
DIPARTIMENTO DI MATEMATICA\Fran
es
o Brios
hi"POLITECNICO DI MILANO
Conta
t and voter pro
esses on thein�nite per
olation 
luster as modelsof host-symbiont intera
tionsBerta

hi, D.; Lan
hier, N.; Zu

a, F.Collezione dei Quaderni di Dipartimento, numero QDD 57Inserito negli Ar
hivi Digitali di Dipartimento in data 18-11-2009

Piazza Leonardo da Vin
i, 32 - 20133 Milano (Italy)



Contact and voter processes on the infinite percolation

cluster as models of host-symbiont interactions

D. Bertacchi, N. Lanchier and F. Zucca

Abstract We introduce spatially explicit stochastic processes to model multispecies host-
symbiont interactions. The host environment is static, modeled by the infinite percolation
cluster of site percolation. Symbionts evolve on the infinite cluster through contact or voter
type interactions, where each host may be infected by a colony of symbionts. In the presence
of a single symbiont species, the condition for invasion as a function of the density of the
habitat of hosts and the maximal size of the colonies is investigated in details. In the presence
of multiple symbiont species, it is proved that the community of symbionts clusters in two
dimensions whereas symbiont species may coexist in higher dimensions.

1. Introduction

The term symbiosis was coined by the mycologist Heinrich Anto de Bary to denote close and long-
term physical and biochemical interactions between different species, in constrast with competition
and predation that imply only brief interactions. Symbiotic relationships involve a symbiont species,
smaller in size, that always benefits from the relationship, and a host species, larger in size, that may
either suffer, be relatively unaffected, or also benefit from the relationship, which are referred to as
parasistism, commensalism, and mutualism, respectively. Symbiotic relationships are ubiquitous in
nature. For instance, more than 90% of terrestrial plants [26] live in association with mycorrhizal
fungi, with the plant providing carbon to the fungus and the fungus providing nutrients to the
plant, most herbivores have mutualistic gut fauna that help them digest plant matter, and almost
all free-living animals are host to one or more parasite taxa [25].

To understand the role of spatial structure on the persistence of host-parasite and host-mutualist
associations, Lanchier and Neuhauser [17, 18, 19] have initiated the study of multispecies host-
symbiont systems including local interactions based on interacting particle systems. The stochastic
process introduced in [18] describes the competition among specialist and generalist symbionts
evolving in a deterministic static environment of hosts. The mathematical analysis of this model
showed that fine-grained habitats promote generalist strategies, while coarse-grained habitats in-
crease the competitiveness of specialists. The stochastic process introduced in [17, 19] includes in
addition a feedback of the hosts, which is modeled by a dynamic-host system. This process has
been further extended by Durrett and Lanchier [9]. The host population evolves, in the absence
of symbionts, according to a biased voter model, while the symbiont population evolves in this
dynamic environment of hosts according to a contact type process. The parameters of the process
allow to model the effect of the symbionts on their host as well as the degree of specificity of the
symbionts, thus resulting into a system of coupled interacting particle systems, each describing
the evolution of a trophic level. The model is designed to understand the role of the symbionts
in the spatial structure of plant communities. It is proved theoretically that generalist symbionts
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have only a limited effect on the spatial structure of their habitat [19]. In contrast, the inclusion
of specialist parasites promotes coexistence of the hosts, while the analysis of the corresponding
mean-field model supported by numerical simulations suggests that in any dimension the inclusion
of specialist mutualists translates into a clustering of the host environment [9].

Similarly to most spatial epidemic models such as the contact process, the state space of the
stochastic processes introduced in [9, 17, 18, 19] indicates whether hosts are either healthy or
infected, but does not distinguish between different levels of infection of the hosts. However, it is
known from past research that the number of symbiont individuals, including ectosymbionts, i.e.,
symbionts living on their hosts or in their skin, associated to a single host individual may vary
significantly. Mooring and Samuel [21] found for instance an average of 1,791 individuals of the
species Dermacentor albipictus, commonly known as Winter Tick, on individual elk in Alberta,
while some individual moose have been found with more than 50,000 ticks. In addition, symbionts
are generally much smaller organisms than their hosts and reproduce much faster and in greater
number. This motivates the development of spatially explicit multiscale models of host-symbiont
interactions that describe the presence of symbionts through a level of infection of the hosts rather
than binary random variables (infected versus healthy hosts) and include both inter-host symbiont
dynamics and intra-host symbiont dynamics.

In diversity ecology, the infrapopulation refers to all the parasites of one species in a single
individual host, while the metapopulation refers to all the parasites of one species in the host pop-
ulation. In systems involving multiple species of parasites, all the parasites of all species in a single
individual host and in an entire host population are called infracommunity and component com-
munity, respectively. This terminology shall be employed in this article for symbionts in general,
that is parasites, commensalists and mutualists, even though, strictly speaking, it only applies to
parasites. Our main objective is to deduce from the microscopic evolution rules of the symbionts,
described by transmission rates and reproduction rates, the long-term behavior of the metapopula-
tion in a single-species invasion model, and the long-term behavior of the component community in
a multispecies competition model. Since a host species and a symbiont species involved in a symbi-
otic relationship usually evolve at very different time scales (symbionts reproduce much faster than
their hosts), we shall assume in both invasion and competition models that the discrete habitat
of hosts is static. This habitat will be modeled by a realization of the infinite percolation cluster
of supercritical site percolation. We shall also assume that symbionts can only survive when asso-
ciated with a host (obligate relationship), which restricts their habitat to the infinite percolation
cluster, and, to understand the role of space on the persistence of the symbiotic relationship, that
symbionts can only transmit to nearby hosts, adding to the complexity of the interactions. In the
single-species model, infrapopulations will evolve according to the logistic growth process, and the
entire metapopulation according to a mixture of this model and its spatial analog, the contact
process [13]. In the multispecies model, we will assume that infracommunities evolve according to
the Moran model [22], and the entire component community according to a mixture of this model
and its spatial analog, the voter model [5, 15]. Our analysis shows that the condition for survival
of a metapopulation strongly depends on the carrying capacity of each infrapopulation. Exact cal-
culations of the critical curve as a function of the reproduction and transmission rates are given
when infrapopulations can be arbitrarily large which, as mentioned above, is a realistic biological
assumption in many symbiotic relationships. In systems involving multiple symbiont species, the
long-term behavior of the component community depends on the spatial dimension: the community
clusters in two dimensions whereas coexistence is possible in higher dimensions.
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2. Models and results

The models are constructed in two steps. First, the static random environment of hosts is fixed
from a realization of the infinite percolation cluster of site percolation. This random environment
naturally induces a random graph. The symbionts are then introduced into this universe where
they evolve according to an interacting particle system on the random graph. The interactions are
modeled based on two of the simplest interacting particle systems: the contact process and the voter
model. The structure of the random graph implies that the infrapopulation dynamics are described
by logistic growth processes, i.e., contact processes on a complete graph, while the infracommunity
dynamics are described by Moran models, i.e., voter models on a complete graph.

Host environment. To define the habitat of hosts, we set p ∈ (0, 1] and let ω be a realization of
the site percolation process with parameter p on the d-dimensional regular lattice Z

d, i.e., each site of
the lattice is either permanently occupied by an individual host with probability p or permanently
empty with probability 1 − p. Let H(ω) denote the set of open/occupied sites. By convention,
elements of Z

d and processes with state space S ⊂ Z
d will be denoted in the following by capital

Latin letters. We say that there is an open path between site X and site Y if there exists a sequence
of sites X = X0, X1, . . . , Xn = Y such that the following two conditions hold:

1. For i = 0, 1, . . . , n, we have Xi ∈ H(ω), i.e., site Xi is open.

2. For i = 0, 1, . . . , n − 1, we have Xi ∼ Xi+1

where Xi ∼ Xi+1 means that the Euclidean norm ||Xi − Xi+1|| = 1. Writing X ⇋ Y the event
that sites X and Y are connected by an open path, we observe that the binary relation ⇋ is an
equivalence relation on the random set H(ω) thus inducing a partition of H(ω). In dimensions d ≥ 2
there exists a critical value pc ∈ (0, 1) that depends on d such that if p > pc then H(ω) contains a
unique infinite open cluster. The infinite open cluster is also called infinite percolation cluster and
is denoted by C∞(ω) later. We assume that p > pc from now on. Sometimes, the infinite percola-
tion cluster will be identified with the graph with vertex set C∞(ω) obtained by drawing an edge
between sites of the cluster at Euclidean distance 1 from each other.

Random graph structure. In order to define the state space and dynamics of the stochastic
processes, we first define a random graph H(ω) as follows. Vertices of H(ω) are to be interpreted
as possible locations for the symbionts, while edges indicate how symbionts interact. Let N be an
integer and KN = {1, 2, . . . , N}. The vertex set of H(ω) is CN (ω) = C∞(ω) × KN . By convention,
elements of and processes with state space CN (ω) will be denoted by small Latin letters. Let

π : CN (ω) −→ C∞(ω) defined by π(x) = X for all x = (X, i) ∈ CN (ω).

That is, π(x) is the C∞(ω)-coordinate of vertex x. Let x, y ∈ CN (ω). Then, vertices x and y are
connected by an edge if and only if one of the following two cases occurs.

