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1 Introduction

Recently, geometric numerical integration methods have gained an important role in the

field of numerical solution of ordinary differential equations. A numerical method is called

geometric if it preserves exactly (i.e. up to round-off error) one or more physical/geometric

properties of the corresponding continuous differential system. Such properties to be pre-

served are mainly first integrals, symplectic structure, symmetries and reversing symmetries,

phase-space volume. Because of their effectiveness, geometric methods are really appreciated

in many fields of engineering and physics, including celestial mechanics, molecular dynam-

ics, fluid dynamics, meteorology. Actually, large surveys of geometric methods are provided

in [9], [15].
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Here we focus on the conservation of first integral. First integrals play an important role

in Hamiltonian mechanics, since they lead essentially to a reduction in the number of degrees

of freedom. However, conservation of first integral can happen even if the system is non-

Hamiltonian . Therefore our focus does not precisely coincide with the study of Hamiltonian

systems, but includes them.

We point out that the current most widespread methods for Hamiltonian systems are sym-

plectic methods, but here we neglect them, since it is known [28] that, in general, exact con-

servation of first integral and symplecticness are conflicting issues, from a numerical point of

view. Indeed, there are a number of important exceptions (i.e. splitting methods and implicit

midpoint method for quadratic splitted first integrals), but here we want to deal with the most

general case of conserving systems. It is worth pointing out that, in the case of Hamiltonian

systems, the use of Hamiltonian itself can produce exact conserving numerical methods [24],

[14], [12],[13], but here we will use the expression of conserved first integral to check the

effectiveness of our computations only.

Actually, we will adopt the traditional approach of numerical analysis which generally

assumes that the purpose of simulation is the faithful reproduction of a particular solution or

trajectory. Since, for conserving systems, first integral is necessarily conserved along numeri-

cally correct trajectories, the presence of first integrals (such as energy or other invariant) can

provide helpful criteria for assessing the validity of the simulation, particularly in the nonlin-

ear case. However, it should be clear that the numerical conservation alone is not enough of

a restriction, since any arbitrary sequence of random data points in the phase space could be

projected to the energy surface, but would be not expected to provide a reasonable approxi-

mation of a trajectory.

If we restrict to Hamiltonian systems, we observe that there are two extreme ends of pos-

sible solutions :i) completely integrable; ii) fully chaotic. For integrable and near-integrable

Hamiltonian systems, it is well understood how symplectic methods conserve energy. Indeed,

when they are used with a stepsize h much smaller than the inverse of the highest frequency

ω (in the linearized system), long -time near conservation of the total energy is obtained up to

exponentially small term O(e−c/(hω)) (e.g. [9], Ch. IX). Unfortunately these results are not

useful when large stepsizes can be used, for which the product hω is bounded away from

0, and when the considered Hamiltonian system is fully chaotic. In this last case, solutions

diverge exponentially everywhere in phase space, even if a large variety of behaviors can

be exhibited: slow rates of divergence, fast rates of divergence and islands of periodic orbits

also; so areas of weak chaos will alternate to areas of strong chaos and/or ares of stability. In

general, the numerical computed trajectory will not stay close to the exact solution over very

long time intervals. On the other hand, fully chaotic systems exhibit the so-called shadowing

property [8], [26]; so, briefly (e.g [15], page 125) numerical trajectories obtained from a sym-

plectic integration method shadow some exact solution of a slightly perturbed fully chaotic

Hamiltonian system. Therefore, whenever we want to numerically reproduce a given trajec-

tory as exactly as possible over long time intervals, we clearly use better a non-symplectic

method.

