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Abstract

In the present paper we consider the problem of pricing American op-
tions in the framework of a well-known stochastic volatility model with
jumps, the Bates model. According to this model the asset price is as-
sumed to follow a jump-diffusion equation in which the jump term con-
sists of a Lévy process of compound Poisson type, while the volatility is
modeled as a CIR-type process correlated with the asset price. In this
model the American option valuation is reduced to a final-free-boundary-
value partial integro-differential problem. Using a Richardson extrapo-
lation technique this problem is reduced to a partial integro-differential
problems with fixed boundary. Then the transformed problem is solved
using an ad-hoc finite element method which efficiently combines an oper-
ator splitting technique with a non-uniform mesh of right-angled triangles.
Numerical experiments are presented showing that the option pricing al-
gorithm developed in this paper is very accurate and fast. In particular
it is significantly faster than the numerical method recently proposed by
C. Chiarella et al. (2008).
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1 Introduction

A huge effort has been made in the last few years in order to overcome the
intrinsic limitations and drawbacks of the Black-Scholes model. Although it
has been a great success as a first attempt to provide an evaluation for finan-
cial derivatives, it was soon clear that its description of the financial market
behavior is not satisfactory. In particular the empirical probability distribution
of log-asset returns often exhibits features that are not taken into account by
the Black-Scholes model: heavy tails, volatility clustering, aggregational Gaus-
sianity are some peculiarities that cannot be explained on the basis of the log-
normal assumption on which the Black-Scholes model stands. The volatility
smile is another relevant phenomenon that cannot be explained on the basis of
a Black-Scholes description. Several different approaches have been exploited
in order to give a more satisfactory description of financial markets, but the
main contributions in this direction can be grouped in two different classes of
models, the models with stochastic volatility (or stochastic volatility models)
and the models with jumps. An extended literature is available on both these
approaches: in particular, they give a more realistic description of the prices
evolution in financial markets, however, if considered separately, they perform
significantly well only in some situations. For example, while models with jumps
can successfully reproduce the volatility smiles on short term maturity ranges,
stochastic volatility models give a better description of the same phenomenon
on long maturity terms. This has naturally led to the introduction of more
complex, but more realistic models in which both features of stochastic volatil-
ity and jumps can be present. The three more popular models in which the
integration of jumps and stochastic volatility has been performed are the BNS
model introduced by Barndorff-Nielsen and Shepard (2001a, 2001b), the model
introduced by Bates (1996), and the time-changed Lévy models introduced by
Carr, Madan, Geman and Yor (2003). While in the former the volatility dy-
namics is driven by a positive Lévy process correlated with the jump process
which drives the log-asset price, in the latter the volatility dynamics is governed
by a time-changed Lévy process. In the present work we shall concentrate on
the second model we have just mentioned, the Bates model, in which a Mer-
ton jump-diffusion model is combined with a stochastic volatility model of the
Heston type. As Cont and Tankov (2004) have pointed out, the time changed
Lévy models can fit observed option prices much better than the BNS model:
in the BNS model, in fact, the implied volatility patterns are restricted by the
requirement that the same correlation parameter characterize the returns both
for short and long maturities; on the other hand the capability of the Bates
model to calibrate to realized market prices are comparable to those of the time
changed Lévy processes, "Thus the Bates model appears to be at the same time
the simplest and the most flexible of the models" (R.Cont and P. Tankov (2004)
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In the financial literature several numerical approaches have been proposed
for pricing options under both stochastic volatility models and models with
jumps. In particular, in the case of models with jumps, we mention the paper
by Matache, Nitsche and Schwab (2005), who propose a finite element method
to price options on Lévy driven assets, and the paper by R. Cont, E. Voltchkova
(2005), where a finite-difference scheme is introduced. Moreover, concerning
stochastic volatility models, finite element approximation techniques are devel-
oped by Achdou and Tchou (2002) and by Hilber, Matache and Schwab (2005),
while finite-difference schemes are proposed by Ikonen and Toivanen (2004), by
Ito and Toivanen (2008), and by Clarke and Parrot (1999).

As far as numerical techniques for the Bates model are concerned, only few
results are available. In particular, a finite element method for European Call
and Put options is developed in E. Miglio and C. Sgarra (2008), in order to
establish a basis for pricing more complex exotic products. Instead, concerning
the case of American options, a numerical approach to the Bates model has
recently been presented by Chiarella et al. (2008). In particular, in this work,
using the method of lines the problem of pricing American options is reduced
to a system of second-order ordinary differential equations. However, due to
the early exercise feature, the differential problem obtained is a free boundary
problem and must be solved using a complex iteration procedure.

In this paper we deal with the problem of pricing American options on an un-
derlying described by the Bates model. We start by noticing that this problem
poses severe difficulties: first of all the early exercise feature strongly compli-
cates the problem from the mathematical standpoint and makes it impracticable
to use a method based on the knowledge of the characteristic function (see for
example Carr and Madan (1998)). Furthermore a fully implicit time discretiza-
tion scheme, that would guarantee unconditional stability, cannot be applied.
In fact such an approach, due to presence of the jump integral, leads to a dense
linear system of equations, whose numerical approximation is very time consum-
ing and requires large memory storage; finally the fact that the option payoff
has discontinuous derivative may produce severe losses of accuracy if a finite
difference/finite element discretization is employed.

In this paper the American option price is computed by Richardson extrap-
olation of the prices of two Bermudan options. Such an approach requires to
solve only partial differential problems with fixed boundary and hence is compu-
tationally simpler than that followed in Chiarella et al. (2008). The Bermudan
option pricing problems obtained are solved using a finite element method based
on a non-uniform (stretched) mesh of right-angled triangles. This kind of dis-
cretization, used in conjunction with an operator splitting technique, allows to
obtain linear systems of equations that can be solved very efficiently.