1. If π(x) = π(y) then x and y are connected by a vertical edge: we write x l y. It is convenient
to assume that each vertex is connected to itself by a vertical edge.

2. If π(x) ∼ π(y) then x and y are connected by a horizontal edge: we write x ↔ y.

In words, a complete graph with N vertices (which are connected to themselves) is attached to each
site of the infinite percolation cluster. Edges of these complete graphs are said to be vertical while,
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for any two sites of the infinite percolation cluster, vertices of the corresponding complete graphs
are connected by edges which are said to be horizontal. Vertical and horizontal edges correspond
respectively to potential reproduction events and transmission events of the symbionts.

Invasion of a single symbiont – contact process. To understand the conditions for survival
of a single symbiont species, we introduce a generalization of the contact process [13] on the infinite
random graph H(ω). This defines a continuous-time Markov process whose state space consists of
the set of the spatial configurations η : CN (ω) −→ {0, 1}, and whose dynamics are described by
the Markov generator L1 defined on the set of the cylinder functions by

L1f(η) =
∑

x∈CN (ω)

[f(ηx,0) − f(η)]

+
∑

x∈CN (ω)

(

α

N

∑

xly
η(y) +

β

N deg π(x)

∑

x↔y

η(y)

)

[f(ηx,1) − f(η)]

where deg π(x) is the degree of π(x) as a site of the cluster C∞(ω), and where ηx,i is the configuration
obtained from η by assigning the value i to vertex x. Note that the degree of each site of the infinite
percolation cluster is at least 1, therefore the dynamics are well defined. Thinking of vertices in
state 0 as uninfected and vertices in state 1 as infected by a symbiont, the expression of the Markov
generator above indicates that symbionts die independently of each other at rate 1, reproduce
within their host at the reproduction rate α, and transmit their offspring to the nearby hosts at
the transmission rate β. That is, each symbiont gives birth at rate α to an offspring which is then
sent to a vertex chosen uniformly at random from the parent’s host. If the vertex is uninfected
then it becomes infected while if it is already infected then the birth is suppressed. Similarly, each
symbiont gives birth at rate β to an offspring which is then sent to a vertex chosen uniformly at
random from the hosts adjacent to the parent’s host, which results as previously in an additional
infection if and only if the vertex is not already infected. To study the single-species model, we will
sometimes consider the stochastic process

η̄t(X) =
∑

π(x)=X

ηt(x) for all X ∈ C∞(ω)

where the sum is over the vertices x ∈ CN (ω) such that π(x) = X. That is, η̄t(X) keeps track of
the level of infection of the host at X. This defines a Markov process whose state space consists of
the functions that map C∞(ω) into {0, 1, . . . , N} and whose dynamics are described by

L̄1f(η̄) =
∑

X∈C∞(ω)

η̄(X) [f(η̄X−) − f(η̄)]

+
∑

X∈C∞(ω)

(

1 − η̄(X)

N

)(

α η̄(X) +
β

deg(X)

∑

X∼Y

η̄(Y )

)

[f(η̄X+) − f(η̄)]

where the configurations η̄X− and η̄X+ are obtained from the configuration η̄ by respectively re-
moving and adding a symbiont at site X. In view of the geometry of the graph H(ω), the stochastic
process {η̄t}t can be seen as a mixture of the contact process with infection parameter β on the
infinite percolation cluster and logistic growth processes with parameter α.
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To describe the predictions based on the invasion model, we let δi be the measure that concen-
trates on the “all i” configuration restricted to CN (ω), i.e.,

δi {η(x) = i} = 1 for all x ∈ CN (ω) = C∞(ω) × KN .

We denote by µ̄ the upper invariant measure of the process {ηt}t, which is also the limit starting
from the measure δ1 since the process is attractive. The process or metapopulation is said to survive
whenever µ̄ 6= δ0 and is said to die out otherwise.

First, we observe that, starting with a single infection at time 0, the number of symbionts in
the system is dominated stochastically by the number of individuals in a birth and death process
with birth parameter b = α + β and death parameter 1. Recurrence of one-dimensional symmetric
random walks implies that such a process eventually dies out when b ≤ 1. It follows that {ηt}t dies
out for all values of N whenever α + β ≤ 1.

To find a general condition for survival of the infection, we now assume that N = 1 so that
the value of the reproduction rate α becomes irrelevant, and compare the process with the one-
dimensional contact process. Let Γ be an arbitrary infinite self-avoiding path in the infinite perco-
lation cluster C∞(ω). Since for all sites X ∈ Γ we have 2 ≤ deg(X) ≤ 2d, the process restricted
to the infinite path Γ, i.e., symbionts sent outside Γ are instantaneously killed, dominates stochas-
tically the contact process on Γ with infection parameter β/d. It follows that the process survives
whenever β > dβc(1) where βc(1) is the critical value of the one-dimensional contact process, since
the self-avoiding path is isomorphic to Z. Monotonicity properties of the process finally implies
that, for all values of N and α, survival occurs whenever β > dβc(1).

We now look at the long-term behavior of the metapopulation when N is large. As previously
explained, this assumption is realistic in a number of symbiotic relationships, including the inter-
actions between moose and Winter Ticks [21]. Under this assumption, at least when the number of
symbionts is not too large, the stochastic process looks locally like a branching random walk on the
random graph H(ω), namely the process modified so that births onto infected vertices are allowed.
In the context of large infrapopulations, global survival of the metapopulation occurs when the
reproduction rate α > 1 and the transmission rate β > 0. This and the comparison with a birth
and death process imply that, when N is large and the transmission rate β is small, a situation
which is common in parasitic relationships, the metapopulation undergoes a phase transition when
the reproduction rate α approaches 1. Provided the density of the habitat is large enough, the
phase transition occurs more generally when the sum of the reproduction and transmission rates
approaches 1. These results are summarized in the following theorem.

Theorem 1 (contact interactions) Assume that p > pc and β > 0.

1. For all N > 0, the metapopulation dies out if α + β ≤ 1 while it survives if β > dβc(1).

2. If α > 1 or α + β/d > 1 then the metapopulation survives for N large.

3. If α + β > 1 and p is close to 1 then the metapopulation survives for N large.

As previously explained, the first statement of part 1 follows from a comparison with a two-
parameter branching random walk, and the second statement from a comparison with the contact
process restricted to an infinite self-avoiding path embedded in the infinite percolation cluster. The
second statement of part 2 can be proved similarly, by using part 3 and looking at the process
restricted to an infinite self-avoiding path of hosts. The proofs of the first statement of part 2 and
part 3 rely on the combination of estimates for the extinction time of the logistic growth process,
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(a) p = 0.6 (b) α = 1 and β = 2

Figure 1. (a) Realization of site percolation with parameter p = 0.6 on the 80 × 80 torus, with black squares
referring to open sites, and white squares to closed sites. (b) Snapshot of the invasion model on the percolation
structure starting with a single infected host at the center of the universe. Each site is represented by a 5× 5 square,
i.e., complete graph with N = 25 vertices. White squares refer to empty sites, i.e., sites which are not occupied by a
host, black dots refer to symbionts, and grey dots to empty vertices.

random walks estimates, and block constructions to compare the process view under suitable space
and time scales with oriented percolation. We refer to Section 3 for the details of the proof.

Competition among multiple symbionts – voter model. To study the interactions among
multiple symbiont species, we introduce the analog of the previous spatial model replacing contact
interactions with voter interactions [5, 15]. The state at time t is now ξt : CN (ω) −→ {1, 2}, i.e.,
each vertex is occupied by a symbiont of one of two types. Letting for i = 1, 2

fi(x) =
|{y : π(y) = π(x) and ξt(y) = i}|

N
and gi(x) =

|{y : π(y) ∼ π(x) and ξt(y) = i}|
N deg π(x)

denote the fraction of type i symbionts at site π(x) and its neighborhood, respectively, the evolution
is described by the Markov generator L2 defined on the set of the cylinder functions by

L2f(ξ) =
∑

x∈CN (ω)

α1 f1(x) + β1 g1(x)

α1 f1(x) + α2 f2(x) + β1 g1(x) + β2 g2(x)
[f(ξx,1) − f(ξ)]

+
∑

x∈CN (ω)

α2 f2(x) + β2 g2(x)

α1 f1(x) + α2 f2(x) + β1 g1(x) + β2 g2(x)
[f(ξx,2) − f(ξ)]

where ξx,i is the configuration obtained from ξ by assigning the value i to vertex x. The transition
rates indicate that, regardless of its type, each symbiont dies at rate 1 and gets instantaneously
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(a) α1 = α2 = 1/2 and β1 = β2 = 1/2 (b) α1 = α2 = 1/2 amd β1 = β2 = 1/2

Figure 2. Snapshots at time 100 and at time 1000, respectively, of the neutral competition model on site percolation
with parameter p = 0.6 starting from a Bernoulli product measure with density 1/2. Each site of the lattice is
represented by a 5×5 square, i.e., complete graph with N = 25 vertices. White squares refer to empty sites, i.e., sites
which are not occupied by a host, and black and grey dots to symbionts of type 1 and 2, respectively.

replaced by a symbiont whose type is chosen from the nearby symbionts according to the relative
fecundities and transmissibilities of the two symbiont species. In the neutral case when the repro-
duction rates are both equal to say α and the transmission rates are both equal to say β the local
evolution reduces to the following: the type of each symbiont is updated at rate 1 and the new type
is chosen uniformly at random from the same host with probability α/(α + β) or a nearby host
with probability β/(α + β). The process {ξt}t can again be seen as a mixture of two well-known
processes, namely, the Moran model, continuous-time version of the Wright-Fisher model, with
selection, and its spatial analog, the biased voter model, on the infinite percolation cluster.

