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APPROXIMATING CRITICAL PARAMETERS

OF BRANCHING RANDOM WALKS

DANIELA BERTACCHI AND FABIO ZUCCA

Abstract. Given a branching random walk on a graph, we consider two kinds of truncations:
either by inhibiting the reproduction outside a subset of vertices or by allowing at most m particles
per vertex. We investigate the convergence of weak and strong critical parameters of these truncated
branching random walks to the analogous parameters of the original branching random walk. As a
corollary, we apply our results to the study of the strong critical parameter of a branching random
walk restricted to the cluster of a Bernoulli bond percolation.
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1. Introduction

The BRW is a process which serves as a (rough) model for a population living in a spatially

structured environment (the vertices of a – possibly oriented – graph (X, E(X))), where each

individual lives in a vertex, breeds and dies at random times and each offspring is placed (randomly)

in one of the neighbouring vertices. There is no bound on the number of individuals allowed per site.

The vertices may be thought as small ecosystems or squares of soil (with their proximity connections

– the edges) and individuals as animals or plants. Depending on the parameters involved and on

the nature of (X, E(X)), the population may face almost sure extinction, global survival (i.e. with

positive probability at any time there will be at least one individual alive) or local survival (i.e. with

positive probability at arbitrarily large times there will be at least one individual alive in a fixed

vertex). These matters have been investigated by several authors ([12], [13], [14], [17], [20], [24]

only to mention a few, see [16] for more references).

Let us be more precise as to the definition of the process and of the environment. The graph

(X, E(X)) is endowed with a weight function µ : X × X → [0, +∞) such that µ(x, y) > 0 if and

only if (x, y) ∈ E(X) (in which case we write x → y). We call the couple (X, µ) a weighted graph.

We require that there exists K < +∞ such that k(x) :=
∑

y∈X µ(x, y) ≤ K for all x ∈ X (other

conditions will be stated in Section 2).

Given λ > 0, the branching random walk (BRW(X) or briefly BRW) is the continuous-time

Markov process {ηt}t≥0, with configuration space NX , where each existing particle at x has an

exponential lifespan of parameter 1 and, during its life, breeds at the arrival times of a Poisson

process of parameter λk(x) and then chooses to send its offspring to y with probability µ(x, y)/k(x)

(note that (µ(x, y)/k(x))x,y∈X is the transition matrix of a random walk on X). In the literature
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one usually finds the particular case k(x) = 1 for all x ∈ X (i.e. the breeding rate is constant among

locations – no place is more fertile than others) or, sometimes, the case where µ = IE(X) (i.e. the

breeding rate is proportional to the degree and all edges have the same rate).

Two critical parameters are associated to the BRW: the weak (or global) survival critical param-

eter λw and the strong (or local) survival one λs. They are defined as

λw := inf{λ > 0 : Pδx0 (∃t : ηt = 0) < 1}
λs := inf{λ > 0 : Pδx0 (∃t̄ : ηt(x0) = 0, ∀t ≥ t̄) < 1},

(1.1)

where x0 is a fixed vertex, 0 is the configuration with no particles at all sites and Pδx0 is the law of

the process which starts with one individual in x0. Note that, if the weighted graph is connected

then these values do not depend on the initial configuration, provided that this configuration is

finite (that is, it has only a finite number of individuals), nor on the choice of x0. See Section 2 for

a discussion on the values of λw and λs.

When (X, µ) is infinite (and connected), the BRW is, so to speak, unbounded in two respects: the

environment, since individuals may live at arbitrarily large distance from their ancestors (actually

n-th generation individuals may live at distance n from the ancestor), and the colonies’ size, since an

arbitrarily large number of individuals may pile up on any vertex. Hence it is natural to consider

“truncated” BRWs where either space or colonies are bounded, and investigate the relationship

between these processes and the BRW. Indeed, in the literature one often finds problems tackled

first in finite or compact spaces and then reached through a “thermodynamical limit” procedure.

One can see easily that it is possible to construct the BRW either from the process on finite sets

(spatial truncation) or from the process on infinite space and a bound on the number of particles

per site (particles truncation). In both cases the truncated process, for any fixed time t, converges

almost surely to the BRW.

First we consider “spatially truncated” BRWs. We choose a family of weighted subgraphs

{(Xn, µn)}n∈N, such that Xn ↑ X, µn(x, y) ≤ µ(x, y), and µn(x, y)
n→∞−→ µ(x, y) for all x, y. The

process BRW(Xn) can be seen as the BRW(X) with the constraint that reproductions outside Xn

are deleted and the ones from x to y (x, y in Xn) are removed with probability 1−µn(x, y)/µ(x, y).

It is not difficult to see that for any fixed t, as n goes to infinity, the BRW(Xn) converges to the

BRW almost surely. Our first result is that λs(Xn)
n→∞−→ λs(X) (the latter being the strong survival

critical parameter of the BRW on (X,µ)). Indeed we prove a slightly more general result (The-

orem 3.2) which allows us to show that if X = Zd and Xn is the infinite cluster of the Bernoulli

bond percolation of parameter pn, where pn
n→∞−→ 1 sufficiently fast, then λs(Xn)

n→∞−→ λs(X) almost

surely with respect to the percolation probability space (Section 7).

Second we consider BRWs where at most m individuals per site are allowed (thus taking values

in {0, 1, . . . , m}X). We call this process BRWm and denote it by {ηm
t }t≥0. Note that if m = 1

we get the contact process (indeed the BRWm is sometimes referred to as a “multitype contact
2



process” – see for instance [19]). It is easily seen that for all fixed t we have ηm
t

m→∞−→ ηt almost

surely (see for instance [20] where the authors suggest this limit as a way to contruct the BRW).

Clearly, for all m ≥ 1, one may consider the critical parameters λm
w and λm

s defined as in (1.1) with

ηm
t in place of ηt. One of the main questions we investigate in this paper is whether λm

w
m→∞−→ λw

and λm
s

m→∞−→ λs: to our knowledge this was still unknown even for the case where X = Zd with µ

transition matrix of the simple random walk.

