¢, B, C, will be called
“the constants of €,,”. It is not restrictive to assume that B,,,C,, are nonde-
creasing sequences, and &,, is a nonincreasing sequence. Throughout the paper
our estimates, for a fixed §2,, will often depend not only on the constants of €2,,,
but also (possibly) on the constants of 2,11, 212, Qnrs. We will briefly say
that “a constant depends on n” to mean this type of dependence.

In the language of [19], p is a quasidistance in each set 2,,; we can also say
that it is a local quasidistance in ). We stress that the two conditions appearing
in (H2) are logically independent each from the other, and they do not follow
from (7), even when p is a quasidistance in €, that is when B, = B > 1 for
any n. If, however, p is a distance in Q, that is B,, = 1 for any n, then (H2) is
automatically fulfilled.

The continuity of p also implies that (7) still holds for z,y, z € Q,,. We will
sometimes exploit this fact.

Also, note that u () < oo for every n, since Q,, is compact. (This follows
by the regularity of p, or also from the fmiteness of the measure of balls, see
(H6), since Q,, can be covered by a finite number of small balls).



We also point out that assuming p regular (see (H3)) is not really necessary,
as will be explained after Proposition 18; however, since this assumption is
harmless in the applications we are interested in, we prefer to keep it, in order
to avoid the necessity of entering into annoying details.

Examples 2 (i) If (2, p,dp) is a bounded space of homogeneous type in the
sense of Coifman-Weiss [19] (the definition will be recalled in the Appendiz),
the above conditions are fulfiled choosing 2, = and B, = B > 1 for any n.

(ii) In the applications to subelliptic equations that we have in mind, and will
be dealt in [11], Q is a bounded domain of RN and Q, an increasing sequence
of bounded domains, with 0, € Q,41 € Q for any n; p is the Nagel-Stein-
Wainger distance induced by a family Xo, X1, Xo, ..., Xy of Hérmander$ vector
fields, where Xo has weight two, p the Lebesgue measure in RN .

(ii) The same setting of (ii) fits the theory of nonsmooth Hormanders
vector fields, as dealt in [6], [7].

Note that in the situations (ii)-(iii) p is actually a distance, which induces
the Euclidean topology, and (HG) is a known result.

(iv) In the situation considered in [10], Q@ = RN x [-1,1],Q, = B, x
[~1,1] where B,, is the Euclidean ball of center 0 and radius n in RN, p(2,¢) =
HC’l o zH where o is a Lie group operation related to the differential operator

Po N
L= Z aijaimj + Z bijziOz, — 0y  (where pg < N)

i,j=1 i,j=1

which is under study, while ||-|| is the homogeneous norm defined by the family of
dilations related to another differential operator, which is the “principal part” of
L. Therefore p is neither the usual distance considered in Carnot groups, nor is
(equivalent to) the Carnot-Carathéodory distance induced by the vector fields; p
satisfies (H5) and induces the FEuclidean topology; from its analytical definition
it is clear that p is continuous, hence (H2) is fulfiled; also (H6) can be proved.
More precisely, the function p considered in [10] is not symmetric but satisfies
a weaker condition: for any n there exists A,, > 1 such that

p(z,y) < Anp(y,z) for any z,y € Q. (9)
This motivates a further extension of our theory, as we will explain in a moment.

Remark 3 (Extension to quasisymmetric functions) As anticipated in the
above Example (iv), in view of some applications it is desirable to consider the
more general setting in which p is not assumed symmetric, but satisfies condi-
tion (9). However, developing the whole theory of Section 8 under this weaker
assumption would make our computations considerably heavier. Instead, it is
much easier to develop first the theory under the symmetry assumption, and
then to show that our main results about singular and fractional integrals still
hold if we replace the symmetry condition with (9). This extension will be dis-
cussed in Section 9.



In the rest of this section we will make some remarks and prove some easy
facts related to topology and measure in a locally homogeneous space.

Since, by (H2) (a), the balls are open, for each = € € the balls B (x, r) satisfy
the axioms of complete system of neighborhoods of x; hence the topological space
Q is first countable, and continuity and closedness can be discussed by means
of sequences of points. Let us prove the following fact, that we have claimed
before.

Proposition 4 Conditions (H2) are equivalent to condition (H2).

Proof. Assume (H2), and let us prove the continuity of z — p (z,y). Fixz € Q
and take a sequence {z} converging to z. Let us show that p (x,y) — p(z,y)
for any y € Q. Let r = p(z,y) and € > 0; since z € B (y,r + ¢) and the balls
are open, there exists B (z,d) C B (y,r +¢). Then zy, € B (y,r + ¢) defmitively,
since xy — x. This implies that p (zg,y) < r + € defmitively, so that

limsupy, oo (7, y) < 7+ €.

This holds for any ¢ > 0, hence

limsupy,_,.p (zg,y) < 7.

We now want to show that
liminfy oo p (g, y) > 7, (10)

which will imply p (zx,y) — p(z,y). Let again r = p(x,y) and € > 0; then

hence (denoting the complement of A with A°) z belongs to B (y,r — 5)6; since
this is an open set, there exists B (x,n) C B (y,r — 6)6; hence zy, € B (y,r — ¢€)
defmitively, which means that p (zx,y) > r — e defmitively, and

liminfy, . cop (z,y) > r —&.

This holds for any £ > 0, so (10) follows.

Conversely, assume now the continuity of p, and let us prove (H2). Let
y € B(x,r), so that p(x,y) < r. Since p is continuous, there exists B (y,r’)
such that for any z € B (y,r’) we have p(z,z) < r; hence B (y,r’) C B (z,r)
and B (z,r) is open, that is (H2) (a) holds.

Let now y € B (x,r); since we already know that balls are open, as noted
above this means that y, — y for some sequence {yr} C B(x,r). Hence
p (yk, ) < r and limsupk—.cop (yk, z) < r. However, p is continuous, so

1imsupk_,oop (yk; ‘T) =p (y7 ZL') )

which means that y € {z: p(z,2) <r}, which is (H2) (b). =
The next property, which involves both p and the measure pu, tells us that
also even when estimating Holder norms, zero measure sets are negligible.



Proposition 5 (i) Let A, E C €, A open and E of measure zero. Then A\ E =
A.
(ii) Let f : A\E — R with A, E as above, and f such that, for some a,C > 0

If () = f ()| < Cp(z,9)” (11)

for any z,y € A\ E. Then f can be continuously extended to A in such a way
that (11) holds for any z,y € A.

Proof. (i) Let x € A and {x}} C A such that x;, — z. Since A is open, for any k
there exists 7, > 0 such that B (zg, ;) C A. It is not restrictive to assume that
rp — 0. For any k there exists yx € B (zg,7x) \ F; otherwise E would contain
a ball, which by (H6) has positive measure. By (5), z € ,, for some n; then,
by (6) the sequence {z}} is defitively contained in ,,41; for the same reason
the balls B (zg,ri) are defmitively contained in €12, hence we can apply the
quasitriangle inequality (7) writing

P Wk, ) < Buyo (p (Y, k) + p (2, 7)) < Brya (ri + p (21, 2)) — 0

for k — o0, so yp — . Since yr € A\ E, this implies © € A\ E and we are
done.

(ii) Since p is continuous, (11) implies that f is uniformly continuous on
A\ FE, hence it can be continuously extended to A\ E in such a way that (11)
still holds. By point (i) A\ E = A4, so (ii) is proved. m

3 Dyadic cubes in a locally homogeneous space

Throughout this paper, until Section 8, we will assume that (2, {Q,} >, p, )
be a locally homogeneous space.

The construction of dyadic cubes, which has been anticipated in the intro-
duction, is contained in the following:

Theorem 6 For anyn =1,2,3,... there exists a collection of open sets
{QF ck=1,23...,a€l}}

(where I, is a set of indices), positive constants ag, cg, c1,¢2,9 € (0,1) and a set
E C Q,, of zero measure, such that for any k = 1,2,3... we have:
(a) Vo € Iy, each QX contains a ball B (z(];,aotgk) ;

(b) U Qg C Qn-&-1§

acly
(c) Vo € I, 1 <1 < k there exists Qfg D Qk:
(d) Va € I, dmm(Q’;) < c10F and@ CcB gzﬁ,clék) ;
(e) {>k=Vael,Bel,Q) CQhorQ5nQk =0

() @\ |J @k c B

a€ly

10



(9) Vo € I, x € QX \ E, j > 1 there exists Qé > x;
(h) 1 (B (x,2r) NQE) < cop (B (w,7) N QL) for any x € QX\E,r > 0. More
precisely, for these x and r we have:

¢ z,r orr < 6F
,u(B(x,T)ﬂin) Z{ CEZ((géf ) }[orrigk (12)

Note that the cubes QX and all the constants depend on n, so we should
write, more precisely

{an)’k} (my 1 0(n)} @0, (1) €0,(n)» C1,(n)s €2,(n)-
a€ly

However, in order to simplify notation, we will skip the index (n) whenever
doing so does not create ambiguity. As will be apparent from the proof, the
sequence of constants J(,) can be assumed nonincreasing.

The sets QX can be thought as dyadic cubes of sidelength §*. Note that k
is a positive integer, so we are only considering small dyadic cubes.

The proof of Theorem 6 is not much more than a careful inspection and
adaptation of some proofs contained in [16]. However, our iterative construction
is a bit more involved because at every step n the “universe” that we want to
cover with our cubes enlarges. Moreover, in order to use the quasitriangle
inequality, we need to know in advance that the points belong to some domain;
this will be often proved by a tricky combined use of (6) and (7).

