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Abstract

It is often believed that de Finetti’s coherence principle in the finite case naturally leads to

the Kolmogorov’s probability theory of random phenomena and that such a theory unavoid-

ably implies Bell’s inequality. Thus, an alternative probability theory allowing for a violation

of Bell’s inequality, such as quantum probability, should violate also de Finetti’s coherence

principle. Firstly, we show that this is not the case: the typical violations of Bell’s inequality

are in theoretical agreement with de Finetti’s coherence principle. Secondly, we consider the

experimental data of measurements of polarization of photons, performed to verify empiri-

cally violations of Bell’s inequality. We analyze them to test the null hypothesis of validity

of the Kolmogorov’s probability model for the observed phenomenon and we compute their

p-value to quantify the experimental violation of the null hypothesis.

1 INTRODUCTION

The mixed second moments of four random variables taking values ±1, defined on a same
probability space, necessarily satisfy Bell’s inequality, independently of their joint distribution.
Such inequality, which can be easily proved, appeared for the first time in 1964 in a paper
by J.S. Bell [1] on the Einstein - Podolsky - Rosen paradox [2]. Since then it has been at
the center of a vivid interest as it is violated both theoretically, by quantum mechanics, and
experimentally, by measurements on quantum systems. Thus violations of Bell’s inequality are
often involved with considerations and reconsiderations on the limits of classical probability and
on the foundations and interpretations of quantum mechanics.

The aim of the paper is not at all to review the subject, but to discuss the problem for an
audience of (classical) probabilists and statisticians, without any need of notions of quantum
mechanics.

Firstly, we afford the topic from a theoretical point of view to show why and how violations
of Bell’s inequality would reveal the need for a theory of random phenomena more general than
the Kolmogorov’s one and to show that, nevertheless, such violations would not necessarily clash
with de Finetti’s coherence principle.

Secondly, given a random phenomenon supposed to violate Bells’ inequality, we consider the
problem of testing statistically, on the basis of experimental data, if a Kolmogorov’s probability
model has to be rejected for the observed phenomenon. The asymptotic p-value of data from a
celebrated physical experiment is computed, leading to a clear rejection of the null hypothesis.
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2 VIOLATION OF BELL’S INEQUALITY

VS

KOLMOGOROV’S PROBABILITY THEORY

There exist various formulations of Bell’s inequality. Let us state and prove a rather general
form of the Clauser, Horne, Shimony, Holt version [3].

Theorem 1. Let X1,X2, Y1, Y2 be random variables taking values ±1 on a measurable space

(Ω,F). Then the following inequality holds for every probability measure P on (Ω,F):

b =
∣∣∣EX1Y1 + E X1Y2

∣∣∣+
∣∣∣EX2Y1 − EX2Y2

∣∣∣ ≤ 2. (1)

Proof. Since |Yℓ| = 1, the following equalities hold

∣∣∣Y1 − Y2

∣∣∣ = 1 − Y1Y2,
∣∣∣Y1 + Y2

∣∣∣ = 1 + Y1Y2.

Then, as |Xk| = 1,

b =
∣∣∣E X1Y1 + E X1Y2

∣∣∣+
∣∣∣EX2Y1 − E X2Y2

∣∣∣ =
∣∣∣E X1(Y1 + Y2)

∣∣∣ +
∣∣∣E X2(Y1 − Y2)

∣∣∣

≤ E

[
|X1| |Y1 + Y2| + |X2| |Y1 − Y2|

]
= E

[
1 + Y1Y2 + 1 − Y1Y2

]
= 2.

Thus Bell’s inequality (1) necessarily holds under the only hypothesis that four random
numbers taking values ±1 exist in a same random experiment, independently of their joint
distribution. When four random numbers can be modelled with a term (Ω,F , P,X1,X2, Y1, Y2),
as in the hypothesis of Theorem 1, we say that they admit a Kolmogorov’s probability model.
In any case, let b be called Bell’s parameter.

