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AN INEQUALITY FOR CORRELATED MEASURABLE FUNCTIONS

FABIO ZUCCA

Abstract. A classical inequality, which is known for families of monotone functions, is generalized

to a larger class of families of measurable functions. Moreover we characterize all the families of

functions for which the equality holds. We give two applications of this result, one of them to a

problem arising from probability theory.

1. Introduction

The aim of this paper is to generalize an inequality, originally due to Chebyshev and then
rediscovered by Stein in [4]. Usually this result is stated for monotonic real functions: the classical
inequality is

(b − a)

∫
b

a

f(x)g(x)dx ≥

∫
b

a

f(x)dx

∫
b

a

g(x)dx

where f and g are monotonic (in the same sense) real functions (see for instance [4], [3] and [2]
for a more general version). If a = b − 1 then this inequality has a probabilistic interpretation,
namely E[fg] − E[f ]E[g] ≥ 0 (where E denotes the expectation), that is, the covariance of f and g
is nonnegative.

Our approach allows us to prove the inequality for functions defined on a general measurable
space, hence we go beyond the usual ordered set R. More precisely, we prove an analogous result
for general families of measurable functions that we call correlated functions (see Definition 2.1 for
details). In particular we characterize all the families of functions for which the equality holds.

Here is the outline of the paper. In Section 2 we introduce the terminology and the main tools
needed in the sequel. In particular Sections 2.1 and 2.2 are devoted to the construction of an order
relation and a σ-algebra on a particular quotient space. In Section 3 we state and prove our main
result (Theorem 3.1) which involves k correlated functions; the special case k = 2 requires weaker
assumptions (see also Remark 3.1). We give two applications of this inequality in Section 4: the
first one involves a particular class of power series, while the second one comes from probability
theory.

2. Preliminaries and basic constructions

We start from a very general setting. Let us consider a set X, a partially ordered space (Y,≥Y )
and a family N = {fi}i∈Γ (where Γ is an arbitrary set) of functions in Y X . We consider the
equivalence relation on X

x ∼ y ⇐⇒ fi(x) = fi(y), ∀i ∈ Γ

and we denote by X/∼ the quotient space, by [x] the equivalence class of x ∈ X and by π the
natural projection of X onto X/∼. Roughly speaking, by means of this procedure, we identify
points in X which are not separated by the family N .
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2 F. ZUCCA

To the family N corresponds a natural counterpart N∼ = {φfi
}i∈Γ of functions in Y X/∼ , where,

by definition, φf ([x]) := f(x), for all x ∈ X and for every f ∈ Y X satisfying

(2.1) ∀x, y ∈ X : x ∼ y =⇒ f(x) = f(y)

(this holds in particular for all the functions in N ). It is clear that the family N∼ separates the
points of X/∼.
Given any function g defined on X/∼ we denote by πg the function g ◦ π; observe that φπg = g for

all g ∈ Y X/∼ and πφf
= f for every f satisfying equation (2.1). Clearly g 7→ πg is a bijection from

Y X/∼ onto the subset of function in Y X satisfying equation (2.1).

Note that given f, f1 ∈ Y X which satisfy equation (2.1) (resp. g, g1 ∈ Y X/∼) then f ≥Y f1

(resp. g ≥Y g1) implies φf ≥ φf1
(resp. πg ≥ πg1

).

2.1. Induced order. In order to prove Theorem 3.1 we cannot take advantage, as in the classical
formulation, of an order relation on the set X. Under some reasonable assumptions (se Definition 2.1
below) we can transfer the order relation from Y to X/∼ where we already defined a family N∼

related to the original N . This will be enough for our purposes.

Definition 2.1. The functions in N are correlated if, for all i ∈ Γ and x, y ∈ X,

(2.2) fi(x) >Y fi(y) =⇒ fj(x) ≥Y fj(y), ∀j ∈ Γ.

We note that the definition above can be equivalently stated as follows: for all i, j ∈ Γ and
x ∈ X,

f−1

i ((−∞, fi(x))) ⊆ f−1

j ((−∞, fj(x)]).

Besides, if Y = R with its natural order, then the functions in N are correlated if and only if for
all i, j ∈ Γ and x, y ∈ X,

(2.3) (fi(x) − fi(y))(fj(x) − fj(y)) ≥ 0.