Proof of Theorem 6, first part. For a fixed Q,, let § > 0 to be fixed later,
and let us perform the following iterative construction.

For k = 1, let us fix a maximal collection of points {2z} } C €, such that

acl;
p (zf;,zg) >4 for any a # 5.

By the maximality, we can say that for z € ), there exists z} such that
p(z,2) < 4, hence

Er=Q,C | JB(2).0) = Ea.

a€ely

For k = 2, let us fix a maximal collection of points {zi} C E5 such that

acly
p (zi,zg) > 2 for any « # .

By the maximality, we can say that for any = € Ey there exists z2 such that
p (24, 2) < 62, hence
E2 - U B (23752) = E3.

acls
Continuing this way, we build a family of points {z’o‘i}aelk fork=1,2,3,...,and
a family of sets £1 C Fy C F3 C ... . We are going to show that it is possible

11



to choose ¢ small enough so that

U Be © Q. (13
k=1

Namely: E; = Q,, C Q,41 and, by defmition of Fy and (6) Ey C Q,41 as
soon as
0 < 2ep. (14)

Let now y € E3. Then there exists 22 € Ey such that p (y, zi) < 42 and there

exists ZB € ,, such that p( a,zé) < 6. Since Fy C Qp41, we have y € Q42

(that is E5 C Qp42) as soon as
62 < 2,41 (15)
Under this assumption we can write

p(¥:25) < Busa (p (9:22) + p (225 25)) < By (9% +9).
Then, under the further assumption
Byio (6% +6) <2, (16)

we can conclude that E3 C Q,41 (which strengthen the previous conclusion
E3 C Qn+2).

This idea can be iterated showing that for any y € En, N = 2,3,4... there
exists x € £, such that

p(z,y) < Bn+2 [6 4 Buy2 [0° 4+ Bug2 [6° + .4+ Buga [V 1+ 6V]]]] (17)

5Bn+2
< n 6 — < 208,
Z +2 ~5Bnis < +2

provided
5 <1/ (2Busa). (18)

If, moreover,
6 < en/Bnio, (19)

we can conclude (13). Choosing ¢ small enough to fulfill conditions (14)-(19)
we are done.
Note that, for any k = 2,3...,a € I,

eB= |J B (z;;—l,akfl) S By (20)
Belr_1

hence for any z* there exists 3 € I_; such that
p (A7) <ot (21)
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Moreover, for any k£ =1,2,3...,
p(2E, zg) > 6k for any o # 8. (22)

[
After this preliminary construction we pause for a moment our proof, and
give the following

Definition 7 A tree is a partial ordering < of the set of all ordered pairs (k, )
(k=1,2,3,...,a € I};) which satisfies:

(T1) (k,o) < (I,B) =k = 1.
(T2) For each (k,a) and 1 <1 < k there exists a unique 8 such that (k,«a) <
(1,8)-

(T3) (h,0) < (k—1,8) = p (25, 257) <",

(T4) p(2h,257") < (2B 61 = (k,a) < (k—1,5).
It is not restrictive to assume

as we will do in the following; hence the constant (QBn)_1 appearing in the
defmition is < 1.

This defmition is the same given in [16], except for the restriction that our
integers k, ! are positive. Moreover, our tree also depends on n (through the
points 2¥). As proved in [16, Lemma 13], there exists at least one tree (for each
integer n). Actually, the same proof applies in view of (21), (22).

As in [16], we can now define the dyadic cubes:

Definition 8 For a ficed integer n, fir a tree, and let ag € (0,1) be a small
constant to be determined. For k =1,2,3,...,a € I, set

QF = U B (2}, a00") . (24)
LB (k)
Proof of Theorem 6, second part. By defnition, each Q¥ is an open set

and (a) holds. Since
B (zlﬁ,aoél) CB (z,lg, agé)

we have
Q’; C U B (zé, aoé) .
(1,8)<(k,e)
Since zé S U Ey C Qpu41, choosing ag such that
k=1
a05 < En+1 (25)

13



we read that QF C Q4. Let y € QF and zlﬁ such that p (y, zé) < apd.By (17),

there exists = € 2, such that p (% zé) < 20By42, hence

p (LU, y) < Bn+2 (p (xa Zé) +p (yv Zlﬁ)) < Bn+2 (25Bn+2 + aO(S)
so we can conclude that y € 0,41 provided
§ (2B o+ aoBny2) < 2e5,. (26)

It is now useful to choose ag = §; this implies that all the conditions we will write
on ag and § simply ask that § be small enough in terms of the constants &,,, B,
so that all these conditions can be simultaneously satisfied. Nevertheless, we
will keep using both the symbols ag and §, to stress the different roles of these
constants.

Under assumptions (25)-(26), we conclude Q¥ C Q,,,1, that is (b) holds.
From the definition (24) we also have the monotonicity of dyadic cubes:

(1,8) < (k,@) = Qs C Q. (27)
By (T2) and (27) we immediately have (c).
As in [16, (3.13)] we can prove that
(1,8) < (k,a) = p (25, 20) < 2Bni10" (28)

provided

6 < (2B,) ", (29)
This implies (d) since, for any z,y € QX, » € B (zlﬁ7a0(5l) yEeB (z a0§h) for
some (I, 8) < (k,a), (h,7v) < (k,a) we can write

[0 (@, 25) + p (v, 25)]

< Buia [a08' + Baya [p (v, 24) + p (25, 24)] ]

< Buia [a08' + B [a08" + Buia [p (2, 20) + p (26, 25)]]]
< Bpt1 [a00' + Byt [a06" + Byt [2Bri16" + 2B,,416%]]]

p(z,y) < Bni

where the last inequality follows by (28). Since [,h > k this implies (since
ag < 1)
p(@,y) < 0% [Busr + Bhy + 4B, ]

which gives (d) with
c1="TBp, ;. (30)

Note that with this choice of ¢; we also have QF ¢ B (zk, c16%) .
In order to prove (e), we can now proceed proving, as [16, Lemma 15]:

If QF N Q% # 0 then o = . (31)

14



Indeed, the same proof of [16, Lemma 15] applies, in view of (28), (b), (22).
More precisely, (31) holds provided we choose ag and ¢ small enough so that

§+ap < (2Bny1) 2. (32)

With (31) in hand let us show that (e) holds. Let I > k > 1, Qg Nk # 0,
and choose « such that (I, ) < (k,~y) (this is possible by (T2)); then Q% cQk
which, together with Qg N QF # () implies QX N Qﬁ # (). By (31) then a = 7,
that is Q4 C QF which gives (e).

Let us come to the proof of (f). Fix k > 1 and let

Fy = UQQ

o€l
Fix x € Q,, = Ey; since E; C Ey C E3 C ..., by (20),
Vh > 1 32" such that p (z,2]) < & (33)
By (b), for any h > k we have
B (zZ,aoéh) - QZ
By (c) there exists Qg D Q" hence
B (2!, a06") € QF C Qf C Fr C Q1. (34)
By the triangle inequality,
B (2!, ag") C B (2, Bps1 (1 +ag)d") = B. (35)
In turn,
B (2, Bpi1 (1+ ag) 6") € B (2L, Bus1 (Bug1 (14 ag) 6" +6")) .
For h large enough we have
Byi1 (Bag1 (1 +ag) 6" +6") <3B2, 6" <e,, (36)
and the local doubling condition (8) implies
1 (B (2, a06")) > cu(B)

for some constant ¢ > 0 depending on n (once we have fixed § and ag). By (34)
and (35) the last inequality gives

w(FrNB) _ p (B (zz,aodh) N B) . (B (zg,aoéh))
wB) = D I

and h large enough. Letting h — +o00 we find that

. - ,LL(kaB(:L‘7T))
Hsee ™ B (1))

>c>0 VeeQ,,k=1,2,3...
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By Lebesgue$ theorem on differentiation of the integral, (€, \ Fy) = 0. Let-
ting

=U @A (37)

we have (f).
To prove (g) we need a refinement of the argument used in the above proof
of (f). Since Q,, = E; C F5 C E3 C ..., by (20) for any = € Exy we have that:

Vh > N 32" such that p (m,zZ) <"
while for any h > k (34) and (35) still hold. Hence we can prove as above that
w(En\ Fy) =0 for any k,h > 1. (38)

Let F' be the null set given by U (Ep \ Fy) . Then fix a dyadic cube Q¥
hok>1

and pick a point * € Q¥ \ F. Since z € Q¥, there exists B (zﬁ,aO(S ) S ¢ for

some h > k; since
B (zg,aocsh) CcB (zZ,(Sh) C Ey,

this means that € Ej; since « ¢ F', (38) implies that for any [ > 1 the point x
belongs to some Q%, which is (g). Clearly, the fact that the null set F' appearing
in the proof of this point is possibly different from the null set E appearing in
the proof of point (f) is immaterial, since we can always relabel E the union of
the two.

