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Abstract

Our main goal is to give a rigorous justification for the Hessian-constrained problems
introduced in [13], and to show how they are linked to the optimal design of thin plates. To
that aim, we study the asymptotic behaviour of a sequence of optimal elastic compliance
problems, in the double limit when both the maximal height of the design region and the
total volume of the material tend to zero. In the vanishing volume limit, a sequence of
linear constrained first order vector problems is obtained, which in turn - in the vanishing
thickness limit - produces a new linear constrained problem where both first and second order
gradients appear. When the load is suitably chosen, only the Hessian constraint is active,
and we recover exactly the plate optimization problem studied in [13]. Some attention is
also paid to the possible different approaches to the afore mentioned double limit process,
in both the cases of real and ficticious materials, which might favour some debate on the
modelling of thin plates.
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1 Introduction

Let Ω be an open bounded connected subset of R
2 with a smooth boundary. In [13] we considered

the following mass optimization problem, which consists in finding the optimal distribution of a
given amount of plate-like material in the design region Ω in order to minimize the work made
on it by a given system of forces:

I = inf
{
Cpl(µ, j, f) : µ ∈ P(Ω)} . (1.1)

Here measures µ in the space P(Ω) of probabilities on Ω represent the admissible designs, which
are allowed to be diffused as well as concentrated on low-dimensional sets. The cost Cpl(µ, j, f)
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that we want to minimize is the plate compliance: for any µ ∈ P(Ω), for a given stored energy
density j : R

2×2
sym → R, and for a given real measure f ∈ M(Ω; R), it is obtained as

Cpl(µ, j, f) := − inf
{∫

j(∇2u) dµ− 〈f, u〉
R

2 : u ∈ C∞(R2; R)
}
. (1.2)

In particular, in [13] we established the equality

I = S2/2 , (1.3)

where S is computed through the following linear constrained problem:

S = sup
{
〈f, u〉

R
2 : u ∈ C∞(R2; R) such that ρ(∇2u) ≤ 1 on Ω

}
(1.4)

(being ρ related to j by j(z) = (1/2)ρ2(z)). Moreover, we proved that problems (1.1) and (1.4)
share the same optimality conditions, which can be explicitly determined.
The goal of this paper is to give a rigorous justification for problems of kind (1.1) or (1.4), and
show how they are linked to the optimal design of thin plates. In fact in [13] these problems
were introduced just formally, as the second order analogous of their corresponding first order
problems. When the design region is a subset of R

3 of the form Q = Ω × [−h, h] ⊂ R
2 × R, the

elastic compliance of a mass distribution µ ∈ P(Q), for a given density j : R
3×3
sym → R and a given

measure load F ∈ M(Q; R
3) is given by

Cel(µ, j, F ) := − inf
{∫

j(e(U)) dµ− 〈F,U〉
R

3 : U ∈ C∞(R3; R
3)

}
, (1.5)

where e(U) denotes the symmetric gradient of U . Then the first order 3D-versions of (1.1) and
(1.4) read respectively:

inf
{
Cel(µ, j, F ) : µ ∈ P(Q)} (1.6)

sup
{
〈F,U〉

R
3 : U ∈ C∞(R3; R

3) such that ρ(e(U)) ≤ 1 on Q
}
. (1.7)

These problems were studied in detail in [10]; in particular it turns out that they are related
to each other by the condition analogous to (1.3). From a mechanical point of view, they are
perfectly justified: when one tries to optimize the compliance of an elastic material under a
given load, in the limit of vanishing volume microstructures appear - meaning that the material
tends to occupy low-dimensional networks - and the limit problem is of type (1.6). This is true
both in the case of real materials, due to a common-use result in shape optimization, and in the
case of so-called “ficticious” materials, see Section 3.1 for more details.
The question is now: do problems of type (1.1) admit any mechanical justification? In particular:
are they somehow linked to problems (1.6) and to the extensive existing literature on thin plates?
This paper is an attempt to answer these questions. The approach we adopt is new, and consists
in performing a 3D−2D reduction dimension analysis for problems of type (1.6). More precisely,
we investigate the asymptotics of problems (1.6) in the vanishing thickness limit, namely when
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the maximal height h is multiplied by an infinitesimal parameter δ and the design region is
taken of the form Qδ = Ω× [−hδ, hδ] ⊂ R

2 ×R. To that purpose, a quite natural idea - formerly
unexplored to our knowledge - is to exploit the first order analogous of (1.3). Indeed by this way
one is led to study the asymptotics as δ → 0 of the simpler problems (1.7), when Q is replaced
by Qδ. Now, one might expect that such suprema remain finite as δ → 0, and that the convex
set of constraint appearing in the limit problem, which is none else than the Kuratowski limit
of the sets

Kδ :=
{
U ∈ C∞(R3; R

3) such that ρ(e(U)) ≤ 1 on Ω × (−δh, δh)
}
,

is given by functions whose first order gradient satisfies some suitable relation. Actually, facts
come up to these expectations only in the scalar case, namely when functions U in Kδ take
real values (see Remark 3.7). In spite, in the vector case when functions U in Kδ take values
in R

3, the situation is dramatically different. Firstly, if the vertical component of the force is
of order 1, the suprema in (1.7) blow up to infinity (like δ−1). Then, we need to rescale the
third component of the force by a factor δ. After such scaling, another crucial difference with
respect to the scalar case shows up when studying the Kuratowski limit of Kδ: indeed, due to the
role played by a specific strain-displacement relation (of Kirchoff-Love type), two independent
constraints appear, each one involving both first and second order derivatives. This analytical
fact has an immediate mechanical counterpart: when the load is suitably scaled, a bending effect
coupled with membrane energy appears in the limit problem, which can be written as

(P) sup
{
〈F , v〉

R
2 : v ∈ C∞(R2; R

3) such that ρ(e(v1, v2) ± h∇2v3) ≤ 1 on Ω
}
,

for a suitably averaged system of forces F and a suitably modified function ρ (see Theorem 3.3).
Problem (P) reduces to a problem of type (1.4) in the particular case when the unique nonzero
component of the load is the vertical one, because in such case the double constraint imposed
on fields v simplifies into one inequality for the Hessian matrix of their third component v3.
This amounts to say - see Corollary 3.5 - that problems of type (1.1) are recovered as 3D − 2D
limits of problems of type (1.6) when the load is a vertical one. In particular, for such kind of
loads, the optimality conditions found in [13] can be fruitfully employed in order to determine
explicit solutions to problem (P). For arbitrary loads, the optimality system has to be suitably
generalized in order to cover the case of mixed regimes, see Proposition 3.9 and the examples in
Section 5.
Further possible justifications for problems of type (1.1) are discussed in this paper, and will
be studied more in detail in a forthcoming one. The background is still a sequence of classical
3D-elasticity problems, where both the maximal height of the design and the total volume of
the material are multiplied by infinitesimal parameters, say δ and ε respectively. Actually, the
strategy described above consists in passing to the limit first in ε - which yields problems of type
(1.7) - and then in δ, ending up with problems of type (P) (or (1.1)). However, it is tempting to
look at different ways of performing the double limit in δ and ε. More precisely, we believe that
problems of type (1.1) can be recast by passing to the limit contemporarily in ε and δ, keeping
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the quotient η := δ/ε fixed, and eventually letting η tend to +∞. Following this alternative
strategy, we are led to propose a limit compliance model of the kind (1.1) which fits together
the original shape optimization problem for real materials and the case of ficticious materials,
see Proposition 4.1.
Finally, we can also link our approach with the classical thin plates model widely studied in the
literature, where a cubic dependance on the profile of the plate appears (without any attempt
of being complete, let us refer the reader to [4, 5, 6, 7, 8, 16, 18, 20, 22, 23, 24, 25]). In
our setting, this corresponds to enclose a topologicalconstraint on the admissible sets. After a
suitable scaling, the limit problem is conjectured to be once again of type (1.1), for a different
stored energy, see Proposition 4.3.
The paper is organized as follows. In Section 2 we fix some notation and the setting of the
problem, then we state our main results in Section 3. In Section 4 we discuss the above mentioned
alternative genesis for problems of type (1.1). Section 5 is entirely devoted to exemplify the
application of the results obtained in Section 3. Proofs are collected in Section 6. Finally in the
Appendix we compute the possible different effective energy densities when one starts from a
classical elastic potential.