In particular if X is a totally ordered set and all the functions in N are nondecreasing (or nonin-
creasing) then they are correlated.

A family of correlated functions induces a natural order relation on the quotient space X/∼.

Lemma 2.1. If the functions in N are correlated then the relation on X/∼

[x] ≥∼ [y] ⇐⇒ fi(x) ≥Y fi(y), ∀i ∈ Γ

is a partial order. If (Y,≥Y ) is a totally ordered space then the same holds for (X/∼,≥∼). Moreover
N∼ is a family of nondecreasing functions (hence they are correlated).

Proof. It is straightforward to show that ≥∼ is a well-defined partial order (clearly it does not
depend on the choice of x (and y) within an equivalence class). We prove that, if ≥Y is a total
order, the same holds for ≥∼. Indeed if [x] 6= [y] then there exists i ∈ Γ such that fi(x) 6= fi(y);
suppose that fi(x) > fi(y) then, by equation (2.2), [x] >∼ [y]. It is trivial to prove that φfi

is
nondecreasing for every i ∈ Γ, whence they are correlated since the space (X/∼,≥∼) is totally
ordered. ¤

A subset I of an ordered set, say Y , is called an interval if and only if for all x, y ∈ I and z ∈ Y
then x ≥Y z ≥Y y implies z ∈ I. Note that given an interval I ⊆ Y then φ−1

fi
(I) is an interval of

X/∼ for every i ∈ Γ.
Given x, y ∈ X such that [x] ≥∼ [y] we define the interval [[y], [x]) := {[z] ∈ X/∼ : [y] ≤

[z] < [x]}; the intervals [[y], [x]], ([y], [x]] and ([y], [x]) are defined analogously. In particular for
any x ∈ X, we denote by [[x],+∞) and (−∞, [x]] the intervals {[y] ∈ X/∼ : [y] ≥∼ [x]} and
{[y] ∈ X/∼ : [x] ≥∼ [y]} respectively.
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2.2. Induced σ-algebra and measure. This construction can be carried on under general as-
sumptions. Let us consider a measurable space with a positive measure (X, ΣX , µ) and an equiva-
lence relation ∼ on X such that for all x ∈ X and A ∈ ΣX ,

(2.4) x ∈ A =⇒ [x] ⊆ A.

There is a natural way to construct a σ-algebra on X/∼, namely define

Σ∼ := {π(A) : A ∈ ΣX}

where π(A) := {[x] : x ∈ A}. This is the largest σ-algebra on X/∼ such that the projection map π
is measurable. Observe that A 7→ π(A) is a bijection from ΣX onto Σ∼. It is natural to define a
measure µ := µπ by

µ(π(A)) = µ(A), ∀A ∈ ΣX .

It is well known that a function g : X/∼ → R is measurable if and only if πg is measurable.
Moreover g is integrable (with respect to µ) if and only if πg is integrable (with respect to µ) and

(2.5)

∫
X

πgdµ =

∫
X/∼

gdµ.

We say that a function g is integrable if at least one of the integrals of the two nonnegative functions
g+ := max(g, 0) and g− := −min(g, 0) is finite; hence the integral of g can be unambiguously
defined as the difference of the two integrals (where ±∞+ z := ±∞ for all z ∈ R and 0 ·±∞ := 0).
This notion is sligthly weaker than the usual one: to remark the difference, when the integrals of
g+ and g− are both finite the function g is called summable.

It is a simple exercise to check that the equivalence relation defined in Section 2.1 satisfies
equation (2.4) if ΣX = σ(fi : i ∈ Γ) (that is, ΣX is the minimal σ-algebra such that all the
functions in N are measurable); this equivalence relation along with its induced σ-algebra and
measure will play a key role in the next section.

Remark 2.1. It is easy to show that if h, r : X 7→ R are two integrable functions such that the sum∫
X hdµ +

∫
X rdµ is not ambiguous (i.e. it is not true that

∫
X hdµ = ±∞ and

∫
X rdµ = ∓∞) then

h + r is integrable and

(2.6)

∫
X

(h + r)dµ =

∫
X

hdµ +

∫
X

rdµ

(both sides possibly being equal to ±∞). This will be useful in the proof of Lemma 3.3.