Within this frame, here we present a new class of symmetric non-symplectic methods

whose properties will be investigated by means of a large number of numerical examples. At

the present, the proof of conservation of first integral still lacks, but we think that numerical

evidence, provided by reported examples, can be somewhat worthwhile.
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These presented methods are improved versions of methods previously introduced in

[2] and are called block-Boundary Value Methods (block-BVM) [11]. They could also be

rewritten [1] in the form of implicit collocation Runge-Kutta methods [4]. So they share all

the nice properties of symmetric Runge-Kutta schemes when applied to reversible differential

equations ([9], Ch. V). The block-BVM are defined by a set of linear multistep formulas

combined in a suitable way. In our implementation, the time integration interval is discretized

by using two different meshes: an equispaced coarser one and a nonequispaced finer one. The

considered linear multistep formulas are then applied on each subinterval defined by the

coarser mesh with stepsizes defined by the finer one. First integral is nearly conserved both

on the coarse mesh and on the finer mesh.

Finally, there are some other reasons why one might use a symmetric method on a conser-

vative system. First, if the system is Hamiltonian, a symplectic integrator may be prohibitively

expensive. This occurs, for example, when the symplectic structured is noncanonical, perhaps

as a results of a change of variables. Second, if the system is not Hamiltonian but still has a

first integral, then a symmetric integrator is the best choice of geometric method. It is usually

much cheaper to preserve symmetry only, which is the dominant property characterizing the

dynamics, while energy is merely conserved within a required accuracy.

This paper is organized as follows. In Section 2 we introduce our class of symmetric

methods. In Section 3 we present several numerical examples relating to different types of

conserving systems. In Section 4, we conclude with some final remarks.

2 Numerical methods

Given an ordinary differential system, defined in a space of even dimension, say 2m,

y′(t) = f(t,y(t)), y(t0) = y0, (1)

A block k-step symmetric linear multistep method applied to (1) on the grid t0 < t1 < · · · <
ts−1 is defined as:

k2

∑
j=−k1

α
(i)
j+k1

yi+ j = hi

k2

∑
j=−k1

β
(i)
j+k1

fi+ j, i = k1, . . . ,N − k2, (2)

where k is odd, k1 =(k+1)/2 and k2 = k−k1, α(i) =(α
(i)
0 , . . . ,α

(i)
k )T and β(i) =(β

(i)
0 , . . . ,β

(i)
k )T ,

i = k1, . . . ,s−1− k2 are the coefficient vectors characterizing the method.

These equations must be associated with the boundary conditions and with k1 −1 initial and

k2 final equations that are derived using appropriate discretization schemes. Hence we obtain

the following one step discretization scheme





y0 given

∑k
i=0 α

(n)
i yi = hn ∑k

i=0 β
(n)
i f (tn) n = 1, . . . ,k1 −1,

∑k
i=0 α

(n)
i yn−k1+i = hn ∑k

i=0 β
(n)
i f (tn−k1+1) n = k1, . . . ,s−1− k2,

∑k
i=0 α

(n)
i ys−1−k+i = hn ∑k

i=0 β
(n)
i f (ts−1−k+i) n = s− k2, . . . ,s−1,

. (3)

that could be rewritten in matrix form obtaining
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( Ã ⊗ I2m)y−hDh( B̃ ⊗ I2m) f = 0 (4)

where y = (yT
0 ,yT

1 , . . . ,yT
s−1)

T , f = (fT
0 , fT

1 , . . . , fT
s−1)

T with fi = f(ti,yi) and Ã and B̃ are

s×(s−1) matrices containing the coefficients of the main method plus those of the additional

methods, h = ts−1 − t0 and Dh = diag(h1, . . . ,hs−1)/h. The integer s defines the dimension of

the discrete problem. The time interval over which the approximation is computed is [t0, ts−1].
We use the numerical scheme by fixing a priori the value of s. This is a suitable choice for ini-

tial values problem. The resulting one step scheme, called block-BVM, can be reformulated

as a Runge-Kutta scheme since the matrix Ã = [a0, A ], with A of size s−1, is nonsingular.