To state our results for the competition model, we set θ ∈ (0, 1) and denote by πθ the product
measure restricted to CN (ω) = C∞(ω) × KN defined by

πθ {ξ(x) = 1} = θ and πθ {ξ(x) = 2} = 1 − θ for all x ∈ CN (ω).

From now on, we assume that the process {ξt}t starts from the product measure πθ. The process
is said to cluster if there exists a ∈ (0, 1) such that ξt ⇒ aδ1 + (1 − a)δ2 as t → ∞ and

lim
t→∞

P (ξt(x) 6= ξt(y)) = 0 for all x, y ∈ CN (ω),

and is said to coexist if ξt ⇒ νθ as t → ∞ for some νθ such that

νθ {ξ(x) 6= ξ(y)} 6= 0 for all x, y ∈ CN (ω), x 6= y.

Here, ⇒ denotes convergence in distribution. Finally, we say that type 1 outcompetes type 2 if the
process converges in distribution to the measure δ1.
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Theorem 2 (voter interactions)

1. Assume that p > pc. In the neutral case α1 = α2 and β1 = β2, the component community

clusters in two dimensions, whereas coexistence occurs in higher dimensions.

2. Assume that p = 1. If α1 ≥ α2 and β1 > β2 then type 1 outcompetes type 2.

The analysis of the neutral competition model relies on duality techniques. We will show, in the
neutral case, that the process with voter type interactions is dual to a certain system of coalescing
random walks evolving on the random graph H(ω). The long-term behavior of the process is related
to the so-called finite/infinite collision property of the graph, which will be studied in details in
two dimensions and higher dimensions separately. In contrast, the process with selection will be
studied without invoking the dual process but instead by comparing the evolution of the number
of type 1 symbionts forward in time with the gambler’s ruin model.

3. Proof of Theorem 1

This section is devoted to the invasion model and the proof of Theorem 1. The key to proving the
first statement of part 2 and part 3 is to show that the logistic growth process with α > 1 as well
as the branching random walk with α + β > 1 restricted to a large square persist an arbitrary long
time provided N is large. In both cases, the combination of our estimates with a block construction
will imply survival of the metapopulation restricted to an infinite self-avoiding path of hosts and
an infinite self-avoiding path of large squares fully occupied by hosts, respectively. Such infinite
self-avoiding paths exist whenever p > pc and p is close enough to 1, respectively.

The logistic growth process. Recall that the number of symbionts in each infrapopulation
evolves according to a logistic growth process with parameter α, which is the continuous-time
Markov process {Xt}t that makes the transitions

j →
{

j + 1 at rate α j (1 − jN−1)

j − 1 at rate j

for all j = 0, 1, . . . , N . Our main objective is to prove that the logistic growth process starting with
a single particle persists an arbitrarily long time with positive probability when α > 1 and N is
sufficiently large. For our purpose, it is enough to prove that, for all N large,

Text = inf {t > 0 : Xt = 0}

is larger than 2N2 with positive probability. Since α > 1, there exists ǫ > 0 small, fixed from now
on, such that 4ǫ < 1 − α−1. For such ǫ > 0, we have the following result.

Lemma 3 There exist C1 < ∞ and γ1 > 0 such that

P (Text < 2N2 | X0 > 4ǫN) ≤ C1 exp(−γ1N).

Proof. We set T0 = 0 and, for all i ≥ 0, define recursively the stopping times

T2i+1 = inf {t > T2i : Xt = ⌊2ǫN⌋} and T2i+2 = inf {t > T2i+1 : Xt /∈ [1, 4ǫN)}
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where ⌊ · ⌋ is for the integer part. Let I = min {i ≥ 0 : XT2i
= 0}. Between T2i and T2i+2 the process

undergoes at least 2ǫN death events, each occurring at rate at most N , so large deviation estimates
for the Poisson distribution imply that

P (T2i+2 − T2i < ǫ | i < I) ≤ C2 exp(−γ2N) (1)

for suitable C2 < ∞ and γ2 > 0. Observe that, for all states j ∈ [1, 4ǫN), the ratio of the birth rate
to the death rate in the logistic growth process can be bounded from below as follows:

α j (1 − jN−1)

j
= α

(

1 − j

N

)

> α (1 − 4ǫ) = a > 1.

In particular, letting {Zn}n be the asymmetric random walk with

P (Zn+1 = j | Zn = i) =

{

a/(a + 1) for i = j + 1

1/(a + 1) for i = j − 1
(2)

for all i ∈ Z, we have

P (I = i | I > i − 1) = P (XT2i
= 0 | XT2i−1

= ⌊2ǫN⌋)
≤ P (Zn = 0 for some n ≥ 0 | Z0 = ⌊2ǫN⌋) = a−2ǫN .

This implies that the random variable I is stochastically larger than a geometric random variable
with success probability a−2ǫN . Finally, using Text = T2I and the bound (1), we deduce

P (Text < 2N2 | X0 > 2ǫN) ≤ P (I < 2ǫ−1N2)

+ P (I ≥ 2ǫ−1N2 and T2i+2 − T2i < ǫ for some i = 0, 1, . . . , 2ǫ−1N2 − 1)

≤ 1 − (1 − a−2ǫN )2ǫ−1N2

+ 2ǫ−1N2 × C2 exp(−γ2N)

≤ 2ǫ−1N2 (a−2ǫN + C2 exp(−γ2N)) ≤ C1 exp(−γ1N)

for suitable constants C1 < ∞ and γ1 > 0. �

The next step is to prove survival of the metapopulation restricted to an infinite self-avoiding path
of hosts, say Γ = {Γi : i ∈ Z} ⊂ C∞(ω). The idea is to compare the evolution of the invasion model
viewed on suitable length and time scales along this infinite path with oriented percolation, which
relies on a block construction. To couple the process with oriented percolation, we let

G = {(i, m) ∈ Z × Z+ : i + m is even},
and declare site (i, m) ∈ G to be good if at all times between times mN2 and (m + 1)N2 the host
at site Γi is infected by at least one symbiont. Let ǫ0 > 0 small and let

Gm = {i ∈ Z : (i, m) is a good site}
denote the set of good sites at level m. The proof of the first statement of part 2 is based on a
rescaling technique introduced in [4]. It suffices to establish that the set of good sites at level m
dominates the set Wm of wet sites at level m in a 1-dependent oriented site percolation process
on the lattice G with parameter 1 − ǫ0 and with initial condition W0 ⊂ G0 (see Durrett [8] for
a complete description of oriented percolation). To study the invadibility of the metapopulation
along the infinite self-avoiding path Γ, we let Yt denote the number of symbionts associated to the
host at site Γ1 at time t. Then, we have the following result.
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Lemma 4 Assume that (0, 0) is good and let T ⋆ = inf {t > 0 : Yt > 4ǫN}. Then,

P (T ⋆ > N2 | Y0 = 0) ≤ C3 exp(−γ3N)

for suitable C3 < ∞ and γ3 > 0.

Proof. First, we observe that, condition on the event that the host at site Γ0 is infected by at
least one symbiont, the process {Yt}t makes the transitions

j →
{

j + 1 at rate at least (α j + β/2d) (1 − jN−1)

j − 1 at rate j.

Let 0 < T1 < T2 < T ⋆ be two consecutive jumping times and a = α (1 − 4ǫ) > 0. Since the process
jumps from state j to state j + 1 at rate at least α j (1 − jN−1), we have

E [YT2
− YT1

| YT1
= j] ≥ α (1 − jN−1) − 1

α (1 − jN−1) + 1
≥ a − 1

a + 1
> 0

for all j ∈ {1, . . . , ⌊4ǫN⌋}, while

E [YT2
− YT1

| YT1
= 0] ≥ β

2d
> 0.

Let b = (1/4)min(1, β/2d) > 0 and let J be the number of jumps performed by {Yt}t by time N2.
Since jumps occur at rate at least 4b, large deviation estimates for the Poisson distribution imply
that there exist C4 < ∞ and γ4 > 0 such that

P (J ≤ 2bN2) ≤ C4 exp(−γ4N). (3)

In other respect, large deviation estimates for the Binomial distribution imply that

P (Yt ≤ 4ǫN for all t ≤ N2 and J > 2bN2 | Y0 = 0)

≤ P (Zn ≤ 4ǫN for all n = 0, 1, . . . , ⌊2bN2⌋ | Z0 = 0)

≤ P (Z⌊2bN2⌋ ≤ 4ǫN | Z0 = 0) ≤ P (Z⌊2bN2⌋ ≤ E [Z1 − Z0] bN
2 | Z0 = 0)

≤ C5 exp(−γ5N)

(4)

for suitable constants C5 < ∞ and γ5 > 0, and all N sufficiently large. Recall that {Zn}n is the
asymmetric random walk defined in (2) above. Finally, combining (3)-(4), we obtain

P (T ⋆ > N2 | Y0 = 0) = P (Yt ≤ 4ǫN for all t ≤ N2 | Y0 = 0)

≤ P (J ≤ 2bN2) + P (Yt ≤ 4ǫN for all t ≤ N2 and J > 2bN2 | Y0 = 0)

≤ C4 exp(−γ4N) + C5 exp(−γ5N) ≤ C3 exp(−γ3N).