Numerical experiments are presented showing that the numerical method
proposed in this paper is accurate and computationally very fast. In fact, if
the simulations are carried out on a computer with a Pentium Dual Core E
2140 Processor 1.6 GHz 2 GB Ram, the American option price is obtained
with relative error of order 10~* and 107° in a time equal or smaller than 24 s.



The experiments performed also reveal that the numerical method proposed in
this paper is approximately a thousand of times faster than that presented in
Chiarella et al. (2008).

We point out that the numerical techniques employed in this paper (the
Richardson extrapolation, the operator splitting, the finite element method),
considered separately, are not new. Nevertheless, to the best of our knowledge,
an approach that puts all these techniques together has never been proposed in
mathematical finance to solve complex models and it appears to be interesting in
itself. In fact it is thanks to the proper combination of all the above techniques
that an accurate and computationally fast approximation of the Bates model
can be obtained.

The paper is organized as follows: in Section 2 we recall the basic facts about
the Bates model, while in Section 3 we present the free-boundary partial integro-
differential problem that must be solved in order to price American options;
in Section 4 we describe the finite element method used to solve the problem
presented in Section 3. In Section 4 we expose and discuss the numerical results
obtained.

2 The Bates model

The Bates model combines a stochastic volatility dynamics with jumps in the

asset price. While the former is assumed to follow a CIR-type evolution, in which

a mean-reversion behavior is present, the latter are assumed to be described by

means of a compound Poisson process, i.e. a Lévy process with finite activity.
In the Bates model the asset price evolution is then given by:

S, = SopeXt, (1)

where the log-returns X and its volatility Y satisfy the following stochastic
differential equations:

AX, = (o~ 3¥)dt + /Y W} +dZ,, Xo =0, (2)
dY; = &(n — Ya)dt + 0y/Y:dW?2, Yo = yo, (3)

with yg > 0. Let’s assume for the parameters the following restrictions:
a€R, —-1<p<1, €20, n=0, §>0 (4)
Moreover, if the following condition is satisfied:
0> < 2¢n, (5)

the volatility process Y never hits zero (see Feller (1951)).



For a Lévy process the cumulant function x(z) is defined as follows:
1 iz
k(z) = i log E [¢"*7¢] . (6)

Since the Lévy-Kintchine representation holds, the cumulant function can be
written in the following way:

1 teo
k(z) = —EAZ2 +i8z + / (e** =1 —izzh(z))U(dz), (7)

—0o0

where [ is the drift of the process, A the quadratic variation component, and
h the truncation function. U(dx) is the Lévy measure of Z. The choice of the
truncation function h and the drift coefficient 3 are strongly interconnected. A
usual choice of h is the following h(x) := 1j;<;. In our case A = 0. We'll
assume moreover E[Z%] < oo, this implying that the cumulant function of the
process Z will be of the following type:

+oo
k(z) =iz +/ (e"** — 1 —iza)U(dx) (8)
where ¢ = E[Z1], and its relation with 3 is given by: ¢ = 5+ f\r\>1 22U (dx).
We'll denote by p(dz, dt) the jump measure of Z and by v(dt, dx) its predictable

compensator. We’ll have moreover v(dz,dt) = U(dx)dt. By the Lévy-Tto
decomposition specified for compound Poisson processes, we can write then:

Zy =(t+ /Ot /+OO x(p — v)(dz, ds). (9)
Lemma 1 The dynamics of the asset price process is given by
dS; = (a4 k(1)) Ss_dt + S;_ /Yy dW} + /+OO Sy_(e® —1)(—v)(da, dt). (10)
In particular if
a+k(l1)=0 (11)

the process S is a local martingale.

Proof: This follows immediately from It6’s formula for general semimartin-
gales applied to the asset price model with the dynamics described by (1), (2)
and from the Lévy-Ito representation formula for compound Poisson processes
9). O

Remark 2 In the original model proposed by Bates (1996), the process Z is a
compound Poisson process,

Ny
Zy=>_ i, (12)
=1



where N is a standard Poisson process with intensity A > 0 and (J;)i>1 are iid
N(v,0%), with v = In(1 + k(1)/X) — 62/2. The corresponding cumulant function
s in that case

K(z) = M= /2 _ ), (13)

Remark 3 If Z = 0 then we obtain Heston’s stochastic volatility model from He-
ston (1993). If 0 = 0 and Y; = n we obtain Merton’s jump-diffusion model with
lognormal jumps in the asset price, Merton (1976) . Consequently we might con-
sider the Bates model as an extension of a Merton jump-diffusion model with
stochastic volatility, or as an extension of a Heston volatility model with jumps
in the returns.

As in other affine stochastic volatility models with and without jumps, it
is possible to obtain the characteristic function of the log-price in closed form.
This characteristic function has been calculated by D. Bates (1996); a detailed
computation is provided also in Cont and Tankov (2004); when the jumps are
lognormally distributed, it is given by the following expression:

D) = exp [IA(T OO 2] (14)
2
et E—ipfu . et] X0 (u? + iu)yo
h— + >———sinh — —
[cos 5 + sin } X exp ~eoth %t T E—ipbu

where:

e = /022 + i) + (€ — ipbu)? (15)

Once the characteristic function of the log-price process is known in a closed
form, the valuation problem for vanilla options can be easily solved by an
FFT-related technique like that provided in the paper by Carr and Madan
(1998). Nevertheless we point out that such an approach cannot be extended in
a straightforward way to price American options. Although some attempts have
been made in this direction, an efficient generalization of the FFT technique to
American option valuation in a Bates model framework is not yet available.