Here is a brief outline of the paper. In Section 2 we state the basic terminology and assumptions

needed in the sequel. Section 3 is devoted to the spatial approximation of the strong critical

parameter λs by finite or infinite sets (see Theorems 3.1 and 3.2 respectively). We note that results

on the spatial approximation, in the special case when X = Zd and µ is the transition matrix

of the simple random walk, were obtained in [18] using a different approach. In Section 4 we

introduce the technique we use to prove convergence of the critical parameters of the BRWm. The

technique is essentially a suitable coupling with a supercritical oriented bond percolation: this kind

of comparison has been introduced in [5], discussed in in [7] and later applied in several papers

(see for instance [1], [23], [22] and [8]). Nevertheless the coupling here is quite tricky, therefore

we describe it in four steps which can be adapted to different graphs. In Section 5 we prove that

λm
s converges to λs under some assumptions on the graph (Theorem 5.6). As a corollary, we have

λm
s

m→∞−→ λs for Zd with the simple random walk. The same approach is used in Section 6 to

prove the convergence of the sequence λm
w to λw when X = Zd (see Theorem 6.1 and Corollary 6.2,

and Remark 6.3 for a slightly more general class of graphs) or when X is a homogeneous tree

(Theorem 6.4). The results of Section 3 are applied in Section 7 in order to study the strong critical

parameter of a BRW restricted to a random subgraph generated by a Bernoulli bond percolation

process. Section 8 is devoted to final remarks and open questions.

2. Terminology and assumptions

In this section we state our assumptions on the graph (X,µ); we also recall the description of

the BRW through its generator and the associated semigroup, and discuss the values of λw and λs.

Given the (weighted) graph (X,µ), the degree of a vertex x, deg(x) is the cardinality of the set

{y ∈ X : x → y}; we require that (X,µ) is with bounded geometry, that is supx∈X deg(x) < +∞.

Moreover we consider (X, µ) connected, which by our definition of µ (recall that µ(x, y) > 0 if and

only if (x, y) ∈ E(X)) is equivalent to µ(n)(x, y) > 0 for some n = n(x, y), where µ(n) is the n-th

power of the matrix µ. When (µ(x, y))x,y is stochastic (i.e. k(x) = 1 for all x ∈ X), in order to

stress this property we use the notation P , p(x, y) and p(n)(x, y) instead of µ, µ(x, y) and µ(n)(x, y).

Define d(x, y) = min{n : ∃{xi}n
i=0, x0 = x, xn = y, xi → xi+1}; note that this is a true metric on X

if and only if (X, µ) is non oriented.

We need to define the product of two graphs (in our paper these will be space/time products):

given two graphs (X, E(X)), (Y, E(Y )) we denote by (X, E(X)) × (Y, E(Y )) the weighted graph
3
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Figure 1: X × Y (X = Y = Z).
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Figure 2: X¤Y (X = Y = Z).

with set of vertices X × Y and set of edges E = {((x, y), (x1, y1)) : (x, x1) ∈ E(X), (y, y1) ∈
E(Y )} (in Figure 1 we draw the connected component of Z × Z containing (0, 0)). Besides, by

(X, E(X))¤(Y, E(Y )) we mean the graph with the same vertex set as before and vertices E =

{((x, y), (x1, y1)) : (x, x1) ∈ E(X), y = y1} ∪ {((x, y), (x1, y1)) : x = x1, (y, y1) ∈ E(Y )} (see Figure

2).

Let {ηt}t≥0 be the branching random walk on X with parameter λ, associated to the weight

function µ: the configuration space is NX and its generator is

Lf(η) :=
∑

x∈X

η(x)
(
∂−

x f(η) + λ
∑

y∈X

µ(x, y) ∂+
y f(η)

)
, (2.2)

where ∂±
x f(η) := f(η ± δx) − f(η). Analogously the generator of the BRWm {ηm

t }t≥0 is

Lmf(η) :=
∑

x∈X

η(x)
(
∂−

x f(η) + λ
∑

y∈X

µ(x, y)1l[0,m−1](η(y)) ∂+
y f(η)

)
, (2.3)

Note that the configuration space is still NX (though one may consider {0, 1, . . . , m}X as well).

The semigroup St is defined as Stf(η) := Eη(f(ηt)), where f is any function on NX such that the

expected value is defined.

The strong and weak survival critical parameters of the BRW clearly depend on the weighted

graph (X, µ); we denote them by λs(X, µ) and λw(X, µ) (or simply by λs(X) and λw(X) or λs

and λw). Analogously we denote by λm
s (X, µ) and λm

w (X, µ) (or simply by λm
s (X) and λm

w (X) or

λm
s and λm

w ) the critical parameters of the BRWm on (X, µ). It is known (see for instance [3] and

[4]) that λs = Rµ := 1/ lim supn
n
√

µ(n)(x, y) (which is easily seen to be independent of x, y ∈ X

since the graph is connected). On the other hand the explicit value of λw is not known in general.

Nevertheless in many cases it is possible to prove that λw = 1/ lim supn
n

√∑
y∈X µ(n)(x, y) (see [3]

and [4]). In particular if k(x) = K for all x ∈ X then λw = 1/K; thus if (µ(x, y))x,y is a stochastic

matrix then λw = 1.

The two critical parameters coincide (i.e. there is no pure weak phase) in many cases: if X is

finite, or, when µ = P is stochastic, if R = 1. Here are two sufficient conditions for R = 1 (when

µ = P is stochastic):
4



(1) (X,P ) is the simple random walk on a non-oriented graph and the ball of radius n and

center x has subexponential growth ( n
√

|Bn(x)| → 1 as n → ∞).

Indeed for any reversible random walk the following universal lower bound holds

p(2n)(x, x) ≥ v(x)/v(Bn(x))

(see [6, Lemma 6.2]) where v is a reversibility measure. If P is the simple random walk

then v is the counting measure and the claim follows.

An explicit example is the simple random walk on Zd or on d-dimensional combs (see [25,

Section 2.21] for the definition of comb).

