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Abstract. In reflexive Banach spaces which possess some degree of uniform convexity,
we obtain estimates for Kottman’s separation constant in terms of the corresponding
modulus.

Introduction

For X an infinite-dimensional Banach spaces, Kottman′s constant K(X), which mea-
sures how big the separation of an infinite subset of the unit ball can be, was introduced
in the seventies ([11], [12]). Its exact value is known in quite a few classical spaces: more-
over, Elton and Odell ([5], 1981) proved that K(X) > 1 in every infinite dimensional
space.

A new interest on this constant arose recently; what is relevant is the fact that, as
it has been shown in [10], such constant gives exact estimates concerning extensions of
Lipschitz maps in some Banach spaces. Estimates from below have been obtained in
the last years in nonreflexive spaces ([13]) as well as in uniformly convex spaces ([17]).

In this paper, working mainly in reflexive spaces, we provide for Kottman’s constant
some estimates from below and from above in terms of the modulus of convexity δ or
of the modulus of smoothness. More precisely, we obtain estimates from below for all
spaces with δ(

√
2) > 0 and from above for all spaces with δ(1) > 0. Our estimates (part

of which are sharp) apply to classes of spaces much wider than the class of uniformly
convex spaces and, in uniformly convex spaces, are more accurate than the ones already
known in literature.

The paper is organized in the following way: in Section 1 we recall the relevant de-
finitions and some known results. The whole Section 2 is devoted to estimates which
rely on the modulus of convexity. In Section 3 we discuss the extreme values concerning
Kottman’s constant and renormings. Finally, in Section 4 we discuss conditions under
which K(X) can be defined using only basic sequences.

1. Definitions and known results

Let X be a real infinite-dimensional Banach space; denote by SX its unit sphere; by
BX its unit ball; by B(x, r), for r > 0, the ball centered at x with radius r.

We recall the definitions of the moduli of convexity and of smoothness.

For ε ∈ [0, 2] we call modulus of convexity of X the function
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δX(ε) = inf

{
1− ‖x + y‖

2
: x, y ∈ SX ; ‖x− y‖ ≥ ε

}
.

We simply write δ(ε) instead of δX(ε) when no misunderstanding can arise.

A space X is uniformly convex, (UC) for short, if δX(ε) > 0 for every ε > 0, and
uniformly non square, (UNS), if limε→2 δX(ε) = δX(2−) > 0.

We recall that:

(1.1) ‖x‖ ≤ r; ‖y‖ ≤ r; ‖x− y‖ ≥ ε imply
∥∥∥x + y

2

∥∥∥ ≤ r
(
1− δ

(ε

r

))
(ε ≤ 2r).

Given a space X, its characteristic of convexity is defined as

ε0 = sup{ε ≥ 0 : δX(ε) = 0}.
The following equalities hold (see for example [8] p.56):

(1.2) 1− ε

2
= δ(2− 2δ(ε)) for all ε ∈ [ε0, 2]

and

(1.3) δ(2−) = 1− ε0

2
.

We call modulus of smoothness of X, for τ ∈ R+, the function

ρX(τ) = sup

{‖x + y‖
2

+
‖x− y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = τ

}
.

The space X is uniformly smooth (US) if limτ→0
ρX(τ)

τ
= 0.

We call separation of a sequence {xn} in X the number

sep({xn}) = inf{‖xi − xj‖ : i 6= j}.

The following constant was defined in [11]:

K(X) = sup{sep ({xn}) : {xn} ⊂ SX}.

K(X) is the separation measure of noncompactness of SX and it is called separation
constant or Kottman’s constant of X.

We recall some properties of K(X) (see [18] for references):

i1) in the definition of K(X), we can substitute SX with BX ;

i2) for any infinite dimensional space we have K(X) > 1 (this is a deep result proved
in [5]); the range of K(X), even if we restrict ourselves to the class of reflexive
spaces, is (1, 2] (see [12], p.21);

i3) the constant K(X) is functionally related to a packing constant, concerning the
size of infinite sets of balls which can be packed in BX (see [18]);
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i4) an easy application of Ramsey’s theorem implies that for every ε > 0 there exists
an infinite sequence {xn} in BX such that

(1.4) | ‖xi − xj‖ −K(X) | < ε for i 6= j;

i5) If X is a (UC) space or a (US) space, then K(X) < 2 (see [11], Theorems 3.6
and 3.7) while (UNS) spaces do not satisfy in general the condition K(X) < 2
(see [16], Example 3.2.);

i6) K(X)= 2 if X contains l1 or c0 isomorphically; but the condition K(X) < 2
does not imply reflexivity (see [11], Example 3.3);

i7) if X is nonreflexive, then K(X) is larger than 4
1
5 (see [13]).