2 Preliminaries and setting of the problem.

Let us take a design region in R
3 of the form Q = Ω × [−h, h], where Ω is an open bounded

connected subset of R
2 and h is fixed in R

+; the spatial variable in Q will be denoted by (x′, x3).
Consider a given amount m of elastic material placed in a subset A of the design region: thus
A is subject to the constraints

A ⊆ Q = Ω × [−h, h] , vol(A) = m .

If the stored energy density is represented by a given integrand j : R
3×3
sym → R and the material is

subject to a given system of forces F = (F1, F2, F3) ∈ M(Q; R
3), the resulting elastic compliance

is given by

Cel
(
A, j, F ) := − inf

{∫

A

j(e(U)) dx− 〈F,U〉
R

3 : U ∈ C∞(R3; R
3)

}

(here and in the following, e(U) denotes the symmetric part of the gradient of U).
We assume that j is convex, 2-homogeneous, and coercive, so that it can be written as

j(z) =
1

2
ρ2(z) , with inf

z 6=0

ρ(z)

|z| > 0 . (2.1)

The typical choice of j is the usual quadratic elastic potential of the kind

j(z) =
λ

2
(tr(z))2 + µ|z|2 . (2.2)
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Moreover, for the compliance to be finite, we ask that the system of forces is balanced, namely

〈F,U〉
R

3 = 0 whenever e(U) = 0 (2.3)

and also that it belongs to the Sobolev space H−1(Q; R
3).

We want to consider now the problem of optimizing the compliance when both the maximal
height of the design and the total volume of the material become very small. In this situation
the maximal height and the total volume will be multiplied by two positive vanishing parameters,
say δ and ε respectively:

A ⊆ Qδ = Ω × [−δh, δh] , vol(A) = εm . (2.4)

The same optimization problem can be considered also for “fictitious materials”, that is when
the set A is replaced by a density θ satisfying

θ ∈ L∞(R3; [0, 1]) , spt(θ) ⊆ Qδ ,

∫
θ dx = εm , (2.5)

and the definition of compliance is extended by setting

Cel
(
θ, j, F ) := − inf

{∫
j(e(U)) θ dx− 〈F,U〉

R
3 : U ∈ C∞(R3; R

3)
}
. (2.6)

So we focus attention on the two variational problems

inf
{
Cel

(
A, j, F

)
: A satisfying (2.4)

}
(2.7)

inf
{
Cel

(
θ, j, F

)
: θ satisfying (2.5)

}
. (2.8)

The asymptotics of the above infima for ε, δ → 0 can be investigated by adopting one of the two
following strategies (A) or (B) (notice indeed that δ cannot go to zero for fixed ε):

(A) Step 1. Keeping δ fixed, let ε tend to zero (so that the quotient η := δ/ε tends to +∞).

Step 2. Let δ tend to zero.

(B) Step 1. Keeping the quotient η = δ/ε fixed, let ε and δ tend to zero contemporarily.

(Step 2. Possibly let η tend to +∞.)

In this paper we are mainly concerned with strategy (A), which seems to be the simpler way
leading from the infima in (2.7) or (2.8) to a problem of kind (1.1) (see Section 3). However, we
also discuss briefly strategy (B), showing that it may lead to a limit problem of the same kind,
see Section 4.
The first crucial remark when approaching the problem through strategy (A) is that the infima
in (2.7) or (2.8) blow up at each of the two steps.
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More precisely, if δ is fixed and ε tend to zero, the infima are of order ε−1. Indeed, via the
change of variables V = U/ε, it is easy to obtain the identity

Cel
(θ
ε
, j, F

)
= ε Cel

(
θ, j, F

)
,

whose left hand side has a finite infimum for θ satisfying (2.5). Therefore, we are led to rescale
the system of forces into

√
εF ; this will ensure that the infimum of the compliance remains finite

as ε tends to zero in view of the identity

Cel
(
θ, j,

√
εF

)
= ε Cel

(
θ, j, F

)
.

In turn, the infima obtained through the first step of strategy (A) blow up again when performing
the second step, that is when also δ tends to zero. Thus, we need to rescale the system of forces
also with respect to δ. It will be more clear later on (see the proof of Theorem 3.3), that the
right scaling of the load in order to keep finite the suprema in (3.3) as δ → 0 is the following
one: set Qδ := Ω × [−δh, δh], and change F into the element F δ ∈ H−1(Qδ; R

3) which acts on
any test function ϕ ∈ C∞(R3; R

3) as

〈F δ, ϕ〉
R

3 :=
2∑

i=1

〈Fi(x), ϕi(x′, δx3)〉R3 + δ〈F3(x), ϕ3(x
′, δx3)〉R3 .

We stress that, in the above definition, the vertical component F3 is multiplied by δ, as it is
usual when dealing with plates in flexion regime.
Summarizing, our rescaled optimization problems read

Iε,δ := inf
{
Cel

(
A, j,

√
εF δ

)
: A satisfying (2.4)

}
, (2.9)

Ĩε,δ := inf
{
Cel

(
θ, j,

√
εF δ

)
: θ satisfying (2.5)

}
. (2.10)

Notice that, for each fixed (ε, δ), Iε,δ and Ĩε,δ should remain finite because
√
εF δ is still balanced,

that is it fulfills (2.3). Further, in view of the heuristic considerations above, we expect that Iε,δ
and Ĩε,δ admit finite limits as ε and δ tend to zero. In the remaining of the paper our goal is to
identify such limits.
For simplicity of notation, in the sequel we take the volume parameter m appearing in (2.4) and
(2.5) equal to 1 (this is not restrictive up to a multiplicative factor).

3 Strategy (A): main results

Subsections 3.1 and 3.2 below are devoted respectively to steps 1 and 2 of strategy (A). All the
statements (but the one of Proposition 3.2) will be proved in Section 6.
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3.1 Step 1: ε → 0 with δ fixed.

