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The “correlated-projection technique” has been successfully applied to derive a large

class of highly non Markovian dynamics, the so called non Markovian generalized

Lindblad type equations or Lindblad rate equations. In this article, general unravel-

lings are presented for these equations, described in terms of jump-diffusion stochastic

differential equations for wave functions. We show also that the proposed unravel-

ling can be interpreted in terms of measurements continuous in time, but with some

conceptual restrictions. The main point in the measurement interpretation is that

the structure itself of the underlying mathematical theory poses restrictions on what

can be considered as observable and what is not; such restrictions can be seen as the

effect of some kind of superselection rule. Finally, we develop a concrete example and

we discuss possible effects on the heterodyne spectrum of a two-level system due to

a structured thermal-like bath with memory.
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I. INTRODUCTION

Open quantum system theory concentrates on the study of the time evolution a quantum

system in contact with an environment; in particular, this theory aims to describe phenom-

ena such as decoherence, relaxation, emission of light, evolution of entanglement1–5. Starting

from the Hamiltonian approach describing the coupled evolution of the quantum system and

the environment, the reduced evolution of the quantum system is obtained by tracing out

the degrees of freedom of the environment. This allows to describe the time evolution of the

open system in terms of its density matrix ρS(t) with the help of a quantum master equation.

Invoking standard assumptions as weak coupling limit and Born-Markov approximation, one

can derive the Markovian quantum master equation3–5, with infinitesimal generator in the

Lindblad form6,7. This approach, called the Markovian approach, is physically based upon

the absence of memory effects in the action of the environment. This is a good and useful

assumption in several physical examples, namely in quantum optics1–5.

However, such assumptions are not valid in general and in many physically important

cases the description of a reduced quantum evolution requires a non-Markovian approach

involving strong and long memory effects. For example, situations with strong coupled

systems, entanglement and correlation in the initial state, finite reservoirs. . . need to be de-

scribed by non-Markovian dynamics. Different techniques, such as the Nakajima-Zwanzig

projection technique, the time-convolutionless operator technique, random Lindblad oper-

ator, random functional equations have been developed to derive non-Markovian quantum

master equations3,4,8–14. Recently, the concept of correlated projection technique has been

used in order to describe a non-Markovian generalization of Lindblad type master equa-

tions (or Lindblad rate equations)15–17. This approach has been successfully applied to de-

scribe non-Markovian models: structured reservoirs, two-state systems coupled with energy

bands15–25. . .

An active line of research concentrates on the study of the behaviour of the solutions

of these equations (thermalization, return to equilibrium, decoherence,...). But even in

the Markovian case, the quantum master equations remain often of a formal interest. In

particular, most of the equations cannot be solved analytically and involve a large num-

ber of parameters which prevent numerical simulations. Concerning the numerical aspect,

a powerful approach is the theory of “stochastic wave function unravelling”. This con-
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sists in constructing a stochastic differential equation for a wave function ψ(t) such that

E[|ψ(t)〉〈ψ(t)|] = ρS(t). Then, by taking the average of a large number of realizations of

ψ(t) one reproduces the solution of the master equation. This has been applied in many

Markovian situations2,4,26,27. Concerning the non-Markovian framework, different extensions

of this approach have been developed28–30 (there is no general and common approach).

In the Markovian case the stochastic unravelling of the master equation has not only a

technical usefulness, but it can be also interpreted in terms of measurements in continuous

time; often the name of quantum trajectory theory is used2,27. In particular, for quantum

optical systems the stochastic formulation is used to describe direct, heterodyne and homo-

dyne detection. However, in the non-Markovian setup the notion of quantum trajectories as

well as the measurement interpretation are still highly debated8,9,28,30–33.

For the non Markovian generalization of Lindblad type master equations15–17, only par-

ticular unravellings have been presented34,35. In this article, we aim to present a general

approach to obtain unravellings for this type of equations and to show that in this case an

interpretation of the unravelling in terms of measurements in continuous time is possible.

Our approach is based upon the general technique used to unravel Markovian Lindblad

equations. In particular, our results include and generalize the previous results34. However,

we have an important conceptual difference from the Markovian case. We are assuming that

the structure of the bath responsible of the non Markovian behaviour is not observable and

this makes unobservable some of the components of the noises introduced in the unravelling.

The article is structured as follows. In Section II, we describe the Lindblad rate equations.

In Section III, we present the jump-diffusion unravellings of these equations. In particular,

we derive non Markovian generalizations of stochastic Schrödinger equations. The stochastic

master equations and the measurement interpretation are given in Section IV. In Section

V, we construct a concrete non Markovian model (a two level system in contact with a

structured environment), we present a possible unravelling, and we show possible effects of

the non Markov dynamics on the heterodyne spectrum.
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II. NON-MARKOVIAN GENERALIZED LINDBLAD-TYPE MASTER

EQUATIONS

In this section we introduce the non Markovian Lindblad-type master equation which

we are interested in. These equations can be obtained by the application of the correlated

projection technique and are sometimes called Lindblad rate equations10,15–21,23–25. For any

separable complex Hilbert space H we denote by L(H) the space of the linear bounded

operators on H, by T(H) the space of trace class operators and by S(H) the set of statistical

operators (a statistical operator is a trace class, positive operator with trace 1).

Let HS denote the Hilbert space representing the open system. The generalized master

equation we consider is the evolution equation

d

dt
ηi(t) = −i[H i, ηi(t)] +

∑

α∈A

n
∑

k=1

(

Rik
α ηk(t)R

ik
α

∗ − 1

2

{

Rki
α

∗
Rki
α , ηi(t)

}

)

(1)

for the vector
(

η1(t), . . . , ηn(t)
)

with components in T(HS). The quantities H i, Rki
α are

system operators which we take to be bounded for mathematical simplicity and A is a finite

set of indices.

Assumption 1. HS is a complex separable Hilbert space, H i = H i∗ ∈ L(HS), Rki
α ∈ L(HS),

k, i = 1, . . . , n, α ∈ A. The initial condition of Eq. (1) has the properties

ηi(0) ∈ T(HS), ηi(0) ≥ 0,
n
∑

i=1

TrHS {ηi(0)} = 1. (2)

Remark 1. Equation (1) preserves the properties (2) at all times16; then, we interprete as

system state the statistical operator

ηS(t) =
n
∑

i=1

ηi(t). (3)

The proof of the positivity preservation property of Eq. (1) is very instructive and goes

through the embedding of the dynamics {ηi(0)} 7→ {ηi(t)} into an usual Lindblad dynamics

in an extended state space16. Let us consider the enlarged space H = HS ⊗ Cn. Let

{ei, i = 1, . . . , n} be a reference orthonormal basis of Cn. Let us introduce the block

diagonal operator η̃(t) on H by

η̃(t) =
n
∑

i=1

ηi(t) ⊗ |ei〉〈ei|
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and set

H =
n
∑

i=1

H i ⊗ |ei〉〈ei|, Sijα = Rij
α ⊗ |ei〉〈ej|. (4)

Then, we get immediately from (1) the evolution equation for η̃(t):

d

dt
η̃(t) = L̃[η̃(t)] ≡ −i[H, η̃(t)] +

∑

α∈A

n
∑

i,j=1

(

Sijα η̃(t)Sijα
∗ − 1

2

{

Sijα
∗
Sijα , η̃(t)

}

)

. (5)

For block diagonal initial conditions the two equations (1) and (5) are completely equivalent.