3 The partial integro-differential approach

Following the usual derivation based on Ito’s lemma and no arbitrage require-
ment, and introducing the market price of risk 7 associated to the volatility
dynamics, and the dividend yield ¢, we obtain the following partial integro-
differential equation for the price of a European Call option C(S,y,t) on an
underlying described by the Bates model :

aC 1 _,0°C aC 1., 9°C

ac ,
5 Tr—a—rs)S55 +5yS 55 + €M —v) —W]a—y +350 ya—yz—i—

2 +oo
+o0yS ;’y oA / (C(Se® y,t) — C(S,y, )] W(de) =rC  (16)



where:

2
W(dz) = 6\/1% exp l— (x;&;/) ] , (17)
with the following final condition at ¢t = T
C(St,yr,T) = max [St — K, 0] (18)
and the following boundary conditions in S:
C(0,y,t) =0,C(S,y,t) =S — K, as S — 400 (19)

The Gaussian density (17) with respect to which the integration in (16) is
performed follows by our assumption of lognormal jumps. We just recall from
Remark 1 that +, 6% are related to the cumulant function introduced before by
the following relation: k(1) = A 1 =9%/2 1),

In the European case the variables S, Y, t can assume values in the following
domains: S € [0, +00), t € [0,400),y € [0, +00).

For American Call options, some constraints should be imposed in order to
avoid arbitrage. In particular we must require that the option price never falls
under the payoff, and we must prescribe a "value matching" and a "smooth
pasting" conditions at the free boundary. Therefore, in the American case, the
boundary conditions in the asset domain become:

C(O7y7t) = 07 C(Sf(y7t)7y7t) = Sf(y7t) -K (20)

where S¢(y,t) denotes the early exercise boundary at time ¢ and volatility
level y. Moreover we impose the following "smooth pasting" conditions (see
Chiarella et al. (2008)):

. oC . oC
lim =

-~ _ — = 21
S—S¢(yt) OS 7S—>g’fcr(ly,t) Oy (21)

Remark 4 Looking at the partial differential problem (16), (19), we may note
that no boundary condition has been prescribed at y = 0 and y — +o0o. In fact
the partial differential equation (16) is singular at y = 0 and y — 400 and it is
not clear which boundary conditions to apply. The most insightful result on this
subject has been obtained by Feller (1951), who shows that at y = 0 a boundary
condition should be imposed only if the condition (5) is not satisfied. However to
the best of our knowledge a thorough investigation on the boundary conditions at
y =0 and y — +oo is still lacking. In this paper following a common approach
(see for instance Chiarella et al. (2008)) we will circumvent the problem by
extrapolating the solution at y = 0 and y — +oo from the numerical solution
obtained in the interior of the (S,y) computational domain (see Section /).

Remark 5 The market price of risk m related to the stochastic volatility dynam-
ics can be obtained in different ways in the frame of general equilibrium models;
consumption-based models give a risk premium proportional to y. In the follow-
ing, for the sake of simplicity, we’ll assume without any loss of generality that
the market price of risk associated to the volatility is zero.



Remark 6 The market price of risk associated to the jumps has been consid-
ered equal to zero. In practice we have assumed that passing from the objective
measure to the risk-neutral measure leaves the jump probability distribution un-
changed. This assumption, although questionable from a financial viewpoint, is
usually made when pricing options on an underlying described by models with
Jumps.

We can easily obtain in a similar way the formulation of the valuation prob-
lem for an American Put option: the partial integro-differential equation will
be as follows:

opP oP 1 ,0°P oP 1,
5 T —a=r(1))S55+5yS WJr[é(??*y)*?T]—er—a Yot (22)

2 +oo
sp0yS gzt n [ P8 D) ~ PS 0] W(dn) = 1C. (23)

The final condition is now:
P(Sp,yr,T) = max [K — S7,0], (24)
while the boundary conditions in S,y are:
P(S¢(y,t),y,t) = K — S¢(y,t), P(S,y,t) =0, as S — o0 (25)
0

or

P
li -— = =0
sﬂslirfr(ly,t) oS

, m —— =
5—S¢(y.t) Oy

(26)

4 The Numerical Method

For ease of exposition we will limit our attention to the case of American Call
options. However the reader will note that the numerical method presented in
this Section can be used with little modifications also to price American Put
options (an American Put option will be considered in one of the test-cases
presented in Section 5). For the sake of simplicity the dividends are assumed to
be paid continuously in time and at constant dividend yield, but generalizations
to more complex dividend structures are straightforward. Our starting point
will then be the following partial integro-differential equation:

0*C 0%C oC

oc 1 ,0%°C 1
YOl 9595 +(r—q— /\n(l))S%

— +zyS + =0*y—— + pfyS
2¥° g5z TV Vg TP

+o00
+[&(n — y)]aa—j + )\/_ C(Se®,y, YW (dz) = (r + \)C, (27)

where W (dx) is given by (17).
Equation (27) can be rewritten as follows:



10 [ ,0C\ 10 (,0C\ 1 8 [ .C
¢ 305 (yS ) )+2a <0yay)+2peas(ysay>

Y
1 0 oC 1 oC
+§p08_y (ySg) + (r —q—Xc(1) —y— §p0> S%

oC too

1 1
+1&n—y) - 592 - §p9y] N +A C(Se®,y, )W (dx) = (r+ \)C.

—00

It is convenient to rewrite equation (28) in the compact form:

oC
E%-ACC—(T-F/\)C,
where
L=L14+Lo+ L3+ L4+ L5+ Lg,
and
10 ,0C
19 (4, 0C
4= 35 ("ay)
1 0 oC 1 0 oC
£40 = Spb (ysa—y) +3oba (ys%> ,
L,C = (r —qg—2k(l)—y— —p9) S%,
B 1 4 oC
L5C = {ﬁ(n—y)— 50" — 500 } 9y’
+oo
LeC = A\ C(Se”,y, )W (dx).

(28)

(30)

(36)

For the sake of clarity this Section is divided in 4 subsections: in Subsec-
tion 4.1 equation (29) is discretized in time. In particular it is shown how to
take into account the early exercise feature. In Section 4.2 the finite element
approximation of the differential operators L1, Lo, L3, L4 and L5 is carried
out. Finally in Subsection 4.3 the discretization of the integral operator Lg is

performed.