We recall also the following results, related to i1); the first part seems to be a well
known fact; nevertheless we provide a proof, since we cannot quote any reference for it.
The second part is due to Lyusternik and Šnirel’man (see, e.g. [3]).

Lemma 1.1. Let dim(X) = ∞, and let F be a finite family of balls covering SX . Then:
- F covers also BX ;
- at least one of the balls must contain an antipodal pair.

Proof. Let Bi = B(xi, ri), i = 1, 2, ..., n, such that SX ⊂ ∪n
i=1Bi. Assume there exists

x ∈ BX , x /∈ ∪n
i=1Bi and let Y an n-dimensional subspace of X such that x ∈ Y . Of

course ∪n
i=1(Bi ∩ Y ) covers SX ∩ Y but does not contain x.

Since x /∈ B1∩Y we can find in Y a hyperplane Hn−1 through x which does not intersect
B1∩Y : therefore SX ∩Hn−1 ⊂ ∪n

i=2(Bi∩Hn−1); now, since x /∈ B2∩Hn−1 we can find in
the affine space Hn−1 a hyperplane Hn−2 through x which does not intersect B2 ∩Hn−1:
therefore S ∩ Hn−2 ⊂ ∪n

i=3(Bi ∩ Hn−2). Iterating the process n − 1 times, we obtain
an affine 1-dimensional space H1 through x, that separates, in H2, x from Bn−1 ∩ H2.
Therefore S ∩ H1 ⊂ Bn ∩ H1. By convexity, Bn ∩ H1 must contain conv (S ∩ H1), i.e.
B ∩H1, hence x, a contradiction. ¤

To obtain estimates for K(X), we consider also two other constants from the literature.

The first one, T (X), called thickness of X, was introduced by Whitney in [22] (see
[15] for sharper results on it).

To define it, recall that a set A is an ε−net for a set E if for every x ∈ E there exists
a ∈ A such that ‖x− a‖ ≤ ε; we set

T (X) = inf{ε : there exists a finite ε− net for SX in SX}.
T (X) has the following properties (the first one being a consequence of Lemma 1.1):

t1) T (X) = inf{ε : there exists a finite ε− net for BX in SX};
t2) If X is (UNS), then T (X) > 1 (see [15], Corollary 5.5)

t3) If X is (UNS), then T (X) < 2 (see [15], Theorem 5.10).

It is not difficult to prove (see [18], (6.3)) that, for any X,

(1.5) T (X) ≤ K(X).
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Equality holds in some classical spaces (for example, in Hilbert spaces the value of
both constants is

√
2): but in general their values are different; in particular, we have

T (X) = 1 in some classical Banach spaces, while K(X) > 1 always.

The other constant that we consider appeared in literature under two different aspects
and names. It can be defined as

J(X) = sup{min{‖x− y‖, ‖x + y‖} : x, y ∈ SX}.
Though not explicitly introduced there, J(X) < 2 is exactly the condition used by

James in [9] when defining uniformly non square spaces. It is usually called James’
constant. It is immediate to see that√

2 ≤ J(X) ≤ 2.

Later Gao [6] introduced the constant

g(X) = inf{max{‖x− y‖, ‖x + y‖} : x, y ∈ SX}.

This constant has been studied in several papers (see [2], [7], [18], [20]).
It follows from [20], Proposition 2, that J(X) and g(X) can be defined equivalently

considering only x, y ∈ SX such that ‖x− y‖ = ‖x + y‖.
Actually, Casini [2] first proved that

Lemma 1.2. In any Banach space X

(1.6) g(X)J(X) = 2.

We obtain, as a consequence of Lemma 1.2, that

g1) 1 ≤ g(X) ≤ √
2;

g2) g(X) > 1 if and only if X is (UNS).