Let us note that the linear map L̃ is explicitly in the Lindblad form, so that the maps

η̃(0) 7→ η̃(t) and {ηi(0)} n
i=1 7→ {ηi(t)} n

i=1 are completely positive (CP).

In spite of the construction above, the index i is not interpreted as a quantum degree

of freedom, but as the value of a classical observable. In typical applications the index i

labels the energy bands of a structured environment15,16,21,22,34. A vector of operators with

the properties (2) can be seen as a classical/quantum state. If we set pi(t) = TrHS{ηi(t)}
and η̂i(t) = ηi(t)/pi(t), we have η̂i(t) ∈ S(HS), pi(t) ≥ 0,

∑n
i=1 pi(t) = 1. In quantum infor-

mation the set of probabilities and statistical operators {pi(t), η̂i(t); i = 1, . . . , n} is called

an ensemble and it is completely equivalent to the vector
(

η1(t), . . . , ηn(t)
)

36,37. In this

setup the system state (3) is known as average state and it does not contain the informa-

tion on the classical label i. Equation (1) gives a memoryless evolution for the ensemble

{pi(t), η̂i(t); i = 1, . . . , n}; it is the evolution of the system state ηS(t) which is non Marko-

vian.

In the Markov case it is well known how to construct general unravellings of a master

equation and how to give a measurement interpretation to them. So, to have an usual master

equation in Lindblad form extending our non Markovian dynamics (1) is a good starting

point for the whole construction. However, Eq. (5) is not the unique extension of (1) and

here we give another extension which is in some sense more convenient as starting point.

The possible extensions depend on having or not the condition Rij
α ∝ δij; so, we put in

evidence some diagonal terms.

Assumption 2. Let us take A = {−m1, . . . ,−1, 1, . . . ,m2}, and Rij
−α = δijL

i
α, for α =

1, . . . ,m1.

With this assumption Eq. (1) becomes

d

dt
ηi(t) = Ki

(

η1(t), . . . , ηn(t)
)

, (6a)
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Ki

(

τ1, . . . , τn
)

:= −i[H i, τi] +

m1
∑

α=1

(

Li
ατiL

i
α

∗ − 1

2

{

Li
α

∗
Li
α, τi

}

)

+

m2
∑

α=1

n
∑

k=1

(

Rik
α τkR

ik
α

∗ − 1

2

{

Rki
α

∗
Rki
α , τi

}

)

. (6b)

By using the operators (4), we define the new operators

Vα =
n
∑

i,j=1

Sij−α ≡
n
∑

i=1

Li
α ⊗ |ei〉〈ei|, α = 1, . . . ,m1 , (7a)

Sjβ =
n
∑

i=1

Sijβ ≡
n
∑

i=1

Rij
β ⊗ |ei〉〈ej|, β = 1, . . . ,m2 , (7b)

and the Lindblad map L: ∀τ ∈ T(H),

L[τ ] = −i[H, τ ] +

m1
∑

α=1

(

VατVα
∗ − 1

2
{Vα∗Vα, τ}

)

+

m2
∑

α=1

n
∑

j=1

(

SjατS
j
α

∗ − 1

2

{

Sjα
∗
Sjα, τ

}

)

. (8)

Then, we consider the Markovian quantum master equation

d

dt
η(t) = L[η(t)], (9)

with the initial condition

η(0) ∈ S(H), TrCn {η(0) (11 ⊗ |ei〉〈ei|)} = ηi(0). (10)

Remark 2. Let us use a subscript i to denote the i-th block on the diagonal of any trace-class

operator, i.e. τi = TrCn {τ (11 ⊗ |ei〉〈ei|)}. It is easy to check that

L̃[τ ]i = L[τ ]i = Ki(τ1, . . . , τn), (11)

and, so, both the master equations (5) and (9) reduce to the same Lindblad rate equation

(6) for the blocks on the diagonal, while they are different for the off-diagonal blocks. Being

equal at time t = 0 due to (10), we have that the blocks on the diagonal of η(t) are exactly

the quantities ηi(t) satisfying Eq. (6).

Another way to describe the situation is to say that there is a superselection rule and

only block-diagonal observables are permitted. Then, statistical operators with the same

blocks on the diagonal are equivalent and represent the same physical state. In this sense

the two master equations (5) and (9) are physically equivalent.
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It is worthwhile to note that the operator L̃ can always be written in the form L. It is

enough to change the meaning of the subscript in the operators Rij
α or Li

α in such a way

that it includes also the index i. Then, given two triples (i, j, α) and (i′, j′, α′), we have that

i 6= i′ ⇒ α 6= α′ (the same holds for two couples (i, α) and (i′, α′)). In this way, in the

sums in Eqs. (7) only one term survives and L̃ = L. So, there is no loss of generality in

considering only the master equation (9); the other case is always included, eventually at

the price of a renaming and reordering of the indices.

It is useful to formalize the framework we have presented in terms of normal states on

W ∗-algebras and of CP dynamics.

Remark 3. Let C
(

X;L(HS)
)

be the W ∗-algebra of the functions from X = {1, 2, . . . , n} into

L(HS)36,38. By natural identifications we have C(X;C) ' Cn and C
(

X;L(HS)
)

' L(HS) ⊗
Cn, so that a ∈ C

(

X;L(HS)
)

means a = (a1, . . . , an), aj ∈ L(H); then, ‖a‖ = maxj∈X ‖aj‖.

The predual space of C
(

X;L(HS)
)

is C
(

X;T(HS)
)

' T(HS)⊗Cn, so that τ ∈ C
(

X;T(HS)
)

means τ = (τ1, . . . , τn), τj ∈ T(H); then, ‖τ‖1 =
∑

j∈X ‖τj‖1 =
∑n

j=1 TrHS

{

√

τ ∗
j τj

}

. In

a natural way a and τ can be considered as block-diagonal elements of L(H) and T(H),

respectively: a '
∑n

j=1 aj ⊗ |ej〉〈ej|, τ '
∑n

j=1 τj ⊗ |ej〉〈ej|.

Remark 4. Equations (8) and (9) define a CP quantum dynamical semigroup T (t) on

T(H). Then, we define the projection P : T(H) → C
(

X;T(HS)
)

⊂ T(H) by (P [τ ])j =

TrCn{τ(11 ⊗ |ej〉〈ej|}. The dynamics associated to the Lindblad rate equation (6) turns

out to be P ◦ T (t)
∣

∣

C

(

X;T(HS)
); it is CP and Markovian. Finally, we define the projection

PS : C
(

X;T(HS)
)

→ T(H) by PS[τ ] =
∑

j τj. The CP dynamics giving the system state (3)

is PS ◦ P ◦ T (t)
∣

∣

C

(

X;T(HS)
) and it is this dynamics which is non Markovian.