(2) (X,P ) is a symmetric, irreducible random walk on an amenable group (see [25]).

3. Spatial approximation

In this section we consider spatial truncations of the BRW. In Lemma 3.1 and Theorem 3.2

{Xn}n∈N will be a sequence of finite subsets of X such that Xn ⊆ Xn+1 and
⋃∞

n=1 Xn = X; we de-

note by nµ the truncation matrix defined by nµ := µ|Xn×Xn
. We define nRµ := 1/ lim supk→∞

k
√

nµ(k)(x, y).

Lemma 3.1. Let {Xn}n∈N be such that (Xn, nµ) is connected for all n. Then nRµ ≥ n+1Rµ for

all n and when Xn ( Xn+1 we have nRµ > n+1Rµ. Moreover nRµ ↓ Rµ.

Proof. This is essentially Theorem 6.8 of [21]. ¤

The next result is a generalization of this lemma and it goes beyond the pure spatial approxi-

mation by finite subsets. We omit the proof which follows easily from Lemma 3.1.

Theorem 3.2. Let {(Yn, µn)}n∈N be a sequence of connected weighted graphs and let {Xn}n∈N be

such that Yn ⊇ Xn. Let us suppose that µn(x, y) ≤ µ(x, y) for all n ∈ N, x, y ∈ Yn and µn(x, y) →
µ(x, y) for all x, y ∈ X. If (Xn, nµ) is connected for every n ∈ N then λs(Yn, µn) ≥ λs(X, µ) and

λs(Yn, µn)
n→∞→ λs(X,µ).

A simple situation where the previous theorem applies, is the non-oriented case (µ(x, y) > 0 if

and only if µ(y, x) > 0) where Xn = Yn is the ball of radius n with center at a fixed vertex x0 of

X.

Remark 3.3. If Yn is finite for all n, then λw(Yn) = λs(Yn), hence λw(Yn) → λw(X) if and only

if λw(X) = λs(X).

4. The comparison with an oriented percolation

From now on, we suppose that X is countable (otherwise λn
w = λn

s = +∞). First of all, we need

a coupling between {ηt}t≥0 and {ηm
t }t≥0: think of {ηm

t }t≥0 as obtained from {ηt}t≥0 by removing

all the births which cause more than m particles to live on the same site. Then we need two other

coupled processes. Fix n0 ∈ N and let {η̄t}t≥0 be the process obtained from the BRW {ηt}t≥0 by
5
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removing all n-th generation particles, with n > n0. Analogously, define {η̄m
t }t≥0 from {ηm

t }t≥0.

Clearly, ηt ≥ η̄t, ηt ≥ ηm
t , ηm

t ≥ η̄m
t and η̄t ≥ η̄m

t for all t ≥ 0. Note that, by construction, the

progenies of a given particle in {η̄t}t≥0 or {η̄m
t }t≥0 lives at a distance from the ancestor not larger

than n0 (and the processes go extinct almost surely).

Our proofs of the convergence of λm
s and λm

w are essentially divided in the following four steps.

Step 1. Fix a graph (I, E(I)) such that the Bernoulli percolation on (I, E(I)) × ~N has two phases

(where we denote by ~N the oriented graph on N, that is, (i, j) is an edge if and only if j = i + 1).

Note that since the (oriented) Bernoulli bond percolation on Z × ~N and N × ~N has two phases,

it is enough to find a copy of the graph Z or N as a subgraph of I. This is true for instance for any

infinite non-oriented graph (in this paper, we choose either I = Z, or I = N, or I = X). Figures 3

and 4 respectively show the components of the products Z×~N and N× ~N containing all the vertices

y such that there exists a path from (0, 0) to y.

Step 2. For all λ > λw (or λ > λs ) and for every ε > 0 there exists a collection of disjoint sets

{Ai}i∈I (Ai ⊂ X for all i ∈ I), t̄ > 0, and k ∈ N \ {0}, such that, for all i ∈ I,

P
(
∀j : (i, j) ∈ E(I),

∑

x∈Aj

ηt̄(x) ≥ k
∣∣∣η0 = η

)
> 1 − ε, (4.4)

for all η such that
∑

x∈Ai
η(x) = k and η(x) = 0 for all x 6∈ Ai. The same holds, for some suitable

n0, for {η̄t}t≥0 in place of {ηt}t≥0.

In the following sections Step 2 will be established under certain conditions (and for suitable

choices of (I, E(I))).

Step 3. Let λ, ε, {Ai}i∈I , t̄ and k be chosen as in Step 2. Then for all sufficiently large m, we

have that for all i ∈ I,

P
(
∀j : (i, j) ∈ E(I),

∑

x∈Aj

ηm
t̄ (x) ≥ k

∣∣∣ηm
0 = η

)
> 1 − 2ε, (4.5)

for all η such that
∑

x∈Ai
η(x) = k, η(x) = 0 for all x 6∈ Ai. The same holds, for some suitable n0,

for {η̄m
t }t≥0 in place of {ηm

t }t≥0.
6



Step 3 is a direct consequence of Step 2. Indeed let Nt be the total number of particles ever born

in the BRW (starting from the configuration η) before time t; it is clear that Nt is a process bounded

above by a branching process with birth rate Kλ, death rate 0 and starting with k particles. If

N0 < +∞ almost surely then for all t > 0 we have Nt < +∞ almost surely; hence for all t > 0 and

ε > 0 there exists n(t, ε) such that, for all i ∈ I,

P
(
Nt ≤ n(t, ε)

∣∣∣η0 = η
)

> 1 − ε,

for all η such that
∑

x∈Ai
η(x) = k, η(x) = 0 for all x 6∈ Ai. Define n̄ = n(t̄, ε). We note that for

any event A such that P
(
A

∣∣∣η0 = η
)

> 1 − ε we have

P
(
A

∣∣∣Nt ≤ n̄, η0 = η
)
≥ P

(
A,Nt ≤ n̄

∣∣∣η0 = η
)
≥ 1 − 2ε. (4.6)

Choose m ≥ n̄: then ηt = ηm
t for all t ≤ t̄ on {Nt̄ ≤ n̄} =

⋂
t≤t̄{Nt ≤ n̄}. Thus, (4.4) and (4.6)

imply (4.5). The claim for η̄m
t is proven analogously.