This completes the proof. �
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Combining Lemmas 3 and 4, and using the fact that the evolution rules of the process {ηt}t are
homogeneous in time imply that, for any site (i, m) ∈ G,

P ((i ± 1, m + 1) is not good | (i, m) is good)

≤ P (Yt = 0 for some N2 < t < 2N2 | (0, 0) is good)

≤ P (T ⋆ > N2 | (0, 0) is good)

+ P (Yt = 0 for some N2 < t < 2N2 and T ⋆ ≤ N2)

≤ P (T ⋆ > N2 | (0, 0) is good) + P (Text < 2N2 | X0 > 4ǫN) ≤ ǫ0

for sufficiently large N . This implies that the process and 1-dependent oriented percolation with
parameter 1 − ǫ0 can be constructed on the same probability space in such a way that

P (Wm ⊂ Gm for all m ≥ 0 | W0 ⊂ G0) = 1.

Choosing ǫ0 > 0 such that 1 − ǫ0 is greater than the critical value of 1-dependent oriented perco-
lation, and observing that, starting with all hosts associated with N symbionts, cardG0 = ∞, we
can conclude that µ̄1 6= δ0, which proves the first statement of part 2.

Branching random walk. We now prove part 3 of Theorem 1 relying on branching random
walk estimates. We first establish the result when p = 1 and so C∞(ω) = Z

d. To begin with, we
observe that, for all M > 0 and δ ∈ (0, 1), the process {η̄t}t dominates, for N sufficiently large, the
process {ζt}t whose dynamics are described by the Markov generator

D1f(ζ) =
∑

X∈C∞(ω)

ζ(X) [f(ζX−) − f(ζ)] +
∑

X∈C∞(ω)

(1 − δ) 11{ζ(X) ≤ M}

×
(

α ζ(X) +
β

2d

∑

X∼Y

ζ(Y )

)

[f(ζX+) − f(ζ)]

where the configurations ζX− and ζX+ are obtained from ζ by respectively removing and adding a
symbiont at site X. Indeed, it suffices that N ≥ M/δ since in that case

1 − jN−1 ≥ 1 − δjM−1 ≥ (1 − δ) 11{j ∈ [0, M ]} for all j = 0, 1, . . . , N.

To see this, we observe that the process {ζt}t is a truncated branching random walk that allows at
most M + 1 particles per site at the same time. See Figure 3 where we compare the reproduction
rates to site Y of a particle living at site X for the processes {η̄t}t and {ζt}t: on the x-axis we have
the number of particles at site Y , and the parameter χ is equal to α if X = Y and β if X ∼ Y .

Let δ > 0 such that (α + β)(1 − δ) > 1. We will prove, following [3], that for all M sufficiently
large, the truncated branching random walk {ζt}t survives with positive probability, by looking at
the branching random walk {ζ̄t}t whose dynamics are described by

D̄1f(ζ̄) =
∑

X∈C∞(ω)

ζ̄(X) [f(ζ̄X−) − f(ζ̄)]

+
∑

X∈C∞(ω)

(

ᾱ ζ̄(X) + β̄
∑

X∼Y

ζ̄(Y )

)

[f(ζ̄X+) − f(ζ̄)]

starting with one particle at the origin, where ᾱ = (1 − δ)α and β̄ = (1 − δ)β/2d.
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Lemma 5 For X ∼ 0, we have E [ζ̄n(X) | ζ̄0(0) = 1] > 1 for n large enough.

Proof. We observe that E (ζ̄t(X)) satisfies the differential equation (see [2, Section 4])

d

dt
E (ζ̄t(X)) = − E (ζ̄t(X)) + ᾱ E (ζ̄t(X)) + β̄

∑

X∼Y

E (ζ̄t(Y )),

whose solution is

E (ζ̄t(X)) =
∞
∑

n=0

n−1
∑

k=0

µ(n,k)(0, X)
ᾱk β̄n−k tn

n!
e−t (5)

where µ(n,k)(0, X) is the number of paths from site 0 to site X of length n with k loops. To estimate
the right-hand side of equation (5), we let {Uk}k be the discrete-time random walk with

P (Uk+1 = Z | Uk = Y ) =

{

ᾱ (ᾱ + 2dβ̄)−1 for Y = Z

β̄ (ᾱ + 2dβ̄)−1 for Y ∼ Z

and observe that, for any site X ∼ 0,

n−1
∑

k=0

µ(n,k)(0, X)
ᾱk β̄n−k

(ᾱ + 2dβ̄)n
= P (Un = X | U0 = 0) ≥ C6 n−d/2

for a suitable C6 = C6(ᾱ, β̄) > 0. We refer to [27, Corollary 13.11] for the asymptotic estimates of
the n-step probabilities. In particular, for X ∼ 0 and t = n, we obtain

E (ζ̄n(X)) ≥
n−1
∑

k=0

µ(n,k)(0, X)
ᾱk β̄n−k nn

n!
e−n

=
n−1
∑

k=0

µ(n,k)(0, X)
ᾱk β̄n−k

(ᾱ + 2dβ̄)n

nn(ᾱ + 2dβ̄)n

n!
e−n

n→∞∼ (ᾱ + 2dβ̄)n

√
2πn

n−1
∑

k=0

µ(n,k)(0, X)
ᾱk β̄n−k

(ᾱ + 2dβ̄)n
≥ (ᾱ + 2dβ̄)n

√
2πn

C7 n−d/2.

for a suitable C7 > 0. Finally, since (ᾱ + 2dβ̄) = (α + β)(1 − δ) > 1, we deduce that

E (ζ̄n(X)) ≥ (1 − δ)n (α + β)n

√
2πn

C7 n−d/2 > 1

provided n is sufficiently large. �

Following the ideas of Lemma 5.3, Remark 5.2 and Theorem 5.1 in [3], and using Lemma 5 above
in place of [3, Lemma 5.2], one proves that {ζt}t survives when M is sufficiently large, and so does,
by stochastic domination, the metapopulation when N is large and the density p = 1.
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Lemma 6 If (α + β)(1 − δ) > 1 then the process {ζt}t survives when M is sufficiently large.

Proof. By additivity of {ζ̄t}t, if X ∼ 0 then the Central Limit Theorem implies that

lim
K→∞

[

P (ζ̄n(X) ≥ K | ζ̄0(0) = K) − 1 + Φ

(

K − E(ζ̄n(X) | ζ̄0(0) = 1)K
√

Var(ζ̄n(X) | ζ̄0(0) = 1)
√

K

)]

= 0,

where the function Φ is the cumulative distribution function of the standard normal. Since n is
fixed, it follows that, for all ǫ > 0,

P (ζ̄n(X) ≥ K for all X ∼ 0 | ζ̄0(0) = K) > 1 − ǫ

for K sufficiently large. Let {Nt}t be the branching process with birth rate ᾱ + 2dβ̄ and death
rate 0, which represents the total number of particles born up to time t. By the same argument as
before, there exists C8 > 1 such that

P (Nn ≤ C8 K | N0 = K) ≥ 1 − ǫ for all K sufficiently large.

Since, if M ≥ C8 K then {ζ̄t}t and {ζt}t coincide (up to time n) on {Nn ≤ C8 K}, we have

P (ζn(X) ≥ K | ζ0(0) = K) > 1 − 2ǫ.

In order to get
P (ζn(X) ≥ K for all X ∼ 0 | ζ0(0) = K) > 1 − 2ǫ (6)

we need to ensure that from time 0 to time n, in no site the process {ζ̄t}t on {Nn ≤ C8 K} ever
exceeds M particles. By geometric arguments (see [3, Step 3] for further details) one proves that it
suffices to take M ≥ 2H0C8K = C9K where H0 is the number of paths of length n in Z

d crossing
a fixed vertex. To complete the proof, we use equation (6) to couple the process {ζt}t with a super-
critical 1-dependent oriented site percolation process on Z

d × Z+ in a way such that the existence
of an infinite cluster implies survival for {ζt}t. �

Since, in the proof of Lemma 5, we consider only the particles of generation n, equation (6) holds
if, instead of the process {ζt}t, we deal with the process {ζn

t }t obtained by deleting all the particles
of generation n′ > n. In addition, the process {η̄n

t }t, obtained from the metapopulation model by
assuming that symbionts sent outside [n, n]d are killed, clearly dominates {ζn

t }t.

Lemma 7 Fix n so that Lemma 5 holds. Then, for all ǫ0 > 0,

P (η̄n
n(X) ≥

√
N for all X ∼ 0 | η̄n

0 (0) ≥
√

N) ≥ 1 − ǫ0

for all N sufficiently large.