III. UNRAVELLING OF NON MARKOVIAN LINDBLAD-TYPE MASTER

EQUATIONS

In this section, we derive a general form of jump-diffusion stochastic differential equations

(SDEs) for wave functions in the enlarged space H = HS⊗Cn which provide unravellings of

the Lindblad rate equations (6). Having at hand the usual Markovian master equation (9),

we adopt the usual approach27,39,40 of stochastic Schrödinger equations in the Markovian

case. This method is based on classical stochastic calculus (see for instance Refs. 41 and 42

and 27, Appendix A) and the notion of a posteriori states43–46.
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The key point of the theory is the construction of a linear and a non-linear stochastic

Schrödinger equation (SSE), connected by a normalization and a Girsanov transformation,

and, then, of the linear and non-linear stochastic master equations. The non-linear SSE is

the key starting point for numerical simulations of the solution of a master equation, while

the possibility of passing to linear equations is fundamental for the possibility of giving a

measurement interpretation to the whole construction without violating the rules of quantum

mechanics. Finally, the non-linear stochastic master equation gives the a posteriori states,

the conditional state to be attributed at the system at time t, knowing the results of the

measurement up to time t.

A. The linear stochastic Schrödinger equation

We consider a filtered probability space
(

Ω,F, (Ft),Q
)

, satisfying the usual hypotheses

[27, Appendix A]. On this space, we consider d1 + d2 × n independent standard Wiener

processes Wα, W j
β (α = 1, . . . , d1 ≤ m1; β = 1, . . . , d2 ≤ m2; j = 1, . . . , n) and (m1 − d1) +

(m2−d2)×n independent standard Poisson point processes Nα of intensity λα > 0 and N j
β of

intensity λjβ > 0 (α = d1 + 1, . . . ,m1; β = d2 + 1, . . . ,m2; j = 1, . . . , n), also independent of

the Wiener processes. All these processes are adapted and W k
α(t), Nα(t)−λαt and N j

α(t)−λjαt

are (Ft)-martingales, under the reference probability Q41,42. The trajectories of the Wiener

processes are taken to be continuous and the trajectories of the Poisson processes continuous

from the right. We set also

λ =

m1
∑

α=d1+1

λα +

m2
∑

α=d2+1

n
∑

j=1

λjα .

Now, on
(

Ω,F, (Ft),Q
)

, we consider the following SDE for an H-valued process:

dζ(t) =

(

K +
λ

2

)

ζ(t−)dt +

d1
∑

α=1

Vαζ(t−)dWα(t) +

d2
∑

α=1

n
∑

k=1

Skαζ(t−)dW k
α(t)

+

m1
∑

α=d1+1

(

1√
λα

Vα − 11

)

ζ(t−)dNα(t) +

m2
∑

α=d2+1

n
∑

k=1

(

1
√

λkα
Skα − 11

)

ζ(t−)dNk
α(t), (12)

where the operator in the drift part is given by

K = −iH − 1

2

m1
∑

α=1

Vα
∗Vα −

1

2

m2
∑

α=1

n
∑

k=1

Skα
∗
Skα =

n
∑

j=1

Kj ⊗ |ej〉〈ej|,

8



Kj = −iHj − 1

2

m1
∑

α=1

Lj
α

∗
Lj
α −

1

2

m2
∑

α=1

n
∑

k=1

Rkj
α

∗
Rkj
α .

By using the decomposition ζ(t) =
∑n

j=1 ζj(t) ⊗ ej, we get the equivalent system of SDEs

dζj(t) =

(

Kj +
λ

2

)

ζj(t−)dt +

d1
∑

α=1

Lj
αζj(t−)dWα(t) +

m1
∑

α=d1+1

(

1√
λα

Lj
α − 11

)

ζj(t−)dNα(t)

+

d2
∑

α=1

n
∑

k=1

Rjk
α ζk(t−)dW k

α(t) +

m2
∑

α=d2+1

n
∑

k=1

(

1
√

λkα
Rjk
α ζk(t−) − ζj(t−)

)

dNk
α(t). (13)

As usual the solutions of SDEs with jumps are taken to be continuous from the right with

left limits (càdlàg processes); the notation t− means the left limit.

Remark 5. If some of the operators S in the jump part is zero, we eliminate its contribution

by taking the corresponding Poisson process with zero intensity, so that it is almost surely 0

for all times. In other words, if we have Skα = 0 for some k and some α > d2, we take λkα ↓ 0.

Assumption 3. We take a random normalized initial condition: ζ(0) = ζ0 =
n
∑

i=1

ζ0
i ⊗ ei,

ζ0 is F0-measurable, EQ

[

∥

∥ζ0
∥

∥

2
]

≡
n
∑

i=1

EQ

[

∥

∥ζ0
i

∥

∥

2
]

= 1. To reproduce the initial condition

(2) we ask also EQ [|ζ0〉〈ζ0|] = η(0). Mean values of random operators are defined in weak

sense.

Equation (12) is a particular case of the equations studied in Refs. 30 and 40, so, we

refer to those papers for the properties of its solution, while all the results could be obtained

by standard arguments in stochastic calculus and the Itô formula for continuous and jump

processes summarized by the Itô table

dWα(t)dWβ(t) = δαβdt, dW k
α(t)dW l

β(t) = δαβδkldt,

dNα(t)dNβ(t) = δαβdNα(t), dN i
α(t)dN j

β(t) = δαβδijdN
i
α(t);

(14)

all the other products are vanishing.

Theorem 1 ([30, Prop. 2.1, Theor. 2.4, Prop. 3.2]; [40, Theor. 1.1, Theor. 1.2]). Under

Assumptions 1 and 3, the SDE (12) admits a unique (up to Q-equivalence) solution ζ(t),

t ≥ 0. Moreover, the mean state EQ[|ζ(t)〉〈ζ(t)|] satisfies the master equation (9).
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Finally, under the probability Q, the process p(t) := ‖ζ(t)‖2 ≡
n
∑

i=1

‖ζi(t)‖2 is a non-

negative (Ft)-martingale with Q-mean 1 and it satisfies the Doléans SDE

dp(t) = p(t−)

{ d1
∑

α=1

vα(t)dWα(t) +

m1
∑

α=d1+1

(

Iα(t)

λα
− 1

)

(

dNα(t) − λαdt
)

+

d2
∑

α=1

n
∑

k=1

vkα(t)dW k
α(t) +

m2
∑

α=d2+1

n
∑

k=1

(

Ikα(t)

λkα
− 1

)

(

dNk
α(t) − λkαdt

)

}

, (15)

where

vα(t) = 2 Re
〈

ψ(t−)
∣

∣

∣
Vαψ(t−)

〉

≡ 2
n
∑

j=1

Re
〈

ψj(t−)
∣

∣

∣
Lj
αψj(t−)

〉

, (16a)

vkα(t) = 2 Re
〈

ψ(t−)
∣

∣

∣
Skαψ(t−)

〉

≡ 2
n
∑

j=1

Re
〈

ψj(t−)
∣

∣

∣
Rjk
α ψk(t−)

〉

, (16b)

Iβ(t) = ‖Vβψ(t−)‖2 ≡
n
∑

j=1

∥

∥Lj
βψj(t−)

∥

∥

2
, (16c)

Ikβ(t) =
∥

∥Skβψ(t−)
∥

∥

2 ≡
n
∑

j=1

∥

∥

∥
Rjk
β ψk(t−)

∥

∥

∥

2

. (16d)

The process

ψ(t) =
n
∑

i=1

ψi(t) ⊗ ei (17a)

is defined by










ψk(t) =
ζk(t)

‖ζ(t)‖ , if ‖ζ(t)‖ 6= 0,

ψk(t) = ψ, if ‖ζ(t)‖ = 0,

(17b)

where ψ ∈ HS is a fixed vector of norm 1/
√
n.