Step 4. For all λ > λw (or λ > λs ) and for every ε > 0, for all sufficiently large m, there exists a

one-dependent oriented percolation on I × ~N (with probability 1 − 2ε of opening simultaneously all

edges from a vertex and 2ε of opening no edges) such that the probability of survival of the BRWm

(starting at time 0 from a configuration η such that
∑

x∈Ai0
η(x) = k and η(x) = 0 for all x 6∈ Ai0)

is larger than the probability that there exists an infinite cluster containing (i0, 0).

In order to prove Step 4 using Step 3, we need another auxiliary process, namely {η̂t}t≥0 defined

from η̄t suppressing all newborns after that the n̄-th particle is born. If m ≥ n̄, then η̂t ≤ η̄m
t ≤ ηm

t

for all t ≥ 0, and for all t ≤ t̄, η̂t = η̄m
t on {Nt̄ ≤ n̄}.

Consider an edge ((i, n), (j, n+1)) in (I, E(I))× ~N: let it be open if ηm
t has at least k individuals

in Ai at time nt̄ and in Aj at time (n + 1)t̄. Thus the probability of weak survival of ηm
t is

bounded from below by the probability that there exists an infinite cluster containing (i0, 0) in this

percolation on I × ~N, and, if Ai0 is finite, the probability of strong survival is bounded from below

by the probability that the cluster contains infinitely many points in {(i0, l) : l ∈ N} (we suppose

that we start with k particles in Ai0). Let ν1 be the associated percolation measure. Unfortunately

this percolation is neither independent nor one-dependent. In fact the opening procedure of the

edges ((i, n), (j, n + 1)) and ((i1, n), (j1, n + 1)) may depend respectively on two different progenies

of particles overlapping on a vertex x0. This may cause dependence since if in x0 there are already

m particles then newborns are not allowed.

To avoid this difficulty we will choose m sufficiently large and consider another percolation on

I × ~N. Let η̂i0,0,t (constructed from ηt with the usual removal rules) start with k particles in Ai0 :

we open all edges (i0, 0) → (j, 1) if η̂i0,0,t̄ has at least k particles in Aj . With a slight abuse of

notation we define η̂t := η̂i0,0,t for all t ∈ (0, t̄]. We construct the process {η̂t}t≥0 by iteration on

the time intervals (nt̄, (n + 1)t̄] where n ∈ N. We did it in the case n = 0.
7



Suppose we constructed {η̂t}t≥0 for t ∈ [0, nt̄]: we construct it now for t ∈ (nt̄, (n + 1)t̄]. For all

j such that η̂nt̄ has at least k particles in Aj we start a process {η̂j,n,t}t≥0 with initial configuration

given by k particles in Aj (chosen among those η̂nt̄ had there) and zero elsewhere. Note that

the {η̂j,n,t}j are independent conditioned to η̂nt̄. As before we define η̂t :=
∑

j η̂j,n,t−nt̄ for all

t ∈ (nt̄, (n + 1)t̄].

Choosing m sufficiently large we have that η̂t ≤ η̄m
t ≤ ηm

t . Indeed it is enough to choose

m ≥ 2n̄H, where H ∈ N is the supremum over x of the number of paths of length n0 which contain

a fixed vertex x and n̄ is the same as in equation (4.6); H is finite since (X,µ) is with bounded

geometry. To the process {η̂t}t≥0 we associate a percolation ν2, such that ν1 ≥ ν2, in the following

way: we open the edge from (i, n) to (j, n + 1) if η̂i,n,t̄ has at least k particles in Aj .

By equation (4.5), the probability of opening all edges from (i, n) according to ν2 (conditioned

to the event “(i0, 0) is connected to (i, n)”) is at least 1−2ε. We observe that the set of open edges

from (i, n) depends only on the progenies of the k particles alive in Ai at time nt̄ (hence on η̂i,t,

which are conditionally independent with respect to η̂nt̄).

We construct a one-dependent percolation (i.e. a percolation where the openings of edges from

different vertices are independent) ν3 as follows: we open simultaneously all the edges from (i, n)

with probability 1 − 2ε and no edge with probability 2ε. Finally, the percolation processes ν2

and ν3 can be coupled in such a way that, almost surely, the cluster Ω3 containing the starting

point (i0, 0) in percolation ν3 is a subset of the cluster Ω2 containing (i0, 0) in percolation ν2.

Indeed, if βn := {(j,m) ∈ I × ~N : m ≤ n} then it is not difficult to prove by induction on n that

P(Ω3 ∩ βn ⊆ Ω2 ∩ βn) = 1 (where P is the probability associated to the coupled processes). Hence

we have that the probability of existence of an infinite cluster containing (i0, 0) in the percolation

ν2 is larger than or equal to the probability of the same event in the percolation ν3. This concludes

Step 4.

We note that the trick is to fix a suitable (I, E(I)) and prove Step 2 for all λ > λw: then by

Steps 4 and 1, for all sufficiently large m, the λ-BRWm survives with positive probability and we

deduce that λm
w

m→∞−→ λw. On the other hand, to show that λm
s

m→∞−→ λs, we need to prove Step 2

with a choice of at least one Ai finite, say Ai0 , and I containing a copy of Z or N as a subgraph.