The main advantage of strategy (A) is actually that its first step yields a pretty tractable limit
problem. Indeed, when one performs the limit as ε→ 0 of Iε,δ or of Ĩε,δ, in both cases one falls
upon an infimum problem over the space P(Qδ) of probabilities on Qδ. Moreover, in both cases
the functional to be minimized in the limit problem is of the kind µ 7→ Cel

(
µ,J , F δ), where for

a given integrand J we have set

Cel
(
µ,J , F δ) := − inf

{ ∫
J (e(U)) dµ− 〈F δ, U〉

R
3 : U ∈ C∞(R3,R3)

}
.

The only difference between the real and the ficticious case lies in the determination of the
integrand J : in the ficticious case one can take simply J = j, while in the real case one has to
take J = j0, being j0 obtained from j through a suitable formula. This is stated more precisely
in the next two propositions.

Proposition 3.1 (Fictitious materials.) There holds:

lim
ε→0

Ĩε,δ = Ĩδ := inf
{
Cel

(
µ, j, F δ) : µ ∈ P(Qδ)

}
.

Proposition 3.2 (Real materials.) Assume that j is taken of the form (2.2). Then there
holds:

lim
ε→0

Iε,δ = Iδ := inf
{
Cel

(
µ, j0, F

δ) : µ ∈ P(Qδ)
}
,

where j0 : R
3×3
sym → R denotes the following modified integrand :

j0(z) =
1

2
ρ0(z)

2 := sup
{
z · z∗ − j∗(z∗) : z ∈ R

3×3
sym , det(z∗) = 0

}
. (3.1)

Proposition 3.2 is actually a reformulation of the results in [2, 3] (to which we refer for a proof),
where the effective stress potential - the Fenchel conjugate j∗0(z∗) of j0(z) - is characterized
explicitly in terms of the eigenvalues of the symmetric tensor z∗. Formula (3.1) is a concise way
to recover directly the related effective strain potential j0; we refer to the Appendix for some
explicit computations. We believe that Proposition 3.2 remains true even for non-quadratic
strain potentials, see [9].

3.2 Step 2: δ → 0.

The kind of mass optimization problem given by Proposition 3.1 and Proposition 3.2 has been
widely studied in [10], where it is proved in particular that

Ĩδ = S̃2
δ /2 , (3.2)

being

S̃δ := sup
{
〈F δ, U〉

R
3 : U ∈ C∞(R3; R

3) such that ρ(e(U)) ≤ 1 on Qδ

}
(3.3)
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(or equivalently Iδ = S2
δ /2, where Sδ is defined as in (3.3) just replacing ρ by ρ0).

Thanks to the crucial equality (3.2), this second step in strategy (A) is reduced to determining
the limit of S̃δ (resp. Sδ) as δ → 0. The main contribution of this paper is actually performing
the 3D − 2D reduction dimension analysis for such a sequence of linear constrained problems.
We write down the results for S̃δ, being those for Sδ identical up to replacing ρ by ρ0.
In order to state our main theorem, we need to introduce an effective system of forces F ∈
M(Ω; R

3) and an effective integrand j : R
2×2
sym → R .

For any λ ∈ M(Q; R), we denote by [λ] ∈ M(Ω,R) the marginal measure defined by the equality

〈[λ], ϕ〉
R

2 := 〈λ, ϕ〉
R

3 ∀ϕ ∈ C∞(R2; R) ; (3.4)

then we define the effective system of forces F = (F 1, F 2, F 3) ∈ M(Ω; R
3) componentwise by:

F i := [Fi] i = 1, 2 and F 3 :=
[
F3 + x3

2∑

i=1

∂Fi
∂xi

]
. (3.5)

The effective density j : R
2×2
sym → R is obtained from j through the following formula:

j(z) =
1

2
ρ(z)2 := inf

{
j
(
z +

3∑

i=1

ξi(ei ⊗ e3)
∗
)

: ξi ∈ R

}
. (3.6)

Theorem 3.3 The limit as δ → 0 of the sequence {S̃δ} defined by (3.3) is given by

S0 := sup
{
〈F , v〉

R
2 : v ∈ C∞(R2; R

3) such that ρ(e(v1, v2) ± h∇2v3) ≤ 1 on Ω
}
, (3.7)

where F and ρ are given by (3.5) and (3.6) respectively.

It is clear that, in general, the limit problem given by Theorem 3.3 cannot be “decoupled”
into two separate problems respectively of first order in (v1, v2) and of second order in v3.
Nevertheless, there are special cases when it simplifies into one of them:

Corollary 3.4 (i) If F 1 = F 2 = 0, then

S0 = sup
{
〈F 3, v3〉R2 : v3 ∈ C∞(R2; R) such that ρ(∇2v3) ≤ 1/h on Ω

}
.

(ii) If F 3 = 0, then

S0 = sup
{ 2∑

i=1

〈F i, vi〉R2 : (v1, v2) ∈ C∞(R2; R
2) such that ρ(e(v1, v2)) ≤ 1 on Ω

}
.

When F 1 = F 2 = 0, combining case (i) of the above corollary with our results in [13], we are
finally able to prove that the infima in (2.10) converge to a limit problem of type (1.1).
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Corollary 3.5 Let Ĩε,δ be defined by (2.10). If F 1 = F 2 = 0, there holds

lim
δ→0

lim
ε→0

Ĩε,δ = h−2 inf
{
Cpl

(
µ, j, F 3

)
: µ ∈ P(Ω)

}
, (3.8)

where the plate compliance Cpl
(
µ, j, F 3

)
is defined according to (1.2).

Remark 3.6 Let us emphasize that the assumption F ∈ H−1(Q; R
3) stated in Section 2 is not

needed for the well-posedness of the variational problems in (3.7) or (3.8). For instance, it is
enough to ask that F is a measure with finite variation. In particular, pointwise applied forces
are allowed in our limit problem.

Remark 3.7 The scalar analogue of Theorem 3.3 is simpler, and it can be easily obtained with
the same proof. For any f ∈ M(Q; R) (with f ∈ H−1(Q; R) and

∫
Q
f = 0), and any convex,

1-homogeneous, coercive function ρ : R
3 → R, it can be stated as follows: the limit as δ → 0 of

sδ := sup
{
〈f δ, u〉

R
3 : u ∈ C∞(R3; R) such that ρ(∇u) ≤ 1 on Qδ

}
.

is given by

s0 := sup
{
〈[f ], v〉

R
2 : v ∈ C∞(R2; R) such that ρ(∇v) ≤ 1 on Ω

}
.

Here f δ ∈ M(Q; R) is the measure which acts on any test function ϕ ∈ C∞(R3,R) as 〈f δ, ϕ〉
R

3 :=

〈f, ϕ(x′, δx3)〉R3 , while [f ] ∈ M(Ω; R) is defined according to (3.4), and ρ : R
2 → R is given by

ρ(z) := inf
{
ρ(z + ξe3) : ξ ∈ R

}
.

Let us turn to the practice computation of S0. To that purpose, one needs to determine opti-
mality conditions for the infimum problem (P) which defines S0. Such optimality conditions are
obtained in [13], by exploiting the results of [14], in the special situation of Corollary 3.4 (i). Let
us see how they look like in the more general situation of Theorem 3.3. As a preliminary step,
we begin by writing the dual problem of (P) (intended in the usual sense of Convex Analysis,
see e.g. [19]). We denote by ρo : R

2×2 → R the polar function of ρ, that is,

ρo(ξ) := sup{ξ · z : ρ(z) ≤ 1} ,

where ξ · z indicates the Euclidean scalar product. Then, for λ in the space M = M(Ω; R
2×2
sym)

of R
2×2
sym-valued measures supported on Ω with finite total variation, we use the notation

∫
ρo(λ)

in the usual sense of convex 1-homogeneous functionals on measures (see for instance [21]).