Remark 6 (A first unravelling). By the theorem above, EQ[|ζ(t)〉〈ζ(t)|] satisfies the master

equation (9) with initial condition η(0) (Assumption 3). So, we have η(t) = EQ[|ζ(t)〉〈ζ(t)|],
∀t ≥ 0, and, by the discussion below Eq. (10), we get

ηi(t) = EQ[|ζi(t)〉〈ζi(t)|], i = 1, . . . , n, t ≥ 0, (18)

which shows that ζ(t) is a pure-state unravelling of the solution of the Lindblad rate equation

(6).
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Remark 7 ([40, Theor. 1.2]; [42, Theor. 29.2]). The solution of the Doléans SDE (15) is

p(t) =
∥

∥ζ0
∥

∥

2
exp

{ d1
∑

α=1

(
∫ t

0

vα(s)dWα(s) − 1

2

∫ t

0

vα(s)2ds

)

+

d2
∑

α=1

n
∑

k=1

(
∫ t

0

vkα(s)dW k
α(s) − 1

2

∫ t

0

vkα(s)2ds

)}

×
m1
∏

β=d1+1

{

exp

[
∫ t

0

(λβ − Iβ(s)) ds

]

∏

r∈(0,t]

[

1 +

(

Iβ(r)

λβ
− 1

)

∆Nβ(r)

]}

×
m
∏

β=m1+1

n
∏

`=1

{

exp

[
∫ t

0

(

λ`β − I`β(s)
)

ds

]

∏

r∈(0,t]

[

1 +

(

I`β(r)

λ`β
− 1

)

∆N `
β(r)

]}

,

where ∆Nβ(r, ω) = Nβ(r, ω) − Nβ(r−, ω), ∆N `
β(r, ω) = N `

β(r, ω) − N `
β(r−, ω). By the fact

that a Poisson process has only a finite number of jumps in a compact interval, for every ω

only a finite number of factors contributes to the product over r in the representation above.

Note that, if for some t, ω, β, ` one has I`β(t, ω) = 0 and ∆N `
β(t, ω) = 1, then p(T, ω) = 0,

∀T > t. Similarly, Iβ(t, ω) = 0 and ∆Nβ(t, ω) = 1 imply p(T, ω) = 0, ∀T > t.

B. The generalized stochastic Schrödinger equation

The final aim is to derive an equation for the normalized process (17). This is based upon

Itô stochastic calculus again and a Girsanov-type change of measure.

Remark 8 (The change of probability measure). For for every T > 0, we define the physical

probability PT over (Ω,FT ) by

PT (A) = EQ [1Ap(T )] ≡
∫

A

‖ζ(T, ω)‖2Q(dω), ∀A ∈ FT . (19)

Note that PT depends also on ζ0, which we assume to be normalized in the sense of Assump-

tion 3. The martingale property given in Theorem 1 ensures that the family of probabilities

{PT , T > 0} is consistent, that is

0 < t < T, A ∈ Ft ⇒ PT (A) = Pt(A). (20)

To obtain from (20) the existence of a unique probability in the infinite horizon limit

T → +∞ is a delicate problem and can be guaranteed only with respect to some sub-

filtration composed by Borel standard σ-algebras [27, Section A.5.5].
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It is important to note that the denominator ‖ζ(t)‖ in the definition of the processes

ψk(t) could indeed vanish as stated in Remark 7. But, by the construction in Remark 8,

this happens with probability zero with respect to the new probability PT , while this is not

guaranteed under the reference probability Q.

The important consequences of this change of measure are the modification of the char-

acteristics of the driving processes Nk
α(t) and W j

α(t) (due to some extension of the Girsanov

theorem to the diffusive/jump case41) and the fact that ψ(t) satisfies a non linear SDE, the

stochastic Schrödinger equation27,43–46.

Theorem 2 ([30, Prop. 2.5, Theor. 2.7]; [40, Prop. 1.1, Theor. 1.3]). Under the probability

PT , the processes Ŵα, Ŵ k
β , t ∈ [0, T ], α = 1, . . . , d1, β = 1, . . . , d2, k = 1, . . . , n, defined by

Ŵα(t) = Wα(t) −
∫ t

0

vα(s) ds, Ŵ k
β (t) = W k

β (t) −
∫ t

0

vkβ(s) ds, (21)

are independent standard Wiener processes and the processes Nα(t), Nk
β (t), t ∈ [0, T ],

α = d1 + 1, . . . ,m1, β = d2 + 1, . . . ,m2, k = 1, . . . , n, are counting processes of stochas-

tic intensities Iα(t) and Ikβ(t), respectively.

Again under the probability PT , the components of the process ψ(t) satisfy in the time

interval [0, T ] the SDE

dψj(t) = Vj
(

ψ1(t−), . . . , ψn(t−)
)

dt +

d1
∑

α=1

(

Lj
α −

1

2
vα(t)

)

ψj(t−)dŴα(t)

+

d2
∑

α=1

n
∑

k=1

(

Rjk
α ψk(t−) − 1

2
vkα(t)ψj(t−)

)

dŴ k
α(t)

+

m1
∑

α=d1+1

(

Lj
α

√

Iα(t)
− 1

)

ψj(t−) dNα(t) +

m2
∑

α=d2+1

n
∑

k=1

(

Rjk
α ψk(t−)
√

Ikα(t)
− ψj(t−)

)

dNk
α(t), (22a)

where

Vj(ψ1(t−), . . . , ψn(t−)) = Kjψj(t−) +
1

2

m1
∑

α=d1+1

Iα(t)ψj(t−)

+
1

2

m2
∑

α=d2+1

n
∑

k=1

Ikα(t)ψj(t−) +
1

2

d1
∑

α=1

vα(t)

(

Lj
α −

1

4
vα(t)

)

ψj(t−)

+
1

2

d2
∑

α=1

n
∑

k=1

vkα(t)

(

Rjk
α ψk(t−) − 1

4
vkα(t)ψj(t−)

)

. (22b)
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Note that the SDE (22) is non-linear in ψ(t), because the quantities Iα(t), Ikα(t), vα(t),

vkα(t) are bilinear in ψ(t) itself. Moreover, to consider (22) as a closed equation for ψ(t)

poses interesting mathematical problems on the definition of solution and on the meaning

of uniqueness because the law of the driving noises Nk
α depends on the solution ψ(t) itself

through the stochastic intensities Iα, Ikα
47.

Proposition 3 (A normalized unravelling). The solution of the Lindblad rate equation (6)

can be expressed as the following mean with respect to the physical probability

ηi(t) = EPT [|ψi(t)〉〈ψi(t)|], i = 1, . . . , n, T ≥ t ≥ 0. (23)

Proof. Let us introduce the set At = {ω ∈ Ω : ‖ζ(t, ω)‖ = 0}. Then, by the definitions of

p(t) and ψ(t) given in Theorem 1, we have

|ζi(t)〉〈ζi(t)| = 1Ac
t
|ζi(t)〉〈ζi(t)| = 1Ac

t
p(t)|ψi(t)〉〈ψi(t)| = p(t)|ψi(t)〉〈ψi(t)|.