To prove (h), let * € Q* \ F (with F as above) and r > 0. We need to
establish a lower bound on g (B (xz,r)N Q’;) ; let us distinguish two cases:

(i) r < 6%. Let j > k such that 61 < r < ¢/ and let Qé“ a cube containing
z (by (g) it certainly exists). By (e), Qifz C QF while by (d), diam(Qéﬁ) <
¢18712. Then Qf;rz C B(=z,r), since, for y € Q%{H,

p(z,y) < Bnia [p (:v zg”) +p (y Z;”)} <2Bp1067? < <
provided ¢ is small enough so that

2Bpni1010 < 1. (39)
Therefore
1 (B (z,r)nQE) > p (Q]H) 1 (B ( ;;2 a05j+2))
> cop (B (x,67)) = cop (B (7))

where the up to last inequality follows by the local doubling condition (8), with
a constant ¢y only depending on n.
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(ii) r > 0*. Let QEH > z (by point (g) it certainly exists). Since diam (QEH)
c1 5k+17
QZ‘H CcB (m,cl5k+1) C B(z,r)
as soon as

cd <1 (40)
hence, by point (a),

(B ) 1) 2 0 (@51) 2 (B (5 aus))

while, since zgﬂ € QF and diam(Q’;) < 6%,

I (B (zgﬂ,clék)) > u (Qi) .

To conclude (12), which immediately give (h), we have to apply the local dou-
bling condition, to say that

1 (B (z’é“,clc;k)) < cop (B (zg+1,a0(5k+1)) .

This is possible, once we have (at last) fixed §, with some constant depending
on 4, and therefore on n. Hence Theorem 6 is proved.

Finally, note that in our iterative construction, at every step n we can always
choose the number §,) less than or equal to the number d(,_1) chosen at the
previous step. Hence the sequence d(,) can be assumed to be nonincreasing. ®

Remark 9 In the previous proof the reader could be confused by the number of
conditions we have imposed on § and the other constants. So, let us summarize
the logical line of this procedure. First, we can assume without loss of generality
that the parameters €., By, of 0, satisfy the following:

Bpy1 > By > 2 for every n;

1
Ent1 < e < 5 for every n.

Then we have chosen
4
e =78,

and ag = 0§, where § has to satisfy conditions (14), (15), (16), (18), (19), (25),
(26), (29), (32), (39), (40), and also (43), which will be used in the proof of
Lemma 12. With some patience one can check that a possible choice is

1 . ( En 1 >
6=§mln Entl, ——5— .

4B}, 4B,

After 6 has been fived, the constants cg,ca can be determined in terms of § and

C.
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Point (h) of the above theorem means that each set QX \ E is a space of
homogeneous type. It is useful to reinforce the previous statement with the
following:

Proposition 10 For each Q,,k and a € I, the set QX is a space of homoge-
neous type.

Here and in the following, whenever we will write that a set S C  is a space
of homogeneous type we will mean that (5, p,du) is a space of homogeneous
type, with respect to the same p and p already defined in €.

Proof. The only point to prove is that if z € Q% N E (where E is like in
Theorem 6) then

1 (B (z,2r)NQE) < cu (B (z,m)NQE) for any r > 0.

Pick y € B (z,er)N(QE \ E) for some small € to be fixed later. Such y certainly
exists, otherwise F would contain the open set B (z,er) N Q¥ which by (8) has
positive measure, while E has zero measure.

Since x € Q% C Qy,41, for 7 < £,41 we have B (x,2r) C Q,12 and we can

prove
B (z,2r) C B(y,c1r) (41)

with ¢; = (24 €) B,+2. Analogously,
B(y,cor) C B(x,r) (42)

provided (& + ¢2) Bpt+2 < 1. Hence (41), (42) hold for suitable constants ¢y <
1 < ¢; and € small enough (depending on n but not on r), while by point (h) of
Theorem 6, since y € Q¥ \ E we have

I (B (y,err) N QI,;) S cp (B (y,cor) N QZ)
for some constant ¢ depending on c¢1, ¢y and any r > 0. So we conclude
1 (B (2,2r)NQE) < cp (B (z,r)NQE) for any r < g,41.
Let now r > g,41. Pick y € B(z,6,41/2Bn42) N (QF \ E). By (g), for any
h there exists Qf 3 y. Since diam (Q’é) < 16", for z € Qff we have

5n+1
2

for h large enough. Let ho the minimum integer > k such that this is true, so
that ng C B(z,en+1). Hence

p(z,2) < Buya (p(2,9) + p (y,2)) < Bujocid" + < Entl

w(B@r)nQk) = u(Ql)

while p (B (z,2r) N Q%) < 1 (QF) . The desired conclusion follows since p (Q%)

and p (Qg“) are comparable. (See the last part of the proof of Theorem 6). So

we are done. W

18



By Theorem 6, point (f), we know that each family of cubes {Q’:Y }a c1, Covers

Q. \ E. Since the cubes Q¥ are open and disjoint sets, it is reasonable that they
cannot generally cover the whole €, (if, for instance, €2, is a connected set, this
is impossible). On the other hand, from the proof of the theorem we can read
the following fact:

Proposition 11 For any Q, and any k = 1,2,3,..., the closure of U Qk
acly
covers §,,.

Proof. Let z € Q,. By (33), VA > 1 32" such that p (z,z" ) < 6". Hence

) Yap
the sequence {zﬁk}zil converges to x. Moreover, the point z! belongs to
(111 C Uger, Qé; the point zgg belongs to a cube QiQ which is contained in
some parent cube Q! C Uger,Qf, and so on. Hence the whole sequence is
contained in Ugep, Qé, which means that x belongs to the closure of UBehQ/ly
With the same reasoning we can say that for any positive integer h the sequence
{zk, }.—, is contained in Ugey, @, hence = belongs to the closure of Uger, Q%
for any h=1,2,3... m
The next question we pose is: how many cubes form each family {Q’g}a c Ik?
We expect them to be finitely many, since they are contained in €,,41, which is
bounded, they are pairwise disjoint and have essentially the same diameter. A
formal proof of this fact requires some care. We first need the following lemma,

which will be useful also other times.
Lemma 12 For any k =1,2,3, ... there exists ¢, , > 0 such that

Anf (B (2,a08%)) = en

where § and ag are as in Theorem 6.
Proof. Since €, is compact (see assumption (H4)), there exists a finite number
of points z1, ..., 2y € €, such that

N
n C UB (zi,aoék) .

i=1

2l

Let now z be any point of €,,; there exists ig such that z € B (zio, aoék) . On
the other hand, for any pair of nondisjoint balls of radius r and centers z, z;,,
we have the inclusion B (z;,,r) C B (2, Bpt1 (2Bpy1 + 1) 7). Assuming

(2Bp11 + 1) apd < 2¢, (43)
we have, by the doubling condition (8)
1t (B (2,a06%)) > cp (B (2, (2B, + 1) ag6*)) > cp (B (i, a08")) = ce = cap
having set

_ : ok
e=_min p (B (zi,a06%)) .
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Proposition 13 For each k =1,2,3, ..., the family {Q’;}aelk 18 fite.

Proof. Since U QF C Qny1, we have
a€ly

7 ( U Qﬂi) < 1 (Qng1) < o0,

acly

(recall that any ,,41 has finite measure, as noted after defition 1). Since the
QF3 are pairwise disjoint and by Theorem 6, point (a), Q% > B (2, aod%),

(Uet) = S u@t)> X o b

acly acly, acly

where the last sum, by the previous Lemma, is an infinite quantity unless [y is
finite. Therefore I is fnite. m
The fiteness of the covering {Q’;}

for the following consequence:

aEl, of ,, at any scale k is interesting

Corollary 14 For any k =1,2,3,... the set

F= @k

acly

18 a space of homogeneous type. The same conclusion holds for the union of
any subfamily of {Q’;}aelk. The doubling constants depends on n and k.

Proof. We have to prove that
w(B(x,2r)N Fy) < cu(B(z,r) N Fy) for any r > 0,2 € Fy. (44)

Let us fwrst prove this inequality when z € Fy \ E, where E is the null set

appearing in Theorem 6. So, let z € Q \ E for some « € I}, and let r > 0. We

will apply (12) in Theorem 6, distinguishing the cases r < §¥ and r > *.
When r < 6%, by the doubling condition (8) we have

w(B(z,r) N EFy) > p (B (z,1) N QL) > cop (B (z,7))
> é—iu (B (z,2r)) > é—i,u (B (z,2r) N Fy).
When r > §*

p(B(@,r) N F) > p(B(z,r)NnQk) > con (QF)
> cp e (Fi) > cnept (B (x,2r) N Ey)

where in the up to last inequality we have used the fact that the Q¥ are finitely
many open sets, each of positive measure, while p (Fy) < p(Que1) < 00, 80
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that for some constant ¢ depending on n and k (but not on «), we can write
p(QF) = cu(Fy).

If now z € F;, N E, we can repeat the same reasoning used in the proof of
Proposition 10 to show that (44) still holds. This completes the proof. m

Summarizing several results proved so far, we can say that for any n there
exists a space of homogeneous type Fj, contained in €2,,,1 and essentially con-
taining €2,,, in the sense that Q,, \ E C Fy (by Theorem 6, f) and Q,, C F (by
Proposition 11). In view of our applications to singular integrals, it is important
to get a local and more quantitative version of this result. This is contained in
the following theorem, which is the main result in this section. Since it involves
different sets €2,,, here we have to add an index n to the number § and the cubes

Qé-

Theorem 15 For every n there exists R, > 0 such that for any T € Q,, and
R < R, there exists an open set F' such that:

(i) F is a space of homogeneous type; its doubling constant depends on n but
not on R;

(ii) B(T,R)\ E C F C Q1o (with u(F)=0);

(iii) B (z,R) C F;

(iv) diamF < cR for some constant ¢ depending on n but not on R;

(v) u(F) < cu(B(T,R)) for some constant ¢ depending on n but not on R.

The independence of the constants from R will be precious when dealing with
commutators of singular or fractional integrals with VMO functions. Clearly,
the whole €2, can be covered, for any R < R,, by a fnite number of balls
B (z;, R), to which this theorem is applicable.