Lemma 3.8 The dual problem (P∗) of (P) is given by

min
{∫

ρo(λ+)+

∫
ρo(λ−) : λ± ∈ M , −div(λ+ +λ−) = (F 1, F 2) , hdiv2(λ+ −λ−) = F 3

}
,

where the operators div and div2 are intended in distributional sense.
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Proposition 3.9 Let v be admissible for (P) and λ± be admissible for (P)∗. They are optimal
for the respective problems if and only if the following two equations are satisfied:

ρo(λ+) =
〈
λ+, e(v1, v2) + h∇2v3

〉
R

2 , ρo(λ−) =
〈
λ−, e(v1, v2) − h∇2v3

〉
R

2 . (3.9)

The application of Proposition 3.9 is exemplified in two concrete cases in Section 5.

4 Strategy (B): some insights.

When strategy (B) is adopted we believe that, for both real and fictious materials, the limit
problem is the same as the one obtained through strategy (A) in the ficticious case. More
precisely, in parallel with Corollary 3.5, we announce the following result:

Proposition 4.1 Let Iε,δ and Ĩε,δ be defined by (2.9) and (2.10) respectively, and assume that
F 1 = F 2 = 0. Then there holds :

lim
η→+∞

lim
ε→0

Ĩε,ηε = h−2 inf
{
Cpl

(
µ, j̄, F 3) : µ ∈ P(Ω)

}
= lim

η→+∞
lim
ε→0

Iε,ηε . (4.1)

The first equality in (4.1) can be obtained by the same duality methods used in the proof of
Proposition 3.1. The proof of the second equality is more delicate: it involves some homogeniza-
tion process occurring around the middle of the design, and it will be detailed in a forthcoming
paper.
Another reason of interest in strategy (B) is that it allows to relate our approach with the
standard method used in the literature to describe the compliance of a thin plate. This relation
comes out when the following topological constraint is added in the model: take the set A
appearing in (2.9) of the form

A(g) := {|x3| < g(x′)} ,
for some profile function g which must satisfy

0 < g(x′) ≤ δh ,

∫

Ω
g(x′) dx′ = ε .

In this framework, if we set δ = ηε and we let ε go to zero, the result of the limit process is
well-known (see e.g. [1, 18]), and it can be expressed according to the next proposition. Therein
for convenience the function g is written as g = εψ, where ψ satisfies

0 < ψ(x′) < ηh and

∫

Ω
ψ(x′) dx′ = 1 .

Lemma 4.2 If the integrand j is quadratic and if the function ψ is bounded from below by a
positive constant, then

lim
ε→0

Cel
(
A(εψ), j,

√
εF ηε

)
= Cel

(
ψL2, j, (F 1, F 2)

)
+ Cpl

(2ψ3

3
L2, j, ηF 3

)
.

10



Here the effective forces F i are given by (3.5), the plate compliance Cpl
(

2ψ3

3 L2, j, ηF 3

)
is de-

fined according to (1.2), and the elastic compliance Cel
(
ψL2, j, (F 1, F 2)

)
according to (the 2D

analogous of) (1.5).

Let us mention how the cubic dependence in ψ appearing in the above statement comes out
(see [1, 18] for more details). Roughly, it arises when evaluating the integral of the bulk density
j(eαβ(u)). Indeed, in terms of the Kirchoff-Love strain displacement v, eαβ(u) is given by
eαβ(u) = e(v1, v2) − x3∇2v3 (see (6.7) below). Thus, since j is 2-homogeneous and quadratic,

one has to compute the one-dimensional integral
∫ ψ
−ψ

x2
3 dx3, which yields the cubic dependence

in ψ.
Differently from the limit problem found in Theorem 3.3, the limit compliance given by Lemma
4.2 is always “decoupled” into the sum of an elastic compliance plus a plate compliance. On
the other hand, it is well-known since [17] that the problem of minimizing it over the class of
admissible profiles ψ in general has no solution, and there is a large literature investigating its
possible relaxations (see [4, 6, 7, 8, 23, 24]). Hence it can be interesting to investigate what
happens as η → +∞. If we assume for simplicity that F1 = F2 = 0, the counterpart of the
double limit appearing in the last term of (4.1) becomes:

lim
η→+∞

inf
{
Cpl

(2

3
ψ3L2, j, ηF 3

)
: 0 < ψ ≤ ηh ,

∫

Ω
ψ = 1

}
. (4.2)

Notice that, if we choose ψη := ηhχEη as a competitor, with |Eη| = (ηh)−1, then, by using a
suitable scaling factor on the strain displacement, we obtain the equality

Cpl
(2

3
ψ3
ηL2, j, ηF 3

)
=

3

2h2 Cpl
(
θηL2, j, F 3

)
,

where θη = ηhχEη is a probability density. This suggests that limit in (4.2) will remain finite.
Actually, as already mentioned in [13], we believe that, as η → +∞, optimal sequences {ψn} for
the infimum problem in (4.2) will saturate the upper bound constraint ψn = ηh on a subset En
which tends to concentrate on one dimensional structures, whereas ψn will be very close to zero
away from En. The optimization of such one-dimensional microstructures through homogeniza-
tion techniques (as the one developed in [15]) brings us to formulate the following conjecture,
whose full proof seems by now out of reach.

Proposition 4.3 (conjectured) The limit in (4.2) exists and is given by

3

2h2
inf

{
Cpl

(
µ, j⊖, F 3

)
: µ ∈ P(Ω)

}
, (4.3)

where (j)⊖ : R
2×2
sym → R is the following modified integrand:

j⊖(z) =
1

2
ρ⊖(z)2 := sup

{
z · z∗ − (j)∗(z∗) : z ∈ R

2×2
sym , det(z∗) ≤ 0

}
.
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Remark 4.4 Similarly as in Corollary 3.5, the limit problem in (4.3) is of type (1.1). Notice
also that (4.3) can be rewritten as

h−2 inf
{
Cpl

(
µ,

√
2/3 j⊖, F 3

)
: µ ∈ P(Ω)

}
. (4.4)

In particular, it is natural to compare the effective potentials j0, j and
√

2/3 j⊖ obtained for real
materials respectively through strategy A (cf. Corollary 3.5), strategy B without topological
constraint (cf. Proposition 4.1), and strategy B under topological constraint (cf. Proposition
4.3). In general, such potentials will not coincide with each other. For instance, if we take
j(z) = (1/2)|z|2 (on R

3×3
sym), it is immediate to get j(z) = (1/2)|z|2 (on R

2×2
sym), while the explicit

computation of j0 and j⊖ is more delicate and can be found in the Appendix.