Consider now an experiment on a physical system consisting of two particles. On the first
particle we can measure two quantities of modulus 1, getting the results X1 = ±1 and X2 = ±1.
Analogously we can measure two quantities of modulus 1 on the second particle, with results
Y1 = ±1 and Y2 = ±1. Typically, X1,X2, Y1, Y2 are random results whose distribution depends
on the procedure used to prepare the pair of particles for the experiment.

From a “classical point of view”, they are the values of four physical quantities, which exist
independently of some eventual constraint which could prevent us from measuring all of them
simultaneously. Thus the four random results admit a Kolmogorov’s probability model, they do
have a joint distribution and, whatever it is, their second mixed moments have to satisfy Bell’s
inequality.

Nevertheless, there are experiments on elementary particles where “the classical point of
view” is contradicted both theoretically, by quantum physics, and experimentally, by experi-
mental data. One of the most important examples is found by considering a pair of photons
and, for each photon, its polarization along two given angles. For the purpose of this paper we
do not need to know what polarization is, but it suffices to know that it can be measured only
along an angle −π/2 ≤ α < π/2, that the polarization along a given angle α can take the values
±1 and that the distribution of the results depends on the choice of α and on the preparation
of the photon (its state). Moreover, only one angle α per measurement can be chosen: it is not
physically possible to measure the polarization of a same photon along two different angles α
and α′ simultaneously.
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Therefore, given a photon pair, we can choose an angle for each photon and observe a pair
Xα, Yβ . Quantum mechanics states that, if the photon pair is suitably prepared (Bell state), the
random results Xα and Yβ are correlated with joint distribution

fα,β(i, j) = P(Xα = i, Yβ = j) =

{
1
2 sin2(β − α), if ij = +1,
1
2 cos2(β − α), if ij = −1,

(2)

so that both Xα and Yβ take the values ±1 with equal probability, E Xα = EYβ = 0, and

E XαYβ = Cov(Xα, Yβ) = − cos 2(β − α). (3)

In this situation, let us fix four angles α1, α2, β1, β2 and let us consider

X1 = polarization of the first photon along α1,

X2 = polarization of the first photon along α2,

Y1 = polarization of the second photon along β1,

Y2 = polarization of the second photon along β2.

For every repetition of the experiment, that is for every preparation of a photon pair, we can
get a pair (Xk, Yℓ), k, ℓ = 1, 2. If the photon pair is prepared in the Bell state and if we choose

α1 = π/8, α2 = −π/8, β1 = 0, β2 = π/4, (4)

then Bell’s inequality is violated:

fαk,βℓ
(i, j) =

1

4

(

1 − ij

√
2

2

)

, E XkYℓ = −
√

2

2
, (k, ℓ) 6= (2, 2),

fα2,β2
(i, j) =

1

4

(

1 + ij

√
2

2

)

, E X2Y2 =

√
2

2
, (5)

so that
b = 2

√
2

Therefore, the bivariate joint distributions (5) foreseen by quantum mechanics are incompatible
with the existence of a quadrivariate joint distribution for X1,X2, Y1, Y2, that is with the exis-
tence of the four polarizations X1,X2, Y1, Y2 at every replicate of the experiment, independently
of the pair that is actually measured.

We could simply conclude that, actually, there are only four different random experiments
and four different Kolmogorov’s probability models, one for each pair (Xk, Yℓ). However, we
would get four bivariate distributions fαk,βℓ

without a clear relation among them, notwithstand-
ing they originate from the same random situation (the same preparation of a photon pair).

What quantum probability does in such a case is to introduce a unique non-commutative
probability model, where a unique mathematical object describes the preparation of the physical
system and generates all the distributions of all the possible measurements on the system.