Remark 16 The reader could ask why we do not consider the set F (which
satisfies the simple inclusions B (T, R) C F C Qy42) instead of F (which does
not exactly contain B (T, R)). The problem with F is that, in our abstract
context, it is not obvious how to prove that it is a space of homogeneous type,
too.

Proof. Fix T € Q,, and let R,, = (562) for a kg to be chosen later, but such
that R, < 2e,, hence B (Z,R) C Q,41. For R < R, pick k > ko such that
5?731 <R< 5&). For these n and k, there exists a € I,in) such that (see Theorem
6)

S Q((Xn),k CcB (,z(()[?’L)JC7 Cl,(n)éécn)> C Qg1
For any y € B (T, R) we can write
1) < B (o000 (3 597)) < o (i ) =y

hence
B(z,R)C B (zg”%k, hnag“n))
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with
hn = Bn+1 (1 + Cl,(n)) .

Choose ko (and consequently R;,) so that hndé"n") < 2¢,, hence

B (Z((;L)’k, hnéén)> C Qn-‘rl

for any k > ko, and so for any R < R,,. Since €,,11 is covered (up to a null set)

by the union of all the dyadic cubes Qg”rl)’k, we can define the set

F=J{@5 % n B (2004, hdt ) # 0

and we immediately get
B(@ R\ECB (zg")v’“,hnzsﬁn)) \ECFC Qo

that is (ii). Moreover, by Proposition 11 we also have B (%, R) C F, which is
(iii).

By Corollary 14, F' is a space of homogeneous type. Note that, for the
moment, we only know that its doubling constant depends on n and k (that is
on R); we want to prove that it actually only depends on n.

Since .

: +1),
dlamean "< C1,(n+1)5écn+1) < Cl,(n+1)5écn)

(the sequence d(,,) is nonincreasing) and each of the cubes defning F intersects
B (Zé")’k, hn5é€n)) , the quasitriangle inequality in €, 4o gives diamF < céé“n)
for some constant ¢ depending on n, that is (iv). Finally, since B (Z,R) D
B (T, 52‘;’;1), repeated applications of the quasitriangle inequality in €, 42 give

F C B(Z, j,R) for some constant j, dependent on n but not on R. Shrinking
if necessary the number R, (that is enlarging the integer ky) we can assure
that the local doubling condition in €, is applicable to the ball B (Z, j,R)
for R < R,, and conclude that

w(F) < p(B(Z,jnR)) < cB (T, R)

for some constant ¢ depending on n but not on R, that is (v). This also implies

(n+1),k
B

that p (F') is comparable to u (Q ) for any of the cubes defning F'. Hence

we can now prove that the doubling constant of F' only depends on n. Namely,
revising the last part of the proof of Corollary 14 we can see that inequality

cont (QF) > coop (Fr)

now rewrites as -
con QYY) = eup (F)

and we are done. m
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4 Holder continuous functions

In several problems related to singular or fractional integrals we will need Holder
continuous cutoff functions adapted to concentric balls. This construction is
classical and does not depend on the doubling condition, so can be performed
in any €2,, as in usual spaces of homogeneous type.

Fix Q,. The function p is a quasidistance in €2,, hence by known results
of Macias-Segovia [25, Thm. 2] we can build a new quasidistance d in €,
equivalent to p in €, and such that for some « € (0,1) d is of order «, which
means that

Id(x1,y)—-d(x27y)\Eécd(xl,xzyl{d(lu,y)lfa +'d($2,y)lfa} (45)

for some constant ¢ > 0, any x,y,z € §2,. Here and in the following, saying
that two functions p; (z,y), p2 (z,y) are equivalent in €, means that for two
positive constants c1,co > 0 we have

cip1 (z,y) < p2 (z,y) < copr (z,y) for any z,y € Q.

It is worthwhile to note that the exponent « in (45) depends on n; from the
proof given in [25, Thm. 2] we read o = 1/log, (3B2) , which is not optimal in
the sense that for B,, = 1 (that is when p is a distance) does not say that (45)
holds with oo = 1.

Let us write By (x,r) for the d-ball of center x and radius r. Now, for any
xo € Qp, with By (z9,2r) C Q, we can defmne the function

¢ (x) = (d(x,0))

where
1 0<t<r
Y()=< 2—t/r r<t<2r
0 t>2r

A standard computation exploiting (45) and the equivalence between p and d
allows to prove the following:

Proposition 17 For any Q,, there exists an exponent o > 0 and two constants
c1 < 1,¢c0 > 2, such that for any xg € Q,, and r > 0 with B (x,car) C Q, there
exists a function ¢ with the following properties:

0<¢(z) <1
o (x) =1 for x € B(xp,c17)
¢ (x) =0 for x ¢ B(xo,car)

|p (z1) — o (x2)] < ¢ (p(acl,arg)>a for any x1, 2 € Q.

r
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The cutoff function ¢ belongs to the space C§ (€2,,) . Note that we can build
such cutoff functions only for a < ag where the threshold «y depends on the
space (2,,. We will briefly write

¢ € C§ (), B(zg,c1r) < ¢ < B (0, cor)

to say that ¢ has all the properties stated in the above proposition.

By our assumption of regularity of the measure 1, the above result [25, Thm.
2] also implies, by a fairly standard argument, that for any bounded Borel set E
we can build a Hélder continuous function which approximates in LP norm, for
any p € [1,00), the characteristic function of E. Therefore the following density
result holds:

Proposition 18 For any §2,, there exists g > 0, depending on n, such that for
any a € (0, ], any p € [1,00), the space C* () is dense in LP (Q,). If p is
a distance we can take ag = 1.

We leave the details to the interested reader. Note that this is the only point
of the theory where we use the assumption of regularity of p; moreover, this
assumption could actually be removed. Namely, refning an argument contained
in [20, Thm. 2.2.2], it is possible to prove that, under our assumptions (H1),
(H2), (H4), any positive Borel measure on ) has the regularity property which
is used in the proof of this proposition.

5 Local singular and fractional integrals

We now want to develop a theory of singular and fractional integrals in locally
homogeneous space. We are interested in situations, which typically occur when
dealing with local a-priori estimates for subelliptic PDEs, where one builds
singular kernels K (x,y) which are naturally defmed only locally, say for z,y
belonging to some ball B (Z, Ry) C Q41 with T € ,,. Starting from this
kernel, one builds a new one of the kind

K (z,y)=a(z) K (z,y)b(y)

where a, b are suitable cutoff functions both supported in B (T, Ry) . This K
has the better property of being defined in the whole Q41 X Q,11 (except the
diagonal x = y); the integral operator with kernel K can be the right object to
prove a local estimate, of LP or C* type. We can use the Holder continuous
cutoff functions built in the previous section to define a kernel K supported
in B (Z, R) X B(Z, R), and exploit the fact that B (Z, R) is in turn essentially
contained in a space of homogeneous type (see Theorem 15). Then, we would like
to apply to the singular or fractional integral defmed by K some existing results
from the theory of spaces of homogeneous type. This requires checking that K
satisfies globally, in the space of homogeneous type where we have embedded
it, suitable properties: standard estimates, cancellation properties and so on.
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The following preliminary construction and results serve to this aim. Moreover,
in view of the commutator theorems we are going to prove, we want to further
shrink the support of K, if necessary. This is the reason why we introduce a
second variable radius R < Ry. We keep assuming that (€,{Q,},—,,p, 1) be a
locally homogeneous space. Moreover, we make the following:

Assumption (H7). For fixed Q,,Q,+1, and a fixed ball B (%, Ry), with
T € Q, and Ry < 2¢, (hence B (%, Ry) C Qp41), let K (z,y) be a measurable
function defined for z,y € B (Z, Ry), © # y. Let R > 0 be any number satisfying

¢R< Ry (46)

for some ¢ > 1 which will be chosen in the proof of the next Proposition; let
a,b € C§ (Qny1), BT, a1R) < a < B(T,c2R), B(T,c3R) < b < B(T,c4R)
(see Proposition 17) for some fixed constants ¢; € (0,1), ¢ = 1,...,4. The new
kernel

K (z,y) =a(z) K (2,y)b(y) (47)
can be considered defimed in the whole Q11 X Q41 \ {z = y}. Then:

Proposition 19 Under assumption (H7) we have:
(i) Assume K satisfies for some v € [0,1) the following standard estimates:

Ap (z,y)"

|K (z,y)] < 1 (B (z,p(z,1)))

(48)

forx,y € B(x,Ro), © #vy, and

| K (w0,y) — K(z,y)| + | K(y, 20) — K(y,2)| <

Bp (w0,)" (p(w))ﬁ
u(B(zo, p(z0,¥))) \ p(z0,y)

(19)
for any xo,x,y € B (T, Ry) with p(xo,y) > Mp(xg,x), some 8 > 0, M > 1.
(M > 2B,41, so that condition p(zo,y) > Mp(xo,x) implies the comparability
of p(xo,y) and p(z,y)).

Then K satisfies the same bound (48) for any x,y € Qpi1,x # y and a bound
(49) (with a different constant B') for any xo,z,y € Qny1, with p(xo,y) >
Mp(zg,x), provided o > 3 (where « is the Holder exponent related to the cutoff
functions defming K ); the new constant B’ depends on A, B and n (but not on
R).