Though second to appear, we use Gao’s formulation of the constant, because its compa-
rison with the separation constant is easier. Moreover it has a clear geometrical meaning:
it gives the lower bound for numbers g’s such that for some point x ∈ S, the ball B(x, g)
contains an antipodal pair (y,−y).

The next Lemma, which can easily be proved directly, is also an immediate conse-
quence of Theorem 5.4 in [7] and Lemma 1.2.

Lemma 1.3. In every (UNS) space X (g(X) > 1) we have:

(1.7) g(X) =
1

1− δ
(

2
g(X)

) ;

equivalently

(1.8) δ

(
2

g(X)

)
= 1− 1

g(X)
.
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As a consequence, in every space X

(1.9) g(X) ≥ 1

1− δX

(√
2
) ;

In fact, (1.9) follows immediately from the previous Lemma when g(X) > 1 while it is
trivially true when g(X) = 1, i.e. X is not (UNS), because δX(

√
2) = 0.

The next Lemma summarizes relationships among g(X), T (X) and K(X): the first
inequality follows from Lemma 1.1, while the second one is (1.5).

Lemma 1.4. For any X,

(1.10) g(X) ≤ T (X) ≤ K(X);

2. Estimates with the modulus of convexity

In this section we obtain several inequalities concerning our constants, based on the
modulus of convexity of the space. Theorem 2.3 and the following ones provide our main
results on estimates of K(X) from below and from above; the best estimate from below
for K(X) will be given by Corollary 2.15.

We recall that the well known Day-Nordlander’ s inequality (see for example [14], p.63)
says that

(2.1) δ(ε) ≤ 1−
√

1− ε2

4

and equality characterizes Hilbert spaces.

The following estimate was given in [17], Theorem 1.2.

Theorem 2.1. (Van Neerven) Let X be (UC); then:

(2.2) K(X) ≥ 1 +
1

2
δ

(
2

3

)
.

The above estimate appears to be rather weak: for example, in Hilbert spaces the
value of the right hand side of the inequality is around 1,0286, and this is the best lower
bound we can obtain by (2.2). Better estimates are known in the literature; in fact, as
it was already noticed in [19], we have:

(2.3) K(X) ≥ 1

1− δ(1)
.

In Hilbert spaces, this gives

(2.4) K(X) ≥ 2√
3
∼ 1, 155.
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Another estimate by the modulus of convexity was obtained in [18], Theorem 5.4,
which, in Hilbert spaces, gives

(2.5) K(X) ≥ β ∼ 1, 215.

Such estimates are drastically improved by the following results.

Remark 2.2. From (1.9) and (1.10), in any space X we obtain immediately an estimate
sharper than those already quoted:

(2.6) K(X) ≥ 1

1− δ(
√

2)
.

An even sharper result is provided by the next theorem.

Theorem 2.3. In every space X we have

(2.7) K(X) ≥ 1

1− δ
(

2
K(X)

) .

Proof. If X is not (UNS), then, since 2/(K(X)) < 2, δ
(

2
K(X)

)
= 0 and (2.7) is trivially

true. Otherwise (g(X) > 1), use (1.7), (1.10) and the fact that 1
1−δ(2/t)

is a decreasing

function of t to obtain

K(X) ≥ g(X) =
1

1− δ
(

2
g(X)

) ≥ 1

1− δ
(

2
K(X)

) ,

which is the thesis. ¤

Remark 2.4. Since g(X) ≤ T (X) ≤ K(X), when T (X) > 1 inequality (2.7) holds also
with K(X) replaced by T (X); this result is contained in Theorem 5.3 in [15].

Remark 2.5. The estimate given by (2.7) is better than (2.6) as far as K(X) <
√

2.
Also, both estimates are sharp, in the sense that they become equalities in Hilbert spaces;
(2.7) becomes an equality also for lp spaces, 2 < p < ∞ (where K(X) = 21/p).

It is known (see [11], Theorem 3.6) that K(X) < 2 whenever X is uniformly convex
(in fact, the condition δ(2/3) > 0 is sufficient), but no estimates are provided there.
Now, using the modulus of convexity of X, we shall give a sharper result.