Anyway, let us point out that there exist also models inside Kolmogorov’s theory which can
reproduce violations of Bell’s inequality thanks to some devices. We mention just N. Gisin and
B. Gisin [4], who reproduce Bell’s correlations (3) by introducing a random efficiency of the
measurement apparatus, correlated with the outcome, and L. Accardi et al. [5], who reproduce
Bell’s correlations (3) by employing the chameleon effect [6], that is by introducing a deter-
ministic evolution of each particle, depending on the choice of the measurement angle α (resp.
β).
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To conclude the section, let us stress that, in order to violate Bell’s inequality, it is fun-
damental that Xα and its distribution do not depend on β and, analogously, that Yβ and its
distribution do not depend on α. Otherwise, chosen the angles (4), we would get 8 random vari-
ables instead of 4, and so there would be no reason for Bell’s inequality to hold. This assumption
(called locality or separability in physical literature) forbids any influence of the measurement
over one photon on the measurement over the other one.

3 VIOLATION OF BELL’S INEQUALITY

VS

DE FINETTI’S COHERENCE PRINCIPLE

De Finetti’s subjective approach to probability theory introduces the notion of probability and
clarifies its meaning by means of the paradigm of bets and the notion of coherent evaluation [7].

Given a family E of events which could occur or not in a random experiment, the probability
of E ∈ E is the price P(E) of a bet on E with payoff 1E , that is 1 if E is observed to occur, 0
if E is observed not to occur. Chosen n events E1, . . . , En ∈ E , a finite combination of bets on
them, with amounts ci P(Ei), ci 6= 0, determines the random total gain for the bank

G =
n∑

i=1

ci

(
P(Ei) − 1Ei

)
. (6)

De Finetti’s coherence principle states that the prices P : E → R have to be fixed so that there
is no combination of bets with surely positive (or surely negative) gain. That is, for every finite
class {E1, . . . , En} of events in E and every non vanishing c1, . . . , cn, a probability P must give

minG ≤ 0 ≤ maxG,

where the minimum and the maximum gain are computed with respect to the possible logical
values of E1, . . . , En. The coherence principle does not fix P, but it implies some properties
which P has to enjoy:

(a) 0 ≤ P(E) ≤ 1 for every E ∈ E ,

(b) the probability of the certain event Ω is P(Ω) = 1 and the probability of the impossible
event ∅ is P(∅) = 0,

(c) chosen n events E1, . . . , En ∈ E such that there exists the logic sum
∨n

i=1 Ei ∈ E and there
exist the logic products Ei ∧ Ej = ∅ for every i 6= j, it holds P (

∨n
i=1 Ei) =

∑n
i=1 P(Ei).

These consequences are therefore necessary conditions for coherence, but, typically, they are not
sufficient to guarantee that a function P : E → R is coherent. Anyway this happens if the family
of events E is a field of subsets of a given nonempty space Ω. Thus, a Kolmogorov’s probability
model satisfies the coherence principle, but de Finetti approach to probability theory leads only
to finite additivity, not necessarily to σ-additivity. Nevertheless, in the case of a finite field E ,
additivity and σ-additivity are equivalent, so that de Finetti’s and Kolmogorov’s approaches
lead to the same mathematical model.

However, the assumption that E is a field, which is closely related with the notion of event,
can not be always taken for granted, even in the finite case.

Basing the introduction of probability on the bet paradigm, de Finetti discusses deeply the
notion of event and its essential feature of verifiability. By the end of a random experiment, every
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event should be assigned the value “true” (occurred) or “false” (not occurred), so to determine
the gain of the gambler and of the bank.

In [7] verifiability is discussed in relation with accuracy, time, cost and number of partial
verifications. It is also discussed in relation with subordination: the verifiability of an event E
can be subordinated to the occurrence of another event H, so that a bet on E is won if H and
E are true, lost if H is true and E false, annulled if H is false. For example, considered a piece
of wood (given or randomly chosen from a given pile), the two events could be

E = “The piece of wood burns in the fire in less then 15 minutes”,

H = “The piece of wood is thrown in the fire”.