(ii) Assume K satisfies (48) with v = 0 and the following cancellation prop-
erty:

there exists C' > 0 such that for a.e. x € B (T, Ry) and every 1, €9 such that
0<e; <eg and By (x,62) C Qi1

K(z,y)du(y)| + K(z,x)du(z)| < C,

~/Qn+17€1<P'(I7y)<€2 /Qn+1’€1<p’(l’,z)<62

(50)
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where p' is any quasidistance equivalent to p in Qny1 and B, denotes P -balls.

Then K satisfies a similar cancellation property (with a different constant
C’) for a.e. x € Qpy1,0 <1 < g2 < 0. The new constant C' depends on A,C
and n (but not on R).

The same is true if, in the condition (50), we replace the integration over
Q1 with the integration over any measurable set containing B (T, R) .

(iti) Assume K satisfies the bound (i) and the following convergence condi-
tion: for a.e. x € B(Z, Ry) such that B,y (x,R) C Q41 there exists

hr (z) = lim K(z,y)du(y),
€20JQ,11,6<p/ (2.y)<R

where p' is any quasidistance equivalent to p in Qpy1.
Then for a.e. x € Q,11, there exists

h(z) = lim K(z,y)du(y).

e—0 Qn+1;ﬂl($;y)>€
Remark 20 The presence of a function p' possibly different from p (but equiv-
alent to it) in conditions (i)-(iii) adds fexibility to the theory: it is sometimes
easier to check these conditions for a p' diff erent from p. For instance, when deal-
ing with local estimates for operators structured on Hérmanders vector fields,

typically p will be the Carnot-Carathéodory distance induced by the vector fields,
while p' will be the quasidistance defined by Rothschild-Stein in [27].

Proof. The first part of (i) is obvious. To prove the second part, let us write,
for To, T,y € Qn+1a P(x(),y) > Mp(anx):

K(zo,y) — K(z,y)| < |a(20) K (20,y) b (y) — a(x0) K (,y) b (y)]

+ la (zo) K (z,9) b (y) — a(z) K (z,y) b (y)|
=T +1I.

By (49),

Bp (20,9)" (P(wtlax)>ﬁ (51)
1(B(wo, p(xo,y))) \ p(xo,y)

when xg,z,y € B (T, Rp). Since the quantity |a (z0) b (y)| does not vanish only
if g,y € B (T, R), it is enough to consider what happens when zg,y € B (T, R)
and = ¢ B (T, R). We have

I'<la(zo)b(y)l

p(3) < B (o) + p(a0,) < B (70(000) + 1)
< Bn+1 <]\14-Bn+1 (P (anf) + P (E7 y)) + R)

1
< B (MBn+12R + R) <2B,.1R
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(by our assumption M > 2B,,;1). Hence, if in Assumption (H7) we take

cR < Ro with ¢ > QBn+1, (52)
we have p (z,%) < Ro, and (51) holds for any zg,z,y € Q,+1 with p(xg,y) >
Mp(zg,x).

Now,

IT = |a (o) — a(2)| |K (z,y) b(y)]
by Proposition 17 and (48), for =,y € B (Z, Ry),

<o (") K @)
Bp (z0,y)" (P(xo,l“))a
(B (2o, p(20,9))) R

since p (x,y) is comparable to p (z,y).

The term IT does not vanish only if y € B(Z, R) and x or xy belongs to
B (%, R).

If y,z0 € B(Z,R) then p(zo,y) < 2B,4+1R. On the other hand, condition
p(xo,y) > Mp(zg,x) with M > 2B, implies

(53)

p(zo,y) < 2B,11p(2,9) -

Hence if y, z € B (T, R) then p (z,y) < 2B, 1 R and p(20,y) < (2Bn41)” R. So,
in any case p (zo,y) < c1 R, and (53) gives

Bp (z,y)" p(zo, z) \*
M= B o, oo, ) (pm,y))
. Bp (z0,y)" <p(wo,x)>6
~ u(B(2o,p(70,9))) \ p(z0,y)

for any 8 < a,z,y € B(Z,Ro). It is now enough to check what happens for
y,xo € B (Z,R) and x ¢ B (T, Ry) . Reasoning like above, the conditions y, xg €
B(z,R) imply p(z,T) < 2B,11R < Ry by (52), hence = ¢ B (T, Ry) simply
cannot happen.

To prove (ii), let € Q41 and consider, for any e > €1 > 0,

A= / s @) =aw / K (2, 1)b () du(y).

Qpt1,61<p (z,y)<ea

This quantity does not vanish only if x € B (T, R); since also b(y) does not
vanish only for y € B (%, R), the integrand does not vanish only if p’ (z,y) < /R
for some ¢/. Choose the number ¢ in (46) so that ¢cR < Ry implies ¢’ R < Ry
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and B (z,c'R) C Qp41. Then
A:a@ﬂ/ K (2,9)b (y) du(y)
Qnt1,61<p'(z,y)<min(ez,c’R)
—a@)b() [ K (@) du(y) +
Qp41,61<p’(z,y)<min(ez,c’ R)
+f K(a,) [b(s) = b (@) du(y) = Ay + s,
Qpt1,61<p’(z,y)<min(ez,c’ R)
Now by (50) we can bound
4] € Cla(@)b(@)| < C

while

p(z,y)\"
Aol < [ Kl (250 auty)
Qni1,61<p’(z,y)<min(ez2,c' R)

o c Ap (z,y)"
- Re Q.p(z,y)<c""R H (B (l’, P (:E, y)))
In the last inequality we have applied a standard estimate in spaces of homoge-

neous type (since the integral is extended to a ball centered at a point of 2,11
and contained in ,,15 we can apply the local doubling condition):

Cc

7a "R =(C".

dp(y) <

p(z,y)"
~/§Z,p(z,y)<c”R 1% (B (‘T7 14 (.’L‘, y))) du (y)

S p(z,y)”
< / . e DB (o dp(y)
1=0 7 Qnt 1, S <play) < E p (B (x,p(2,9)))

- > <c”R>a M < iC”“ <C//R)a =" R".
= k=0

) w(B ) 7

To prove (iii), let us consider, for z € 2,11 and 0 < g1 < &3,

/ K(z,y) dp(y) - / K(z,y) dp(y)
Qnt1,0' (z,y)>e2 Qnt1,0' (z,y)>e1

=a(x) / K(z,9)b(y)du(y) = A(e1,e2,1) .
Qpy1,e1<p’(z,y)<e2

The quantity A (e1,e2, ) does not vanish only if z € B (T, R) ; for this x and R
small enough we have B (z, R) C 41, hence we can write

xuq¢%m:amw@q/ K (2, y)du(y)

Qpt1,61<p’(z,y)<ez
+mm/ K(2,9) b (y) — b (@) duly)
Qny1,61<p’ (z,y)<ea

= A (e1,62,2) + As (e1,82,7)
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and, by our assumption on K,

lim Al (51,82,$) =0.
£1,e2—0

On the other hand, reasoning as above, we get

c Ap($7y)a ¢
A (o1, 9.2 < 7/ du(y) <cl—=
| 2( 1,&2 )‘ R~ Q,p(x,y)<ce2 :L"(B (:c,p(x,y))) ( ) (R)

which also vanishes for e — 0. So the desired limit exists. m

Theorem 21 (L? and C" estimates for singular integrals) Let K, K be as
in Assumption (H7), with K satisfying the standard estimates (i) with v = 0,
the cancellation property (ii) and the convergence condition (iii) stated in Propo-
sition 19. If

Tf(x) = lim K(z,y)f (y) du(y),

€=0JB(@,R),p' (z.y)>¢

then for any p € (1, 00)

1T 2o Bz,r) < fllo @z Ry -

The constant ¢ depends on p,n and the constants of K involved in the assump-
tions (but not on R).
Moreover, T satisfies a weak 1-1 estimate:

p({e € B@ R): ITF @) > 1) < 5 1l s sy Jor anyt > 0.

Assume that, in addition, the kernel K satisfies the condition

h(z) = lim K(z,y)du(y) € C7 (Qng1) (54)

e=0 ) (z,y)>e

for some v > 0 (where p' is the same appearing in the assumed convergence
condition (ii)). Then

||Tf||CW(B(§)R)) <c ||f||CW(B(§,HR)) (55)

for any positive n < min («, 8,7) and some constant H > 1 independent of R.
(Recall that « is the Holder exponent related to the cutoff functions defining
K, 8 appears in the standard estimates (i) and ~y is the number in (54)).

The constant c depends on n,n, R, the constants involved in the assumptions
on K, and the C7 norm of h.

Proof. By Theorem 15 there exists a space of homogeneous type F' such that

B(§7R)\ECFCQ7H—1
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and the doubling constant of F' only depends on n. By our assumptions on K
and Proposition 19, the operator T satisfies all the assumptions of Theorem 41
(about singular integrals in spaces of homogeneous type), so that

HTf”LP(B(E,R)) < ||Tf||Lp(F) < C||fHLp(F)

with ¢ depending on p,n and the constants involved in the assumptions about
K. Applying the inequality to f € L? (B (%, R)) (having set f = 0 outside this
ball), we get
HTfHLp(B(f,R)) <c ”f“Lp(B(E,R)) :

The same argument gives the weak 1-1 estimate for 7.