Theorem 2.6. For every Banach space X we have:

(2.8) K(X) ≤ 2− 2δ(1).

Also: if K(X) < 2, then we have

(2.9) δ(K(X)) ≤ 1

2
.
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Proof. Given ε > 0, we choose in S - according to (1.4) in Section 1 - an infinite sequence
{xi}, i = 0, 1, 2, ..., n, .... such that

| ‖xi − xj‖ −K(X) | < ε for i 6= j;

in particular

(2.10) K(X)− ε < ‖x0 − xi‖ < K(X) + ε for all i ∈ N = {1, 2, . . . } .

Now set yi = x0+xi

2
(i ∈ N). From (2.10) we have

‖yi‖ ≤ 1− δ(K(X)− ε)

and moreover

‖yi − yj‖ =
∥∥∥x0 + xi

2
− x0 + xj

2

∥∥∥ =
1

2
‖xi − xj‖,

hence
1

2
(K(X)− ε) ≤ ‖yi − yj‖ ≤ 1

2
(K(X) + ε) for i 6= j .

Thus {yi}, i ∈ N, is a
(

K(X)−ε
2

)
-separated sequence.

Clearly, the largest separation for a sequence in B(0, 1− δ(K(X)− ε)) is
K(X) (1− δ(K(X)− ε)). Therefore

K(X)− ε

2
≤ K(X) (1− δ(K(X)− ε)) .

But ε > 0 is arbitrary. So, if K(X) = 2, we obtain 2δ(2−) ≤ 1, i.e. (according to
(1.3)) ε0 ≥ 1 and (2.8) is true for K(X) = 2.

Otherwise, let K(X) < 2; then, by continuity of δ in [0, 2), we obtain:

K(X)

2
≤ K(X) (1− δ(K(X)))

i.e. (2.9).

If K(X) ≥ ε0, according to (1.2) we have 1
2

= δ(2− 2δ(1), hence (2.9) is equivalent to
(2.8) because δ is strictly increasing in [ε0, 2]. On the other hand, if K(X) < ε0, then
δ(K(X)) = δ(1) = 0, and then (2.8) and (2.9) are trivially true. ¤

Remark 2.7. If H is a Hilbert space, then the estimate (2.8) gives

K(H) ≤
√

3

which is not sharp. In any case, due to (2.1) which gives

minX(2− 2δX(1)) =
√

3

the best estimate we can obtain from Theorem 2.6 is K(X) ≤ k for some k ≥ √
3.

Remark 2.8. Theorem 2.6 contains Theorem 17 of [23], which states that δ(1) > 0
implies K(X) < 2.

It is easy to prove that δX(1) can be estimated from below using ρX(1); precisely
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Lemma 2.9. In any space X

(2.11) δX(1) + ρX(1) ≥ 1

2
.

Proof. From the definitions of δ and ρ it follows

(2.12) ρX(1) ≥ sup

{‖x + y‖+ ‖x− y‖
2

− 1 : x, y ∈ SX , ‖x− y‖ = 1

}

= sup

{‖x + y‖
2

− 1

2
: x, y ∈ SX , ‖x− y‖ = 1

}
=

1

2
− δX(1).

¤

Moreover, in [1], Proposition 2.2, it was proved that

(2.13) ρX(1) = ρ∗X(1).

Therefore, from Theorem 2.6 and Lemma 2.9 we obtain the following

Corollary 2.10. For any space X,

(2.14) K(X) ≤ 1 + 2ρX(1) K(X∗) ≤ 1 + 2ρX(1).

Remark 2.11. The estimate (2.14) is meaningful only when ρX(1) < 1
2

(this implies
δX(1) > 0); this happens for instance if H is a Hilbert space, where

(2.15) ρH(1) =
√

2− 1.

In fact it is known (see, e.g. [14]) that

(2.16) ρH(τ) =
√

1 + τ 2 − 1 ≤ ρX(τ)

and equality holds on the right hand side only if X is a Hilbert space.

In particular:

(2.17) ρX(1) ≥
√

2− 1.

Remark 2.12. (2.14) is of course not sharp, and it is strictly weaker than (2.8): actually,
in a Hilbert space H

(2.18)
√

2 = K(H) < 2− 2δH(1) =
√

3 < 2
√

2− 1 = 1 + 2ρH(1).