By taking the Q-expectation and by taking into account Eq. (18) and the definition of the

new probability, we get

ηi(t) = EQ[|ζi(t)〉〈ζi(t)|] = EQ[p(t)|ψi(t)〉〈ψi(t)|] = EPt [|ψi(t)〉〈ψi(t)|].

Finally, by the consistency property (20), we get (23).

This proposition gives an unravelling of the Lindblad rate equation (6) based on the

components of the normalized vector ψ(t). When d1 = m1 = 0 and d2 = 0, we recover

the pure jump unravelling proposed in Ref. 34. If the aim is only to simulate Eq. (6), a

normalized pure state unravelling is much more efficient than a non-normalized one such as

(18)4. The simulation techniques based on (22) with d1 = d2 = 0 correspond to the Monte-

Carlo wave function method started in Ref. 26, while the case d1 = m1 and d2 = m2 gives

rise to simulations of diffusive type as in Refs. 48–50. From the point of view of simulations,

the fact that the starting point was Eq. (9), and not Eq. (5), has produced a more convenient

unravelling with less noises (no dependence on the label j).

IV. MEASUREMENTS AND STOCHASTIC MASTER EQUATIONS

In this section we face the problem of the measurement interpretation of the unravelling

we have constructed. We introduce the notions of instruments and a posteriori states and

we derive the non Markovian generalization of the stochastic master equations.
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A. Outputs and noises

In the theory of measurements in continuous time27,30,39,40 it is assumed that the output

of the measurement is given by some components of the driving noises appearing in the SDE

(Eq. (12) or (13) in our case); the law of the output in [0, T ] is the physical probability (19).

Not all the components of W and N have to contribute to the output. The role of some of

the components of the noises could be only to perform the unravelling of some dissipative

term.

Let us examine first the components W k
α(t), α = 1, . . . , d2, k = 1, . . . , n. For t ∈ [0, T ],

under the physical probability PT , from (21) we get W k
α(t) = Ŵ k

α(t)+
∫ t

0
vkα(s) ds; but, as one

sees from Eq. (16b), vkα(s) mixes different components of ψ(t) and cannot be an observable,

because it does not respect the superselection rule. In particular the mean value of W k
α(t)

turns out to be EPT
[

W k
α(t)

]

=
∫ t

0
EPT

[

vkα(s)
]

ds with

EPT
[

vkα(t)
]

= EPt
[

vkα(t)
]

= 2
n
∑

j=1

Re TrH
{(

Rjk
α ⊗ |ej〉〈ek|

)

η(t)
}

and it involves the unphysical non-diagonal blocks TrCn {(11 ⊗ |ej〉〈ek|) η(t)}. So, W k
α(t)

cannot contribute to the output.

No problem of this kind arises for the other processes, as one sees from Eqs. (16). The

stochastic intensities Iα(t), Ikα(t) and the processes vα(t) do not mix different components

of ψ(t). However, if the counting process Nk
α is detected we gain information on the block

contributing to the emission (the block k), as one sees for instance from the mean intensity

EPt
[

Ikα(t)
]

=
n
∑

j=1

TrHS

{

Rjk
α

∗
Rjk
α ηk(t)

}

.

If we assume that the index k is not physically observable coherently with the fact that the

system state is the sum (3), the process Nk
α is not observable by itself. However, there is no

obstruction in considering as physically observable the counting process

Mα(t) :=
n
∑

k=1

Nk
α(t), α = d2 + 1, . . . ,m2, (24)

whose stochastic intensity, under the physical probability, is
∑n

k=1 I
k
α(t). No problem arises

on the observability of the other counting processes Nβ (β = d1+1, . . . ,m1), whose stochastic

intensity under the physical probability is Iβ(t).
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Let us stress that, under the reference probability Q, Mα is a Poisson process of intensity

Λα =
n
∑

k=1

λkα , α = d2 + 1, . . . ,m2 . (25)

Let us consider finally the processes Wα. At least in quantum optical systems, observa-

tions with a “diffusive” character come out from heterodyne or homodyne detection and the

involved operators must have an explicit time dependence due to the presence of the local

oscillator [27, Chapt. 7]. We assume a very smooth time dependence which does not cause

any essential change in the previous results.

Assumption 4. For α = 1, . . . , d1, we assume the operators Lj
α to be time dependent and

given by

Lj
α(t) = hjα(t) L̂j

α , L̂j
α ∈ L(HS),

∣

∣hjα(t)
∣

∣ = 1;

the complex functions hjα(t) are continuous from the left.

No time dependence is introduced into the master equations of Section II. The explicit

time dependence involves only the terms with dWα in Eqs. (12), (13), (22a) and the third

term in the right hand side of (22b); moreover, from Eq. (16a), we get

vα(t) = 2 Re
n
∑

j=1

hjα(t)
〈

ψj(t−)
∣

∣L̂j
αψj(t−)

〉

.

The key result of the previous discussion is that, due to the mathematical structure and

the meaning of the discrete label in the states, only the processes Wα (α = 1, . . . , d1), Nβ

(β = d1 + 1, . . . ,m1), Mγ (γ = d2 + 1, . . . ,m2) can be considered as possible components

of the output. However, some of the components could represent pure noises, not observed

quantities. So, we assume that only the first components are observed.

Remark 9. Let us take d′1 ≤ d1, m′
1 ≤ m1, m′

2 ≤ m2. We assume that the observed outputs

are Wα with 1 ≤ α ≤ d′1, Nβ with d1 + 1 ≤ β ≤ m′
1, Mγ with d2 + 1 ≤ γ ≤ m′

2. If some

set of indices is empty, no component of the corresponding process is observed. The law of

the output is the physical probability (19). Finally we denote by {Gt, t ≥ 0} the augmented

natural filtration generated by the set of the observed processes.

B. The linear stochastic master equations and the instruments

It is possible to have only the observed processes as driving noises in the dynamical

equations, but for this we need to work with density matrices and trace-class operators. Let
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us introduce the positive trace-class operators

σ(t) := EQ
[

|ζ(t)〉〈ζ(t)|
∣

∣Gt
]

, σi(t) = EQ
[

|ζi(t)〉〈ζi(t)|
∣

∣Gt
]

. (26)

This means to take the mean on the non-observed components of the noises. Let us recall

that ζ(0) is connected to the initial condition η(0) (given in Eq. (10)) by Assumption 3. By

the fact that G0 is trivial we get

σ(0) = η(0) ∈ S(H), σi(0) = ηi(0). (27)

Proposition 4. In the stochastic basis (Ω,F,Gt,Q), the operator valued process σ(t) satisfies

the linear stochastic master equation

dσ(t) = L[σ(t−)]dt +

d′
1

∑

α=1

(Vα(t)σ(t−) + σ(t−)Vα(t)∗) dWα(t)

+

m′
1

∑

α=d1+1

(

Vασ(t−)V ∗
α

λα
− σ(t−)

)

(dNα(t) − λαdt)

+

m′
2

∑

α=d2+1

(

n
∑

k=1

Skασ(t−)Skα
∗

Λα

− σ(t−)

)

(dMα(t) − Λαdt) , (28)

where Ki

(

ρ1, . . . , ρn
)

is defined by Eq. (6b), L by (8), Λα by (25),

Vα(t) =
n
∑

i=1

hiα(t) L̂i
α ⊗ |ei〉〈ei|, α = 1, . . . , d1.