Indeed the infinite open cluster in a supercritical Bernoulli bond percolation in Z× ~N or N× ~N with

probability 1 has an infinite intersection with the set {(0, n) : n ∈ N}. As a consequence, in the

supercritical case we have, with positive probability, an infinite open cluster in Z× ~N (resp. N× ~N)

which contains the origin (0, 0) and infinite vertices of the set {(0, n) : n ≥ 0}. This (again by Steps

3 and 4) implies that, with positive probability, the λ-BRWm starting with k particles in Ai0 has

particles alive in Ai0 at arbitrarily large times. Being Ai0 finite yields the conclusion.
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Remark 4.1. The previous set of steps represents the skeleton of the proofs of Theorems 5.6 and

6.4. In Theorem 6.1 we need a generalization of this approach. We sketch here the main differences.

We choose an oriented graph (W, E(W )) and a family of subsets of X, {A(i,n)}(i,n)∈W such that

• W is a subset of the set Z × N (note that this is an inclusion between sets not between

graphs);

• for all n ∈ N we have that {A(i,n)}i:(i,n)∈W is a collection of disjoint subsets of X;

• (i, n) → (j, m) implies m = n + 1.

The analog of Step 2 is the following: for all sufficiently large λ (for instance λ > λs or λ > λw)

and for every ε > 0, there exists t̄ > 0 and k ∈ N, such that, for all n ∈ N, i ∈ Z, and for all η

such that
∑

x∈A(i,n)
η(x) = k,

P
(
∀j : (i, n) → (j, n + 1),

∑

x∈A(j,n)

η(n+1)t̄(x) ≥ k
∣∣∣ηnt̄ = η

)
> 1 − ε.

Step 3 is the same as before and the percolation described in Step 4 now concerns the graph

(W, E(W )) (instead of (I, E(I)) × ~N as it was before).

5. Approximation of λs by λm
s

We choose the initial configuration as δo (where o is a fixed vertex in X) and we first study the

expected value of the number of individuals in one site at some time, that is Eδo(ηt(x)). This is

done using the semigroup St, indeed if we define the evaluation maps ex(η) := η(x) for any η ∈ NX

and x ∈ X, then Eη(ηt(x)) = Stex(η).

By standard theorems (see [9], or, since NX is not locally compact, [15] and [2]),

d

dt
Stex

∣∣∣∣
t=t0

= St0Lex,

from which we deduce

d

dt
Eη(ηt(x)) = −Eη(ηt(x)) + λ

∑

z∈X

µ(z, x)Eη(ηt(z)). (5.7)

It is not difficult to verify that

Eδx0 (ηt(x)) =
∞∑

n=0

µ(n)(x0, x)
(λt)n

n!
e−t. (5.8)

Remark 5.1. For all x, x0 ∈ X, for all λ > 0 and n ∈ N,

Eδx0 (ηn(x)) ≥ µ(n)(x0, x)
λnnn

n!
e−n ∼ µ(n)(x0, x)

λn

√
2πn

,

and the same inequality holds, if n0 ≥ n, with η̄n in place of ηn.

Depending on λ, we may characterize the behaviour of the expected number of descendants at

a fixed site.
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Lemma 5.2. Let us fix x ∈ X. If λ < Rµ then limt→+∞ Eδx0 (ηt(x)) = 0; if λ > Rµ then

limt→+∞ Eδx0 (ηt(x)) = +∞.

Proof. Let λ < Rµ. For all ε > 0 there exists n0 such that µ(n)(x0, x) < 1/(Rµ − ε)n for all

n ≥ n0. If ε = (Rµ − λ)/2 then λnµ(n)(x0, x) ≤
(

2λ
Rµ+λ

)n
for all n ≥ n0, hence Eδx0 (ηt(x)) ≤

Q(t)e−t + e−t(Rµ−λ)/(Rµ+λ) → 0 as t → ∞ (Q is a polynomial of degree at most n0 − 1).

Let λ > Rµ. If k, r ∈ N are such that µ(k)(x0, x) > 0 and µ(ir)(x, x) > 0 for all i ∈ N then

Eδx0 (ηt(x)) ≥ µ(k)(x0, x)e−t
∞∑

i=0

µ(ir)(x, x)(λt)ir+k/(ri + k)!

Let us define an := µ(nr)(x, x); clearly an+m ≥ anam and Rµ = 1/ limn→∞
nr
√

an (since {an}n∈N is

supermultiplicative then the limit exists).

We prove now that for any nonnegative, supermultiplicative sequence {an}n∈N, if λ > Rµ then

lim
t→∞

e−t
∞∑

i=0

ai
(λt)ir+k

(ir + k)!
= +∞.

Indeed, let n0 be such that an0 ≥ 2rn0(R + λ)−rn0 and define f(t) := e−t
∑∞

i=0 ai(λt)ir+k/(ir + k)!.

Clearly

f(t) ≥ e−t

(
R + λ

2

)k ∞∑

i=0

(λ′t)in0r+k

(in0r + k)!

where λ′ = 2λ/(R + λ) > 1. For all i ∈ N we have that

(λ′t)in0r+k

(in0r + k)!
+

(λ′t)in0r+k+1

(in0r + k + 1)!
+ · · · + (λ′t)in0r+k+n0r−1

(in0r + k + n0r − 1)!
≤ (λ′t)in0r+k

(in0r + k)!

(λ′t)n0r − 1

λ′t − 1

thus

f(t) ≥ e−t

(
R + λ

2

)k λ′t − 1

(λ′t)n0r − 1

∞∑

i=k

(λ′t)i

i!
→ ∞

exponentially if t → ∞ (since λ′ > 1). ¤

In the following lemma we prove that, when λ > Rµ, if at time 0 we have one individual at each

of l sites x1, . . . , xl, then, given any choice of l sites y1, . . . , yl, after some time the expected number

of descendants in yi of the individual in xi exceeds 1 for all i = 1, . . . , l. The proof is easy and we

omit it.

Lemma 5.3. Let us consider a finite set of couples {(xj , yj)}l
j=0; if λ > Rµ then there exists

t = t(λ) > 0 such that E
δxj (ηt(yj)) > 1, ∀j = 0, 1, . . . , l. Moreover, E

δxj (η̄t(yj)) > 1 when n0 is

sufficiently large.

So far we got results on the expected number of individuals, now we show that, when λ > Rµ, for

all sufficiently large k ∈ N, given k particles in a site x at time 0, “typically” (i.e. with arbitrarily

large probability) after some time we will have at least k individuals in each site of a fixed finite

set Y . Analogously, starting with l colonies of size k (in sites x1, . . . , xl respectively), each of them
10



will, after a sufficiently long time, spread at least k descendants in every site of a corresponding

(finite) set of sites Yi.