5 Examples

In the examples we are going to discuss, the systems of loads are discrete (see Remark 3.6).
Moreover, they lie into a plane, so that the corresponding optimal structures are supported into
that plane. As a consequence, we take a planar design region Q of the form Ω × [−h, h], being
Ω an open bounded interval of the real line. Thus throughout this section the spatial variable
x′ ∈ Ω will become x1, and the role of the “vertical variable” x3 will be played by x2. Clearly,
the limit problem will reduce simply to a 1D-problem.
We take as a function ρ in (3.3) the Euclidean norm on R

2×2
sym, so that the corresponding function

ρ0 will be simply the Euclidean norm on R (see the Appendix).

Example 5.1 (pure flexion regime).
For fixed nonnegative parameters l and h0, let the points O,A,B have coordinates

O :=
(
0, 0

)
, A :=

(
l, 0

)
, B :=

(
0, h0

)

and let us consider the following system of forces:

F1 := δO − δB , F2 =
h0

l
(δB − δA) .

O

B

A

Figure 1: loads yielding a pure flexion regime in the whole of OA

This system of forces is supported on the design region Q = Ω× [−h, h] provided Ω is an interval
containing both O and A, and h ≥ h0. Moreover, it is immediate to check that this system is
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balanced. Then we can apply Theorem 3.3 to compute S0, namely the limit as δ → 0 of the
suprema S̃δ in (3.3). The effective system of forces on the x1-axis is easily obtained:

F 1 := 0 , F 2 =
h0

l
(δO − δA) − h0δ

′
O .

Then according to (3.7) S0 can be expressed as:

sup
{h0

l

(
v2(O) − v2(A)

)
+ h0v

′
2(O) : v2 ∈ C∞(R; R) such that |(v2)′′| ≤

1

h
on Ω

}
.

In order to compute the explicit value of S0, we apply Proposition 3.9. Given v = (v1, v2) ∈
C∞(R; R

2) and λ± ∈ M(Ω; R), they are solutions to problem (P) and its dual (P∗) if the following
system is satisfied: 




(λ+ + λ−)′ = 0

h(λ+ − λ−)′′ =
h0

l
(δO − δA) − h0δ

′
O

|(v2)′′| ≤
1

h

|λ±| = 〈λ±,±h(v2)′′〉R ,

where the first two equations select admissible λ± in problem (P)∗ (see Lemma 3.8), the third
equation selects admissible v inproblem (P), and the last couple of equations corresponds to the
optimality conditions (3.9).
Solutions λ± to the first two equations are determined by

λ+ = −λ− =
1

2

h0

hl
(x1 − l)χOA(x1)L1 OA ,

and the remaining conditions are satisfied if we take

v2(x1) = −x
2
1

2h
.

Thus we find for the value of the energy

S0 =
lh0

2h
.

Remark 5.2 (i) Exactly the same result above holds if, in the system of forces, the point Ais
replaced by any other point of the type (l, h1), with |h1| ≤ h (or even more generally if δA is
replaced by any probability on the segment l × [−h, h]).
(ii) Exactly the same result above holds if, with the same system of forces, the design region is
changed into Ω × [0, h].
(iii) Note that S0 is infinitesimal as h→ +∞, as it always happens is a pure flexion regime (see
Corollary 3.4 (i)).
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(iv) The role of λ± in the reconstruction of 3D-optimal structures will be investigated more
into deep in a subsequent work. In the above example we guess that, for any δ > 0, optimal
structures are given by two horizontal bars at heights 0 and h, connected by some diagonal bars
of vanishing mass.

Example 5.3 (mixed regime).
For fixed nonnegative parameters l, h0, α, let the points O,A,B,C have coordinates

O := (0, 0) , A :=
(
− l

2
, 0

)
, B :=

( l
2
, 0

)
, C := (0, h0) ,

and let us consider the axially symmetric system of forces:

F1 := α(δB − δA) , F2 = δC − 1

2
(δA + δB) .

A B

C

O A B

C

O

Figure 2: loads yielding a membrane/flexion regime in the clear/dark part of AB

This system of forces is balanced and it is supported on the design region Q = Ω × [−h, h]
provided the interval Ω contains both A and B, and h ≥ h0. The effective system of forces is
given on the x1-axis by:

F 1 := α
(
δB − δA

)
, F 2 = δO − 1

2

(
δA + δB

)
.

Then according to (3.7) the limit S0 of the suprema S̃δ in (3.3) can be expressed as:

sup
{
α
[
v1(B)−v1(A)

]
+v2(O)−1

2

[
v2(A)+v2(B)

]
: v ∈ C∞(R; R

2) such that |(v1)′±h(v2)′′| ≤ 1 on Ω
}
.

Let us compute the explicit value of S0 in terms of the involved parameters.
By Proposition 3.9, given v = (v1, v2) ∈ C∞(R2; R

2) and λ± ∈ M(Ω; R), they are solutions to
problem (P) and its dual (P∗) if the following system is satisfied:





−(λ+ + λ−)′ = α
(
δA − δB

)

h(λ+ − λ−)′′ = δO − 1

2

(
δA + δB

)

|(v1)′ ± h(v2)
′′| ≤ 1

|λ±| = 〈λ±, (v1)′ ± h(v2)
′′〉R .
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Solutions λ± to the first two equations are determined by

λ+ + λ− = αL1 AB , λ+ − λ− =
1

2h

(
|x1| −

l

2

)
L1 AB , (5.1)

and the remaining conditions are satisfied provided

(v1)
′ ± h(v2)

′′ = sign (λ±) , (5.2)

where sign (λ±) denotes the sign of (the densities of) λ±.
¿From (5.1), we see in particular that λ− remains always nonnegative, whereas for λ+ two cases
may occur:

case 1): if h ≥ l/(4α), then λ+ remains nonnegative;

case 2): if h < l/(4α), then
{
λ+ ≥ 0 if |x1| ≥ (l/2) − 2hα

λ+ < 0 if |x1| < (l/2) − 2hα .

Accordingly, solutions to (5.2) and the value of S0 can be easily computed:

case 1): we have (v1)
′ = 1, (v2)

′′ = 0, and

S0 =

∫
λ+ +

∫
λ− = αl ;

case 2): we have
{

(v1)
′ = 1 and (v2)

′′ = 0 if |x1| ≥ (l/2) − 2hα

(v1)
′ = 0 and (v2)

′′ = 1/h if |x1| < (l/2) − 2hα ,

and

S0 =

∫
|λ+| +

∫
λ− = 2h

[
α2 + l2/(16h2)

]
.

Summing up, we have obtained

S0 =

{
αl if h ≥ l/(4α)

2h
[
α2 + l2/(16h2)

]
if h < l/(4α) .

Remark 5.4 (i) The value found above for S0 is always independent of the parameter h0.
(ii) The critical height hc := l/(4α) is the second coordinate of the intersection point between
the straight lines A + t(−α,−1/2) and B + t(α,−1/2) (namely the point where the two forces
(−α,−1/2)δA and (α,−1/2)δB concur). If h ≥ hc, then the value of S0 is independent of h. In
spite, if h < hc, then the dependance of S0 on h tells that optimal structures for S̃δ do “touch”
the bottom of the design region (independently of the choice of h0).
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6 Proofs of the results in Section 3

Proof of Proposition 3.1. Let δ be fixed. We introduce, for every ε, the functional Jε
and the function ϕε defined respectively on M(Qδ; R

+) and on R by:

Jε(µ) :=

{
Cel

(
µ, j, F δ

)
if µ = θ dx , θ ∈ L∞(R3; [0, ε−1]) , spt(θ) ⊆ Qδ

+∞ otherwise

ϕε(t) :=





inf
{
Jε(µ) : µ ∈ M(Qδ; R

+) ,

∫
dµ = t

}
if 0 < t ≤ ε−1|Qδ|

+∞ otherwise .