Typically, H is “An observation to verify E is executed”.

Furthermore, de Finetti discusses verifiability in relation with what he calls “uncertainty”
and “complementarity” in quantum mechanics. Indeed, similarly to subordination, an event E
regarding elementary particles typically is not simply true or false at the end of the experiment,
but it can be also uncertain, meaningless, if an appropriate measurement has not been performed.
Moreover, two events E1 and E2 can be complementary in the sense that they can not be jointly
verified, in a same experiment, so that one of them necessarily remains meaningless.

De Finetti discusses the implications of “uncertainty” and “complementarity” on logic op-
erations among events, shows similar behaviors outside quantum mechanics (for example, the
behavior of a same object subjected to one or the other of two different destructive experiments),
but he does not analyze the consequences with the coherence principle.

Of course, a bank could be asked to assign the prices P to a family E of events not necessarily
compatible. Note that if two events E1 and E2 in E are not compatible, then there is no event
E1 ∧ E2 as there is no way to verify it; thus E is not an algebra and, consequently, a coherent
probability on E is not a Kolmogorovian probability. When E contains non compatible events,
not only E is not a field, but we also have that some combinations of bets on events in E are not
admissible: if a combination mixes two or more “complementary” events, at least one can not be
verified, it remains meaningless and the corresponding bet has to be nullified and so the whole
combination. Therefore we should specify the coherence principle as follows: for every finite
class {E1, . . . , En} of compatible events in E and every non vanishing c1, . . . , cn, a probability P

must give

minG ≤ 0 ≤ maxG, (7)

where the minimum and maximum gain are computed with respect to the possible logical values
of E1, . . . , En.

For example, consider again the piece of wood mentioned above and the bets on

E1 = “The piece of wood burns in the fire in less then 15 minutes”,

E2 = “The piece of wood reaches the bottom of the swimming pool in less then 15 hours”.

These events can not be checked simultaneously, in a same random experiment, for the same
piece of wood, so that there can be no combination of bets on E1 and E2 for the same piece of
wood, and thus the coherence principle implies no relation between P(E1) and P(E2).

Polarization measurements produce just a similar situation. Given one photon pair, we can
not bet on any combination of events regarding X1,X2, Y1, Y2, but only on events regarding a
chosen pair Xk, Yℓ. Therefore, as each fαk,βℓ

in (5) is a regular bivariate distribution, this choice
does not violate de Finetti’s coherence principle, even if it violates Bell’s inequality and it is
incompatible with a joint Kolmogorov’s probability model for X1,X2, Y1, Y2.

5



Let us stress that, when applying coherence principle, the logical relations between the events
in E are fundamental and play a double role because, firstly, they establish which combinations
of bets are admissible and, secondly, for these last they determine minG and maxG in (7).

Of course, these logical relations go far beyond the set structure of E . Take, for example,
four jointly observable random variables X1,X2, Y1, Y2 taking values ±1, and suppose that the
bank decides to allow bets only on events regarding pairs Xk, Yℓ. Even if from a set-theoretical
point of view the family E is the same as with polarization measurements, in this case the prices
(5) are not coherent. Indeed, all the events

E1 = (X1 = Y1), E2 = (X1 = Y2), E3 = (X2 = Y1), E4 = (X2 = −Y2),

belong to E , according to (5) they all have probability P(Ei) = (2 −
√

2)/4, but, since they can
be jointly verified, a gambler can bet ci = 1 on each Ei, producing the bank gain

G = 2 −
√

2 −
4∑

i=1

1Ei
< 0,

as at least one event must occur: if E1, E2 and E3 are false, then E4 is necessarily true.

On the contrary, in the case of polarization measurements, these events are “complementary”
and so the logical relations among them do not simply change the minimum and maximum gain
G for this combination of bets, but they just forbid to consider this combination of bets, thus
preserving the coherence principle also for prices (5).