Proof. This follows from equation (6) (using {η̄n
t }t instead of {ζn

t }t) choosing K =
√

N , from
stochastic domination when C9

√
N/δ < N , and from the monotonicity of {η̄n

t }t. �

To deduce part 3 of Theorem 1 from the previous lemma, we follow the same strategy as before by
comparing the evolution of the metapopulation along an infinite self-avoiding path with oriented
percolation. To apply successfully Lemma 7, this infinite self-avoiding path must be contained in
an infinite stripe with width at least 2n. The existence of such a path follows by choosing the
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NM M/δ

χ

(1 − δ) χ

Figure 3. Reproduction rates for {ζt}t and {η̄t}t (• and ◦, respectively).

parameter p close enough to 1. First, we fix n so that Lemma 5 holds (recall that n only depends
on the reproduction rate α, the transmission rate β, and the spatial dimension d). Then, we fix
the parameter ǫ0 > 0 such that 1 − ǫ0 is greater than the critical value of n-dependent oriented
percolation. We will prove part 3 when the density p of hosts is such that

p > exp((2n + 1)−d log pc)

where pc is the critical value of site percolation in d dimensions. We tile the d-dimensional regular
lattice with cubes of edge length 2n + 1 by setting

B0 = [−n, n]d and BZ = (2n + 1)Z + B0 for all Z ∈ Z
d.

Given a realization ω of the site percolation process with parameter p, we call a cube BZ open if
all the sites X ∈ BZ are occupied by a host, and closed otherwise. Our choice of p implies

P (BZ is open) = p(2n+1)d

> pc for all Z ∈ Z
d.

In particular, there exists almost surely an infinite self-avoiding path of open cubes, i.e., there exists
a self-avoiding path {Zi : i ∈ Z} ⊂ Z

d such that cube BZi
is open for all i. From this path of open

cubes, we construct an infinite self-avoiding path of open sites Γ = {Γi : i ∈ Z} by including all the
sites belonging to the straight lines connecting the centers of adjacent cubes, as shown in Figure 4
where grey squares refer to closed cubes, and white squares to open cubes. By construction,

1. For all i ∈ Z and all X ∈ Γi + [−n, n]d, we have X ∈ C∞(ω).

2. For all i ∈ Z, we have Γi ∼ Γi+1.

We call site (i, m) ∈ G a good site whenever the host at site Γi is infected by at least
√

N symbionts
at time mn and as previously let Gm denote the set of good sites at level m. Then, Lemma 7 and
the fact that the evolution rules of the process are homogeneous in time imply that

P ((i − 1, m + 1) and (i + 1, m + 1) are good | (i, m) is good) ≥ 1 − ǫ0 (7)
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Figure 4. Picture of the self-avoiding path Γ.

for sufficiently large N . Denoting again by Wm the set of wet sites at level m in an n-dependent
oriented site percolation process with parameter 1− ǫ0 the inequality (7) implies that the processes
can be constructed on the same probability space in such a way that

P (Wm ⊂ Gm for all m ≥ 0 | W0 ⊂ G0) = 1.

Since 1− ǫ0 is greater than the critical value of oriented percolation, this implies as previously that
the metapopulation survives, which completes the proof of Theorem 1.

4. Proof of Theorem 2

This section is devoted to the competition voter model and the proof of Theorem 2. In the neutral
case, α1 = α2 and β1 = β2, the Harris’ graphical representation induces a natural duality relation-
ship between the spatial model and a system of coalescing random walks on the connected random
graph CN (ω). In particular, the first part of Theorem 2 will follow from certain collision properties
of symmetric random walks on the infinite percolation cluster C∞(ω). In contrast, the analysis
of the competition model in the non-neutral case will be performed without invoking duality but
rather by comparing the forward evolution with a gambler’s ruin model.

Duality with coalescing random walks. To define the dual process of the competition model
under neutrality, we first construct the process graphically from collections of independent Poisson
processes using an idea of Harris [12]. Each vertex x ∈ CN (ω) is equipped with a Poisson process
with parameter 1. Poisson processes attached to different vertices are independent. At the arrival
times of the process at x, we toss a coin with success probability α/(α+β) where α is the common
reproduction parameter of both symbiont types and β the common transmission parameter. If there
is a success, we choose a vertex uniformly at random from the host at site π(x) and draw an arrow
from this vertex to vertex x. If there is a failure, we choose a vertex uniformly at random from one
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of the hosts adjacent to site π(x) and draw an arrow from this vertex to vertex x. In view of the
geometry of the graph and the number of vertices per host, this is equivalent to saying that

– For any pair of vertices x, y ∈ CN (ω) with x l y, we draw an arrow from y to x at the arrival
times of an independent Poisson process with parameter α/(N (α + β)).

– For any pair of vertices x, y ∈ CN (ω) with x ↔ y, we draw an arrow from y to x at the arrival
times of an independent Poisson process with parameter β/(N deg π(x) (α + β)).

In any case, an arrow from vertex y to vertex x indicates that the symbiont at x dies and gets
instantaneously replaced by a symbiont of the same species as the symbiont at y.

To define the dual process, we say that there is a path from (y, T −s) to (x, T ), which corresponds
to a dual path from (x, T ) to (y, T − s), if there are sequences of times and vertices

s0 = T − s < s1 < · · · < sn+1 = T and x0 = y, x1, . . . , xn = x

such that the following two conditions hold:

1. For i = 1, 2, . . . , n, there is an arrow from xi−1 to xi at time si and

2. For i = 0, 1, . . . , n, there is no arrow that points at the segments {xi} × (si, si+1).

The dual process starting at (x, T ) is the process defined by

ξ̂s(x, T ) = {y ∈ CN (ω) : there is a dual path from (x, T ) to (y, T − s)}.

The dual process starting from a finite set of vertices B ⊂ CN (ω) can be defined as well. In this
case, the dual process starting at (B, T ) is the set-valued process defined by

ξ̂s(B, T ) = {y ∈ CN (ω) : there is a dual path

from (x, T ) to (y, T − s) for some x ∈ B}
= {y ∈ CN (ω) : y ∈ ξ̂s(x, T ) for some x ∈ B}.

The dual process is naturally defined only for 0 ≤ s ≤ T . However, it is convenient to assume that
the Poisson processes in the graphical representation are defined for negative times so that the
dual process can be defined for all s ≥ 0. Note that, in view of the graphical representation of the
competition model in the neutral case, the dual process starting at (x, T ) performs a continuous-
time random walk on the random graph CN (ω) that makes transitions

y →
{

z for z l y at rate α/(N (α + β))

z for z ↔ y at rate β/(N deg π(y) (α + β)).

The dual process starting from a finite set B ⊂ CN (ω) consists of a system of card(B) such random
walks, one random walk starting from each vertex in the set B. Any two of these random walks
evolve independently of each other until they intersect when they coalesce. This induces a duality
relationship between the model and coalescing random walks. We refer the reader to Figure 5 for
an example of realization of the dual process.

The reason for introducing the dual process is that it allows us to deduce the configuration of the
system at the current time based on the configuration at earlier times, but also how vertices at the
current time are correlated, by keeping track of the ancestry of each symbiont. In particular, the
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{1} × KN{0} × KN{−1} × KN

Figure 5. Example of realization of the dual process (d = 1 and N = 5) in bold lines, where we have drawn arrows
within the same host in continuous line, and arrows connecting two adjacent hosts in dashed lines.

long-term behavior of the competition model (clustering versus coexistence) can be expressed in
terms of collision properties of random walks on the infinite percolation cluster through the duality
relationship between the model and coalescing random walks. We now explain this connection in
details, starting with some key definitions.

Let G = (V, E) be an infinite connected graph. We call simple symmetric random walk on this
graph the continuous-time Markov process {Xt}t with state space V that jumps from u to v at
rate one if and only if (u, v) ∈ E. Note that the embedded Markov chain associated to this Markov
process is the discrete-time random walk {Xn}n with transition probabilities

P (Xn+1 = v | Xn = u) =
1

deg(u)
if and only if (u, v) ∈ E.

Since the graph G is connected, the process {Xt}t is irreducible so either all the vertices of the
graph are recurrent, in which case the graph is said to be recurrent, or all the vertices are transient,
in which case the graph is said to be transient. Let Xt and Yt be two independent random walks on
the graph G. Using again the fact that the graph is connected and the Kolmogorov zero-one law,
the probability that the two random walks intersect infinitely often, namely

P (for all t there exists s such that Xt+s = Yt+s)

is either equal to 0 or 1 regardless of the initial positions of the random walks. The graph G is said
to have the infinite collision property if the previous probability is equal to 1, and it is said to have
the finite collision property if the previous probability is equal to 0. Such properties for the infinite
percolation cluster C∞(ω) translate through the duality relationship with coalescing random walks
into coexistence/clustering of the competition model, as shown in the next lemma.
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Lemma 8 We have the following alternative:

1. C∞(ω) has the infinite collision property and then the process clusters, or

2. C∞(ω) has the finite collision property and then coexistence occurs.

Proof. Let B ⊂ CN (ω) be finite and let Θi
t = {x ∈ CN (ω) : ξt(x) = i} denote the set of vertices

occupied by a type i symbiont at time t. By duality,

P (Θ1
t ∩ B = ∅) = E (1 − θ)|ξ̂t(B,t)| (8)

where θ is the initial density of type 1. Since the number of particles in ξ̂t(B, t) is a nonincreasing
function of t and has a limit, the bounded convergence theorem implies that the probability on the
left-hand side of (8) also has a limit as t → ∞. It follows that the process converges to a stationary
distribution. To understand how different vertices are correlated under this stationary distribution,
we take two vertices x, y ∈ CN (ω), x 6= y, and consider the projections

Xs = π(ξ̂s(x, T )) and Ys = π(ξ̂s(y, T )).