Given the initial condition, Eq. (28) has pathwise unique solution. For the components (the

blocks on the diagonal) Eq. (28) reduces to

dσj(t) = Kj

(

σ1(t−), . . . , σn(t−)
)

dt +

d′
1

∑

α=1

(

hjα(t) L̂j
ασj(t−) + hjα(t)σj(t−)L̂j∗

α

)

dWα(t)

+

m′
1

∑

α=d1+1

(

Lj
ασj(t−)Lj∗

α

λα
− σj(t−)

)

(dNα(t) − λαdt)

+

m′
2

∑

α=d2+1

(

n
∑

k=1

Rjk
α σk(t−)Rjk

α
∗

Λα

− σj(t−)

)

(dMα(t) − Λαdt) . (29)

Proof. By applying the Itô formula to |ζ(t)〉〈ζ(t)| and, then, by taking the conditional

expectation, we get the linear stochastic master equation for σ(t) as explained in [30, Sect.

4.2]. Existence and uniqueness of the solution of Eq. (28) is given in [30, Prop. 3.4]. Equation

(29) is obtained by direct computations.
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Remark 10. Let us consider now the physical probability introduced in Remark 8. The

probability density of the restriction of Pt to Gt with respect to the reference measure Q on

Gt is

pG(t) = EQ[p(t)|Gt] = TrH{σ(t)} ≡
n
∑

j=1

TrHS{σj(t)}. (30)

The density pG is a G-martingale under Q and the restrictions of the physical probabilities

are consistent.

In the axiomatic formulation of a quantum theory, measurements are represented by

instruments, which give the probabilities and the states after the measurement (a posteriori

states). As in Refs. 30 and 40, we put

It(F )[η(0)] = EQ[1Fσ(t)], F ∈ Gt , η(0) ∈ S(H). (31)

By linearity we extend It(F ) to the whole T(H) and we get an instrument with value space

(Ω,Gt), which means that It(F ) is a CP map from T(H) into itself for all F ∈ Gt, it is a

strongly σ-additive measure as a function of F and It(Ω) is trace-preserving.

Remark 11. Let us particularize the definition of instrument in the enlarged space to our

case. We define

I it(F )[η1(0), . . . , ηn(0)] = EQ[1Fσi(t)], F ∈ Gt, (32)

for all η(0) satisfying the superselection rules. With the notations of Remarks 3 and 4 we

have
(

I1
t (F ), . . . , Int (F )

)

= P ◦ It(F )
∣

∣

C

(

X;T(HS)
). This is an instrument with the same value

space as before, but made up of maps on C
(

X;T(HS)
)

. Finally, by defining

ISt (F ) =
n
∑

j=1

Ijt (F ), (33)

we get an instrument with value space (Ω,Gt) made up of CP maps from C
(

X;T(HS)
)

into

T(HS). Moreover, the connection with the various dynamical maps introduced in Remark

4 is given by It(Ω) = T (t),

(

I1
t (Ω), . . . , Int (Ω)

)

= P ◦ T (t)
∣

∣

C

(

X;T(HS)
), ISt (Ω) = PS ◦ P ◦ T (t)

∣

∣

C

(

X;T(HS)
).

The instruments give the physical probabilities once one has the pre-measurement state.

In our case we have, ∀F ∈ Gt,

Pt(F ) = TrH{It(F )[η(0)]} =
n
∑

i=1

TrHS{I it(F )[η1(0), . . .]} = TrHS{ISt (F )[η1(0), . . .]}. (34)
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This equation says that the probabilities Pt, introduced before by starting from some stochas-

tic differential equation, can be obtained also from instruments; so, the axiomatic structure

of a quantum theory is respected and the interpretation as physical probabilities is justified.

C. The a posteriori states and the stochastic master equation

The instruments give also the a posteriori states, the conditional states after the mea-

surement. Let us recall the definition in the case of It; in the other cases the definition is

analogue. The a posteriori state for the instrument It and the pre-measurement state η(0)

is the S(H)-valued random variable ρ(t) such that

It(F )[η(0)] = EPt [1Fρ(t)], ∀F ∈ Gt.

By taking into account that the density of Pt with respect to Q is the trace of σ(t) and how

It(F )[η(0)] is defined in terms of σ(t), we get easily

ρ(t) =
σ(t)

TrH{σ(t)} = EPt
[

|ψ(t)〉〈ψ(t)|
∣

∣Gt
]

.

The components of ρ(t), which are

ρi(t) = EPt
[

|ψi(t)〉〈ψi(t)|
∣

∣Gt
]

=
σi(t)

TrH{σ(t)} , i = 1, . . . , n,

give the a posteriori states for I it :

I it(F )[η1(0), . . . , ηn(0)] = EPt [1Fρi(t)]. (35)

Note that we have also EPt [ρi(t)] = ηi(t). Finally, by taking the sum over i in Eq. (35), we

get the a posteriori states ρS(t) =
∑

i ρi(t) for ISt .

On the other side, the states η(t), ηi(t) are called the a priori states, due to the fact that

these states are the averages of the a posteriori states and that they are interpreted as the

states to be assigned to the system at time t when the result of the observation is not taken

into account.

Remark 12 (The stochastic master equation). For α = 1, . . . , d′1, β = d1 + 1, . . . ,m′
1,

γ = d2 + 1, . . . ,m′
2, let us define

mα(t) =: EPt
[

vα(t)
∣

∣Gt
]

= 2 Re
n
∑

j=1

hjα(t) TrHS

{

L̂j
αρj(t−)

}

, (36)
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J1
β(t) := EPt

[

Iβ(t)
∣

∣Gt
]

=
n
∑

j=1

TrHS

{

Lj
β

∗

Lj
βρj(t−)

}

, (37)

J2
γ (t) :=

n
∑

k=1

EPt
[

Ikγ (t)
∣

∣Gt
]

=
n
∑

j,k=1

TrHS

{

Rjk
γ

∗
Rjk
γ ρk(t−)

}

. (38)

Then, by stochastic calculus, under the new probability PT and for t ∈ [0, T ], we get the

equation for ρ(t) [30, Rem. 3.6] and, then, the stochastic master equation for the components

dρj(t) = Kj

(

ρ1(t−), . . . , ρn(t−)
)

dt

+

d′
1

∑

α=1

(

hjα(t) L̂j
αρj(t−) + hjα(t)ρj(t−)L̂j∗

α −mα(t)ρj(t−)
)

dŴα(t)

+

m′
1

∑

β=d1+1

(

Lj
βρj(t−)Lj∗

β

J1
β(t)

− ρj(t−)

)

(dNβ(t) − J1
β(t)dt)

+

m′
2

∑

γ=d2+1

(

n
∑

k=1

Rjk
γ ρk(t−)Rjk

γ
∗

J2
γ (t)

− ρj(t−)

)

(

dMγ(t) − J2
γ (t)dt

)

. (39)

The processes Ŵα are independent standard Wiener processes, Nβ(t) is a counting process

of stochastic intensity J1
β(t) and Mγ(t) is a counting process of stochastic intensity J2

γ (t).