3. Main result

Throughout this section we consider a measurable space with finite positive measure (X, ΣX , µ)
and a family of correlated functions N = {fi}i∈Γ, where ΣX = σ(fi : i ∈ Γ). Let us consider
Y = R with its natural order ≥. The equivalence relation ∼, the (total) order ≥∼ and the space
(X/∼, Σ∼, µ) are introduced according to Sections 2.1 and 2.2. It is clear that Σ∼ contains the
σ-algebra generated by the set of intervals {φ−1

fi
(I) : i ∈ Γ, I ⊆ R is an interval}. More precisely

it is easy to see that, by construction, all the intervals of the totally ordered set (X/∼,≥∼) are
measurable since N∼ separates points.

The main result is the following.

Theorem 3.1. Let µ(X) < +∞.

(1) If f , g are two integrable, µ-a.e. correlated functions such that fg is integrable then

(3.1) µ(X)

∫
X

fgdµ ≥

∫
X

fdµ

∫
X

gdµ.
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Moreover, if f , g are summable, then in the previous equation the equality holds if and only
if at least one of the functions is µ-a.e constant.

(2) If {fi}k
i=1

is a family of measurable functions on X which are nonnegative and µ-a.e. cor-
related then

(3.2) µ(X)k−1

∫

X

k
∏

i=1

fidµ ≥
k

∏

i=1

∫

X

fidµ.

Moreover if
∫

X
fidµ ∈ (0, +∞) for all i = 1, . . . , k, then in the previous equation the equality

holds if and only if at least k − 1 functions are µ-a.e. constant.

Before proving this theorem, let us warm up with the following lemma; though it will not be
used in the proof of Theorem 3.1, nevertheless it sheds some light on the next step.

Lemma 3.2. Let N := {{xi(j)}i∈N}
k
j=1

be a family of nonnegative and nondecreasing sequences

and {µi}i∈N be a family of strictly positive real numbers. If
∑

i µi < +∞ then

(3.3)
(

∑

i

µi

)k−1 ∑

i

k
∏

j=1

xi(j)µi ≥
k

∏

j=1

∑

i

xi(j)µi.

Moreover if for every j we have 0 <
∑

i xi(j) < +∞ then the equality holds if and only if at least
k − 1 sequences are constant.

Proof. We prove the first part of the claim for two finite sequences {xi}n
i=1

and {yi}n
i=1

, since the
general case follows easily by induction on k and using the Monotone Convergence Theorem as n

tends to infinity.
It is easy to prove that

(3.4)
n

∑

i=1

µi

n
∑

i=1

xiyiµi−
n

∑

i=1

xiµi

n
∑

i=1

yiµi =
∑

i,j:i≥j

(xi−xj)(yi−yj)µiµj =
∑

i,j:i>j

(xi−xj)(yi−yj)µiµj .

Indeed
n

∑

i=1

µi

n
∑

i=1

xiyiµi =
∑

i,j:i>j

(xiyi + xjyj)µiµj +
n

∑

i=1

xiyiµ
2
i

and
n

∑

i=1

xiµi

n
∑

i=1

yiµi =
∑

i,j:i>j

(xiyj + xjyi)µiµj +
n

∑

i=1

xiyiµ
2
i .

This implies easily that

n
∑

i=1

µi

n
∑

i=1

xiyiµi −
n

∑

i=1

xiµi

n
∑

i=1

yiµi ≥ 0.

If either at least k − 1 sequences are constant or one sequence is equal to 0, then we have an
equality. The same is true if

∑

i xi(j)µi = +∞ for some j and
∑

i xi(j)µi > 0 for all j, since both
sides of equation (3.3) are equal to +∞. On the other hand by using the first part of the theorem
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and by taking the limit in equation (3.4) as n tends to infinity, for all 1 ≤ j1 < j2 ≤ k,

(

∑

i

µi

)k−1 ∑

i

k
∏

j=1

xi(j)µi −
k

∏

j=1

∑

i

xi(j)µi

≥
(

∑

i

µi

)

∑

i

xi(j1)xi(j2)µi

∏

j 6=j1,j2

∑

i

xi(j)µi −
k

∏

j=1

∑

i

xi(j)µi

=
(

∏

j 6=j1,j2

∑

i

xi(j)µi

)

∑

i,i1:i>i1

(xi(j1) − xi1(j1))(xi(j2) − xi1(j2))µiµi1 .