4.1 Time discretization

Following a common approach (see Lord et al. (2008) and references therein),
the American option price is approximated by Richardson extrapolation of the
prices of two Bermudan options. This is a very simple technique to take into ac-
count the early exercise feature, as the final-free-boundary-value partial integro-
differential problem typical of American option pricing is reduced to a final-
boundary-value partial integro-differential problem with fixed boundary.

In the interval [0, T7] let us consider N; + 1 equally spaced time levels g = 0,
t1, to, ..., tn, = T. Moreover let us define At =t —tp—1, k = 1,2,..., Ng.
Let Cy,(S,y,t) denote the price of a Bermudan option with maturity 7' and
exercise dates ti, k = 0,1,..., N;. The Bermudan option price Cy;,(S,y,t) is
obtained using the following recursion procedure: first of all set £ := N; and
define

\I'Nt(S,y,tk) = max [S*K, 0] . (37)

Then solve the final-boundary value partial differential problem

ocC

af:Vt +LCON, = (r+MNCy,, tE€ [teot,tr), (38)
Cn,(0,y,t) =0, Cn,(S,y,t)=S—FE as S — +oo, (39)
CNt (S7y7tk‘) = \IINt (Svyvtk')' (40)

Then define
\Ith (Svyvtkfl) = max [CNt (S7y7tk‘71)7 S - K] ) (41)

and set

k:=k-1 (42)

Repeat the cycle (38)-(42) and stop when k := 0.

The Bermudan option price Cy;, (S, y,t) tends to become a fair approxima-
tion of the American option price C(S,y,t) as the number of exercise dates Ny
increases. In this paper the accuracy of Cy, (S, y,t) is enhanced by Richardson
extrapolation:

C(S,y,t) ~2Con, (S, y,t) — Cn, (S, y,t), (43)

which is second-order accurate in time (see for instance Chung et al. (2008)).
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Now let us describe the numerical method to solve the final-boundary value
partial differential problem (38)-(40). Let U¥(S,y) denote a function approx-
imating Cp,(S,y,tx), k = 0,1,...,N; — 1, and let ¥*(S,y) denote a function
approximating ¥y, (S,y,tx), k = 1,2,..., N;. Note that the subscript N; has
been removed from U¥(S,%) and ¥*(S, ) to keep the notation simple. Accord-
ing to (37) we set UVt(S,y) = max [S — K, 0].

The final-boundary value partial differential problem (38)-(40) is discretized
in time using the following one-step implicit/explicit finite difference scheme:

q/k: o Uszl
— LU 4 LU 4 L3UF 4 £0F + L8 4 LoUR?
=(r+ANU, (44)

U10,y9) =0, U*YS,y)=S—FE as S — 400, (45)

which allows to compute U*~1(S, %) given W*(S, 7). Note that the operator L1,
which contains the second-order derivative with respect to S, and the operator
Lo, which contains the second-order derivative with respect to y, are treated
implicitly. This choice is crucial to achieve stability also for large values of At.
On the contrary the hyperbolic operators L3, £4 and L5 are treated explicitly,
in order to enhance the speed of the numerical calculations. This choice could
cause some numerical instability for large values of At when the weight of the
hyperbolic terms L3, £4 and L5 is bigger than that of the diffusive terms £; and
Ls. Nevertheless we have performed several numerical experiments where we
have considered various types of Call and Put option contracts and we have used
different reasonable values of the parameters of the Bates model. In all these
simulations the numerical scheme (44) has always proven to be stable, also for
large values of At, which indicates that the Bates model is mainly dominated
by diffusion.

Finally we note that in equation (44) the integral operator Lg is treated
implicitly, in order to enhance stability. In the following we will show that this
choice, thanks to an appropriate discretization of the jump integral term, does
not significantly increase the computer time necessary for the calculations.

In order to efficiently solve the boundary value partial differential problem
(44)-(45) let us apply the following operator splitting technique:

\I/k _ Vk'—l
——+ LiVETY 4 LaTF 4 L0084 L0k = Y h—L (46)
VEL0,9) =0, VF (S, y)=8—F as S — +oo, (47)
Vk—l _ Wk'—l b1
B vE— + Lo W =0, (48)
WkE=10,y) =0, W*(S,y) =8 —E as S — +o0, (49)

11



Wk'—l _ Uk—l

N + LeUFL = XU, (50)

U10,y) =0, U*Y(S,y)=S—FE as S — 4. (51)

That is first of all the function V*71(S,y) is obtained solving (46)-(47), then
the function W*~1(S, y) is obtained solving (48)-(49), and finally the function
U*=1(S,y) is obtained solving (50)-(51). As will be clear in Subsection 4.2
and Subsection 4.3 the splitting scheme (46)-(51) will allow us to obtain linear
systems of equations that can be solved very quickly .

Remark 7 The scheme (46)-(51) is only first-order accurate in time (see W.H.
Hundsdorfer and J.G. Verwer (2003)). Nevertheless, the O(At) component of
the error is suppressed thanks to the Richardson extrapolation (43), so that the
overall numerical method is second-order accurate in time.

For the sake of simplicity, in the following, with reference to the bound-
ary value partial differential problems (46)-(47), (48)-(49), (50)-(51), we will
write WF(S,y), VE=L(S,y), WFL(S,y), UF1(S, y) instead of ¥(S,y), V(S,v),
W(S,y), U(S,y), respectively.