Moreover the consistency requirement for the main and the additional methods imply that

−A
−1a0 = (1, . . . ,1)T = e

and, multiplying by (A ⊗ Im)−1, we have




y1

. . .
ys−1


 = (e⊗ Im)y0 +h(A−1DhB̃ ⊗ Im)f

and

y = (e⊗ I2m)y0 +h(A⊗ I2m)f

where

A =

(
OT

s

A
−1DhB̃

)

This corresponds to an implicit Runge-Kutta scheme used with stepsize h. The tableau is

(es = (0, . . . ,0,1)T ):

c1 = 0

c2

c3 A
...

cs = 1

b = eT
s A

with ci+1 = (ti − t0)/(ts−1 − t0), i = 0,s−1

In our code we have implemented three classes of methods called ETR, TOM, BS by always

choosing the normalized mesh points ci satisfying ci = 1− cs+1−i; with this choice of the

mesh, all the methods are symmetric (see Definition 4.1 in [11]) as in the following definition:

DEFINITION 1: Consider the permutation matrix

Ps =




0 . . . 0 1

0 0 · 0

0 1 0
...

1 0 . . . 0




of size s× s, a block-BVM is symmetric if it verifies
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Ps−1 ÃPs = − Ã

Ps−1 B̃Ps = B̃

Ps−1DhPs−1 = Dh

The following results hold true (see Theorem 4.3 in [11] )

THEOREM 2. For a symmetric block-BVM the boundary of the region of A-stability

contains the imaginary axis.

Coefficients are computed in the following way:

• ETR: the coefficients α
(n)
i are chosen in order to have the matrix Ã with the following

structure

Ã = Ãg =




−1 1 0 . . . 0

0 −1 1 0
...

0
. . .

. . .
. . . 0

0 . . . 0 −1 1




, (5)

order p = k +1 and smin = k +1,s >= smin [2].

• TOM: the coefficients of the main method are chosen in order to have the maximum

order p = 2k, the additional methods are chosen in the ETR class, this implies that smin =
2k,s >= smin [2];

• BS: the coefficients are computed in order to obtain a collocation method using the B

spline basis with order p = k +1 and smin = k +1,s >= smin ([18], [19]).

An important role assumes the fixed normalized mesh c1 < · · · < cs; a suitable choice of it

improves the properties of the associated one step scheme. We decided to compute the mesh

using the zeros of the orthogonal polynomial ds−2

dxs−2 (xs−1(x−1)s−1). We note that this way s is

in general greater or equal to k+1. An important relation beetwen these scheme and classical

Runge-Kutta schemes is obtained when the size of the block is s = smin and is described in

the following Theorem (see Theorem 1 in [1]) .

THEOREM 3. A block-BVM based on k-step BVM of order p with minimal blosksize

and non singular coefficient matrix , is equivalent to a RK collocation method.

Moreover, the Runge-Kutta method equivalent to a symmetric block-BVM is symmetric or

time reversible.

Using these results, we can state that symmetric block-BVM share all the properties of sym-

metric Runge-Kutta schemes when applied to reversible differential equations ([9], Ch. V).

If s = smin, then all the implemented numerical schemes are equivalent to the Lobatto IIIA

scheme. In this case a super-convergence happens; this means that the order in the approxi-

mation of the last point ts−1 is 2smin−2. If s > smin, we lose this super-convergence condition.

We prefer the block-BVM representation for two main computational reasons. The first one

is that we easily compute the coefficients of the methods also when s > k + 1, the second

one is that in this case the matrices Ã and B̃ are banded matrices, whereas the corresponding

matrix A of the Runge-Kutta tableau is full.
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Since all the considered methods are implicit and we need to solve non-linear equations,

two main problems arise: their efficient numerical solutions and the computation of the start-

ing approximations. For the moment we have considered only a constant stepsize h imple-

mentation.

About the solution of the nonlinear equation, we consider both a Newton like iteration and

a functional iteration. Even if the latter is usual, because of its cheaper computational cost,

our numerical experiments enlightened that, in many cases, a Newton like iteration works

better.

The starting approximations are computed using a BS Hermite spline quasi-interpolants

[21], that compute an approximation of the continuous solution of the same order of the used

numerical method and, for the BS schemes, collocate the differential equations.