4 INFERENTIAL ANALYSIS OF EXPERIMENTAL BELL’S

INEQUALITY VIOLATIONS

Typically, Bell test experiments are performed to estimate the Bell parameter b and so to
conclude that no Kolmogorov’s probability model can describe the observed phenomenon.

Let us consider again a photon pair and the measurements of polarizations X1,X2, Y1, Y2.
We have four pairs of random variables taking values ±1,

(Xk, Yℓ) ∼ fkℓ, k, ℓ = 1, 2.

According to quantum mechanics, if the experimenter is able to prepare the photon pair in
the Bell state, then the distributions f11, f12, f21, f22 are given by (5), they do violate Bell’s
inequality and they can not be the bivariate marginals of a joint distribution f(X1,X2,Y1,Y2).
Since one could doubt quantum mechanics, or maybe one could simply doubt the photons initial
state, now the distributions f11, f12, f21, f22 are considered unknown.

We want to verify if X1,X2, Y1, Y2 admit a Kolmogorov’s probability model, looking for a
strong conclusion against it by means of a hypothesis testing procedure. Therefore we introduce
the hypotheses

H0 : f11, f12, f21, f22 are bivariate marginals of a unique joint distribution f(X1,X2,Y1,Y2),

H1 : f11, f12, f21, f22 do not admit a unique joint distribution f(X1,X2,Y1,Y2).

Because of Theorem 1, we know that H0 ⇒ b ≤ 2 and that b > 2 ⇒ H1.

In order to test a violation of Bell’s inequality, typically N independent photon pairs are
prepared, all of them in the same state, possibly in the Bell state, and for each photon a
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polarization measurement is performed, along an angle chosen according to (4). This produces
a sample of independent bivariate random variables

(X
(i)
1 , Y

(i)
1 ), i = 1, . . . , n11, i.i.d. ∼ f11,

(X
(i)
1 , Y

(i)
2 ), i = n11 + j, j = 1, . . . , n12, i.i.d. ∼ f12,

(X
(i)
2 , Y

(i)
1 ), i = n11 + n12 + j, j = 1, . . . , n21, i.i.d. ∼ f21,

(X
(i)
2 , Y

(i)
2 ), i = n11 + n12 + n21 + j, j = 1, . . . , n22, i.i.d. ∼ f22,

where n11+n12+n21+n22 = N . Let us stress that only one polarization per photon is measured
so that, independently of violations of Bell’s inequality, there is no violation of de Finetti’s
coherence principle and this is an ordinary sample which admits a Kolmogorov’s probability
model. The range of variation of the quadruple of distributions (f11, f12, f21, f22) specifies the
statistical model for the whole sample, so that H0 and H1 can be seen as hypotheses on the
sample, and standard inferential methods can be applied.

The typical point estimator of b is the statistic

B =

∣∣∣∣∣
1

n11

∑

i

X
(i)
1 Y

(i)
1 +

1

n12

∑

i

X
(i)
1 Y

(i)
2

∣∣∣∣∣+

∣∣∣∣∣
1

n21

∑

i

X
(i)
2 Y

(i)
1 − 1

n22

∑

i

X
(i)
2 Y

(i)
2

∣∣∣∣∣ . (8)

Following the usual procedure, we want to test H0 vs H1 on the basis of B and thus we
introduce the critical region

B > s,

where s > 2. Of course, the size of the test is α = supH0
P(B > s) and, given a realization of

the sample with estimate b̂ of b, the p-value of the data is

p = sup
H0

P(B > b̂).

In order to compute this p-value, let us introduce the probabilities

pkℓ = P(Xk = Yℓ).

Then

E[XkYℓ] = 2pkℓ − 1, Var[XkYℓ] = 4 pkℓ(1 − pkℓ), b = |2(p11 + p12) − 2| + |2(p21 − p22)|.