4.2 The finite element method

The partial differential problems (46)-(47) and (48)-(49) are solved using a fi-
nite element method based on a non-uniform (stretched) mesh of right-angled
triangles (see Figure 1). This approach, used in conjunction with the operator
splitting technique (46)-(51), gives the following computational advantages:

1) the problems (46)-(47) and (48)-(49) are reduced to tridiagonal systems of
linear equations, which can be solved very quickly;

2) the problem (50)-(51) can be solved very efficiently by exploiting the fact
that W*=1(S,y) is obtained on a rectangular grid (see the next subsection);

3) the accuracy of the numerical solution can be improved by refining the mesh
in certain regions of the (S — y) plane. In particular, along the S—direction,
it is crucial to use a refined mesh in a neighborhood of the strike price, where the
derivative of the option payoff is discontinuous. Moreover, along the y—direction,
it is convenient to use a larger number of nodes in a neighborhood of 3y, where
the possible realizations of the stochastic variance are more likely to occur. Fi-
nally it should also be noticed that on a non-uniform mesh the finite element
method is particularly suitable and allows to reach a higher level of accuracy
than the finite difference method (see for example Hirsch (1998), Quarteroni
and Valli (1994)).

The finite element approximation is carried out as follows. First of all the
spatial domain of the partial differential equations (46) and (48), which consists
of the [0,400) x [0,400) quarter of plane, is replaced with the finite domain
Q = [0, Siax) X [0, Ymax|, where Syax and ymax are chosen sufficiently large (such

12



that the possible realizations of S and y are contained in €2 with probability
close to one). In the interval [0, Spax] let us consider Ng nodes S; = 0, So,
Ss, ..., SNy = Smax, and, in the interval [0, ymax], let us consider N, nodes
1. = 0, y2, Y3, -+, YN, = Ymax- Moreover let us define AS; = 51+1 - S,
i=1,2,...,Ns—1,and Ay; = yj11—y;, j = 1,2,..., Ny—1. Let T}}; denote the
right-angled triangle with vertexes (S, ¥;), (Sit1,9;), (Siy1,¥541) and let T7;
denote the right-angled triangle with vertexes (S, v;), (Sit1,Yj+1), (Sis¥Yjt1)s
i=12,...,Ng—1,5=12,...,N, — 1 (see Figure 1) The finite element
mesh T is deﬁned as the union of all the triangles T T =1,2,...,Ng—1,
j=1,2,...,N, — 1. Moreover let {}; ; denote the Set of all the trlangles with
a vertex at (Sl,yj) that is Q;; = {T}1 T T T Ty 5 TR )

i ) 1,5—1>Fd,5—1> 74,57~ 4,5
i=23,...,Ng—1,j=2,3,..., N, — 1 (see Figure 1).

2
Ty /.
T, T
T2 2
1,j-1 Ti,jfl
1
Ti 11

Figure 1: Finite element mesh

We want to approximate V(S,y) and W(S,y) using piecewise continuous
linear functions. Precisely let ¢; ;(S,y),i=1,2,...,Ns, j =1,2,..., N, denote
a set of trial functions defined as follows: ¢; ;(S,y) is continuous on 2, piecewise
linear on each triangle of 7, equal to one at the node (S;,y;) and vanishes at
all the other nodes, i = 1,2,...,N,, 7 = 1,2,..., N,. Note that the functions
¢; (S, y),i=1,2,...,Ns, j=1,2,..., Ny, are the so-called hat functions that
are often employed in finite element analysis (see Quarteroni and Valli (1994),
Strang and Fix (1993)).

The functions W(S,y), V(S,y) and ¥(S,y) are approximated as follows:
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WS~ 33 W0, (5.0) (52)

i=1 j=1

Y

Ns N,
V(Sv y) ~ ZZ V;,jd)i,j(svy)7 (53)

i=1 j=1

WS~ S S Wb, (5.0). (54)

i=1 j=1

First of all let us show how to solve problem (46)-(47). We recall that ¥; ;,
i=1,2,...,N,,j5=1,2,..., Ny, must be considered as known quantities, since
they are computed at the previous iteration of the cycle (38)-(42).

We multiply equation (46) by ¢; ;(S,y) and integrate over ; ;,1 =2,3,..., Ng—
1,j=2,3,..., Ny, — 1, obtaining:

(1+rAt)/ V¢i7jd5dy—At/ (£1V)¢i7jd5dy:/ Vo, ;dSdy

i, i,j 1,7
+At/
Q

(L3V)g,; ;dSdy + At/
Qi
Note that in (55) we are only considering the trial functions centered at the
nodes that are internal points of Q. In fact at the boundary nodes V(S,y) will
be obtained by imposing suitable boundary conditions (see below).
Substituting (52) and (53) in (55), using relations (31), (33), (34), (35), and
applying standard finite element techniques (see for instance Strang and Fix
(1993)) the integrals appearing in (55) are approximated as follows:

(C0)o, a8y + At [ (£s0)6, dSdy,
Qi’]’

(2%

i=2,3,...,Ns—1,7=2,3,...,N, — 1. (55)

1
| voasay=gial,, Vi, (56)

¥

1
/Q‘ Wy ydSdy = < [0 ; Vi, (57)

1
/Q (L1V)¢; ;dSdy ~ B la1,i;j(Vigr,; — Vij) —a2,i;(Vij —Vicij)],  (58)
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1
/ (L3V)g,; ;dSdy ~ ' las,i(Wi1j-1 — Vij—1) +aa:j(Vij — Pir1))
Qlyyj

tas5,i,j(Vit1,541 — Yij1) + a6, (Vij — Wio15) +aaij(Vij — Wi 5-1)
ta7,i,i(Vit1,j41 — Wiv1,5) + a6, (Wi j — Vi)

+ag i ;j(Vic1j—1 — Wiz1,5)], (59)

1
/Q (La¥)¢; jdSdy = zag,ij [(Ayj—1 + Ay;) (Vi1 — Tior )

FAY (Yig1 41 — Viga1) + Ayj—a(Wij—1 — Wi j-1)], (60)

1
/Q (£5ql)¢z,1d5dy ~ ga107i,j [(ASl_l + ASi)(q/i,j—i-l - q/i,j—l)

+AS; (Vig1 g1 — Vigr ) +AS; 1 (Wi — Vi 5-1)] (61)

where

9, ; = 2A8;Ay; + 2A8; 1 Ay 1 + ASiAy; 1 + AS;1Ay;, (62)

Ay, Ay
aij = (yJSf + yj_1Sz-2 + ijiz—',-l)—Anyyl + (yJSf + ijz‘2+1 + yj+1Sf+1)A—?, (63)

Ay‘,l
agij = (4557 + ;571 +yj‘1Si2‘1)ASj»,1
A .