For the C" case a similar argument applies; we now apply Theorem 42 and
get

||Tf||0n(F) <c ||fHCn(F)

with ¢ depending on 7, n, the constants involved in the assumptions about K,
the C7 norm of h, and also diamF, that is R. Moreover, B (Z, R) C F hence

1T f]

eris@m) < I fllonmy = 1T fllongry < ellflenr -

A difference with the LP case is that now we cannot set f = 0 outside the ball
B (z, R) preserving its Holder continuity, therefore we can just write

||Tf||CW(B(§,R)) <c ”fHCW(B(f,HR))

since, for some H > 1 independent of R, we have F' C B (T, HR), as seen in the
proof of Theorem 15. m

Remark 22 (Estimates for C] functions) In the applications of this the-
ory to local a priori estimates for PDEs, the function f is usually compactly
supported, so that we can apply (55) to f € CJ (B (Z,R)), getting the more
appealing inequality

1T f]

cnBERr) < W fllensEr) -

Moreover, applying this inequality to functions f € CJ (B (z,r)) with r < R we
can get a a bound
||Tf||cn(3(§,r)) <c ”fHCn(B(aﬂ)

with ¢ depending on R but not on r.

Remark 23 (Checking assumption (54) ) Assumption (54) can be the most
troublesome to check in concrete applications (apart from classical cases in which

h is zero, or is constant). In some applications to subelliptic equations, the ker-

nel f((a?, y) happens to be a perturbation of a simpler kernel which has vanishing
integral over spherical shells; in these cases, one can prove that the limit

lim K(z,y)du(y)

=0 o (z,y)>e
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equals to the integral of a nonsingular kernel satisfying standard estimates (48)-
(49) for some v > 0. It is then helpful to recall that such an integral always
belongs to a Holder space, as will follow from Theorem 25, since it can be re-
garded as T (1), where the constant 1 is Holder continuous and T is a fractional
integral..

Theorem 24 (LP — L? estimate for fractional integrals) Let K, K be as
in Assumption (H7), with K satisfying the growth condition
c

(B (w,p(z,y)) "
for some v e (0,1),¢>0, any z,y € B(T,Ry), x £ y. If

Liw=[ Rl @)
B(z,R)

0< K(z,y) < (56)

then, for any p € (1, %) ,% = = — v there exists ¢ such that

D=

”Il/f”Lq(B(E,R)) <c ”fHLP(B(E,R))

for any f € LP (B (T, R)) . The constant ¢ depends on p,n, and the constants of
K involved in the assumptions (but not on R).

Proof. This theorem follows from the analog result which holds in spaces of
homogeneous type, that is Theorem 43, by a similar argument to that used in
the proof of Theorem 21. m

The analog C" estimate for fractional integrals is better stated under slightly
different assumptions on the kernel. In the applications of the theory that we
have in mind, where the measure of a ball is equivalent to a fixed power of the
radius, both the theorems will be applicable.

Theorem 25 (C" estimate for fractional integrals) Let K, K be as in As-
sumption (H7), with K satisfying (48) and (49) for some v € (0,1),5 > 0. If

Li@=[ R o) dut)
B(z,R)

then, for any n < min («, 5, v)

HIVf“C"(B(E,R)) <c HfHCn(B(%,HR)) :

The constant ¢ depends on n,n, R and the constants of K involved in the as-
sumptions; the number H only depends on n.

Reasoning as in Remark 22, we can also say that for functions f € C{/ (B (z,r))
with r < R the following bound holds

[I2f]

with ¢ depending on R but not on r.

Proof. This theorem follows from Proposition 19 and the analog result which
holds in spaces of homogeneous type, that is Theorem 44, by an argument
similar to that used in the proof of the C" case in Theorem 21. m

o) < Clfllon @
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6 Local and global BMO and VMO spaces

Let (2, {Q,},—,,p, 1) be a locally homogeneous space.

Definition 26 (Local BMO and VMO spaces) For any functionu € L' (Q,41),
and r >0, with r < &,, set

. 1 /
M r)=sup sup ————— u(x) —up|du(z),
n 7Sln752n+1( ) P (B (-TOa t)) B(zo.t) | ( ) B| I ( )

where ug = (B (xq,t)) " fB(wO p u- We say that u € BMOjoc (U, Qpyr) if
||u||BMoloc(Qn7Qn+1) = Sélp nzvﬂn79n+1 (T) < 0.
r<en

We say that w € VMOjoe (R, Qnt1) if u € BMOjoe (2, Qny1) and
nZ’QanH(r) — 0 asr — 0.
The function n, o q ., will be called VMO local modulus of w in (Qn, Qpi1).

Note that in the previous definition we integrate u over balls centered at
points of €2,, and enclosed in €,,11. This is a fairly natural defmition if we want
to avoid integrating over the intersection B (zo,t) N Q. We will need also the
following standard

Definition 27 (BMO and VMO spaces over a homogeneous space) Let
S be a subset of Q which is a space of homogeneous type (S can be a single cube

k or the set F built in Theorem 15, or the whole U QF ). For any function

acly
uwe€ L'(S) and r > 0, set

1
Nu,s(r) =sup sup ———~——
ws () =Sup sup o A )

where upns = u(B (zo,t) N.S)~

/ () — upns| du (),
B(zo,t)NS

! JB(2o.0)ns u- We say that uw € BMO (S) if

lull prro(sy = sup u,s (r) < occ.
r>0

We say that w € VMO (S) if u € BMO(S) and n,,s(r) — 0 as r — 0. The
function n, s will be called VMO modulus of u in S.

The useful link between the two notions of BMO is contained in the next
Proposition. Here we have to consider families of dyadic cubes adapted to
different sets 2, hence we need to add an extra index to our symbols.

Proposition 28 For fited n and T € ,, let B (T, R), F be as in Theorem 15
(recall that F' C Qp42). Let f € BMOjoe (Qnt2, Qnt3), then
1fl Briory < Nfa,in.000s (CR) Sl Bron.@nis,0ms) (57)

for a constant ¢ depending on n but independent of R. In particular, given
f € VMO (nt2,Qnys), the norm ||f||BMO(F) can be taken as small as we
want, for ficed n and R small enough.
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Proof. The second inequality holds by definition, so let us prove the first. Wlth

the notation used in the proof of Theorem 15, let = € F, that is x € Q(n+1
(n+1),k

for

some Q intersecting B( (n).k , hn0F ) . In particular, x € Q,4+2. Recall

n (’I’L)

that 5631 <R< 5(n). We want to bound, for any r > 0,

1
RGN a0 =10

with ¢ to be chosen later. Let us distinguish the cases:
(i) r < 6k Then

1

(n+1)°
w(B(x,r)NF)>pu (B (z,r)N anﬂ)’k) > co,(n+1) it (B (z,7))
(see (12)), hence choosing ¢ = fp(q,r)
c
RB@E) Jogen ! @)~ foenl @)
< M0, Qs (5?n+1)) < NF 00,0y (CnFR)

since 6(p41) < d(pn) and 5?;31 < R.

(ii) r > 5 (n+1)- LThen

w(B(z,r)NF)>p (B (z,r)N Q(BnJrl)’k) > Co,(nt1)H (Q("+1 )

(see (12)), which in turn is equivalent to p (F') because the two sets have com-
parable diameters and the first is contained in the second. Here we can apply
the local doubling condition for balls of radius ~ §% ) centered in ,; and

(n+1
contained in €, 5. Hence

7F)/F|f(y)—0|du(y)~

In turn (see the last part of the proof of Theorem 15), F C B (%, j,R) with
p (F') comparable to u (B (7, jnR)), therefore choosing ¢ = fp(z,;, r) We get

I<arig (caR)

7L+27 n+3

and we are done. m

7 Commutators of local singular and fractional
integrals with BMO functions

Theorem 29 (Commutators of local singular integrals) Let K K be as
in Assumption (H7), with K satisfying the standard estimates (i) with v = 0,
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the cancellation property (i) and the convergence condition (iii) (see Proposition
19). If

Tf(z) = lim K(z,y)f (y) du(y)
€20 JB(@,R),p' (z,y)>

and, for a € BMOjoc (g2, Qnys), we set
Cof () =T (af) () —a(2)Tf(z),

then for any p € (1,00) there exists ¢ > 0 such that

”Caf”LP(B(E,R)) <c Ha||BMoloc(Qn+2,Qn+3) Hf”LP(B(E,R)) :

Moreover, if a € VMOjoe (Qnt2, Qniys) for any e > 0 there exists r > 0 such
that for any f € L? (B (Z,r)) we have

1Cafllrr Bz < ENfle @) -

The constant ¢ depends on p,n and the constants of K involved in the assump-
tions (but not on R); the constant v also depends on the VM Ojoe (12, Qnts)
modulus of a.

Proof. Proceeding like in the proof of Theorem 21, and with the same meaning
of the symbols, we prove, applying Theorems 45 and 41 which hold in spaces of
homogeneous type, that

ICafll Loy < cllall prror) 1 Lecr

for some constant ¢ depending on p,n and the constants involved in the as-
sumptions on K (but not on R); in turn, by Proposition 28 the last quantity is
bounded by

c ||a||BMOlOC(Qn+2,Qn+3) ”fHLP(F) .