V. A TWO-LEVEL SYSTEM IN A STRUCTURED BATH

To give a simple, but concrete example of the theory we have developed and to have a

first idea of the effects on physically measurable quantities, here we study a model of a two

level atom in contact with a non-trivial structured reservoir and we compute the heterodyne

spectrum of its emitted light. This is a modification of a model15,16,34 which could represent

the dynamics of a single qubit in a non Markovian environment or the dynamics of an

optically active molecule, as the fluorophore system, in a local nano-environment24.

We consider a two-level system in contact with a two-band reservoir; so, HS = C2 and

n = 2. Let σz, σ± be the usual Pauli matrices; then, P+ = σ+σ− is the projection on the

excited state
(

1
0

)

and P− = σ−σ+ the projection on the ground state
(

0
1

)

. Here we give

the mathematical model, while the physical interpretation is given when we write down

the various dynamical equations. By using the notations introduced in Assumption 2 and
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Section III A, the model we consider is defined by the following choices:

d1 = m1 = 2, d2 = 0, m2 = 2; H i =
ωi
2

σz , ωi > 0, i = 1, 2;

Rii
1 = 0, R21

1 =
√
γ1 σ− , R12

1 =
√
γ2 σ+ , γi > 0, i = 1, 2,

Rii
2 = 0, R12

2 = 0, R21
2 =

√
γ0κ 11, κ > 0, γ0 > 0; 0 < ε ≤ 1,

L1
1(t) = L2

1(t) = eiνt√γ0ε σ− , L1
2(t) = L2

2(t) = eiνt
√

γ0(1 − ε) σ− , ν ∈ R.

(40)

The driving processes in the linear SDEs are the standard Wiener processes W1, W2 and the

Poisson processes N1
1 , N2

1 , N1
2 , with intensities λ1

1, λ2
1, λ1

2; all these processes are independent.

According to Remark 5, take λ2
2 ↓ 0, so that N2

2 is almost surely 0 and we can set dN2
2 (t) = 0.

A. The Lindblad rate equation and the equilibrium state

First of all let us write down in the concrete case introduced above the Lindblad rate

equation (6)

d

dt
η1(t) = K1

(

η1(t), η2(t)
)

≡ γ0

(

σ−η1(t)σ+ − 1

2
{P+, η1(t)}

)

+ γ2σ+η2(t)σ− − γ1

2
{P+, η1(t)} − γ0κη1(t) − iω1

2
[σz, η1(t)] , (41a)

d

dt
η2(t) = K2

(

η1(t), η2(t)
)

≡ γ0

(

σ−η2(t)σ+ − 1

2
{P+, η2(t)}

)

+ γ1σ−η1(t)σ+ − γ2

2
{P−, η2(t)} + γ0κη1(t) − iω2

2
[σz, η2(t)] . (41b)

The model of Refs. 16 and 21 corresponds to γ0 = 0, κ = 0, ω1 = ω2; moreover, the

rotating framework is used, so that the terms with ωi disappear. In Refs. 15 and 24 the case

ω1 6= ω2 is allowed and it is explained by different energy shifts induced by the two bands

of the environment. So, we have a two level molecule with two resonance frequencies due to

the structured environment. The terms with γ1 and γ2 represent the molecular transitions

induced by the environment and concomitant with transitions between the two bands of the

nano environment.

Reference 24 studies the stimulated fluorescence light under laser excitation of the

molecule; the treatment is based on the quantum regression formula. Instead, our aim

is to study the spontaneously emitted light and to this end we have added the first term in

both equations, the one with γ0, which is an explicit spontaneous emission term.
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To have emission without stimulation by external light, we need some thermal-like excita-

tion. To get this effect we have added the terms with γ0κ. This is the simplest modification

giving rise to a non trivial equilibrium state.

If we write Eqs. (41) in terms of the matrix elements of η1 and η2 we get two decoupled

systems of equations: the system for the coherences (the off diagonal terms) and the system

for the populations (the diagonal terms). Firstly, one checks easily that the coherences decay

exponentially to zero. On the other side, the system of equations for the diagonal terms

turns out to be equivalent to a 4-state, irreducible classical Markov chain. If we denote

by 1+, 1−, 2+, 2− the four states, the transition rates different from zero are γ0 for the

transition 1+ → 1−, γ1 for the transition 1+ → 2−, γ0κ for 1+ → 2+, γ2 for 2− → 1+, γ0 for

2+ → 2−, γ0κ for 1− → 2−. From the graph of this finite-state Markov chain we see that it

is irreducible; then, there is a unique equilibrium distribution, computed below, and it is a

global attractor.

Equilibrium state.

The Lindblad rate equations (41) admit a unique equilibrium state ηi(∞) = limt→+∞ ηi(t),

i = 1, 2, which can be easily computed. It turns out to be given by

ηi(∞) = pi
(

z+
i P+ + z−i P−

)

, z−i := 1 − z+
i , z+

i :=
κi

1 + κi
,

κ1 := κ, κ2 :=
γ2κ

γ1 + γ0(1 + κ)
, p1 := p, p2 := 1 − p,

p :=
γ2(1 + κ)

γ2 + κ (γ0 + γ2 + γ1) + κ2 (γ0 + γ2)
.

Let us note that we have (1 − p)z+
2 = κpz+

1 . By recalling that the system state is the sum

of the components (3), we get that the average equilibrium state of the two-level system is

ηeq
S = η1(∞) + η2(∞) = pκP+ + (1 − pκ)P− .

21



B. The stochastic Schrödinger equations

The lSSE (13) corresponding to the choices (40) is

dζ1(t) =

(

K1 +
λ

2

)

ζ1(t−)dt− ζ1(t)
(

dN1
1 (t) + dN1

2 (t)
)

+

(√

γ2

λ2

σ+ζ2(t−) − ζ1(t−)

)

dN2
1 (t) + eiνt√γ0 σ−ζ1(t−)

(√
ε dW1(t) +

√
1 − ε dW2(t)

)

,

dζ2(t) =

(

K2 +
λ

2

)

ζ2(t−)dt +

(√

γ0κ

λ0

ζ1(t−) − ζ2(t−)

)

dN1
2 (t) − ζ2(t)dN2

1 (t)

+

(√

γ1

λ1

σ−ζ1(t−) − ζ2(t−)

)

dN1
1 (t) + eiνt√γ0 σ−ζ2(t−)

(√
ε dW1(t) +

√
1 − ε dW2(t)

)

,

where λ = λ1
1 + λ2

1 + λ1
2 and

K1 = − iω1

2
σz −

γ0 + γ1

2
P+ − γ0κ

2
11, K2 = − iω2

2
σz −

γ0

2
P+ − γ2

2
P−.

Note that the Wiener processes W1 and W2 appear always in the combination
√
εW1(t) +

√
1 − εW2(t), which is again a one-dimensional standard Wiener process. The reason for

the introduction of two components is that the diffusive term represents the emitted light,

which we have divided in two channels: channel 1, represented by W1, contains the light

reaching the heterodyne detector and channel 2, represented by W2, contains the lost light.

The proportion of lost light is 1 − ε.