(782 + a1 S 452 ) ol (64)

AS’L*I
az;ij = pO(y;Si +yj—15 + yj—15i-1), (65)
asij = pO(y;Si +yj—15 + yjSit1), (66)
as,ij = pO(Y;Si + Yj+1541 +Yj+15), (67)
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ag,i,j = pO(Y;Si + Yj+15 +y;Si—1), (68)

az,i; = pO(Y;Si + y;Si1 + Yj+15i41), (69)
asij = pO(y;Si + yjSi—1 + yj—15i-1), (70)
ag,ij = (T —q—=As(1) —y; - %P9> Si (71)

a10,i,j = UES yj) - %92 - ;Peyj* (72)

In order to satisfy the boundary conditions (47) we set

Vij=0, Vngj=8nvs—FE, j=23,...,N,—1. (73)

Equations (55) with the substitutions (56)-(61) and the boundary conditions
(73) constitute a set of N, — 2 linear systems. More precisely we have one

system of Ng equations in the unknowns Vi 2, V22, ..., ViNg 2, One system of
Ns equations in the unknowns Vi3, Va3, ..., Vg3, ..., and one system of Ng
equations in the unknowns Vi n, 1, Vo v, -1, - -+, Vg, N, —1- Each one of these

systems is in tridiagonal form and hence can be solved very quickly using the
well-known algorithm of Thomas, see Quarteroni et al. (2000) .

Now it remains to compute V; 1 and V; v, 1 = 1,2,..., Ns. However, since
the partial differential equation (28) is singular at y = 0 and y = o0, it is
not clear which boundary conditions to apply at y = 0 and y = Ymax. In this
paper, following Chiarella et al. (2008), V;; and V; n,,i=2,3,..., Ng — 1, are
obtained by linear extrapolation of the already computed solution on adjacent
nodes:

Viz—Vio

Vii=Via2— Av

Ay, i=2,3,...,Ng—1, (74)

Vin,-1—Vin,—2

Vi
@, N, AyNy S

Y

:V;,Ny—l‘i‘ AyNy_l, 1=2,3,...,Ng — 1. (75)

Using relations (74) and (75) in a sense we let the partial differential equation
(46) itself impose the boundary conditions at y = 0 and y = ymax. Finally,
according to (47) we set
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Vij=0, Vngj=Snv:s—E, j=1N,. (76)

Now let us solve problem (48)-(49). We multiply equation (48) by ¢; ;(S,y)
and integrate over €; ;, ¢ = 2,3,...,Ng — 1, j = 2,3,..., N, — 1. Note that,
following the same approach used to discretize equation (46), we are only con-
sidering the trial functions centered at the nodes that are internal points of (2.
We obtain:

Qf;,]' in,j .

2%
i=2,3,...,Ns—1,j=2,3,...,N, — 1. (77)

Substituting (54) in (77), using relation (32), and applying standard finite ele-
ment techniques the integrals appearing at the left hand side of equation (77)
are approximated as follows:

1

1
/ (L2W)d; jdSdy = o arn,ij(Wijer = Wig) — a1,y (Wiyj = Wijj—1)], (79)
QIZ,]’

where

AS;_ AS;

aii; = 0° {(2%‘ +Yjt1) Ay, + (yj + 2yj+1)A—le , (80)
ASifl ASz

a9 = 0° [(yj + 2yjf1)m + (2y; + yjl)ij_1:| : (81)

Moreover the integral appearing at the right hand side of equation (77) is com-
puted according to relation (56).

As done for problem (46)-(47) we use extrapolated boundary conditions at
y=0and y = Ymax:

Wiz —Wia

Wii=W;o— v

Ay, i=2,3,...,Ng—1, (82)

Win,—1— Win,—

Win, =Win,—1+ Ay
-

2Ayn, -1, i=2,3,...,Ng—1. (83)
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Equations (77) with the substitutions (56), (78), (79), and the boundary
conditions (82), (83) constitute a set of Ng — 2 linear systems. More precisely
we have one system of N, — 2 linear equations in the unknowns Ws o, Wa 3, ...,
Wo, N,—1, one system of Ny — 2 linear equations in the unknowns W32, W33,
.oy W3 N, -1, ..., and one system of N, — 2 linear equations in the unknowns
Whns-1,2, Wng-135 -+, Wng—1,n,-1- Each one of these systems is in tridiagonal
form and is efficiently solved using Thomas’s algorithm.