Reasoning on the support of f we get, like in the proof of Theorem 21,

”Caf”LP(B(E,R)) <c Ha||BMOlOC(Qn+2,Qn+3) Hf”LP(B(E,R)) :

To prove the second assertion, we now observe that if we apply the LP continuity
estimate

”TfHLp(B(E,R)) <c ”fHLp(B(E,R)) (58)
to functions f € L? (B (z,r)) for any r < R, we find

”Tf”LP(B(E,T)) <c ”fHLP(B(E,r)) (59)

so that the same operator T is continuous on L? (B (Z,r)), for any r < R,
with a constant independent of r. (Recall that the number R is involved in the
defimition of T (through the cutoff functions), so that (59) is not the same as
“(58) for R small”).
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Take r so small that for 2,y € B (z,r) we have K (,y) = K (z,y) . Then the
kernel K satisfies in B (Z,r) assumptions (i) in Proposition 19, with constants
independent of r. We can therefore apply again the commutator theorem on
spaces of homogeneous type (Theorem 45) to the operator T on the space F’
built as in Theorem 15 with F’ essentially containing B (Z,r) and and compa-
rable with it, concluding that, for any f € L? (B (z,r)),

1Caf Lo B@r) S NCafllLery < cllallprroy 1 Lo
< M0, Qnss (CnT) ||f||Lp(B(§,7-)) (60)

where we have applied again Proposition 28. Since in the last inequality the
constants ¢, ¢,, are independent of , if a € VM Oy (12, Qnts), for any € > 0

we can find 7 small enough so that c¢n; o ., o . (c17) <e¢, and we are done. =

Theorem 30 (Positive commutators of local fractional integrals) Let K, K
be as in Assumption (H7), with K satisfying the growth condition (56) for some
v>0.If

L= [ Rt )du)
B(z,R)

and, for a € BMOjoe (12, Qnys), we set

Cuaf (2) =/ _ K(y)la(@) —ay)| f(y)duly) (61)
B(z,R)

then, for any p € (1, %) ,% = % — v there exists ¢ such that

||Cu,af||Lq(B(§7R)) <c ||a||BMOlGC(Qn+2,Qn+3) HfHLp(B(E,R))

for any f € L? (B (Z, R)) .
Moreover, if a € VMO (42, Qnts) for any e > 0 there exists r > 0 such
that for any f € L? (B (T,r)) we have

||Cu,af||Lq(B(§7r)) <e ”f”LP(B(T,r)) :

The constant ¢ depends on p,v,n and the constants involved in the assumptions
on K (but not on R); the constant r also depends on the VM Ojoc (Qnt2, Qnis)
modulus of a.

Proof. Proceeding like in the proof of Theorem 29, and with the same meaning
of the symbols, applying Theorem 46 which holds in spaces of homogeneous
type, we get that

”Cu,af”Lq(F) S c ”a”BMO(F) ”fHLP(F)

<c ”aHBMOLOC(Q,,,+2,Q,,+3) Hf”LP(F)

for any p € (1, l) , % = % — v. Like in the proof of Theorem 29, we have

v

||Cl/,af||Lq(B(E,R)) <c Ha||BMOZOC(QT,,+2,Qn+3) ||f||Lp(B(§,R)) .
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for any f € L? (B (%, R)). The same argument in the proof of Theorem 29 also
gives
HCVJlf”LP(B(j,T)) < Cn:,ﬂn+2,§2n+3 (c1r) ||f||LtI(B(I,r))
<elfllpasEr)

for a € VMOjoc (42, Qnt3) , and r small enough so that o (a1r) <

€, so we are done. m

n+2,2n+3

Theorem 31 (Positive commutators of nonsingular integrals) Let K, K
be as in Assumption (H7), with K satisfying condition (49) with v = 0. Assume
that the operator

7r@) = [ = E@r ) an)

is continuous on LP (B (T, R)) for anyp € (1,00). Fora € BMOjoc (Qnt2, Qnts)
set

Cuf @) = [ Rap)la(@) - aW)]f () dulo) (62)
B(z,R)

then
ICaf Lo Bzr) < clall srro.@nis0nis) 1o (5@ R))

forany f € L? (B (Z, R)),p € (1,0).
Moreover, if a € VMO (Qna2, Qnrs) for any e > 0 there exists r > 0 such
that for any f € L? (B (T,r)) we have

||Caf||LT’(B(§,r)) <e ||f||Lz>(B(§,r)) :

The constant ¢ depends on n, the constants involved in the assumptions on K,
and the LP-LP norm of the operator T (but not explicitly on R); the constant r
also depends on the VM Oy (a2, Qnts) modulus of a.

Proof. The proof is very similar to that of Theorem 30. Here we need to apply
Theorem 47 which holds in spaces of homogeneous type. ®

Remark 32 The presence of an absolute value inside the integral in (61) and
(62) make the corresponding commutator theorems more fexible than the ana-
logue for singular integrals. Namely, if Theorem 30 or 31 applies to a kernel K,
it also applies to any other positive kernel equivalent to K, differently from what
happens for singular integrals, for which the cancellation property is crucial.

8 Local maximal operators

In this section we briefy deal with the local maximal operator in locally ho-
mogeneous spaces. The result is substantially already known (see for instance
[24]), but for the sake of completeness we state it explicitly with the language
and notation of this paper.
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Definition 33 Fir Q,,,Q,1 and, for any f € L' (Q,11) define the local max-

imal function

Mg, o,,,f (x) = sup \f ()| du (y) forz €,

e )
r<r, M (B (‘T’ T)) B(x,r)
where 1, = 2g,/ (2B, + 3B2) , with B, as in (7).

The following Vitali covering lemma holds, with the usual proof (see e.g.
[19, Chap. 3]), thanks to the fact that by our restriction on z and r we can
apply the local doubling condition to the involved balls:

Lemma 34 Let E be a measurable subset of Q, that is covered by the union
of a family of balls B (z4,74) centered at points of Q, and with radii ro, < 75,.
Then one can select a disjoint countable subcollection {B (q:aj , raj) }j’;l so that

E C |JB (2a,, Kra,) with K = (2B, + 3B}),
j=1
and, for some constant ¢ depending on n,

oo

Y (B (za7a;)) = cp(E).

j=1
Then, again repeating the standard proof, one can establish the following:

Theorem 35 Let f be a measurable function defined on Q,.1. The following
hold:

(a) If f € LP (Qy41) for some p € [1,00], then Mg, .., [ is finite almost
everywhere in ., ;

(b) if f € L* (Qny1), then for every t > 0,

p(fr e (Moo, )@ >t <% [ Ifw)ldu):

Qn+1

(c)if f € LP (Qny1), 1 <p < oo, then Mo, o, f € LP () and

HMQH7Qn+1 fHLP(Qn) S Cn,p ||fHLp(Q"+1) -

9 Quasisymmetric quasidistances

In this section we want to extend the main results of the previous theory to the
more general case of a quasisymmetric p. We stress the fact that the results we
are going to extend are those of Sections 5 to 8, but not the construction of
dyadic cubes of Section 3.
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Definition 36 (Quasisymmetric locally homogeneous space) We make the
following assumptions.

(K1) Let 2 be a set, endowed with a function p : Q x Q — [0,00) such that
foranyx,y € Qp(x,y) =0z =y.

For any x € Q,r > 0, let us define the ball

B(z,r)={yeQ:p(z,y) <r}
and the coball
B'(z,r)={y € Q:p(y,x) <r}.

Let us define a topology in  saying that A C Q is open if for any x € A there
exists r > 0 such that B (z,r) C A. Also, we will say that E C § is bounded if
E is contained in some ball. Let us assume that:

(K2) p(z,y) is a continuous function of x for any fieed y € Q and a con-
tinuous function of y for any fivxed x € ).

(H3) Let u be a positive regular Borel measure in €.

(K4) Assume there exists an increasing sequence {Q,} - | of bounded mea-
surable subsets of 0, such that:

DQn =0
n=1

and such for, anyn =1,2,3,...:
(i) the closure of Qy, in  is compact;
(1) there exists €, > 0 such that

{x € Q:p(z,y) <2, for somey € Qp} C Qpy1;
{x e Q:p(y,x) <2, for somey € Qp} C Qi1

(K5) there exist Ay, By, > 1 such that for any x,y,z € Q,

p(x,y) < Anp(y,);
p(2,y) < Bn(p(x,2) +p(2,9));

(HG) there exists C, > 1 such that for any x € Q,,0 <r < &, we have
0<pu(B(z,2r) <Chu(B(z,r)) < oo.

(Note that for x € Q,, and r < &, we also have B (x,2r) C Qp41).
We will say that (9, {0}~ , p, i) is @ quasisymmetric locally homogeneous
space if assumptions (K1), (K2), (H3), (K4), (K5), (H6) hold.

With a proof very similar to that of Proposition 4 in Section 2 we can prove
the following:
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Proposition 37 Condition (K2) is equivalent to the validity of both the fol-
lowing

(K2) (a) the balls and coballs are open with respect to this topology;

(K2) (b) for any x € Q and r > 0 the closure of B (x,r) is contained in
{y € Q:p(z,y) <r} and the closure of B' (z,) is contained in {y € Q: p (y,x) <r}.

It is also immediate to check the following

Proposition 38 If (Q,{Q,}._, ,p, 1) is a quasisymmetric locally homogeneous
space and

p*(z,y) =p(z,y) +p(y,2),
then (0, {Q,},2, . p*, 1) is a locally homogeneous space, and its constants can
be bounded in terms of the constants of (0, {Qn}, "1, p, 1) -

We now want to apply the results we have proved in Sections 5 to 8 to show
that similar results hold in a quasisymmetric locally homogeneous space. Let
us discuss in detail one of these results, the others being similar.

Theorem 39 (LP and C" estimates for singular integrals) Theorem 21 still
holds if (0, {Qn}, 2, p, 1) is a quasisymmetric locally homogeneous space.