Let τ be the hitting time of the dual processes, i.e.,

τ = inf {s > 0 : ξ̂s(x, T ) = ξ̂s(y, T )}.

Note that the processes Xs and Ys evolve individually according to continuous-time random walks
run at rate q := β/(α + β) on the infinite percolation cluster C∞(ω). They evolve independently of
each other until time τ when they coalesce. We set t0 = 0 and define inductively

si = inf {s > ti−1 : Xs = Ys}
ti = inf {s > si : Xs 6= Ys} = inf {s > si : Xs 6= Xsi

or Ys 6= Ysi
}

for i ≥ 1. Note that, if the dual processes coalesce at time s then

ti = si+1 = ∞ for all i ≥ max {j : sj < s}.

Also, let Mi denote the total number of jumps during the interval of time (si, ti) of either of the
dual processes starting at vertex x or vertex y. Writing Pi for the conditional probability given the
event that si < ∞ and using that each dual process jumps to one of the adjacent hosts at rate q
and within each host at rate 1 − q, we obtain the following probability

Pi (τ > ti) =
∞
∑

j=0

Pi (τ > ti | Mi = j) Pi (Mi = j)

=
∞
∑

j=0

(

1 − 1

N

)j

q (1 − q)j =
q

1 − (1 − q)(1 − 1/N)
=

Nβ

α + Nβ
.

(9)

Let J = J(x, y, ω) = sup {j : sj < ∞}, and note that, on the event that the dual processes
starting at x and y do not coalesce, J is equal in distribution to the number of intersections of
two independent random walks on the infinite percolation cluster starting at π(x) and π(y). In
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particular, if C∞(ω) has the infinite collision property and if It denotes the number of intersections
up to time t of two independent random walks starting at π(x) and π(y) then (9) implies

lim
T→∞

P (ξT (x) 6= ξT (y)) ≤ lim
T→∞

P (ξ̂T (x, T ) 6= ξ̂T (y, T ))

= lim
T→∞

∞
∑

j=0

j
∏

i=0

P (IT = j)Pi (τ > ti)

= lim
T→∞

∞
∑

j=0

(

Nβ

α + Nβ

)j

P (IT = j) = 0

by the bounded convergence theorem since P (IT = j) → 0 as T → ∞ for all j ∈ N. This shows
that the process clusters. Alternatively, if the infinite percolation cluster has the finite collision
property, then J is almost surely finite so equation (9) implies that

lim
T→∞

P (ξT (x) 6= ξT (y)) = θ(1 − θ) lim
T→∞

P (ξ̂T (x, T ) 6= ξ̂T (y, T ))

= θ(1 − θ)
∞
∑

j=0

lim
T→∞

P (ξ̂T (x, T ) 6= ξ̂T (y, T ) | J = j)P (J = j)

= θ(1 − θ)
∞
∑

j=0

(

Nβ

α + Nβ

)j

P (J = j) ≥ c > 0,

which shows that coexistence occurs. This completes the proof. �

Note that the previous lemma easily extends to any connected graph in which the degree of each
vertex is uniformly bounded. That is, given such a graph G = (V, E), the competition model can
be naturally defined on the graph GN with vertex set V × KN constructed from G in the same
way as the graph CN (ω) is constructed from the infinite percolation cluster. Then, the proof of the
previous lemma implies that, for all N finite, the resulting process clusters when G has the infinite
collision property, but coexists when G has the finite collision property.

Transience of the percolation cluster and coexistence. Motivated by Lemma 8, we now
prove that the infinite percolation cluster C∞(ω) in dimensions d ≥ 3 has the finite collision
property. This follows from the fact that the infinite cluster is transient, a result due to Grimmett,
Kesten and Zhang [11], and that the degree of each vertex is uniformly bounded. We also answer
the same questions for the infinite percolation clusters in 2 dimensions since the proofs are similar,
even through these results will not be used to establish clustering of the process.

Lemma 9 The cluster C∞(ω) is recurrent in d = 2 and transient in d ≥ 3.

Proof. The proof is based on the analogy between random walks and electrical networks. We refer
the reader to [7] for more details about this analogy. The idea is to turn the infinite percolation
cluster into an electrical network in which each edge has unit resistance. Then, simple random walks
on the original graph are recurrent if and only if the effective resistance of the resulting electrical
network between a given point and the points at infinity is infinite, as shown in [7]. To deal with
the two-dimensional case, we first use Polya’s theorem to deduce that the effective resistance of the
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regular lattice Z
2 between a nominated point and the points at infinity is infinite. By Rayleigh’s

monotonicity law, this implies that the effective resistance of any subgraph of Z
2 between a given

point and the points at infinity is again infinite, from which we deduce that the infinite percolation
cluster in 2 dimensions is recurrent. The d ≥ 3 case has been studied in details by Grimmett,
Kesten and Zhang [11]. Their proof relies on the construction of a tree-like graph that can be em-
bedded in the infinite percolation cluster and whose effective resistance between a given point and
the points at infinity is finite. A new application of Rayleigh’s monotonicity law implies that the
infinite percolation cluster is transient in d ≥ 3. The result in [11] applies to bond percolation but
relies on geometric properties that are known for site percolation as well. �

Lemma 10 Let {Xt}t and {Yt}t be two independent random walks run at rate 1 on C∞(ω) both

starting at vertex A, and denote by I(X, Y ) the number of their intersections. Then,

E I(X, Y ) = ∞ in d = 2 and E I(X, Y ) < ∞ in d ≥ 3.

Proof. Since the total rate of jump of both random walks equals 2,

E I(X, Y ) = 2 E

(
∫ ∞

0
11{Xt = Yt} dt

)

= 2

∫ ∞

0
P (Xt = Yt) dt

= 2

∫ ∞

0

∑

B∈C∞(ω)

P (Xt = B)P (Yt = B) dt = 2

∫ ∞

0

∑

B∈C∞(ω)

(pt(A, B))2 dt
(10)

where pt(A, B) = P (Xt = B | X0 = A). Now, we observe that the probability that a random walk
follows a given directed path from vertex A to vertex B is equal to 1 divided by the product of the
degrees of the vertices of this path excluding the final vertex B. Similarly, the probability that a
random walk follows the reverse path from vertex B to vertex A is 1 divided by the product of the
degrees of the vertices excluding the final vertex A, from which we deduce that

(2d)−1 pt(B, A) ≤ pt(A, B) ≤ 2d pt(B, A) for all B ∈ C∞(ω) (11)

since 1 ≤ deg(A), deg(B) ≤ 2d. Therefore, when C∞(ω) is recurrent, (10)-(11) imply that

E I(X, Y ) ≥ d−1

∫ ∞

0

∑

B∈C∞(ω)

pt(A, B) pt(B, A) dt = d−1

∫ ∞

0
p2t(A, A) dt = ∞

whereas when C∞(ω) is transient, (10)-(11) imply that

E I(X, Y ) ≤ 4d

∫ ∞

0

∑

B∈C∞(ω)

pt(A, B) pt(B, A) dt = 4d

∫ ∞

0
p2t(A, A) dt < ∞.

The result then follows from Lemma 9. �

Lemma 10 indicates that P (I(X, Y ) < ∞) = 1 in dimensions d ≥ 3, i.e., C∞(ω) has the finite
collision property, which, together with Lemma 8, implies that coexistence occurs. However, that
the expected number of intersections is infinite does not imply that the number of intersections
is infinite with positive probability (with probability 1 by the Kolmogorov zero-one law). In fact,
it is known that recurrent graphs, even with bounded degree, do not necessarily have the infinite
collision property. This has been proved by Krishnapur and Peres [16], looking at the comb lattice,
that is the subgraph of Z

2 obtained by deleting all the horizontal edges off the x-axis.
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Infinite collision property of the percolation cluster. We now prove that the infinite
percolation cluster C∞(ω) has the infinite collision property in d = 2, which, by Lemma 8, is
equivalent to clustering of the neutral competition model in two dimensions. We use the same
notations as before and let {Xt}t and {Yt}t be two independent continuous-time random walks
run at rate 1 on the infinite percolation cluster. Let Wt = (Xt, Yt) and Wn = (Xn,Yn) denote the
discrete-time Markov chain on C∞(ω) × C∞(ω) with transition probabilities

P (Wn+1 = (A′, B′) | Wn = (A, B)) =
1

2

(

q1(A, A′) 11{B = B′} + q1(B, B′) 11{A = A′}
)

where qn(A, B) denotes the n-step transition probability of the lazy symmetric random walk on the
infinite percolation cluster. That is, at each time step, one of the two coordinates of Wn is chosen
at random with probability 1/2. This coordinate then moves according to the uniform distribution
on the neighbors or stands still, both with probability 1/2, while the other coordinate does not
change. Note that, at each step, with probability 1/2, the process Wn does not move at all. Note
also that the processes {Wt}t and {Wn}n can be coupled in such a way that the sequences of states
visited by both processes are equal. In particular, invoking in addition the Markov property, to
prove the infinite collision property of the graph, it suffices to prove that

P (Xn = Yn for some n ≥ 1 | W0 = (A, B)) = 1.