(3.5)

If both {xi(j1)}i and {xi(j2)}i are nonconstant then there exist r < l and r1 < l1 such that xr(j1) <
xl(j1) and xr1

(j2) < xl1(j2). This implies xmax(l,l1)(j1) − xmin(r,r1)(j1) > 0 and xmax(l,l1)(j2) −
xmin(r,r1)(j2) > 0, thus the right hand side of equation (3.5) is strictly positive (just consider
the summation over {i, i1 : i ≥ max(l, l1), i1 ≤ min(r, r1)}) and we have a strict inequality in
equation (3.3). ¤

The proof of the previous lemma clearly suggests a second lemma which will be needed in the
proof of Theorem 3.1.

Lemma 3.3. Let N := {f, g} where f, g : X → R are two summable functions such that fg is
integrable (for instance if f and g are µ-a.e. correlated). If µ(X) < +∞ then

µ(X)

∫

X
f(x)g(x)dµ(x) =

∫

X
f(x)dµ(x)

∫

X
g(x)dµ(x)

+
1

2

∫

X×X
(f(x) − f(y))(g(x) − g(y))dµ(x)dµ(y).

(3.6)

Proof. Note that

(3.7) f(x)g(x) + f(y)g(y) = f(x)g(y) + f(y)g(x) + (f(x) − f(y))(g(x) − g(y));

where f(x)g(y) and f(y)g(x) are summable on X × X, since f, g are summable. If we define
h(x, y) := f(x)g(y) + f(y)g(x) and r(x, y) := (f(x) − f(y))(g(x) − g(y)) then, according to Re-
mark 2.1, we just need to prove that h and r are integrable (since h+r is integrable by hypothesis).

If f , g are summable then, by equation (3.7), fg is integrable if and only if (f(x)− f(y))(g(x)−
g(y)) is integrable on X ×X (since the sum of an summable function and an integrable function is
an integrable function) and equation (3.6) follows. Clearly if f and g are correlated then (f(x) −
f(y))(g(x) − g(y)) is nonnegative thus integrable. ¤

Proof of Theorem 3.1.

(1) By equation (2.5) it is enough to prove that

µ(X/∼)

∫

X/∼

φfφgdµ ≥

∫

X/∼

φfdµ

∫

X/∼

φgdµ.

If f and g are summable then the claim follows from equation (3.6) of Lemma 3.3. Oth-
erwise, without loss of generality, we may suppose that

∫

X/∼
φfdµ ≡

∫

X fdµ = +∞. If
∫

X/∼
φgdµ ≡

∫

X gdµ < 0 then there is nothing to prove. If
∫

X gdµ ≥ 0 then either g = 0

µ-a.e. , in this case both sides of equation (3.1) are equal to 0, or there exists x ∈ X/∼
such that µ([x,+∞)) > 0 and φf , φg > 0 on [x,+∞) (since φf and φg are nondecreasing).
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Clearly
∫

[x,+∞) φfdµ = +∞ and φf (y)φg(y) ≥ φf (y)φg(x) for all y ∈ [x,+∞), hence both

sides of equation (3.1) are equal to +∞.
If one of the two functions is constant then the equality holds. If f and g are nonconstant

(that is, φf and φg are nonconstant) then there exist x0, y0 ∈ X/∼ such that x0 >∼ y0,
φf (x0) > φf (y0), φg(x0) > φg(y0), µ((−∞, y0]) > 0 and µ([x0,+∞)) > 0 (this can be done
as in Lemma 3.3). Hence, using equation (3.6) and the symmetry between x and y, we have
that,

µ(X/∼)

∫

X/∼

φfφgdµ −

∫

X/∼

φfdµ

∫

X/∼

φgdµ

≥

∫

[x0,+∞)×(−∞,y0]
(φf (x) − φf (y))(φg(x) − φg(y))dµ(x)dµ(y)

≥ µ((−∞, y0])µ([x0, +∞))(φf (x0) − φf (y0))(φg(x0) − φg(y0)) > 0.