Moreover, since the coefficients of the methods depend on the internal mesh and on the

size of the block, an accurate computation of the coefficients is another important issue for

high order reliable numerical schemes.

More implementation details will be treated in a further paper where the code will be pre-

sented exhaustively; here we focus our attention on the applications of the presented methods.

3 Numerical Experiments

Here we present our results concerning the conservation of first integral of some significant

conserving systems, which happen to be Hamiltonian. About the choice of the convenient

stepsize, our approach is taken from engineering literature (e.g. [25] ) and is based upon

the Fourier series representation of periodic, quasi-periodic and nearly quasi-periodic orbits.

Once we get an estimation of the (presumed) longest period by an optimization process (over

short time intervals), we can use a convenient ratio of that period as stepsize for the numerical

integration over long time intervals; this way, we obtained good results, when we used a

conveniently stable numerical method of a conveniently high order. Even chaotic orbits can

be well simulated by our methods for quite long time intervals, where conservation of first

integral is achieved as well, within a required accuracy. Indeed, many general numerical

integrators do not preserve at all first integrals of their corresponding continuous differential

systems, over long time intervals. Therefore such preservation has been widely used as a tool

to measure the accuracy of long-term behavior of these integrators, even though, as stated

before, conservation of first integral is just a necessary condition for correctness of orbits

(when the degrees of freedom are more than one). The following numerical experiments

were carried using an improved version of the code already presented in [17]. All the reported

figures are drawn by semilogaritmic scale.

Example 1. We consider the one-degree-of-freedom Hamiltonian system with the given

Hamiltonian H(p,q) = T (p) +U(q), where T (p) = p3

3
−

p
2

and U(q) = q6

30
+ q4

4
−

q3

3
+ 1

6
.

Since the Hamiltonian H is not an even function in p, the system is not reversible. We applied

our symmetric methods with initial conditions p(0) = 1 and q(0) = 0. We notice that in this

case H(0) = 0, so we can compute absolute Hamiltonian error only. The periodic orbit has

a period whose first five correct digits were estimated 8.8808. This integrable Hamiltonian

system was firstly studied in [7] , where they investigated examples when symmetric methods

produce an energy drift, and then in [3]. In Fig. 1 we report our results relating to method BS

with stepsize h = 8.8808/24. The important point to note here is the expression of h, which is
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taken as a convenient integer submultiple of the estimated period. At first we used a method of

order 4 with s = 10 and then a method of order 10 with s = 14. It is clear that in the first case

an energy drift appears (the increasing straight line interpolating the maxima is also drawn),

whereas in the second case no drift is present, because of the higher order of the method. In

[7] authors report that LOBATTO IIIA method of order 4 exhibits an evident energy drift. In

Fig. 2 we report our results relating to ET R method of order 8 with s = 8, which means a

minimum blocksize; the chosen stepsize was h = 8.8808/20, i.e. a little larger stepsize, but

still an integer submultiple of the estimated period. This method corresponds to a Lobatto

IIIA method of an order higher than the presently available ones. By the way, we notice that

ET R method of order 4 with s = 4 corresponds to a Lobatto IIIA method of order 6. It is clear

that no drift appears over more than 105 periods.
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order 4
order 10

Fig. 1 Example 1- Method BS

Example 2. The second example is an Hamiltonian system, which was firstly presented

in [27] , where it was deeply investigated from a theoretical point of view. The considered

system is the following:

··

q1 +4q1 = q2
2

··

q2 +q2 = 2q1q2

The Hamiltonian is H = 1
2
(p2

1 +4q2
1)+ 1

2
(p2

2 +q2
2)−q1q2

2, .

The Hamiltonian H is an even function in p, so the system is reversible.

Moreover this system is nonintegrable, but it can be considered nearly-integrable in the neigh-

borhood of the origin, since the origin is a stable equilibrium point.