It is easy to check that Jε and ϕε are convex and decrease as ε goes down to zero. In particular
the limit ϕ0(t) = limε→0 ϕε(t) exists and is convex as a function of t. We claim that, for every
t > 0, there holds

ϕ0(t) =
(S̃δ)2
2 t

(6.1)

Recalling (3.2), the proposition will follow by taking t = 1, since by (2.10) and (2.6):

Ĩε,δ = inf
{
Cel

(θ
ε
, j, F δ

)
: θ satisfying (2.5)

}
= ϕε(1) .

For proving (6.1), we are going to identify the Fenchel conjugate of ϕ0 through the formula

ϕ∗
0 =

(
inf
ε
ϕε

)∗
= sup

ε
ϕ∗
ε . (6.2)

To compute ϕ∗
ε, we begin by noticing that ϕ∗

ε(t) = +∞ for any t ≤ 0 and that, for every k > 0,
ϕ∗
ε computed at −k coincides with the Fenchel conjugate of Jε computed at the constant function

identically equal to −k. Indeed:

ϕ∗
ε(−k) = sup

{
−

∫
k dµ− Jε(µ) : µ ∈ M(Qδ; R

+) ,

∫
dµ = t

}
= J∗

ε (−k) . (6.3)

Let us compute J∗
ε (−k). By definition we have

J∗
ε (−k) = sup

µ
inf
U

{∫
j
(
e(U) − k

)
dµ− 〈F δ, U〉

R
3

}
,

where the infimum in U is taken over C∞(R3; R
3), while the supremum in µ is taken over the

class of measures of the form µ = θ dx with θ ∈ L∞(R3; [0, ε−1]) and spt(θ) ⊆ Qδ. Since the
latter class is compact and since the dependence with respect to (µ,U) is convex-concave, we
may exchange the supremum and the infimum (seee.g. [13, Proposition 2.2]) so that

J∗
ε (−k) = inf

U

{
− 〈F δ, U〉

R
3 + sup

µ

∫ (
j(e(U)) − k

)
dµ

}

= inf
U

{
− 〈F δ, U〉

R
3 + ε−1

∫

Qδ

(
j(e(U)) − k

)+
dx

}
.
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Then, in order to compute the limit as ε→ 0 of J∗
ε (−k) (which is also their supremum), we are

led to consider the functionals Gε defined on H1(R3; R
3) by

Gε(U) :=





−〈F δ, U〉
R

3 + ε−1

∫

Qδ

(
j(e(U)) − k

)+
dx if U ∈ C∞(R3; R

3)

+∞ otherwise .

Since Gε are increasing in ε (and since by assumption F δ ∈ H−1(Qδ; R
3)), their Γ-limit with

respect to the weak convergence on H1(R3; R
3) coincide with the functional G0 defined by

G0(U) :=

{
−〈F δ, U〉

R
3 if U ∈ H1(R3; R

3) such that j(e(U)) ≤ k a.e. on Qδ

+∞ otherwise .

Moreover, by using the coercivity of j and the Korn inequality, one can easily check that any
sequence {U ε} with supεGε(U

ε) < +∞ is weakly precompact in H1(R3; R
3) (up to subtracting

a rigid displacement, which is not restrictive thanks to (2.3)). This compactness property,
combined with the Γ-convergence of Gε to G0, ensures that the infima of Gε converge to the
infimum of G0. Therefore

− limε J
∗
ε (−k) = − inf

{
− 〈F δ, U〉

R
3 : U ∈ H1(R3; R

3) such that j(e(U)) ≤ k a.e. on Qδ

}

= sup
{
〈F δ, U〉

R
3 : U ∈ C∞(R3; R

3) such that j(e(U)) ≤ k on Qδ

}
.

Recalling the definition of S̃δ in (3.3) and by the 2-homogeneity of j (see(2.1)), we deduce after
an easy computation that

− lim
ε
J∗
ε (−k) =

√
2k S̃δ .

By (6.2) and (6.3), we arrive then to ϕ∗
0(−k) =

√
2k S̃δ . Passing to the biconjugate, we infer

that

ϕ∗∗
0 (t) = sup

k≥0

{
−kt−ϕ∗

0(−k)
}

= sup
k≥0

{
−kt+

√
2k S̃δ

}
=

1

2

(S̃δ)2
t

if t > 0 (+∞ otherwise) .

Finally, to deduce (6.1), it remains to check that ϕ∗∗
0 coincides with ϕ0. This is a consequence of

the fact that ϕ0 is convex continuous on R
+. Indeed, let µ0 be the uniform probability density

on Qδ. As F δ belongs to H−1(Qδ; R
3), we have that k(δ) := Cel(µ0, j, F

δ) < +∞. Then, for
every t > 0, the measure tµ0 is admissible for ϕε(t) whenever ε ≤ t−1|Qδ|. Thus

ϕ0(t) ≤ ϕε(t) ≤ Cel(tµ0, j, F
δ) =

k(δ)

t
,

where the last equality is obtained performing the rescaling V = tU on the competing strain
displacements. The continuity of the convex function ϕ0 on (0,+∞) follows from the latter
upperbound, and the proof of Proposition 3.1 is concluded.
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Proof of Theorem 3.3. Let us begin by writing S̃δ in a more convenient way. We set

U(x) =
(
u1

(
x′, δ−1x3

)
, u2

(
x′, δ−1x3

)
, δ−1u3

(
x′, δ−1x3

))
,

so that

e(U)(x) = eδ(u)
(
x′, δ−1x3

)
:=

[
eαβ(u) δ−1eα3(u)

δ−1eα3(u) δ−2e33(u)

]
(x′, δ−1x3) , (6.4)

where the indices α and β take values into {1, 2}. Hence

S̃δ = sup
{
〈F, u〉

R
3 : u ∈ C∞(R3; R

3) such that ρ(eδ(u)(x
′, δ−1x3)) ≤ 1 on Qδ

}

= sup
{
〈F, u〉

R
3 : u ∈ C∞(R3; R

3) such that ρ(eδ(u)) ≤ 1 on Q
}

= sup
{
〈F, u〉

R
3 : u ∈ Kδ

}
,

where Kδ denotes the the convex set

Kδ :=
{
u ∈ C∞(R3; R

3) : ρ(eδ(u)) ≤ 1 on Q
}
.