Once that W ;,4=2,3,...,Ng—1, j =2,3,..., N, — 1 have been obtained,
we compute W 1 and W; n, using relations (82) and (83), 47 =2,3,...,Ng — 1.
Finally, according to (49), we set

lej == 0, WNS,j == SNS - E, j == 1727 .. .7Ny. (84)

4.3 Numerical approximation of the integral operator

Let us show how to solve the partial differential problem (50)-(51). First of
all equation (50) is collocated at the the nodes (S;,y;), i = 2,3,...,Ng — 1,
j=2,3,...,N,— 1

Wi . —U, .
b 4 (LU); = NUij, i=2,3,... . Ns = 1,5 =2,3,....N, —1,(85)

where

+oo

(EGU)i,j:)\/ U(Siex,yj)W(dx), i:2,3,...,Ns71,j:2,3,...,Ny71,(86)

—00

Moreover, in order to satisfy the boundary conditions (51), we set

Ul,j :07 UNs,j :SIIlaX7E7 j:2737---7Ny - L (87)

Let us define

S
zh,i = log (é) h=23,...,Ng,i=2,3,...,Ng — 1. (88)

Using (17) the integral (86) is calculated as follows:

Ng
1 . .
(L@U)zjzm E Ih,i,j7 222,3,...,Ns—1,j:2,3,...,Ny—1, (89)
h=1

where
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T2,4 _ 2
I = / U(Sie“',yj)exp [%] dx, (90)

Th41,i - (CL’ _,7)2
Inij= / U(S;e”,y;) exp BT dx,h=2,3,...,Ng—1, (91)
Th,i

—M] dz. (92)

+oo
Ing,ij = / U(Sie”,y;j) exp
xT

Ng.i

262

In order to evaluate the integrals (90)-(92) U(S,y;) is approximated using a
piecewise linear function in the S—variable. Precisely having defined U; ; =
U(S;i,y;),1=1,2,...,Ng,j=1,2,...,N,, U(S,y;) is approximated as follows:

Unt1,j — Uny
U —|—é5’_5 5 SES,S 7h:1727-"7NS

S—FE, S2> Snax

Substituting relations (93) in (90)-(92) and using the fact that, according to
(88), S;e™i =Sp, h=2,3,...,Ng,i=2,3,..., Ng — 1, we obtain:

T2,4 U L U . i T — 2
I~ / (U1,j + 2’JTll’JSie“> exp l—%] dx, (94)

ASy ! 262

h=2.3,...,Ng—1,(95)

Th+1,i U U s N2
Ih,'i,j ~ / |:U1,j + MS(GI _ ezh,i):| exp [_ (LU ’7) ] dq;’

h,i

+oo " (CL’ _ 7)2
INSJ,]' = (Sie - E) exp —T dx. (96)
TNg,i

Now the integrals (94)-(96) are elementary integrals and can be performed an-
alytically (the calculation is left to the reader). Equations (85), with the sub-
stitutions (89), (94)-(96), and the boundary conditions (87) constitute a set of
Ny — 2 systems of linear equations. Precisely we have one system of Ng linear

equations in the unknowns Uy 2, Us2, ..., Ung, 2, one system of Ng linear equa-
tions in the unknowns U 3, U3, ..., Ung,3, ..., and one system of Ng linear
equations in the unknowns Uy n, 1, Ua N, -1, - - -, Ung,n,—1- Each one of these
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systems has the same matrix, which we term A. Therefore solving the N, — 2
linear systems obtained requires to perform the numerical inversion of only one
matrix. This is crucial to the efficiency of the overall numerical algorithm, as
the matrix A contains Ng X Ng non-zero elements and its numerical inversion
is rather expensive. Note that we have obtained N, — 2 linear systems with
the same matrix A because we have used a mesh of right-angled triangles, and
thanks to the fact that the integral operator Lg does not involve integration
along the y—variable.

The numerical approximation of the partial differential problem (50)-(51)
concludes the k—th step of the cycle (38)-(42). At this step the approximate
values Uf;l are computed starting from the knowledge of \Iff j»t=12,...,Ng,
j=12,...,Ny. Once that the k—th iteration is performed, the (k — 1)-th
iteration can be started by prescribing, according to relation (41):

Uit =max (U, S - K|, i=1,2,...,Ns,j=12,...,N,. (97)

A theoretical analysis about the convergence of the numerical method de-
veloped in this section appears to be a very difficult task, due to the different
kinds of a approximations involved (the Richardson extrapolation, the opera-
tor splitting technique, the finite element method). Hence the accuracy of the
method proposed is tested by numerical simulation. This is done in the next
section.

5 Numerical results

The simulations are carried out on a computer with a Pentium Dual Core E
2140 Processor 1.6 GHz 2 GB Ram, and the numerical code is written using
FORTRAN 90.

The non-uniform finite element mesh is constructed as follows: along the
S-direction we want to have a mesh which is finer in a neighborhood of S = E,
where the derivative of the payoff function is discontinuous. Instead, along the
y-direction, we want to have a mesh which is finer in a neighborhood of y = vy,
where the possible realization of the variance process are more likely to occur.
Therefore, using an approach similar to that followed in Ito and Toivanen (2004),
the mesh refinement is done setting:

1 ,— 1
SiE{1+—Sinh |:Z— (62750175)+C17s]}, 1=1,2,...,Ng, (98)
CS NS_].

where

c1,s = asinh(—Cg), c2,9 = asinh (MCS) , (99)
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and

1 .
Yi = Yo { +C—smh[ _1(02,ycl,y)+cl,y}}, j=1,2,...,Ny, (100)
y

where

¢1y = asinh(=(,), s,y = asinh (W@) . (101)
0

According to relations (98)-(101) the amount of mesh refinement in the S-
direction near S = FE is proportional to the parameter (g, whereas the amount of
mesh refinement in the y-direction near y = yg is proportional to the parameter
Cy (the limit case (g — 0 and ¢y — 0 corresponds to a uniform mesh). In
all the simulations presented in this section we use (¢ = 10 and ¢, = 1. By
several numerical experiments we have found that these values allow to obtain
very accurate results.

For comparison purposes, our first test-case (Test Case 1) is the same test-
case presented in Chiarella et al. (2008). Precisely let us consider an American
Call option with strike price £ = 100, maturity 7' = 0.5 year, interest rate r =
0.03year—!, and dividend yield ¢ = 0.05year—!. The parameters of the Bates
model are chosen as follows: ¢ = 2year™!, n = 0.04year™!, 0 = 0.4year—!,
A =5year™!, § = 0.1, and vy = f§. As far as the correlation coefficient p
is concerned, we use both p = 0.5 (Test Case l.a) and p = —0.5 (Test Case
1.b). As done in Ciarella et al. (2008), for the initial datum Sy we consider
five different values So; = 80 + 10(I — 1), I = 1,2,3,4,5. Moreover we set
Yo = 0.04 year—1.