Here we take under consideration three sets of initial conditions, corresponding to increas-

ing values of initial Hamiltonian, which means that we are moving from nearly periodicity

towards chaotic behavior:
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Fig. 2 Example 1- Method ETR, order 8, minimum blocksize

a) q1(0) = 0;q2(0) = 0; p1(0) = 1.5e − 4; p2(0) = 1.5e − 4, with initial Hamiltonian

H0 = 2.25e−8. We used BS method of order 10 and s = 14 with stepsize h = π/12. This ex-

ample was already treated in [22], where it was shown that the longest period is T = 2π (plus

neglegible perturbations). Therefore the choice of π/12 is chosen analogously to the previ-

ous example. In Fig. 3 we report the behavior of relative Hamiltonian error over more than

106 cycles and we show that no drift appears, since the error remains permanently bounded

(within the considered interval).

b) q1(0) = 0;q2(0) = 0; p1(0) = 0.08; p2(0) = 0.08, with initial Hamiltonian H0 = 6.4e−

3. We used ET R method of order 8 with s = 8, which means a minimum blocksize. For this

example, the longest period was estimated T = 6.3263. Therefore the stepsize was chosen

h = T/8. From Fig. 4 it is clear that even in this case we have no energy drift, over more than

106 cycles.

c) q1(0) = 0;q2(0) = 0; p1(0) = 0.5; p2(0) = 0.5, with initial Hamiltonian H0 = 0.25.
We used TOM method of order 6 with s = 10. Here the orbit exhibits a behavior which

suggests transition to chaos and the presumed longest period is about T = 60. Therefore the

stepsize was chosen h = 2. Since the order of the method is quite low, we expect that the

relative Hamiltonian error is quite high. Indeed, from Fig. 5 it is clear that again no energy

drift appears, even for high values of relative errors, over more than 104 cycles .

Example 3. The third example is an Hamiltonian system taken from the field of structural

engineering. This highly nonlinear system was deeply studied in [5] and can be rewritten in

the following form:

4
··

q1 +
··

q2 = −β[4q3
1 −6q2

1q2 +4q1q2
2 −q3

2]−5k q1 +3k q2

··

q1 +2
··

q2 = −β[q3
2 −3q2

2q1 +4q2q2
1 −2q3

1]+3k q1 −2k q2
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Fig. 3 Example 2- Method BS, order 10
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Fig. 4 Example 2- Method ETR, order 8, minimum blocksize

where β = 3.5555556×1012, k = 2.61123556×107.
The initial conditions are q1(0) = 0;q2(0) = 0; p1(0) = 3.576526614260458; p2(0) =

1.733, corresponding to a total energy H = 1000. Analogously to the previous example, this

system is nonintegrable, but it can be considered nearly-integrable in the neighborhood of the

origin, since the origin is a stable equilibrium point. However in this case the initial conditions

are chosen quite far from the origin, so that the Hamiltonian exhibits a high value. In this case

the presumed longest period was estimated of the order of 10−4 [23]. Given that, we chose
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Fig. 5 Example 2- Method TOM, order 6

a BS method of order 10 and s = 14 with stepsize h = 9e− 6, that is a quite high order

with a quite small stepsize. In Fig. 6 the relative Hamiltonian error is reported until t = 1sec,

which means about 104 cycles, but it is worth noticing that the physical problem suggests that

solutions are interesting until 0.1sec only.

It is clear that , even though a clear transition to chaos happens, no drift in numerical com-

putation of Hamiltonian appears.

Moreover, in Fig. 7 we report the Poincarè map of the same flow obatined by a special op-

tions of our code, which allows the BS method to get a Poincarè map in continuous sense (i.e.

of continuous orbits), without interpolation and approximation. It is clear that, even though

a hyperbolic point is present, the provided Poincarè map turns out satisfactorily clean and

significant.