As a preliminary remark, we notice that the following compactness property holds: if we take a
sequence {uδ} such that uδ ∈ Kδ, then up to subsequences and up to arigid motion, it converges
uniformly on Q. Indeed by (2.1) we have that eδ(u

δ) is uniformly bounded in L∞(Q); hence,
up to subtracting a rigid displacement (which isnot restrictive thanks to (2.3)), by the Korn
inequality {uδ} is equibounded in W 1,p(Q; R

3) for every p ∈ (1,+∞).
In view of this remark, we are reduced to identify the Kuratowski limit (if any) of the sequence
{Kδ} with respect to the uniform convergence on the compact Q. Indeed if K denotes such a
Kuratowski limit, since the linear form u 7→ 〈F, u〉 is continuous with respect to the uniform
convergence, we will have that

lim
δ→0

S̃δ = sup
{
〈F, u〉

R
3 : u ∈ K

}
. (6.5)

We claim that the set K can be characterized as follows:

K =
{
u ∈ L∞(Q; R

3) : e(u) ∈ L∞(Q; R
3×3
sym) , ρ(eαβ(u)) ≤ 1 , ei3(u) = 0 a.e. on Q

}
. (6.6)

Let us first show how Theorem 3.3 follows from (6.6), and then give theproof of (6.6).
As a slight variant of Theorem 3.1 in [12], it is easy to check that the r.h.s. of (6.6) is the closure
in the uniform norm of the set of Kirchoff-Love displacements

K =
{
u ∈ C∞(R3; R

3) : ρ(eαβ(u)) ≤ 1 , ei3(u) = 0 on Q
}
.
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As it is well known, any function u ∈ K may be written under the form

ui(x) = vi(x
′) − ∂v3

∂xi
(x′)x3 for i = 1, 2 , u3(x) = v3(x

′) .

In terms of the function v, the matrix eαβ(u) is given by

eαβ(u) = e(v1, v2) − x3∇2v3 , (6.7)

hence v must satisfy the inequality

ρ
(
e(v1, v2) − x3∇2v3

)
≤ 1 ∀ (x′, x3) ∈ Ω ×

(
− h, h

)
,

which by convexity is equivalent to

ρ
(
e(v1, v2) ± h∇2v3

)
≤ 1 on Ω . (6.8)

On the other hand we have

〈F, u〉
R

3 =
3∑

i=1

〈Fi, vi〉R3 +
2∑

i=1

〈x3
∂Fi
∂xi

, v3〉R3 = 〈F , v〉
R

2 . (6.9)

By (6.5), (6.8), (6.9), and recalling the definition of S0 in (3.7), we conclde that

lim
δ→0

S̃δ = sup
{
〈F, u〉

R
3 : u ∈ K

}
= S0 .

It remains to establish (6.6). Such equality holds provided one has:

(i) uδ ∈ Kδ, u
δ → u uniformly on Q =⇒ u ∈ K;

(ii) u ∈ K =⇒ ∃uδ ∈ Kδ such that uδ → u uniformly on Q.

Proof of (i). Let uδ ∈ Kδ such that uδ → u uniformly on Q. As already noticed above in
this proof, such a sequence {uδ} is weakly precompact in W 1,p(Q; R

3) for every p ∈ (1,+∞),
which ensures that u belongs W 1,p(Q; R

3) for every such p. Possibly passing to a subsequence,
we may assume that {eδ(uδ)}converges weakly in Lp(Q; R

3×3
sym) to some matrix valued function

M(x) which is of the form

M =

[
eαβ(u) ξα3

ξα3 ξ33

]
.

By the convexity of ρ, one has

‖ρ(M)‖L∞(Q) ≤ lim inf
δ

‖ρ(eδ(uδ))‖L∞(Q) ≤ 1 .

Thus, by the definition (3.6) of ρ, it follows that

‖ρ(eαβ(u))‖L∞(Q) ≤ ‖ρ(M)‖L∞(Q) ≤ 1 .
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On the other hand, it is clear that, for i = 1, 2, 3, ei3(u
δ) does converge strongly to 0 in Lp(Q)

and therefore ei3(u) = 0. Summarizing we have proved that u belongs to K.

Proof of (ii). Let u ∈ K. We search for uδ ∈ Kδ such that uδ → u uniformly on Q. To this
end, it not restrictive to assume that the strict inequality ρ(eαβ(u)) < 1 holds on Q (indeed, for
any u ∈ K the function ũ := (1 − δ)u satisfies ei3ũ = 0 and ρ(eαβũ) < 1). Let ξi = ξi(x′, x3) be
arbitrary smooth functions, and let Φi denote their primitives with respect to the x3 variable:

Φi(x
′, x3) :=

∫ x3

0
ξi(x

′, s) ds .

We define the sequence {uδ} componentwise by:

uδ1 = u1 + δΦ1 , uδ2 = u2 + δΦ2 , uδ3 = u3 + δ2Φ3 .

Clearly {uδ} converges uniformly to u and, according to definition (6.4), an immediate calcula-
tion gives

eδ(u
δ) = eαβ(u) +

2∑

i=1

(
ξi + δ

∂Φ3

∂xi

)
(ei ⊗ e3)

∗ + ξ3(e3 ⊗ e3) ,

so that

ρ(eδ(u
δ)) ≤ ρ

(
eαβ(u) +

3∑

i=1

ξi(ei ⊗ e3)
∗
)

+ o(1) .

The proof of (ii) is concluded by the arbitrariness of the functions ξi. �

Proof of Corollary 3.4. In case (i) it is immediate that

S0 ≥ sup
{
〈F 3, v3〉R2 : v3 ∈ C∞(R2; R) such that ρ(∇2v3) ≤ 1/h on Ω

}
.

The converse inequality is obtained by noticing that, since ρ is even and subadditive, the con-
straint ρ

(
e(v1, v2) ± h∇2v3) ≤ 1 implies ρ

(
∇2v3) ≤ 1/h. The proof in case (ii) is analogous.

�

Proof of Corollary 3.5. First we recall that there holds limε Ĩε,δ = Ĩδ (see Proposition

3.1) and that Ĩδ = S̃2
δ /2 [10, Theorem 2.3]. Then Theorem 3.3 gives limδ S̃δ = S0. Finally we

apply Corollary 3.4 (i) and [13, Theorem 2.4] to conclude that S2
0/2 = h−2 inf

{
Cpl

(
µ, j, F 3

)
:

µ ∈ P(Ω)
}
. �

Proof of Lemma 3.8. Let us rewrite (P) as

(P) − inf
{
− 〈F , v〉

R
2 + χK(A+v) + χK(A−v) : v ∈ C∞(R2; R

3)
}
,
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where χK is the characteristic function of the set

K =
{
M ∈ C0(Ω; R

2×2
sym) : ρ(M) ≤ 1

}
,

and A : C0(Ω; R
3) ∋ v 7→ (A+v,A−v) ∈ [C0(Ω; R

2×2
sym)]2 is the linear operator densely defined by

A±v := e(v1, v2) ± h∇2v3 for all smooth functions v.
By standard duality theory (see for instance [19]), there holds

(P∗) min
{∫

ρo(λ+) +

∫
ρo(λ−) : (λ+, λ−) ∈ [M(Ω; R

2×2
sym)]2 , A∗(λ+, λ−) = F

}
,

where A∗ : [M(Ω; R
2×2
sym)]2 → M(Ω; R

3) is the adjoint operator of A. It is determined by the
following identity (valid for every smooth v):

〈A∗(λ+, λ−), v〉
R

2 = 〈(λ+, λ−), (A+v,A−v)〉
R

2

= 〈λ+, e(v1, v2) + h∇2v3〉R2 + 〈λ−, e(v1, v2) − h∇2v3〉R2

= −〈div(λ+ + λ−), (v1, v2)〉R2 + 〈hdiv2(λ+ − λ−), v3〉R2 .