Proof. The key observation is that if the kernel K satisfies conditions (i), (ii),
(iii) in Proposition 19 with respect to p, it also satisfies them with respect to any
equivalent function, in particular with respect to p*; this follows by a standard
computation, and implies the validity of LP estimates, by Theorem 21. As to
C" estimates, let us first note that p and p* define the same space C", with
equivalent norms. Moreover, if K satisfies the condition

h@) =t [ Rp)du) € €7 (@)
e=0 ) (z,y)>e

for some v > 0 and some p’ equivalent to p, this p’ is also equivalent to p*,
so h satisfies the Holder continuity assumption required by Theorem 21, hence
Holder estimates hold. m

A similar argument shows that Theorems 24 and 25 still holds if (2, {Q,},2, , p, 1)
is a quasisymmetric locally homogeneous space.

To deal with commutators we first need to make the following remark about
BMO spaces. B

Let us denote by B,., B;- the balls with respect to any two equivalent functions
p, p satisfying the axioms of quasisymmetric locally doubling spaces. Then for
any xg € Q,,7 < &,, any 7 € R, we can write, by the equivalence of p, p

1 1
|By (o) /BT(xo) e = m /éczr(wo) [u (@) —7|dp(z)

by the local doubling condition

< \EW /B @ =Tl a).

caT
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Choosing 7 = ﬁfg (wo)u(x) du (z) and recalling that for any 7 we
cor(T0 car

have

! 1
m/B ( )|u(x)_“3r(mo)|dﬂ(ff) §2'm - )\U(x)—T\d/i(m)
ri%o r\(Zo

we get the equivalence between the norms |[ull5y0,. (0, .0,.,) With respect to
p and p, and an analogous equivalence between VMO,. moduli. Applying
this argument to the quasisymmetric function p and its symmetrized p* we
immediately get that also the commutator theorems 29, 30, 31 still hold if
(0, {0}, . p, ) is a quasisymmetric locally homogeneous space.

Finally, the extension of Theorem 35 to the setting of quasisymmetric locally
homogeneous spaces is immediate, since the maximal functions defmed with
respect to equivalent quasisymmetric quasidistances are equivalent, hence the
result in the symmetric case implies that for the quasisymmetric case.

10 Appendix. Known results for spaces of ho-
mogeneous type

In this Appendix we collect all the results about spaces of homogeneous type
which we have applied throughout the paper. We first recall the basic

Definition 40 Let X be a set endowed with a function p : X x X — [0,00)
such that for some constant B > 1, any z,y,z € X:

p(r,y) =0z =y;

p(z.y)=p(y,z);

p(z,y) < B(p(x,2) +p(2y)).

Assume that the p-balls are open with respect to the topology they induce.
Let p be a positive Borel measure on X, satisfying the doubling condition

0<pu(B(z,2r) <Cu(B(z,1)) <0
for any x € X, r > 0. Then we say that (X, p, u) is a space of homogeneous type.

Dependence of the constants. We will say that some constant depends
on X to say that it depends on the constants B, C.

10.1 L? and C“ estimates for singular integrals on spaces
of homogeneous type

Theorem 41 (LP continuity of singular integrals) Let (X, p,u) be a ho-
mogeneous space, |4 a reqular measure. Let K : X x X\ {z =y} — R a kernel
satisfying the following conditions:

the standard estimates (48) with v =0, for any z,y € X, and (49), for any
xo, ¢,y € X, with p(xo,y) > Mp (zg,2), M >1,v=0,5 > 0;
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the cancellation property

/ K (y,2) du (y)
r<p'(z,y)<R

forany R >r >0,z € X, where p' is any quasidistance equivalent to p. Let T
be the truncated operator defined as

+

/ K (2,y) du(y)| < C
r<p/(z,y)<R

T.f = / K (z.9) f (4) du (y)
p'(z,y)>e

for any f € C{l (X) (with n small enough so that C§ (X) is dense in LP for
p € [1,00)). Then T. can be extended to a linear continuous operator from LP
into LP for every p € (1,00), and

ITeflle < cllfllze

where the constant ¢ depends on X, p and all the constants involved in the
assumptions, but not on €. Moreover, if for a.e. x € X there exists the limit

lim K (z,y)dp(y),

€200 (z,y)>e

then the above LP estimate holds also for the operator

Tf(z) = lim K (x,y) f(y)du(y).

€20 pr (z,y)>e

Finally, the operator T satisfies a weak (1,1)-estimate:
c
p{ze X:Tf (@) >th) < L 1fllpx) -

The above result follows, for instance, from the results contained in [16] and
[19]; see also [8, Thm. 4.1, Thm. 4.5] where this theorem is explicitly derived
from the aforementioned results.

Theorem 42 (C* continuity of singular integrals) (See [5, Thm. 2.7]).
Let (X, p, pt) be a bounded homogeneous space, and let K : X x X\{z =y} - R
a kernel satisfying the following conditions:

the standard estimate (48) with v =0, any z,y € X, and (49) with v = 0,
for any xo,x,y € X, with p(zo,y) > Mp(xg,2), M > 1,8 > 0;

the cancellation property: for any r > 0

+ <C,

/ K (y,2) du (4)
p'(z,y)>r

/ K (2,y) du ()
p'(z,y)>r

where p' s any quasidistance on X, equivalent to p. Assume that for every
feC¥X) and x € X the following limit exists:

rf@) =t @) =t [ K ) @) dy
p'(x,y)>e

e—0
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and T (1) (x) € C(X), for some n € (0,1] Then the operator T is continuous
on C*(X); more precisely:

‘Tf|ca(x) <c Hf”ca(x) for every a < B,a <17

for some constant ¢ depending on X, «, and all the constants involved in the
assumptions (recall B is the exponent appearing in assumption (49)). Moreover,

1Tl < C||ch~(X) J

where ¢ also depending on diamX .

10.2 [P and C* estimates for fractional integrals on spaces
of homogeneous type

Theorem 43 (L? estimate for fractional integrals) Let (X, p, i) be a space
of homogeneous type, and for o € (0,1), let

OSKQ(-T,?J)S ¢ 1—a fOT‘.’II?éy,Ka(.T,Z‘):O

(B (z,p(z,y)))

hf@ﬁ=[;Ka@w%deu@)

for any measurable f : X — R for which the integral makes sense. Then, for
any p € (1, i) ,é = % — « there exists a constant depending on X, a,p and the

constant C' in the assumptions on K, such that

||IafHLq(x) < CHfHLp(X)
for any f € LP (X).
The above result is due to Gatto-Vagi, see [22], [23].

Theorem 44 (C“ estimate for fractional integrals) (See [5, Thm 2.11]).
Let (X, p, 1) be a bounded space of homogeneous type, and let K (x,y) be a kernel
satisfying for some v € (0,1) the standard estimates (48) for any x,y € X, and
(49), for any xo,x,y € X, with p(xo,y) > Mp (zo,z), M > 1,5 > 0; let

i) = [ Kulow) fW)dut),
b's
Then, for any o < min (8,v) we have

Iy fllcex) < el f]

The constant ¢ depends on X, a,diamX, and the constants involved in the as-
sumptions on K.

Co(X) "

The above two results about fractional integrals are proved in the quoted
papers under some additional assumptions on the space (e.g., the absence of
“atoms”, that is points of positive measure); however, these statements can be
easily proved in full generality.
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10.3 Commutator theorems

The original commutator theorem we are interested in is the one proved by
Coifman-Rochberg-Weiss [18] for classical Calderén-Zygmund operators. The
extension of this result to spaces of homogeneous type, both bounded and un-
bounded, has been proved in [8, Thm 2.5, Thm. 3.1]:

Theorem 45 (Commutators of singular integrals) Let (X, p,u) be a ho-
mogeneous space and let all the assumptions of Theorem 41 be in force. Let

Tf(z) = lim o) K(z,y)f (y) du(y)
P (x,y)>e

and, for a € BMO (X) let

Caof () =T (af) (x) —a(x)Tf (z).

Then, for any p € (1, 00)

”CafHLP(X) < C||a||BMO(X) Hf”LP(X)

for some constant ¢ depending on X,p, and the constants involved in the as-
sumptions on K, but not on f,a.

Next, let us recall the analog results for fractional or more general type of
nonsingular integral operators. A key point in the following result is the presence
of an absolute value inside the integral, which is allowed by the positivity of the
kernel:

Theorem 46 (Commutators of fractional integrals) Let (X, p, pt) be a ho-
mogeneous space and let Ky, 1, be as in Theorem 43. For any function a €
BMO (X), let

Cuf () = /X Ko (2,9) (@) — a ()] f ) du ()

be the “positive commutator” of I, with a. Then for any p € (1, 7) ,

[e%

there exists ¢ = ¢ (X, a,p) such that

Hcaf||L<1(X) = CHG‘HBMO(X) ”f”Lp(X) :

The above theorem has been first proved in [9, Thm. 2.11] under an extra
assumption on the space (X, p) and then, in this full generality, in [1, Thm. 3.3,
Thm. 3.7].

An analog result holds for any abstract operator with positive kernel, which
we already know to be LP continuous:
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Theorem 47 (See [1, Thm. 0.1]). Let (X, p, ) be a homogeneous space and
K (z,y) be a nonnegative kernel such that the operator

Tf(2) = / K (2,9) f (4) diu ()
X\{z}

maps LP (X) into L? (X) forp € (1,00). Also, assume K satisfies the standard
estimate (49) for v =10, some > 0,M > 1, any xg,z,y € X with p(zo,y) >
Mp(zo,z). For a € BMO (X), let

Cuf (2) = [ K (@)la(a) =aw)] £ ) duo).
Then there exists ¢ = ¢ (X, p) such that

”CafHLP(X) <c ”aHBMO(X) ”f”LP(X) :
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