On the other hand the inequality K(X) ≤ 1 + ρX(1), that would give the right value for

Hilbert spaces, is not true; in fact, ρX(1) < 1 clearly characterizes (UNS) spaces, while
there exist (UNS) spaces with K(X) = 2 (see [16]).

Now we consider the following known result (see for example [14], p.66).

Proposition 2.13. The function δ(t)
t

is non decreasing on (0, 2].

By this result, we can obtain some other nice estimates.



SEPARATION CONSTANT IN REFLEXIVE BANACH SPACES 9

Theorem 2.14. In every space X we have:

(2.19) g(X) ≥ 1 +
√

2 δ(
√

2);

(2.20) g(X) ≤ 1 + lim
ε→2−

δ(ε).

Proof. If g(X) = 1, the result is trivial.
Assume that g(X) > 1: since 1 < g(X) ≤ √

2, for every a ≤ √
2 and b ∈ [2

g
, 2) we

obtain from Proposition 2.13:

(2.21)
δ(a)

a
≤ δ(

√
2)√
2

≤
δ( 2

g(X)
)

2
g(X)

≤ δ(b)

b
.

Now Lemma 1.3 in Section 1 implies
δ( 2

g(X)
)

2
g(X)

= g(X)−1
2

; then:

(2.22)
δ(a)

a
≤ δ(

√
2)√
2

≤ g(X)− 1

2
≤ δ(b)

b
.

The middle inequality is (2.19) while we obtain (2.20) letting b → 2−. ¤

By (2.19) and (1.10) we obtain

Corollary 2.15. In every space X we have:

(2.23) K(X) ≥ 1 +
√

2 δ(
√

2).

From (2.1), it is possible to see that (2.19) and (2.23) (which are sharp in Hilbert
spaces) always give better estimates than (1.9) and (2.6).

Remark 2.16. Both (2.8) and (2.22) with a = 1 can also be seen as formulas to estimate
δ(1), once g(X) or K(X) is known.

(2.8) can be written as:

(2.24) δ(1) ≤ 1− K(X)

2
.

From (2.22), setting a = 1 we obtain

(2.25) δ(1) ≤ K(X)− 1

2

which is stronger than (2.24) if K(X) < 3
2
.

Due to (2.1), the estimate:

(2.26) δ(1) ≤ min

{
1− K(X)

2
,

K(X)− 1

2

}

is not trivial for K(X) /∈ [3 −√3,
√

3]. Also: (2.8) together with (2.22) (with a = 1)

gives

(2.27) 1 + 2δ(1) ≤ K(X) ≤ 2− 2δ(1).



10 E. MALUTA AND P.L. PAPINI

We add some more estimates connecting K(X) and the modulus of convexity of X:
these estimates, in Hilbert spaces, give again the bound K(X) ≤ √

3.

Theorem 2.17. Let K(X) < 2; then
(2.28)

max

{
δ(K(X))

2
, 1− K(X)

2
(1− δ(1))

}
≤ (1− δ(K(X))

(
1− δ

(
K(X)

2(1− δ(K(X)))

))
.

Proof. For ε > 0, we consider a sequence {xn} ⊂ SX satisfying (1.4) and, as in Theorem
2.6, the sequence {yn} defined by yn = x0+xn

2
. We have

‖yn‖ =
∥∥∥x0 + xn

2

∥∥∥ ≤ 1− δ(K(X)− ε)

and

sep({yn}) ≥ K(X)− ε

2
.

For any i, j, i 6= j set zij =
yi+yj

2
= 1

2
(x0 +

xi+xj

2
).

As a first estimate from below we obtain

(2.29) ‖zij‖ ≥ 1

2

(
‖x0‖ −

∥∥∥xi + xj

2

∥∥∥
)
≥ δ(K(X)− ε)

2
.

Then, using (1.1), we obtain a second estimate from below (an easy computation
proves that this second one is better when K(X) ≤ √

3); precisely, taking into account

that, from (1.4), it follows that ‖xi−x0

2
‖ ≤ K(X)+ε

2
we have (use (1.1))

(2.30) ‖zij‖ ≥
∣∣‖x0‖ − ‖zij − x0‖

∣∣ = 1−
∥∥∥

xi−x0

2
+

xj−x0

2

2

∥∥∥ ≥

≥ 1− K(X) + ε

2

(
1− δ

(
K(X)− ε

K(X) + ε

))
.