Therefore, when rewritten componentwise, the constraint A∗(λ+, λ−) = F is equivalent to the
system of two conditions: −div(λ+ + λ−) = (F 1, F 2) and hdiv2(λ+ − λ−) = F 3. �

Proof of Proposition 3.9. Let v and λ± be optimal respectively for problems (P) and
(P)∗. By Lemma 3.8 there holds:

∫
ρo(λ+) +

∫
ρo(λ−) = 〈F , v〉 . (6.10)

On the other hand, if the operator Av = (A+v,A−v) is defined as in the proof of Lemma 3.8,
we have

ρo(λ±) ≥ ρo(λ±) ρ(A±v) ≥ 〈λ±, A±v〉
R

2 , (6.11)

which implies
∫
ρo(λ+) +

∫
ρo(λ−) ≥ 〈(λ+, λ−), Av〉

R
2 = 〈A∗(λ+, λ−), v〉

R
2 = 〈F , v〉

R
2 . (6.12)

Combining (6.10) and (6.12), we deduce that the inequalities in (6.11) must turn into equalities,
so that the optimality conditions (3.9) hold.
Conversely, any v and λ± which are admissible respectively for problems (P) and (P)∗ satisfy

〈F , v〉
R

2 ≤ S0 ≤
∫
ρo(λ+) +

∫
ρo(λ−) . (6.13)

If equations (3.9) hold, we have

〈F , v〉
R

2 = 〈A∗(λ+, λ−), v〉
R

2 = 〈(λ+, λ−), Av〉
R

2 =

∫
ρo(λ+) +

∫
ρo(λ−) ,

hence the inequalities in (6.13) must turn into equalities, which means that v and λ± are optimal.
�
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7 Appendix: computation of effective densities

The following result shows that in general the effective energies j0 and j⊖ do not coincide (cf.
Remark 4.4).

Proposition 7.1 For z ∈ R
3×3
sym, take j(z) = (1/2)|z|2. Then, for z ∈ R

2×2
sym, denoting by λ1(z)

the eigenvalue of z which is largest in modulus, there holds

j0(z) =
1

2
(λ1(z))

2 and (j)⊖(z) =





1

2
(λ1(z))

2 if det(z) > 0

1

2
|z|2 if det(z) ≤ 0 .

Proof.

Computation of j0. For z ∈ R
3×3
sym, the modified integrand j0(z) is given by (see [9])

j0(z) =
1

2

(
λ1(z)

2 + λ2(z)
2
)
,

being λi(z) the eigenvalues of z with |λ1(z)| ≥ |λ2(z)| ≥ |λ3(z)|.
The Fenchel conjugate is given by [2]

j∗0(z∗) =





1

2

(
|τ1| + |τ2| + |τ3|

)2
if |τ3| ≤ |τ1| + |τ2|

1

2

(
(|τ1| + |τ2|)2 + |τ3|2

)
otherwise ,

(7.1)

where τi = τi(z
∗) are the eigenvalues of the matrix z∗ ∈ R

3×3
sym.

Take now z∗ ∈ R
2×2
sym, and denote by (z∗|0) ∈ R

3×3
sym the matrix obtained by adding to z∗ a line

and a column of zeros. It is easy to check directly from the definition of j0 that the Fenchel
conjugates of j0 and j0 are related by the identity

(
j0

)∗
(z∗) = (j0)

∗((z∗|0)) . (7.2)

By using (7.1) and (7.2), for any z ∈ R
2×2
sym, we obtain

j0(z) = sup
{
z · z∗ −

(
j0

)∗
(z∗) : z∗ ∈ R

2×2
sym

}

= sup
{

(ze · e)τ1 + (ze⊥ · e⊥)τ2 − 1
2

(
|τ1| + |τ2|

)2
: τi ∈ R , e ∈ S1

}
.

= supe∈S1

{
max

{
sup

{
(ze · e)τ1 + (ze⊥ · e⊥)τ2 − 1

2

(
|τ1| + |τ2|

)2
: τ1 · τ2 ∈ R

±
}}
.

For a fixed e ∈ S1, let us consider the supremum over τ1 · τ2 ∈ R
+: the optimality conditions are

ze · e = τ1 + τ2 , ze⊥ · e⊥ = τ1 + τ2 .
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Therefore, the value of the supremum is (1/2)max{(ze · e)2, (ze⊥ · e⊥)2}. The supremum over
τ1 · τ2 ∈ R

− has the same value as it can be obtained from the supremum over τ1 · τ2 ∈ R
+ up

to changing the sign of ze⊥ · e⊥. Finally, optimizing with respect to e gives

j0(z) = sup
e∈S1

{1

2
max

{
(ze · e)2, (ze⊥ · e⊥)2

}}
=

1

2
(λ1(z))

2 .

Computation of (j)⊖. For z ∈ R
2×2
sym, we have j(z) = (1/2)|z|2 (see [11]). Then

(j)⊖(z) = sup
{
z · z∗ − (1/2)|z∗|2 : z∗ ∈ R

2×2
sym , det(z∗) ≤ 0

}

= sup
{

(ze · e)τ1 + (ze⊥ · e⊥)τ2 − 1
2

(
τ2
1 + τ2

2

)
: τ1 · τ2 ∈ R

−, e ∈ S1
}
.

For a fixed e ∈ S1, let us consider the supremum over τ1 · τ2 ∈ R
−: the optimaliy conditions are

ze · e = τ1 , ze⊥ · e⊥ = τ2 .

Therefore, the value of the supremum is

ψ(e) :=





ψ1(e) :=
1

2

[
(ze · e)2 + (ze⊥ · e⊥)2

]
if (ze · e) · (ze⊥ · e⊥) ∈ R

−

ψ2(e) :=
1

2
max

{
(ze · e)2, (ze⊥ · e⊥)2

}
otherwise .

If we write e = (cos θ, sin θ) in a basis made by eigenvectors of z, and we denote by λi the
eigenvalues of z (with |λ1| ≥ |λ2|), we have

(ze · e) · (ze⊥ · e⊥) ∈ R
− ⇐⇒ cos2 θ sin2 θ

cos4 θ + sin4 θ
≤ − λ1λ2

λ2
1 + λ2

2

. (7.3)

Then two cases may occur.
Case 1: det(z) > 0. In this case (7.3) cannot hold, so that for every e ∈ S1 we have ψ(e) = ψ2(e).
In terms of θ the function ψ2 is written as

ψ2(θ) =
1

2
max

{
(λ1 cos2 θ + λ2 sin2 θ)2 , (λ1 sin2 θ + λ2 cos2 θ)2

}
;

then the supremum of ψ2(θ) over S1 equals (1/2)λ2
1.

Case 2: det(z) ≤ 0. In terms of θ the function ψ1(e) is written as

ψ1(θ) =
1

2
(λ2

1 + λ2
2)(cos4 θ + sin4 θ) + 2λ1λ2 cos2 θ sin2 θ;

then the supremum of ψ1(θ) for θ satisfying (7.3) is easily computed to be (1/2)(λ2
1 +λ2

2). Since
such value is larger than (or equal to) the supremum of ψ2 on S1, it is also the supremum of ψ
on S1.

�
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