Finally, by Eqs. (22), the SSE for the normalized vectors is, under the physical probability,

dψ1(t) = V1(ψ1(t−), ψ2(t−))dt− ψ1(t)
(

dN1
1 (t) + dN1

2 (t)
)

+

(

σ+ψ2(t−)

‖σ+ψ2(t−)‖ − ψ1(t−)

)

dN2
1 (t)

+
√
γ0

(

eiνtσ−ψ1(t−) − 1

2
v(t)ψ1(t−)

)

(√
ε dŴ1(t) +

√
1 − ε dŴ2(t)

)

,

dψ2(t) = V2(ψ1(t−), ψ2(t−))dt +

(

ψ1(t−)

‖ψ1(t−)‖ − ψ2(t−)

)

dN1
2 (t)

+

(

σ−ψ1(t−)

‖σ−ψ1(t−)‖ − ψ2(t−)

)

dN1
1 (t) − ψ2(t−)dN2

1 (t)

+
√
γ0

(

eiνtσ−ψ2(t−) − 1

2
v(t)ψ2(t−)

)

(√
ε dŴ1(t) +

√
1 − ε dŴ2(t)

)

,
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where Ŵ is the new Wiener process introduced in (21), and

v1(t) =
√
γ0ε v(t), v2(t) =

√

γ0(1 − ε) v(t),

v(t) = 2
2
∑

k=1

Re
(

eiνt〈ψk(t−)|σ−ψk(t−)〉
)

, I1
2 (t) = κγ0 ‖ψ1(t−)‖2 ,

I1
1 (t) = γ1 ‖σ−ψ1(t−)‖2 , I2

1 (t) = γ2 ‖σ+ψ2(t−)‖2 ,

Vj(ψ1(t−), ψ2(t−)) = Kjψj(t−) +
I1

1 (t) + I2
1 (t) + I1

2 (t)

2
ψj(t−)

+
γ0

2
v(t)σ−ψj(t−) − γ0

4
v(t)2ψj(t−).

C. The stochastic master equation and the heterodyne spectrum

In the situation we are considering the band transitions cannot be monitored. We take

under observation the system by collecting part of the emitted light in an apparatus perform-

ing heterodyne detection. In this detection scheme the received light is made to interfere

with some monochromatic light of frequency ν; to a certain extent, this frequency can be

varied. As we have said, it is W1 which represents the light reaching the detector; moreover,

the (stochastic) output J(t) of the detector is some smoothed version of W1 [27, Chapt. 7],

say

J(t) =
√
k

∫ t

0

e−k(t−s)/2 dW1(s), k > 0. (42)

To take into account that only W1 is observed we use the notation of Remark 9 and we

take d′1 = 1, m′
1 = d1, m′

2 = 0; recall that we have d1 = m1 = 2, d2 = 0, m2 = 2. Then,

all the sums with jump processes disappear from the stochastic master equations (29) and

(39). The linear stochastic master equation (29) becomes

dσj(t) = Kj

(

σ1(t), σ2(t)
)

dt +
√
γ0ε

(

eiνtσ−σj(t) + e−iνtσj(t)σ+

)

dW1(t),

where the Kj are the operators appearing in the Lindblad rate equations (41). The cor-

responding non linear stochastic master equation (39) for the a posteriori states ρj(t) =

σj(t)
/

TrHS{σ1(t) + σ2(t)} turns out to be

dρj(t) = Kj

(

ρ1(t), ρ2(t)
)

dt +
√
γ0ε

(

eiνtσ−ρj(t) + e−iνtρj(t)σ+ −m(t)ρj(t)
)

dŴ1(t),

m(t) = 2 Re
(

eiνt TrHS {σ−ρj(t)}
)

.
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The power of the output current produced by the detector is proportional to J(t)2 and

the mean power at large times is proportional to

P (ν) = lim
t→+∞

EPt [J(t)2]. (43)

The limit is to be taken in the sense of the distributions in ν.

By using (42) we get

EPt [J(t)2] = ke−ktEPt

[
∫ t

0

eks/2 dW1(s)

∫ t

0

ekr/2 dW1(r)

]

So, to obtain an explicit expression for the power first of all we need to compute the second

moments of the Wiener type integrals
∫ t

0
eks/2 dW1(s) under the physical probability. The

autocorrelation function of W1, from which such a moments follow, can be obtained by differ-

entiation of the so called characteristic operator (the Fourier transform of the instruments)

[27, Proposition 4.16]. The formula valid for the Markov case needs only to be expressed by

using the diagonal blocks; from [27, Eq. (4.47)] we get

EPt [J(t)2] = k

∫ t

0

e−k(t−s) ds + 2kγ0ε

∫ t

0

ds

∫ s

0

dr e−k(t−s)/2e−k(t−r)/2

×
2
∑

i,j=1

TrHS
{(

eiνsσ− + e−iνsσ+

)

Tij(s− r)
[

eiνsσ−ηj(r) + e−iνrηj(r)σ+

]}

. (44)

By
∑2

j=1 Tij(t)[τj], i = 1, 2, we denote the solution of the Lindblad rate equation (41) with

initial condition (τ1, τ2) at time 0. Then, the computations needed to obtain P (ν) are long,

but similar to the ones in [27, Sect. 9.1]; we give only the final results:

P (ν) = 1 + 4πεΣ(ν), (45)

Σ(ν) = 2γ0
(1 − p) z+

2 Γ2 − pz+
1 w [Γ2 (γ2 − γ1 − 2γ0κ) + 4 (ω2 − ω1) (ν − ω2)]

π
[

4 (ν − ω2)2 + Γ 2
2

]

+ 2γ0
pz+

1 {[1 + w (γ2 − γ1 − 2γ0κ)] Γ1 + 4w (ω2 − ω1) (ν − ω1)}
π
[

4 (ν − ω1)2 + Γ 2
1

] , (46)

where p, z+
j have already be defined and

Γ1 := γ0 + γ1 + 2γ0κ + k, Γ2 := γ0 + γ2 + k,

w :=
2γ0κ

4 (ω1 − ω2)2 + (γ2 − γ1 − 2γ0κ)2 .
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In Eq. (45) the term 1 is interpreted as the shot noise due to the local oscillator and Σ(ν)

as the heterodyne spectrum. Note that the widths Γj contain some dynamical parameters

and the instrumental width k.

By its definition, we have P (ν) ≥ 0, while the positivity of the spectrum Σ(ν) is not

obvious. However, one can check that it is possible to rewrite Σ(ν) in a form from which its

positivity is apparent:

Σ(ν) = Dγ0κ

{

γ0(1 + κ) + γ1 + k

4 (ν − ω1)2 + Γ 2
1

+
κ (γ2 + k)

4 (ν − ω2)2 + Γ 2
2

+
γ0κ (Γ1 + Γ2)2

[

4 (ν − ω1)2 + Γ 2
1

] [

4 (ν − ω2)2 + Γ 2
2

]

}

, (47)

D =
2/π

1 + κγ1/γ2 + κ(1 + κ)(1 + γ0/γ2)
.

Note that the heterodyne spectrum, for spontaneous emission in our model, contains in-

formation on the dynamics: all the dynamical parameters, due to the structured reservoir,

determine the form of the spectrum. In particular, we have a double peaked structure only if

ω1 and ω2 are sufficiently different and this difference can be only due to the band structure

of the bath.
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