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Abstract. We introduce a class of Boltzmann equations on the real line, which constitute

extensions of the classical Kac caricature. The collisional gain operators are defined by smooth-

ing transformations with quite general properties. By establishing a connection to the central

limit problem, we are able to prove long-time convergence of the equation’s solutions towards

a limit distribution. If the initial condition for the Boltzmann equation belongs to the domain

of normal attraction of a certain stable law να, then the limit is a scale mixture of να. Under

some additional assumptions, explicit exponential rates for the convergence to equilibrium in

Wasserstein metrics are calculated, and strong convergence of the probability densities is shown.

1. Introduction

In a variety of recent publications, intimate relations between the central limit theorem of prob-
ability theory and the celebrated Kac caricature of the Boltzmann equation from statistical physics
have been revealed. The idea to represent the solutions of the Kac equation in a probabilistic way
dates back at least to the works of McKean in the 60’s, see e.g. McKean (1966), but has been fully
formalized and employed in the derivation of analytic results only in the last decade. For instance,
probabilistic methods have been used to get estimates on the quality of approximation of solu-
tions by truncated Wild sums in Carlen et al. (2000), to study necessary and sufficient conditions
for the convergence to a steady state in Gabetta and Regazzini (2006b), to study the blow-up
behavior of solutions of infinite energy in Carlen et al. (2007, 2008), to obtain rates of convergence
to equilibrium of the solutions both in strong and weak metrics, Gabetta and Regazzini (2006c);
Dolera et al. (2007); Dolera and Regazzini (2007). The power of the probabilistic approach is
illustrated, for instance, by the fact that in Dolera et al. (2007) very refined estimates for the
classical central limit theorem enabled the authors to deliver the first proof of a conjecture that
has been formulated by McKean about fourty years ago.

The applicability of probabilistic methods is not restricted to the classical Kac equation, but
extends to the inelastic Kac model, proposed by Pulvirenti and Toscani (2004). In the inelastic
model, the energy (second moment) of the solution is not conserved but dissipated, and hence
infinite energy is needed initially to obtain a non-trivial long-time limit. In Bassetti et al. (2008)
probabilistic methods have been used to study the speed of approach to equilibrium under the
assumption that the initial condition belongs to the domain of normal attraction of a suitable
stable law. In this context, indeed, the steady states are the corresponding stable laws.

In the current paper, we continue in the spirit of the aforementioned results. By means of the
central limit theorem for triangular arrays, we are able to study the long time behavior of solutions
of a wide class of one-dimensional Boltzmann equations, which contains (essentially) the classical
and the inelastic Kac model as special cases.

To be more specific, recall that the Kac equation describes the evolution of a time-dependent
probability measure µ(t) on the real axis, and is most conveniently written as an evolution equation
for the characteristic function φ(t) of µ(t). The equation has the form

(1)

{
∂tφ(t; ξ) + φ(t; ξ) = Q̂+[φ(t; ·), φ(t; ·)](ξ) (t > 0, ξ ∈ R)

φ(0; ξ) = φ0(ξ)
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where the collisional gain operator is given by

Q̂+[φ(t; ·), φ(t; ·)](ξ) := E[φ(t;Lξ)φ(t;Rξ)].(2)

Above, (L,R) is a random vector defined on a probability space (Ω,F , P ) and E denotes the expec-
tation with respect to P . The initial condition φ0 is the characteristic function of a prescribed real
random variable X0; by abuse of notation, we shall also refer to X0, to its probability distribution
function F0 or to its law µ(0) as the initial condition.

For the classical Kac equation, one writes (L,R) = (sin(Θ), cos(Θ)), with Θ uniformly dis-
tributed on [0, 2π), and hence L2 +R2 = 1 a.s. The inelastic Kac equation is obtained by

(L,R) = (sin(Θ)| sin(Θ)|p, cos(Θ)| cos(Θ)|p),

with p > 0, and hence |L|α + |R|α = 1 a.s., if α = 2/(1 + p). It is worth recalling that the study
of the respective initial value problems can be reduced to the study of the same problems under
the additional assumption that the initial distribution is symmetric, i.e. the initial characteristic
function is real, and (L,R) = (| sin(Θ)|1+p, | cos(Θ)|1+p). See Section 2.1.

In this paper, we consider the problem (1), where the random variables L and R in the definition
of the collision operator in (2) are non-negative and satisfy the condition

E[Lα +Rα] = 1,(3)

for some α in (0, 2]. The therewith defined bilinear operators Q̂+ are examples of smoothing
transformation, which have been extensively studied in the context of branched random walks, see
e.g. Kahane (1976); Durrett and Liggett (1983); Guivarc’h (1990); Liu (1998); Iksanov (2004)
and the references therein.

Our motivation, however, originates from applications to statistical physics. These applications
are discussed in Section 2.1. At this point, we just mention the two main examples.

(1) Passing from the Kac condition L2 + R2 = 1 to (3) with α = 2, the model retains its
crucial physical property to conserve the second moment of the solution. However, the
variety of possible steady states grows considerably: depending on the law of (L,R), the
latter may exhibit heavy tails.

(2) For certain distributions satisfying (3) with α = 1, equation (1) has been used to model
the redistribution of wealth in simplified market economies, which conserve the society’s
total wealth (first moment). Whereas the condition L + R = 1 would correspond to
deterministic trading and lead eventually to a fair but unrealistic distribution of wealth
in the long time limit, the relaxed condition (3) allows trade mechanisms that involve
randomness (corresponding to risky investments) and lead to a realistic, highly unequal
distribution of wealth.