(2) Let us suppose that fi is summable for all i = 1, . . . , k. It is enough to prove that

µ(X/∼)k−1

∫

X/∼

k
∏

i=1

φfi
dµ ≥

k
∏

i=1

∫

X/∼

φfi
dµ.

In the previous part of the theorem, we proved the claim for two functions φf and φg; as
in Lemma 3.2, the general case follows by induction on k.

If at least two functions are nonconstant, say φf1
, φf2

, then as before we may find
x0, y0 ∈ X/∼ such that x0 >∼ y0, φf1

(x0) > φf1
(y0), φf2

(x0) > φf2
(y0), µ((−∞, y0]) > 0

and µ([x0,+∞)) > 0 (this can be done as in Lemma 3.3). By applying the first part of the
claim to the family (of k−1 functions) φf1

φf2
, φf3

, . . . , φfk
(which are clearly still correlated

since they are nondecreasing) and using equation (3.6) we have that,

µ(X/∼)k−1

∫

X/∼

k
∏

i=1

φfi
dµ −

k
∏

i=1

∫

X/∼

φfi
dµ

=
(

µ(X/∼)

∫

X/∼

φf1
φf2

dµ −

∫

X/∼

φf1
dµ ·

∫

X/∼

φf2
dµ

)

k
∏

i=3

∫

X/∼

φfi
dµ

≥
(

∫

[x0,+∞)×(−∞,y0]
(φf1

(x) − φf1
(y))(φf2

(x) − φf2
(y))dµ(x)dµ(y)

)

k
∏

i=3

∫

X/∼

φfi
dµ

≥ µ((−∞, y0]) µ([x0, +∞))(φf1
(x0) − φf1

(y0))(φf2
(x0) − φf2

(y0))
k

∏

i=3

∫

X/∼

φfi
dµ > 0

since 0 <
∫

X/∼
φfi

dµ < +∞ for all i = 1, . . . , k, thus the second part of the claim is proved.

¤

Note that if
∫

X fidµ = +∞ for some i and
∫

X fjdµ > 0 for all j (otherwise both sides of
equation (3.2) are equal to 0) then both sides of equation (3.2) are equal to +∞; indeed apply
the first part of the theorem to the family of correlated bounded functions {min(fi, n)}k

i=1 (where
n ∈ N) and take the limit of both sides of equation (3.2) as n tends to +∞.

Remark 3.1. According to Theorem 3.1, there is a difference between the case k = 2 and k > 2;
indeed in the latter case the inequality cannot be proved for integrable (or even summable) µ-
a.e. correlated functions which are not nonnegative. Something happens in the inductive process,
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namely if {fi}
k
i=1 are correlated this may not be true for {f1f2, f3, . . . , fk} (if the functions are

not positive). Here is a counterexample: take X = [−1, 1] endowed with the Lebesgue measure,
f1(x) = f2(x) := x1[−1,0](x) and fi(x) := x − f1(x) for all i ≥ 3.

Strictly speaking, Theorem 3.1 could be proved without the constructions of Sections 2.1 and 2.2;
one has just to use carefully equation (2.3) and Lemma 3.3. Our approach simplifies the proof of
Theorem 3.1 and gives a better understanding of the role of the correlation hypothesis (compared
to the usual monotonicity).

We finally observe that if we consider two integrable anticorrelated functions (meaning that
(f(x) − f(y))(g(x) − g(y)) ≤ 0 for all x, y ∈ X) such that fg is integrable then, clearly, we have
µ(X)

∫
X

fgdµ ≤
∫
X

fdµ
∫
X

gdµ.

4. Final remarks and examples

Let us apply Theorem 3 to a class of power series. We consider f(z) :=
∑+∞

n=0 anzn where
{an}n is a sequence of nonnegative real numbers and we suppose that {ρnan} is nonincreasing
(resp. nondecreasing) for some ρ such that 0 < ρ ≤ R (where R is the radius of convergence). Then
the function z 7→ (ρ − z)f(z) is a nonincreasing (resp. nondecreasing) on [0, ρ).