Lemma 5.4. Suppose that λ > Rµ.

(1) Let us fix x ∈ X, Y a finite subset of X and ε > 0. Then there exists t = t(λ, x) > 0

(independent of ε), k(ε, x, Y, λ) such that, for all k ≥ k(ε, x, Y, λ),

P




⋂

y∈Y

(ηt(y) ≥ k)
∣∣∣η0(x) = k


 > 1 − ε.

The claim holds also with {η̄t}t≥0 in place of {ηt}t≥0 when n0 is sufficiently large.

(2) Let us fix a finite set of vertices {xi}i=1,...,m, a collection of finite sets {Yi}i=1,...,l of vertices

of X and ε > 0. Then there exists t = t(λ, {xi}, {Yi}) (independent of ε), k(ε, {xi}, {Yi}, λ)

such that, for all i = 1, . . . , l and k ≥ k(ε, {xi}, {Yi}, λ),

P




⋂

y∈Yi

(ηt(y) ≥ k)
∣∣∣η0(xi) = k


 > 1 − ε.

The claim holds also with {η̄t}t≥0 in place of {ηt}t≥0 when n0 is sufficiently large.

Proof.

(1) If we denote by {ξt}t the branching process starting from ξ0 = δx then, by Lemma 5.3, we

can choose t such that Eδx(ξt(y)) > 1 for all y ∈ Y . We can write ηt(y) =
∑k

j=1 ξt,j(y)

where ξt,j(y) denotes the number of descendants in y of the j-th initial particle; note that

{ξt,j(y)}j∈N is an iid family with E(ξt,j(y)) = Eδx(ξt(y)) and Var(ξt,j(y)) =: σ2
t,y. Since ξt,j

is stochastically dominated by a continuous time branching process with birth rate λ, it

is clear that σ2
t,y < +∞. Thus by the Central Limit Theorem, given any δ > 0, if k is

sufficiently large,

δ ≥

∣∣∣∣∣∣
P




k∑

j=1

ξt,j(y) ≥ z


 − 1 + Φ

(
z − kEδx(ξt(y))√

kσt,y

)∣∣∣∣∣∣

uniformly with respect to z ∈ R. Whence there exists k(δ, x, y) such that, for all k ≥
k(δ, x, y),

P (ηt(y) ≥ k) ≥ 1 − Φ

(√
k

1 − Eδx(ηt(y))

σt,y

)
− δ ≥ 1 − 2δ,

since
√

k(1 − Eδx(ηt(y))/σt,y → −∞ as k → +∞. Take k(δ, x, Y ) := maxy∈Y k(δ, x, y) <

+∞, and let D be the cardinality of Y . Hence, for all k ≥ kx,

P




⋂

y∈Y

(ηt(y) ≥ k)
∣∣∣η0(x) = k


 ≥ 1 − 2Dδ.
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The assertion for η̄t follows from Lemma 5.3.

(2) Let {ξt}t≥0 be as before and choose t such that Eδxi (ξt(y)) > 1 for all y ∈ Yi and for all

i = 1, . . . l. According to (1) above we fix ki such that, for all k ≥ ki,

P




⋂

y∈Yi

(ηt(y) ≥ k)
∣∣∣η0(xi) = k


 ≥ 1 − ε.

Take k ≥ maxi=1,...,l ki to conclude. The assertion for η̄t follows from Lemma 5.3.

¤

Remark 5.5. Note that Remark 5.1 and Lemmas 5.3 and 5.4 can be restated for the process

{η̄m
t }t≥0 if m is sufficiently large.

We say that (X, µ) is quasi-transitive if there exists a finite partition of X such that for all

couples (x, y) in the same class there exists a bijection γ on X satisfying γ(x) = y and, for all

a, b ∈ X, µ(γ(a), γ(b)) = µ(a, b) (when the last condition holds we say that µ is γ-invariant). In

particular if µ(x, y) = p(x, y) where P is the simple random walk on X then it is γ-invariant for

any automorphism γ. Roughly speaking, if µ is γ-invariant then the graph is identical seen from x

and γ(x).

Theorem 5.6.

If at least one of the following conditions holds

(1) (X,µ) is quasi-transitive;

(2) (X,µ) is connected and there exists γ bijection on X such that

(a) µ is γ-invariant;

(b) for some x0 ∈ X we have x0 = γnx0 if and only if n = 0;

then

lim
m→+∞

λm
s = λs ≥ lim

m→+∞
λm

w ≥ λw.

Moreover if λs = λw then λm
w ↓m→+∞ λw.

Proof. Remember that λs = Rµ.

(1) Let us collect one vertex from each orbit into the (finite) set {xi}i=1,...,l and let Yi := {y ∈
X : xi → y}. Fix λ > Rµ, I = X, E(I) = {(x, y) : (x, y) ∈ E(X) or (y, x) ∈ E(X)} and

Ax = {x}. Note that (I, E(I)) coincides with (X, E(X)) if the latter is non oriented. By

these choices, Lemma 5.4 yields Step 2. To prove that the percolation on (I, E(I))× ~N has

two phases (that is, (I, E(I)) is a suitable choice for Step 1) we note that the existence of

the supercritical phase for the Bernoulli percolation on X× ~N follows from the fact that the

graph N is a subgraph of X. Moreover in the supercritical Bernoulli percolation on N × ~N

with positive probability the infinite open cluster contains (0, 0) and intersects the y-axis
12



infinitely often. Hence by Steps 3 and 4 we have that, for all sufficently large m, λm
s ≤ λ

and this yields the result.

(2) Fix λ > Rµ; by Lemma 5.4, for sufficiently large n0,

P
(
η̄t(γx) ≥ k

∣∣∣η̄0(x) = k
)

> 1 − ε and P
(
η̄t(x) ≥ k

∣∣∣η̄0(γx) = k
)

> 1 − ε.