To get an estimate from above we remark that, according to (2.9), the assumption

K(X) < 2 guarantees that K(X)
2

< 2(1− δ(K(X))). So, for ε small

K(X)− ε

2
< 2(1− δ(K(X)− ε));

hence we can apply (1.1) to obtain

(2.31) ‖zij‖ ≤ (1− δ(K(X)− ε))

(
1− δ

(
K(X)−ε

2

1− δ(K(X)− ε)

))
.

Letting ε → 0 in (2.29), (2.30) and (2.31), since δ is a continuous function on [0, 2), we
obtain (2.28). ¤
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3. Near the extremes, subspaces and renormings: general discussion

The range of K(X) is (1, 2] (see Section 1); when K(X) approaches the extremes of
its range, δX(1) must be small and ρX(1) must be not too small. Precisely, when K(X)
is close to 1, according to our estimates, δX(

√
2) (hence δX(1)) must be near 0 (see (2.6)

or (2.23)).
Moreover, according to (1.10), also g(X) is near 1, therefore ρX(1) is near 1; in fact

this follows from

(3.1) J(X) =
2

g(X)
≤ ρX(1) + 1.

On the other hand, when K(X) = 2 we have, from inequality (2.8), δX(1) = 0, and,
from inequality (2.14), ρX(1) ≥ 1/2 .

It can be remarked that for the modulus of convexity to be small it is enough that X
admits a 2-dimensional subspace whose unit sphere has almost flat sides: we can produce
spaces X with any admissible value of K(X) and containing such a 2-dimensional space.
Therefore we cannot expect to obtain sharp estimates for K(X) using the modulus of
convexity except for spaces in which finite dimensional subspaces combine in a very
regular way.

As about renorming, it is known that all spaces can be renormed so as to have
K(X) = 2 (see [12], Theorem 7). Clearly each renorming X of a space which con-
tains isomorphically l1 or c0 has K(X) = 2 while all superreflexive Banach spaces admit
renormings such that K(X) < 2. We do not know whether every space which does not
contain an isomorphic copy of l1 or c0 or at least every reflexive space admits a renorming
with K(X) < 2.

4. Reflexive spaces: a related constant

In [4], J. Dronka, L. Olszowy and L. Rybarska-Rusinek asked whether, in reflexive
spaces, it is possible to obtain K(X) considering, in the unit ball, only sequences w-
converging to 0 or, equivalently, considering only basic sequences. Precisely, they defined
a constant of the space X, that they called γ0(X), as

γ0(X) = sup{sep ({xn}+∞
n=1

)
: ‖xn‖ = 1 ∧ w − limn→+∞xn = 0}

and they proved that γ0(X) = K(X) in reflexive spaces admitting a Schauder basis {en}
with the property

(4.1)
∥∥∥

+∞∑
i=n

aiei

∥∥∥ ≤
∥∥∥

+∞∑
i=1

aiei

∥∥∥

for every n ∈ N and every choice of the a′is such that
∑+∞

i=1 aiei ∈ X; moreover they
showed that, for the space c of convergent sequences, 1 = γ0(c) 6= K(c) = 2. (For bases
satisfying (4.1), see Chapter I-19 in [21]; norms of spaces with such bases are usually
called K-norms or comonotone norms).

We prove that equality holds in the larger class of spaces satisfying the non-strict
Opial’s property.
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We recall that a space X satisfies the non-strict Opial’s property if, for any sequence
{xn} ⊂ X, if w − limn→+∞ xn = x then, for every y ∈ X

(4.2) lim inf ‖xn − x‖ ≤ lim inf ‖xn − y‖.

Theorem 4.1. Let X be a reflexive Banach space which satisfies the non-strict Opial’s
property; then

K(X) = γ0(X).