Furthermore, the distribution of B, and thus the probability P(B > b̂), depends only on p =
(p11, p12, p21, p22). The possible values of p depend on the statistical model for the sample, that
is on the possible values of the quadruple of distributions (f11, f12, f21, f22). In particular, if
one parameterizes the quadrivariate distributions f(X1,X2,Y1,Y2), it turns out that the values of
p compatible with the null hypothesis H0 are

p11 = θ1 + θ2 + θ3 + θ4, p12 = θ1 + θ2 + θ5 + θ6,

p21 = θ1 + θ3 + θ6 + θ7, p22 = θ1 + θ4 + θ5 + θ7,

with

θ = (θ1, . . . , θ7) ∈ Θ0 =

{

ϑi ≥ 0 ∀i,
7∑

i=1

ϑi ≤ 1

}

.
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Thus, under the null hypothesis, P(B > b̂) is a function of θ and

p = sup
H0

P(B > b̂) = sup
θ∈Θ0

P(B > b̂).

Then the asymptotic p-value can be easily computed. Every addendum in (8) is asymptotically
normal thanks to the Central Limit Theorem,

1

nkℓ

∑

i

X
(i)
k Y

(i)
ℓ ∼ AN

(
2pkℓ − 1,

4 pkℓ(1 − pkℓ)

nkℓ

)
;

thus, if 2(p11 + p12) − 2 6= 0 and 2(p21 − p22) 6= 0, the Delta Method gives the asymptotic
normality also of the estimator B,

B ∼ AN



b,
2∑

k,ℓ=1

4 pkℓ(1 − pkℓ)

nkℓ



 ; (9)

therefore the asymptotic value of P(B > b̂) is immediately got as a function of θ and the
asymptotic p-value is got by a numerical computation of supθ∈Θ0

.
Let us compute the asymptotic p-value of the data from the experiment performed on the

1st of May 1998 in Innsbruck by Gregor Weihs et al. (scan blue experiment) [8].
For the first time they could avoid any possible influence of β on Xα and of α on Yβ, which is

a fundamental condition to violate Bell’s inequality, as discussed at the end of Sect. 2. Indeed,
the two photons of each pair were spatially separated, before of the polarization measurements,
and, moreover, the angles α and β were selected randomly (according to (4)) at the very last
moment, so to exclude any mutual influence within the realm of Einstein locality. The two
photons of each pair were sent to two different experimental stations, each one registering the
photon arrival time, the corresponding angle α (resp. β) of measurement and the corresponding
result Xα (resp. Yβ). Because of the low efficiency of the apparata, a lot of photons were lost,
and the arrival times are fundamental to couple the data of the same pairs: two photons belong
to the same pair if they arrive “simultaneously”. Following physical analysis of these data, we
calculate coincidences with a time window of 4 ns (which, actually, is even smaller of the 6 ns
window used by Weihs et al.) and we assume that grouping the results of the measurements on
the basis of (α, β) gives independent random samples.

We analyze the data from the experiments scanblue1 – scanblue20 [9,10]. These experiments
were performed spanning a lot of angles α and β, but not exactly the angles (4), for which
quantum mechanics foresees b = 2

√
2 ≃ 2.8284 in the case of photon pairs in the Bell state.

Anyway we can analyze the data of polarization measurements performed along the angles

α1 = 3π/20, α2 = −π/10, β1 = 0, β2 = π/4,

which also give a good theoretical Bell parameter, b ≃ 2.7936, enough bigger than 2. Experi-
mental data give n11 = 941, n12 = 941, n21 = 1203, n22 = 1014,

b̂ = 2.5254, asymptotic p-value = 7.4857 · 10−8.

Analogous analysis of the other data from the same experiments, related to the polarization
measurements performed along the angles α1 = π/10, 3π/20 and α2 = −π/10,−3π/20, gives
even smaller p-values.

Thus the statistical tests clearly lead to a rejection of the null hypothesis: given a photon
pair, there is no Kolmogorov’s joint probability model for X1,X2, Y1, Y2.
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