The first key to proving the infinite collision property of the cluster is the following theorem, which
is the analog of Theorem 1 in [1]. We state the result in the general d-dimensional case, though we
only deal with the 2-dimensional case in the rest of this section.

Theorem 11 Let p > pc. Then, there exist a subset Ω of the set of the realizations with probability

one and a collection of random variables {SA}A∈Zd such that the following holds.

1. We have SA(ω) < ∞ for each ω ∈ Ω and A ∈ C∞(ω).

2. There are constants c1, c2, c3, c4 > 0 such that, for all A, B ∈ C∞(ω),

qn(A, B) ≥ c1 n−d/2 exp(−c2 |A − B|2/n) whenever |A − B| ∨ SA(ω) ≤ n

qn(A, B) ≤ c3 n−d/2 exp(−c4 |A − B|2/n) whenever SA(ω) ≤ n.
(12)

The proof of Theorem 11 follows the lines of the proof of its analog in [1] and only differs in two
points: first, we consider a discrete-time lazy random walk instead of a continuous-time random
walk, and second, processes under consideration evolve on the infinite percolation cluster of site
percolation instead of bond percolation. To prove the subgaussian upper estimate, the idea is to
use a discrete-time version of [20, Theorem 1.1] and the results of [6, Sections 5,6 and 8], while the
proof of the subgaussian lower estimate follows closely the strategy of [1]. Note that the choice of a
lazy random walk is motivated by the fact that one cannot expect the lower bound to hold for any
time n for a standard simple random walk. This is due to the fact that it has period 2. In order to
avoid unnecessary complications, we prefer to deal with an aperiodic random walk.

In the sequel, to simplify the notations, we write sums starting from (or ending at) possibly
noninteger real numbers, but it is tacitly understood that one must consider their integer part. To
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prove the infinite collision property, we define

F (n) =
n
∑

j=0

2−n

(

n

j

)

qj(A, X) qn−j(B, X)

Fρ(n) =

(1−ρ)n
∑

j=ρn

2−n

(

n

j

)

qj(A, X) qn−j(B, X)

where ρ ∈ (0, 1/2) and A, B, X ∈ C∞(ω).

Lemma 12 Fix ρ ∈ (0, 1/2), A, B, X ∈ C∞(ω) and ǫ > 0. Then F (n) ≤ (1 + ǫ)Fρ(n) when n is

sufficiently large depending on ρ, A, B, X and ǫ.

Proof. By the Hoeffding inequality [14, Theorem 1], we have

F (n) − Fρ(n) ≤
ρn
∑

j=0

2−n

(

n

j

)

+
n
∑

j=(1−ρ)n

2−n

(

n

j

)

≤ 2 exp(−2n(1/2 − ρ)2).

Taking n such that

ρn ≥ √
n ∨ SA(ω) ∨ SB(ω) ≥ |X − A| ∨ |X − B| ∨ SA(ω) ∨ SB(ω),

we may use the first inequality in (12). Letting Φ denote the cumulative distribution function of
the standard normal, and also applying the Central Limit Theorem, we obtain

Fρ(n) ≥
(1−ρ)n
∑

j=ρn

2−n

(

n

j

)

c1

j
exp

(

− c2 |X − A|2
j

)

c1

n − j
exp

(

− c2 |X − B|2
n − j

)

≥
(1−ρ)n
∑

k=ρn

2−n

(

n

j

)

c2
1

j(n − j)
exp

(

− c2 n2

j(n − j)

)

≥ (2c1/n)2 exp(−c2/((1 − ρ) ρ))

(1−ρ)n
∑

j=ρn

2−n

(

n

j

)

≥ C10 n−2 (2 Φ((1 − 2ρ)
√

n) − 1)

(13)

for some C10 < ∞. To conclude, observe that

F (n) =

(

1 +
F (n) − Fρ(n)

Fρ(n)

)

Fρ(n)

while the previous estimates (13) imply

lim
n→∞

F (n) − Fρ(n)

Fρ(n)
≤ lim

n→∞
n2

C10

exp(−2n(1/2 − ρ)2)

Φ((1 − 2ρ)
√

n) − 1/2
= 0.

This completes the proof. �
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With Theorem 11 and Lemma 12 in hands, we are now ready to prove that the infinite percolation
cluster has the infinite collision property in the sense described above, i.e., considering continuous-
time random walks run at a constant rate, say 1. Our proof relies in addition on an argument of
Peres and Sousi [24] who studied the number of collisions of discrete-time random walks moving
simultaneously at each time step. In order to understand the duality properties of the competition
model, we need, in contrast, to consider a pair of random walks in which only one walk chosen
uniformly at random can move while the other walk stands still, thus mimicking the evolution of a
pair of independent continuous-time random walks.

Theorem 13 Fix a realization ω. Then, for all A, B ∈ C∞(ω),

P (card{n : Xn = Yn} = ∞ | W0 = (A, B)) = 1.

Proof. Let γ > 0 to be chosen later, and define

Ik =
k2

∑

n=k

∑

|X−A|∨|X−B|<√
n

SX(ω)≤γ

I(X, n)

where I(X, n) = 1 if there is a collision at time n at site X, and = 0 otherwise. The first step is to
find bounds for the first and second moments of Ik when k is large.

Lower bound: E(Ik) ≥ C log k for some constant C > 0 which does not depend on A, B and for all
k ≥ k1(A, B). First, we fix ρ ∈ (0, 1/2) and observe that

E
A,BI(X, n) = PA,B(Xn = Yn = X) =

n
∑

j=0

2−n

(

n

j

)

qj(A, X) qn−j(B, X)

≥
(1−ρ)n
∑

j=ρn

2−n

(

n

j

)

qj(A, X) qn−j(B, X).

In the previous sum, j and n − j are larger than ρn. Hence, for n ≥ k, if

|X − A| ∨ |X − B| <
√

ρn and k ≥ ρ−1(SA(ω) ∨ SB(ω))

then j ∧ (n − j) ≥ |X − A| ∨ |X − B| ∨ SA(ω) ∨ SB(ω) so Theorem 11 implies

E
A,B(Ik) ≥

k2

∑

n=k

∑

|X−A|∨|X−B|<√
ρn

SX(ω)≤γ

(1−ρ)n
∑

j=ρn

2−n

(

n

j

)

c2
1

j(n − j)
exp

[

− c2

(

ρn

j
+

ρn

n − j

)]

≥
k2

∑

n=k

∑

|X−A|∨|X−B|<√
ρn

SX(ω)≤γ

(1−ρ)n
∑

j=ρn

2−n

(

n

j

) (

2c1

n

)2

exp(−c2/(1 − ρ)).



24 D. Bertacchi, N. Lanchier and F. Zucca

This and the Central Limit Theorem imply that, for k large depending on A, B,

E
A,B(Ik) ≥ exp(−c2/(1 − ρ))

×
k2

∑

n=k

(2c1/n)2 card {X ∈ C∞(ω) : |X − A| ∨ |X − B| <
√

ρn, SX(ω) ≤ γ}.
(14)

Now, by the ergodic theorem,

lim
n→∞

card {X ∈ C∞(ω) : |X − A| ∨ |X − B| <
√

ρn, SX(ω) ≤ γ}
card {X ∈ Z2 : |X − A| ∨ |X − B| <

√
ρn}

= P (X ∈ C∞(ω), SX(ω) ≤ γ).

In particular, there exists a constant δ > 0 that only depends on the percolation parameter p such
that for all γ and k sufficiently large, we have

card {X ∈ C∞(ω) : |X − A| ∨ |X − B| <
√

ρn, SX(ω) ≤ γ} ≥ δρn (15)

for n ≥ k. By (14)-(15), there exists k1(A, B) large such that

E
A,B(Ik) ≥ c2

1 exp(−c2/(1 − ρ))
k2

∑

n=k

δρ

n
≥ C11 (log k2 − log k) = C11 log k (16)

for a suitable C11 > 0 not depending on A, B, and all k ≥ k1(A, B).

Upper bound: E(I2
k) ≤ C (log k)2 for some constant C < ∞ which does not depend on A, B and

for all k ≥ k2(A, B). First, we observe that, for l ≥ n,

E
A,B(I(X, n) I(Y, l)) = PA,B(Xn = Yn = X, Xl = Yl = Y )

= E
A,BI(X, n) E

X,X(Y, l − n)

from which it follows that

E
A,B(I2

k) ≤ 2
k2

∑

n=k

k2

∑

l=n

∑

|X−A|∨|X−B|<√
n

SX(ω)≤γ

∑

Y :|X−Y |<
√

l−n

SY (ω)≤γ

E
A,BI(X, n) E

X,XI(Y, l − n).