This implies

P
(
η̄t(γ

nx) ≥ k
∣∣∣η̄0(γ

n−1x) = k
)

> 1 − ε and P
(
η̄t(γ

n−1x) ≥ k
∣∣∣η̄0(γ

nx) = k
)

> 1 − ε

for all n ∈ Z since µ is γ-invariant; one more time, Steps 3 and 4 yield λm
s ≤ λ (for

sufficiently large m) and the claim (here I = Z and Ai = {γix0}).
¤

6. Approximation of λw by λm
w

From now on we set µ(x, y) = p(x, y) where P is a stochastic matrix. We stress that in this case

λw = 1. We are concerned with the question whether λm
w ↓ λw = 1 or not. Under the hypotheses of

Theorem 5.6, this is the case when the BRW has no pure weak phase (i.e. R = 1). The interesting

case is R > 1. Most natural examples are drifting random walks on Zd and the simple random

walk on homogeneous trees. In both cases we show that λm
w

m→∞−→ λw.

Theorem 6.1. Let P be a random walk on Z such that p(i, i + 1) = p, p(i, i − 1) = q and

p(i, i) = 1 − p − q for all i ∈ Z. Then limm→+∞ λm
w = 1 = λw.

Proof. We consider α, β ∈ (0, 1), α ≤ β ≤ (1 + α)/2 and write

p(n)(0, αn) =

(1+α)n/2∑

i=αn

(
n

i, i − αn, n − 2i + αn

)
piqi−αn(1 − p − q)n−2i+αn

≥
(

n

βn, (β − α)n, (1 − 2β + α)n

)
pβnq(β−α)n(1 − p − q)(1−2β+α)n

n→∞∼ 1

2πn
√

β(β − α)(1 − 2β + α)

(
pβqβ−α(1 − p − q)1−2β+α

ββ(β − α)β−α(1 − 2β + α)1−2β+α

)n

.

Thus if λ > 1, Eδ0(ηn(αn)) is bounded from below by a quantity which is asymptotic to

1

(2πn)3/2
√

β(β − α)(1 − 2β + α)
(gλ(α, β))n .

where

gλ(α, β) =
λpβqβ−α(1 − p − q)1−2β+α

ββ(β − α)β−α(1 − 2β + α)1−2β+α
.

Note that gλ(p − q, p) = λ, thus we may find α1 < α2 ≤ β1 < β2 (with βi ≤ (1 + αi)/2, i = 1, 2)

such that gλ(x, y) > 1, for all (x, y) ∈ [α1, α2]× [β1, β2]. By taking n = n̄ sufficiently large one can

find three distinct integers d1, d2 and d3 such that α1n ≤ d1 < d2 ≤ α2n, β1n ≤ d3 ≤ β2n and

gλ(dl/n, d3/n) > 1, l = 1, 2.
13



By reasoning as in Lemma 5.4 we have that, for all λ > 1 and ε > 0, there exists t̄, k = k(ε, λ)

such that, for all i ∈ Z, for all n0 sufficiently large,

P ( η̄t̄(i + j) ≥ k, j = d1, d2| η̄0 = kδi) > 1 − ε.

Since k and t̄ are independent of i we have proven the general version of Step 2 as stated in Remark

4.1 (where W = {a(d1, 1) + b(d2, 1) : a, b ∈ N}, A(i,n) = {i} and (i, n) → (j, n + 1) if and only if

j − i = d1 or j − i = d2). ¤

In view of Corollary 6.2 and Theorem 6.4 it is useful to introduce the concept of local isomorphism

which allows to extend some results from Z to more general graphs. Given two weighted graphs

(X,µ) and (I, ν), we say that a map f : X → I is a local isomorphism of X on I if for all x ∈ X

and i ∈ I we have
∑

z∈f−1(i) µ(x, z) = ν(f(x), i).

In this case it is clear that, if we consider the partition of X given by {Ai}i∈I where Ai := f−1(i),

we can easily compute the expected number of particles alive at time t in Ai starting from a single

particle alive in x at time 0
∑

z∈Ai

Eδx
µ (ηt(z)) = E

δf(x)
ν (ξt(i)) (6.9)

(where {ξt}t≥0 is a branching random walk on (I, ν)), since
∑

z∈f−1(i) µ(n)(x, z) = ν(n)(f(x), i), for

all n ∈ N. We note that the latter depends only on f(x) and i. As a consequence Rµ ≥ Rν .

Corollary 6.2. If P is a translation invariant random walk on Zd then limk→+∞ λk
w = 1 = λw.

Proof. Let {Zn}n∈N be a realization of the random walk and Ai = {x ∈ Zd : x(1) = i}. Note that

P(Zn+1 ∈ Aj |Zn = w) = p̃(i, j), ∀w ∈ Ai,

where P̃ is a random walk on Z with p = p(0, e1), q = p(0,−e1). Using equation (6.9) and reasoning

as in the proof of the previous theorem, we conclude. ¤

Remark 6.3. The argument of the previous corollary may be applied to a more general case: let

(Y, Q) be a random walk and (Z, P ) be as in Theorem 6.1. Consider Y × Z with transition matrix

α(IY × P ) + (1 − α)(Q × IZ), where α ∈ (0, 1) and by I we denote the identity matrix (on the

superscripted space). Using the projection on the second coordinate one proves that limm→+∞ λm
w =

1 = λw.

Theorem 6.4. If (X, P ) is the simple random walk on the homogeneous tree of degree r then

limm→+∞ λm
w = 1 = λw.

Proof. Fix an end τ in X and a root o ∈ X and define the map h : X → Z as the usual height

(see [25] page 129). Define Ak = h−1(k), k ∈ Z (these sets are usually referred to as horocycles).
14



The projection of the simple random walk on X onto Z is a random walk with transition matrix

P̃ where p̃(a, a + 1) = 1 − 1/r and p̃(a, a − 1) = 1/r. Note that for all x ∈ X
∑

y∈Ak

p(n)(x, y) = p̃(n)(h(x), k).