The mesh-size parameters are chosen as follows: Spax = 300, Ymax =
0.2year—!, Ng = 250, N, = 200. Finally we set N; = 50.

Let Cyp(0,S,y) denote the approximate value of the American Call option
price at time ¢ = 0 obtained using the finite element method presented in Sec-
tion 4. Moreover let RMSRD denote the average relative error on Cgy(0, S, y).
RMSRD is then computed as follows:

5 2
1 ap (0, Souyo) 0(0,501,y0)>
RMSRD = . | = r( ; . 102

5 ; ( 0 SO,layO) ( )

Accurate estimations of C(0, S0, v0), | = 1,2,3,4,5, necessary to evaluate
(102), have been obtained by Chiarella et al. (2008) using a (very time con-
suming) finite difference approximation on an extremely fine mesh. Finally let
RUNTIME denote the computer time necessary to calculate Cqp(0,.S,y).

In Table 1 and Table 2 we report the values of Cy,(0, So.1,%0), C(0,So.,%0),
1=1,2,3,4,5, RMSRD and RUNTIME experienced in Test Case 1.a and Test
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Case 1.b respectively. Looking at these tables we may note that both in Test
Case 1.a and in Test Case 1.b the numerical method proposed in this paper is
very accurate and fast. In fact the American option price is always computed
with at least 3 correct decimal digits in only 12 s. Moreover the relative error

RMSRD is very small (of order 107%).

Table 1: Test Case 1.a

So | €(0,50,90) | Cap(0,50,30)
80 1.4843 1.4844
90 3.7145 3.7153
100 7.7027 7.7040
110 13.6722 13.6734
120 21.3653 21.3663
RMSRD = 1.34 x 1074
RUNTIME =125

Table 2: Test Case 1.b

So | €C(0,80,40) | Cap(0,S0,%0)
80 1.1359 1.1359
90 3.3532 3.3538
100 7.5970 7.5983
110 13.8830 13.8846
120 21.7186 21.7201
RMSRD = 1.26 x 104
RUNTIME =125

Now let us compare the numerical method proposed in this paper with that
presented in Chiarella et al. (2008). The most significant results obtained
there in Test Case 1 are the following: in Test Case 1.a the relative error is
RMSRD = 1.77 x 10~* and the computer time is RUNTIME = 12120 s, whereas
in Test Case 1.b the relative error is RMSRD = 1.93 x 10~* and the computer
time is RUNTIME = 12122 5. Then we have: 1) the errors obtained by Chiarella
et al. (2008) are slightly bigger than those reported in Table 1 and Table 2; 2) the
computer times experienced by those authors are (approximately) a thousand
of times bigger than those reported in Table 1 and Table 2. It should also be
noted that the numerical simulations presented in that paper are carried out on
a cluster of computers which is faster than our Pentium Dual Core processor.
Putting all these things together we can conclude that in Test Case 1.a and in
Test Case 1.b the numerical method proposed in this paper is at least a thousand
of times faster than the approach followed in Chiarella et al. (2008).

As a second test-case (Test Case 2) we consider an American Put option with

strike price £ = 100, maturity 7 = 5year, interest rate r = 0.0319 year—!,
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and dividend yield ¢ = 0. The parameters and data in common with the
Heston model are chosen as in Broadie and Kaya (2006): ¢ = 6.21 year—!,
n = 0.019year~", 0 = 0.61year™", p = —0.7, yo = 0.010201 year—'. Further-
more we set A = 0.5year™!, § = 0.2, and v = —%. As done in Test Case 1
for the initial datum Sy we consider five different values Sp; = 80 + 10(I — 1),
1=1,2,3,4,5.

The mesh-size parameters are chosen as follows: Spax = 300, Ymax =
0.2year—!, Ng = 250, N, = 200. Moreover we set N; = 100.

Let P,,(0, So,%0) denote the approximate value of the American Put option
price obtained using the numerical method proposed in this paper. In order
to evaluate the error on P,,(0, So,¥o), an estimation of the true American Put
option price, denoted P(0,Sp,yo), is obtained by performing a very accurate
(and also very expensive) simulation with the following mesh-size parameters:
Smax = 500, Ymax = 0.4year™!, Ng = 500, N, = 500, N; = 1000. As done
in Test Case 1 the average relative error on P,p(0, S0, yo), denoted RMSRD,
is computed using relation (102) in which C(0,So,yo) and Cqp(0, S0, yo) are
replaced with P(0, So,yo) and P,,(0, So,¥0). The computer time necessary to
obtain P, (0, So,yo) is still denoted by RMSRD.

In Table 3 are shown the values of Py, (0, 0.1, y0), P(0, S0,1,%0),{ = 1,2,3,4, 5,
RMSRD and RUNTIME experienced in Test Case 2. We may note that the nu-
merical method proposed in this paper is very accurate and fast. In fact the
American option price is always computed with at least 4 correct decimal digits
(average relative error of order 107°) in only 24 s.

Finally we make notice that in Test Case 2 the initial datum yo is a very
small value. In addition we have 6> > 2&n, so that the variance process is
allowed to hit the origin. Moreover. As a consequence the realizations of Y; are
contained with probability close to one in a region close to y = 0, where the
partial differential equation (16) is singular. Also despite this fact the numerical
method proposed in this paper allows to obtain very accurate results.

Table 3: Test Case 2

50 P(O7S07y0) PaP(07S07y0)
80 21.3053 21.3030
90 15.6365 15.6364
100 11.5887 11.5890
110 8.6680 8.6685
120 6.5464 6.5466

RMSRD = 5.77 x 10~°
RUNTIME = 24 s
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