Since I(Y1, l − n) I(Y2, l − n) = 0 whenever Y1 6= Y2, we also have

∑

Y :|X−Y |<
√

l−n

E
X,XI(Y, l − n) 11{SY (ω) ≤ γ} ≤ 1.
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Therefore, by applying Lemma 12 twice with ǫ = 1, we deduce that there exists γ large such that
for all k sufficiently large

E
A,B(I2

k) ≤ 2
k2

∑

n=k

∑

|X−A|∨|X−B|<√
n

SX(ω)≤γ

2

(

(1−ρ)n
∑

j=ρn

2−n

(

n

j

)

qj(A, X) qn−j(B, X)

)

×
(

γ

ρ
+ 2

k2

∑

l=n+γ/ρ

∑

Y :|X−Y |<
√

l−n

SY (ω)≤γ

(1−ρ)(l−n)
∑

i=ρ(l−n)

2−(l−n)

(

l − n

i

)

qi(X, Y ) ql−n−i(X, Y )

)

.

Observing that in the sums over j and i above, we have

j ∧ (n − j) ≥ ρn ≥ ρk ≥ SA(ω) ∨ SB(ω)

i ∧ (l − n − i) ≥ ρ(l − n) ≥ ργ/ρ = γ ≥ SX(ω),

for all k large depending on A, B, X, Theorem 11 implies that

E
A,B(I2

k) ≤ 8
k2

∑

n=k

5n

(

(1−ρ)n
∑

j=ρn

2−n

(

n

j

)

c2
3

j(n − j)
exp(−c4 n (j−1 + (n − j)−1)

)

×
(

γ

ρ
+

k2

∑

l=n+γ/ρ

∞
∑

m=0

card {Y : m
√

l − n ≤ |X − Y | < (m + 1)
√

l − n}

×
(1−ρ)(l−n)
∑

i=ρ(l−n)

2−(l−n)

(

l − n

i

)

c2
3

i(l − n − i)
exp(−c4m

2 (i−1 + (l − n − i)−1)

)

.

In particular, there exists k2(A, B) large such that

E
A,B(I2

k) ≤ 8
k2

∑

n=k

5 c2
3

ρ(1 − ρ)n

×
(

γ

ρ
+

k2

∑

l=n+γ/ρ

∞
∑

m=0

5 (m + 2)2 c2
3

ρ(1 − ρ)(l − n)
exp(−4 c4 (m + 1)2)

)

≤ C12

k2

∑

n=k

1

n

(

γ

ρ
+ C13

k2

∑

l=n+γ/ρ

1

l − n

)

≤ C14 (log k)2

(17)

for suitable constants C12, C13, C14 < ∞ not depending on A, B and all k ≥ k2(A, B).

Let k(A, B) = k1(A, B) ∨ k2(A, B). By (16)-(17) and the Paley-Zygmund inequality,

P (Ik > (C11/2) log k | W0 = (A, B)) ≥ P (Ik > E(Ik)/2 | W0 = (A, B))

≥ (EA,B(Ik))
2/4 E

A,B(I2
k) ≥ C2

11/4 C14 = c > 0
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for k = k(A, B) and where, as C11 and C14, the constant c > 0 does not depend on the starting
points of the random walks. Then, we define a sequence of stopping times and sites as follows: we
start at n0 = 0 and (A0, B0) = (A, B), and for all j ≥ 1 we define inductively

nj = nj−1 + k(Aj−1, Bj−1) and (Aj , Bj) = (Xnj
,Ynj

).

We say that there is a success at round j ≥ 1 when

card {n ∈ [nj−1, nj) : Xn = Yn} > (C11/2) log k(Aj−1, Bj−1)

and observe that, at each round, the success probability is larger than c > 0. In particular, the
probability mass function of the number of successes up to round j ≥ 1 is stochastically larger than
a Binomial random variable with parameters j and c > 0, from which it follows that the ultimate
number of successes, thus the ultimate number of collisions, is almost surely infinite. �

As previously explained, clustering of the neutral competition model in two dimensions follows
from the combination of Lemma 8 and Theorem 13.

Competition with selection. We now prove the second part of Theorem 2 which, in contrast
with the first part, relies on an analysis of the evolution forward in time rather than backwards in
time. For all X ∈ Z

d, we let ξ̄t(X) be the number of type 1 symbionts in the host at X and set

pt(X) =
2dα1 ξ̄t(X) + β1

∑

Y ∼X ξ̄t(Y )

2dα1 ξ̄t(X) + 2dα2 (N − ξ̄t(X)) + β1
∑

Y ∼X ξ̄t(Y ) + β2
∑

Y ∼X (N − ξ̄t(Y ))

qt(X) =
2dα1 ξ̄t(X) + β1

∑

Y ∼X ξ̄t(Y )

2dN (α1 + β1)
.

Observe that pt(X) = qt(X) in the neutral case α1 = α2 and β1 = β2, and that

pt(X), qt(X) =

{

0 if and only if ξ̄t(X) = ξ̄t(Y ) = 0 for all Y ∼ X

1 if and only if ξ̄t(X) = ξ̄t(Y ) = N for all Y ∼ X.

Note also that, since qt(X) can take at most (N + 1)(2dN + 1) different values,

q− := inf {qt(X) : qt(X) ∈ (0, 1)} > 0 and q+ := sup {qt(X) : qt(X) ∈ (0, 1)} < 1.

Let Nt denote the number of type 1 symbionts present in the system at time t. If the number of
symbionts of type 1 at time 0 is finite, then

Nt →
{

Nt + 1 at rate
∑

X (N − ξ̄t(X)) pt(X)

Nt − 1 at rate
∑

X ξ̄t(X) (1 − pt(X))

where the sum is over all X ∈ Z
d such that pt(X) ∈ (0, 1). Now, we observe that in the neutral

case when α1 = α2 and β1 = β2, the embedded Markov chain associated to the process {Nt}t is
the simple symmetric random walk on Z+ absorbed at 0, therefore

1

N

∑

X

ξ̄t(X) =
∑

X

pt(X).
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This implies that for all α1 and β1 such that α1 + β1 6= 0, and for all configurations

1

N

∑

X

ξ̄t(X) =
∑

X

2dα1 ξ̄t(X) + β1
∑

Y ∼X ξ̄t(Y )

2dN (α1 + β1)
=
∑

X

qt(X). (18)

Now, assume that α1 ≥ α2 and β1 > β2. We want to show that in this case the embedded Markov
chain associated to {Nt}t is a random walk with a positive drift. We say that

1. site X ∈ Z
d is bad at time t when qt(X) ∈ (0, 1) and ξ̄t(Y ) = N for all Y ∼ X and

2. site X ∈ Z
d is good at time t when qt(X) ∈ (0, 1) and ξ̄t(Y ) 6= N for some Y ∼ X.

Note that if N0 is finite then at any time t the sets of good and bad sites are both finite. The first
ingredient to proving the result is to observe that for any site either good or bad

pt(X) =
2dα1 ξ̄t(X) + β1

∑

Y ∼X ξ̄t(Y )

2dN α1 + 2dN β1 − (α1 − α2) (N − ξ̄t(X)) − (β1 − β2)
∑

Y ∼X (N − ξ̄t(Y ))

≥ 2dα1 ξ̄t(X) + β1
∑

Y ∼X ξ̄t(Y )

2dN (α1 + β1)
= qt(X)

(19)

while if we assume in addition that X is a good site, then

pt(X) ≥ 2dα1 ξ̄t(X) + β1
∑

Y ∼X ξ̄t(Y )

2dN (α1 + β1)

[

1 − β1 − β2

2dN (α1 + β1)

]−1

= qt(X) (1 − c)−1 (20)

where c = (β1−β2)/(2dN (α1 +β1)) ∈ (0, 1). The second ingredient is to observe that, by definition
of the lower bound q− and upper bound q+, we have q− qt(X1) ≤ q+ qt(X2) for all X1, X2 so

q− (1 − c)−1 qt(X1) + q+ qt(X2) ≤ q− qt(X1) + q+ (1 − c)−1 qt(X2)

(q− (1 − c)−1 + q+) (qt(X1) + qt(X2)) ≤ (q− + q+) (qt(X1) + (1 − c)−1 qt(X2)).
(21)

The third ingredient is to observe also that if X is bad then all sites Y ∼ X are good, therefore
the number of bad sites is at most equal to the number of good sites:

card {X : X is bad} ≤ card {X : X is good}. (22)

Combining (18)-(22), we obtain

∑

X

pt(X) =
∑

X bad

pt(X) +
∑

X good

pt(X)

≥
∑

X bad

qt(X) + (1 − c)−1
∑

X good

qt(X)

≥ q− (1 − c)−1 + q+

q− + q+
×
∑

X

qt(X)

=
q− (1 − c)−1 + q+

q− + q+
× 1

N

∑

X

ξ̄t(X).
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In particular, we have

∑

X

(N − ξ̄t(X)) pt(X) ≥ q− (1 − c)−1 + q+

q− + q+
×
∑

X

ξ̄t(X) −
∑

X

ξ̄t(X) pt(X)

≥ q− (1 − c)−1 + q+

q− + q+
×
∑

X

ξ̄t(X) (1 − pt(X)).

By comparing the previous inequality with the transition rates of {Nt}t and applying the gambler’s
ruin formula, we can conclude that, starting with K symbionts of type 1,

P
(

limt→∞ ξt(x) = 1 for all x ∈ Z
d × KN

)

= P
(

limt→∞ Nt = ∞
)

≥ 1 −
(

q− + q+

q− (1 − c)−1 + q+

)K

.

This completes the proof of Theorem 2.
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