By using equation (6.9) and reasoning as in Lemma 5.4 and Theorem 6.1 we have that, for all

i ∈ N, and some integers d1, d2,

P
( ∑

x∈Ai+j

η̄n̄(x) ≥ k, j = d1, d2

∣∣∣η̄0(x) = η
)

> 1 − ε,

for all η such that
∑

x∈Ai
η(x) = k and η(x) = 0 if x 6∈ Ai, and for all n0 sufficiently large. The

claim follows as in Theorem 6.1. ¤

7. Branching random walks in random environment

We use the results of Section 3 to prove some properties of the BRW in random environment.

Let (X,µ) be a non-oriented weighted graph. We consider any subgraph (Y, E(Y )) of (X, E(X))

as a weighted subgraph with weight function 1lE(Y )µ.

Given any p ∈ (0, 1] we consider the independent Bernoulli bond percolation on (X, E(X)) and

we define the random weighted subgraphs (Y a, E(Y a)) where Y a = X and E(Y a) is the random set

of edges resulting from the percolation process. We define λs(Y
a) := infA∈A λs(A) where A is the

random collection of all the connected components of Y a. This corresponds to the critical (strong)

parameter of a BRW where the initial state is one particle alive at time 0 in every connected

component of Y a.

On the other hand, if there exists a nontrivial critical parameter pc for the Bernoulli percolation

on X and if the infinite cluster is unique almost surely then, for all p > pc, we denote by (Y c, E(Y c))

the infinite cluster and we consider the critical (strong) parameter λs(Y
c). Given a sequence

{pn}n∈N such that pn ∈ [0, 1] for all n ∈ N, we consider the sequences {Y a
n }n∈N and {Y c

n}n∈N as the

results of Bernoulli percolation processes on X with parameters {pn}n∈N. Observe that we do not

make any a priori assumption on the joint distributions of these Bernoulli percolation processes.

Here is the main result; we note that, even when X = Zd, we do not require µ to be the simple

random walk.

Theorem 7.1. (1) If
∑

n(1 − pn) < +∞ then λs(Y
a
n ) → λs(X) a.s.

(2) If (X,µ) is quasi-transitive then λs(Y
a) = λs(X) a.s.

(3) If X = Zd and
∑

n(1 − pn) < +∞, then λs(Y
c
n ) → λs(Z

d) a.s.

(4) If X = Zd, µ is translation invariant and p > pc then λs(Y
c) = λs(Z

d) a.s.

Proof.
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(1) By using the Borel-Cantelli Lemma, we have that any finite connected subgraph of X

is eventually contained in a (random) connected component of Y a
n almost surely (since

∑
n(1 − pk

n) < +∞ for all k ∈ N). Theorem 3.2 yields the conclusion.

(2) In this case if we take an infinite orbit X0 then for any m ∈ N, with probability 1, Y a

contains at least one ball B(z0, m), centered on a vertex z0 ∈ X0 and of radius m, with all

open edges. Indeed for each m there exists an infinite subset of X0, say X1, such that the

balls {B(z, m) : z ∈ X1} are pairwise disjoint. Hence the events “all the edges in B(z,m)

are open” with z ∈ X1 are independent and they have the same probability, thus almost

surely (with respect to the percolation probability), at least one occurs. Let B(z0,m) be

the corresponding ball (z0 being random).

Since the critical parameter of a ball λs(B(z0,m)) does not depend on the choice of

z0 ∈ X0, then using Theorem 3.2, we have that λs(X) ≤ λs(Y
a) ≤ λs(B(z0,m)) → λs(X)

as m → +∞.

(3) Note that pn > pc eventually, hence λs(Y
c
n ) is well-defined for all sufficiently large n. What

we need to prove is that, almost surely, any edge is eventually connected to the infinite

cluster. To this aim we apply the FKG inequality obtaining that the probability of the

event “the edge (x, y) is open and connected to the infinite cluster Y c
n” is bigger than

pnθ(pn) (where θ(p) is the probability that a fixed vertex x is contained in the infinite

cluster, when each edge is open with probability p). According to Theorem 8.92 of [10], θ

is a differentiable function on [0, 1] hence 1 − pθ(p) ∼ (1 − p)(1 + θ′(1)) and this implies
∑

n(1 − pnθ(pn)) < +∞. The Borel-Cantelli Lemma yields the conclusion.

(4) It is tedious but essentially straightforward to prove that, for any m ∈ N, with probability 1,

Y c contains an hypercube Qm of side-length m with all open edges; as before, Theorem 3.2

yields the result.

¤

Note that if pn ↑ 1 and the joint distribution of the family of Bernoulli percolation processes

(indexed by n) is the natural monotone coupling, then the conclusions of Theorem 7.1 (1) and (3)

hold without requiring
∑

n(1 − pn) < +∞. This stronger assumption nevertheless allows us to

obtain a convergence result for all possible couplings.

8. Final remarks

At this point the theory of spatial approximation (see Section 3) is quite complete as far as we are

concerned with the basic questions on the convergence of the critical parameters. Indeed we proved

results in this direction (see Theorem 3.2) for the strong parameter under reasonable assumptions,

while the question on the weak critical parameter, in the pure spatial approximation by finite

subsets, is uninteresting (see Remark 3.3). It is possible to further investigate the convergence
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of the sequence of weak critical parameters under the hypotheses of Theorem 3.2 by using the

characterization λw = 1/ lim supn
n

√∑
y∈X µ(n)(x, y) which holds in many cases (see [3] and [4] for

details).

As for the approximation of the BRW by BRWms, we proved that, on graphs satisfying the

hypotheses of Theorem 5.6 (among them, quasi-transitive graphs), λm
s ↓ λs as m → ∞ and, if there

is no weak phase, on Zd or on regular trees, λm
w ↓ λw as m → ∞. Here are some natural questions

which, as far as we know, are still open:

• can one weaken the hypothesis of Theorem 5.6 and still prove the convergence of the strong

critical parameters?

• when λw 6= λs, is it still true that λm
w ↓m→∞ λw, at least for Cayley graphs or on quasi

transitive graphs?
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