Indeed if we suppose that {ρnan} is nonincreasing then, for all z, γ such that 0 ≤ z < γ < ρ, we
have

+∞∑

n=0

anzn =
+∞∑

n=0

anρn(z/γ)n(γ/ρ)n

≥

∑+∞

n=0 anγn

∑+∞

n=0(γ/ρ)n

+∞∑

n=0

(z/ρ)n =
+∞∑

n=0

anγn ρ − γ

ρ − z
,

where, in the first inequality, we applied Theorem 3.1 to the (correlated) functions f1(n) := anρn

and f2(n) := (z/γ)n defined on N endowed with the measure µ(A) :=
∑

n∈A(γ/ρ)n. The case when
{ρnan} is nondecreasing is analogous (observe that now the functions f1 and f2 are anticorrelated).
If z < ρ < R then f1 and f2 are nonconstant functions, hence the function z 7→ (ρ − z)f(z) is
strictly monotone.

We draw our second application from probability theory. To emphasize this, we denote the
measure space by (Ω,F , P) and we speak of random variables and events instead of measurable
functions and measurable sets respectively. We note that if k = 2 then Theorem 3.1 says that
correlated variables have nonnegative covariance that is, E[f1f2] − E[f1]E[f2] ≥ 0 (where E[f ] :=∫
Ω fdP is the usual expectation).
We call the (real) random variables {X0,X1, . . . ,Xk} independent if and only if, for every family

of Borel sets {A0, A1, . . . , Ak}, we have P(∩k
i=0{Xi ∈ Ai}) =

∏k
i=0 P(Xi ∈ Ai), where P(Xi ∈ Ai) is

shorthand for P({ω ∈ Ω : Xi(ω) ∈ Ai}).
In order to make a specific example, let us think of the variable Xi (i = 1, . . . , k) as the (random)

time made by the i-th contestant in an individual time trial bicycle race and let X0 be our own
(random) time; we suppose that each contestant is unaware of the results of the others (this is the
independence hypothesis). If we know the probability of winning a one-to-one race against each of
our competitors we may be interested, for instance, in estimating the probability of winning the
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race. Such estimates are possible as a consequence of Theorem 3.1; indeed we have that

P(∩k
i=1{Xi ≥ X0}) ≥

k∏
i=1

P(Xi ≥ X0)

P(∩k
i=1{Xi ≤ X0}) ≥

k∏
i=1

P(Xi ≤ X0).

Thus the events {{Xi ≥ X0}}
k
i=1 (resp. {{Xi ≤ X0}}

k
i=1) are positively correlated (roughly speaking

this means that knowing that {X1 ≥ X0} makes, for instance, the event {X2 ≥ X0} more likely
than before).

The proof of these inequalities is straightforward. If we define µ(A) := P(X0 ∈ A) for all Borel
sets A ⊆ R, then, according to Fubini’s Theorem,

P(Xi ≥ X0) =

∫
R

P(Xi ≥ t)dµ(t), P(∩k
i=1{Xi ≥ X0}) =

∫
R

k∏
i=1

P(Xi ≥ t)dµ(t)

P(Xi ≤ X0) =

∫
R

P(Xi ≤ t)dµ(t), P(∩k
i=1{Xi ≤ X0}) =

∫
R

k∏
i=1

P(Xi ≤ t)dµ(t).

Indeed

P(Xi ≥ X0) =

∫
{(s,t)∈R2:s≥t}

dν(s)dµ(t) =

∫
R

∫
[t,+∞)

dν(s)dµ(t) =

∫
R

P(Xi ≥ t)dµ(t)

where ν(A) := P(Xi ∈ A) for all borel sets A ⊆ R and the first equality holds since Xi and X0 are
independent. The remaining cases are analogous. Note that {P(Xi ≥ t)}k

i=1 and {P(Xi ≤ t)}k
i=1 are

both families of monotone (thus correlated) functions; Theorem 3.1 yields the claim. This example
can be easily extended to a more interesting case: namely when {X1, . . . , Xk} have identical laws
and are independent conditioned to X0 (see Chapters 4 and 6 of [1] for details). In this case one
can prove that

P(∩k
i=1{Xi ∈ A}) ≥

k∏
i=1

P(Xi ∈ A), ∀A ⊆ R Borel set.

The proof makes use of Theorem 3.1 in its full generality but this example exceeds the purpose of
this paper.
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