Proof. Obviously, in reflexive spaces,

K(X) = sup{sep({xn}+∞
n=1) : {xn}+∞

n=1 ⊂ BX ∧ {xn} w − convergent}.
Clearly, γ0(X) ≤ K(X). Now, for any ε > 0, choose {xn} ⊂ BX such that

sep({xn}) > K(X) − ε and w − limn→+∞xn = x and set yn = xn − x. Then w −
limn→+∞yn = 0, sep({yn}) = sep({xn}) ≥ K(X) − ε and, by Opial’s property, after
passing to suitable subsequences

limk→+∞‖ynk
‖ = limk→+∞‖xnk

− x‖ ≤ limk→+∞‖xnk
‖ ≤ 1,

hence
γ0(X) ≥ K(X)

which proves the thesis. ¤

The next proposition shows that the above theorem really improves the result proved
in [4].

Proposition 4.2. Let X a Banach space with a Schauder basis {en} satisfying condition
(4.1): then X has the non-strict Opial’s property.

Proof. Let {xn} a sequence in X such that w − limn→+∞xn = x and y any element of
X. Set

xn =
+∞∑
i=1

an
i ei x =

+∞∑
i=1

aiei y =
+∞∑
i=1

biei.

For any ε > 0 take k such that

∥∥∥
+∞∑

i=k+1

(ai − bi)ei

∥∥∥ < ε;

for such k,
∥∥∥

k∑
i=1

(an
i − ai)ei

∥∥∥ = εn → 0 for n → +∞

therefore

‖xn − x‖ =
∥∥∥

+∞∑
i=1

an
i ei −

+∞∑
i=1

aiei

∥∥∥ ≤
∥∥∥

k∑
i=1

(an
i − ai)ei

∥∥∥ +
∥∥∥

+∞∑

i=k+1

(an
i − ai)ei

∥∥∥ ≤

εn +
∥∥∥

+∞∑

i=k+1

(an
i − bi)ei

∥∥∥ +
∥∥∥

+∞∑

i=k+1

(ai − bi)ei

∥∥∥ ≤
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εn +
∥∥∥

+∞∑

i=k+1

(an
i − bi)ei

∥∥∥ + ε ≤ εn +
∥∥∥

+∞∑
i=1

(an
i − bi)ei

∥∥∥ + ε = εn + ‖xn − y‖+ ε ;

then
lim inf ‖xn − x‖ ≤ lim inf ‖xn − y‖+ ε

and, since ε is arbitrary

lim inf ‖xn − x‖ ≤ lim inf ‖xn − y‖.
¤

Recently, S. Prus (private communication) constructed an example of a superreflexive
space X with γ0(X) 6= K(X) thus confirming that, to obtain equality, it is necessary to
require some additional property for the norm.

Added in proof: S.Prus allowed us to add here his example, which has not been
published elsewhere.

Example 4.3. Let x = {xi} ∈ l2. We set

‖x‖ = supk>1

{
(x1 + xk)

2 +
1

3

∞∑

i=k+1

x2
i

} 1
2

.

This formula gives a norm on l2 which is equivalent to the standard one. Indeed

‖x‖ ≤ 2

( ∞∑
i=1

x2
i

) 1
2

.

Moreover, ‖x‖ ≥ |x1| and

‖x‖ ≥
(

(x1 + x2)
2 +

1

3

∞∑
i=3

x2
i

) 1
2

.

Hence

2‖x‖ ≥
(

x2
2 +

1

3

∞∑
i=3

x2
i

) 1
2

and

5‖x‖2 ≥ x2
1 + x2

2 +
1

3

∞∑
i=3

x2
i ≥

1

3

∞∑
i=1

x2
i .

Let xn =
(−1

2
, 0, . . . , 0, 3

2
, 0 . . .

)
where 3

2
is the n-th coordinate of xn. Then ‖xn‖ = 1

and ‖xn − xm‖ =
√

3 if n 6= m. This shows that K(X) ≥ √
3.

Let now (un) be a weakly null sequence in BX and ε > 0. There exist a subsequence
(unk

) and a block basic sequence (vk) such that ‖unk
−vk‖ < ε for every k and all vectors

vk have the first coordinate 0. We have ‖unk
− unm‖ ≤ ‖vk − vm‖+ 2ε and

‖vk − vm‖2 ≤ ‖vk‖2 + ‖vm‖2 ≤ 2(1 + ε)2

for all k, m. Therefore, sep(un) ≤ √
2 which shows that γ0 ≤

√
2.
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