Example 4. We consider the Hénon-Heiles model whose Hamiltonian is

H(p,q) =
1

2
(p2

1 + p2
2)+

1

2
(q2

1 +q2
2)+q2

1q2 −
1

3
q3

2

and we chose initial values q1(0) = 0, q2(0) = 0.3, p2(0) = 0.2 and the positive value p1(0)
such that the Hamiltonian takes the value H0 = 1/8 : the solution is chaotic ( [9], Section

I.3 ). In [10] for this same problem, they present some simulations carried out by the Gauss-

Runge-Kutta method of order 8 and by an explicit composition method (based on Störmer-

Verlet approach) of order 8. Stepsize is taken h = 2π/240 for both methods and integration

is carried out on an interval of length 2πe + 6. In [10] they aim at showing the influence

of round-off error on the conservation of first integrals for long time integrations. They find

that for the explicit composition method the round-off contribution increases, as expected

for random walk, like the square root of time, whereas for the implicit Runge-Kutta method

the round-off contribution is a superposition of a statistical error, which grows like a square

root of time, and of a deterministic error which grows linearly with time. We found different
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Fig. 6 Example 3- Method BS, order 10
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Fig. 7 Example 3- Method BS, order 10

results. Here in Fig. 8 we report the relative Hamiltonian error, referring to our simulation

carried out by method BS of order 4 with s = 10 and stepsize h = 0.05 up to t = 7e + 6

sec. It is clear that no drift in Hamiltonian error appears , which means that our method,

equipped with a suitable stepsize, is able to provide good numerical approximations, even

though solution is chaotic.

We notice that the Hénon-Heiles system has a critical energy value Hc = 1/6, at which

the qualitative nature of solutions changes, from bounded to unbounded orbits. In [24] they
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Fig. 8 Example 4- Method BS, order 4

choose initial values q1(0) = 0.1, q2(0) = −0.5, p1(0) = p2(0) = 0, corresponding exactly

to the critical energy Hc = 1/6. In particular initial spatial coordinates (q1,q2) are taken at

a point on the boundary of the critical triangular region (see [16], Section 1.4a). In [24] they

solve this system by a new class of energy-preserving B−series numerical method and com-

pare their features with those of an analogous second order sympletic method, the leapfrog

method (e.g [9] ) up to t = 71 sec and with stepsize h = 0.16. Finally they show that their B-

series solution not only preserves energy, but also stays within the stable zone, whilst leapfrog

solution stays outside and soon becomes completely unstable. We repeated the same simu-

lations by our BS method of order 4 and s = 10 with stepsize h = 0.16, and our results are

reported in Fig. 9 and Fig.10. It is clear that by our method, not only energy is preserved,

but also the stable zone superbly embraces the solution for a much longer time, i.e. up to

t = 71e+6 sec (for convenience, the border of triangular stable zone is also drawn [16] ).

4 Conclusion and remarks

When simulations are carried out for reversible integrable systems, almost all methods work

properly, but when systems are nonintegrable or nearly integrable and non reversible and

even chaotic, then numerical troubles become dominant. This is the reason why we presented

previous examples. Actually, we carried out a large amount of numerical tests where the cru-

cial choices were always two: the stepsize and the order of the method. We tried to find out

efficient solutions time by time, but no general rules appeared, except that stepsize has to be

conveniently chosen, according to the (presumed) longest period. For our block-BVM, both

the the order p and the parameter s are input data, so a very large number of possible combina-

tions are available. Even though conservative systems are very sensitive to non-conservative

perturbations, such those introduced by some numerical integrators, our numerical evidence
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Fig. 9 Example 4- Method BS, order 4
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Fig. 10 Example 4- Method BS, order 4 : configuration space orbit

suggests that we are always able to find a convenient combination of order p, parameter s and

stepsize h such that the first integral is preserved within a required accuracy, over long-time

intervals. One of the main advantages of our methods is given by their numerical stability, as

was shown in Example 4. Another significant advantage is that our class of methods provides

reliable methods of higher orders than the usual ones. We did not present any explicit com-

parisons with other methods, because here we restrict to the presentation of the features of

our class of symmetric methods only.
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