Our main results from Theorems 3.2 and 3.4 can be rephrased as follows:

Assume that (3) holds with α ∈ (0, 2], but α 6= 1, and in addition that E[Lγ +Rγ] < 1 for some
γ > α. Let µ(t), for t ≥ 0, be the probability measure on R such that its characteristic function
φ(t) is the unique solution to the associated Boltzmann equation (1). Assume further that the
initial datum µ(0) lies in the normal domain of attraction of some α-stable law να, and that µ(0)
is centered if α > 1. Then, as t → +∞, the probability measures µ(t) converge weakly to a limit
distribution µ∞, which is a non-trivial scale mixture of να.

The results in the case α = 1 are more involved; see Theorems 3.3 and 3.5.
Under the previous general hypotheses, no more than weak convergence can be expected. How-

ever, slightly more restrictive assumptions on the initial condition φ0 suffice to obtain exponentially
fast convergence in some Wasserstein distance. Finally, if the initial condition possesses a density
with finite Linnik-Fisher functional and the condition Lr +Rr ≥ 1 holds a.s. for some r > 0, then
the probability density of µ(t) exists for every t > 0 and converges strongly in the Lebesgue spaces
L1(R) and L2(R) as t→ +∞.
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The largest part of the paper deals with the proofs of weak convergence, which are obtained in
application of the central limit theorem for triangular arrays. Consequently, the core element of
the proof is to establish a suitable probabilistic interpretation of the solution to (1). The link to
probability theory is provided by a semi-explicit solution formula: the Wild sum,

φ(t) = e−t
∞∑

n=0

(1 − e−t)nq̂n,(4)

represents the solution φ(t) as a convex combination of characteristic functions q̂n, which are

obtained by iterated application of the gain operator Q̂+ to the initial condition φ0 — see formula
(11). Following Gabetta and Regazzini (2006b) we consider a sequence of random variables Wn

such that Wn has q̂n−1 as its characteristic function, and possesses the representation

Wn =

n∑

j=1

βj,nXj ,(5)

where the Xj are independent and identically distributed random variables with common char-
acteristic function φ0. The weights βj,n are random variables themselves and are obtained in a
recursive way, see (12).

The behavior of φ(t) in (4) as t → ∞ is obviously determined by the behavior of the law of Wn

as n → ∞. It is important to note that a direct application of the central limit theorem to the
study of Wn is inadmissible since the weights in (5) are not independent. However, one can apply
the central limit theorem to study the conditional law of Wn, given the array of weights βj,n.

Representations in the form (4) with (5) are known for the (classical and inelastic) Kac equation,
see Gabetta and Regazzini (2006b) and Bassetti et al. (2008). The situation here is more involved,
since (3) only implies that

E
[
βα

1,n + βα
2,2 + · · · + βα

n,n

]
= 1,(6)

whereas for the Kac equation,

βα
1,n + βα

2,n + · · · + βα
n,n = 1 a.s.(7)

In order to be able to apply the central limit theorem, one needs to prove that max1≤j≤n |βj,n|
converges in probability to zero, and that

∑
j β

α
j,n converges (almost surely) to a random variable.

Thanks to (7), the latter condition is immediately satisfied for the Kac equation, while it is
not always true for the general model considered here. We stress that the generality of (6) in
comparison to (7) is the origin of the richness of possible steady states in (1).

The paper is organized as follows. In Section 2, we recall some basic facts about the Boltzmann
equation under consideration, present a couple of examples to which the theory applies, and derive
the stochastic representation of solutions. Section 3 contains the statements of our main theorems.
The results are classified into those on convergence in distribution (Section 3.1), convergence in
Wasserstein metrics at quantitative rates (Section 3.2) and strong convergence of the probability
densities (Section 3.3). All proofs are collected in Section 4.

2. Examples and preliminary results

One-dimensional kinetic equations of type (1)-(2), like the Kac equation and its variants, provide
simplified models for a spatially homogeneous gas, in which particle move only in one spatial
direction. The measure µ(t), whose characteristic function is the solution of (1), describes the
probability distribution of the velocity of a molecule at time t. The basic assumption is that
particles change their velocities only because of binary collisions. When two particles collide, then
their velocities change from v and w, respectively, to

v′ = L1v +R1w and w′ = R2v + L2w(8)

with L1 = L2 = sin(Θ) and R1 = −R2 = cos(Θ).
More generally, one can consider binary interaction obeying (8), where (L1, R1) and (L2, R2)

are two identically distributed random vectors (not necessarily independent) with the same law of
(L,R). This leads, at least formally, to equation (1).



4 englishFEDERICO BASSETTI, LUCIA LADELLI, AND DANIEL MATTHES

2.1. Examples. The following applications are supposed to serve to motivate the study of the
Boltzmann equation (1) with the condition (3). The first two examples are taken from gas dy-
namics, while the third originates from econophysics.

Kac like models. Instead of discussing the physical relevance of the Kac model, we simply remark
that it constitutes the most sensible one-dimensional caricature of the Boltzmann equation for
elastic Maxwell molecules in three dimensions. A comprehensive review on the mathematical
theory of the latter is found e.g. in Bobylëv (1988). The term “elastically” refers to the fact
that the kinetic energy of two interacting molecules – which is proportional to the square of
the particles’ velocities – is preserved in their collisions. Indeed, since L1 = L2 = sin(Θ) and
R1 = −R2 = cos(Θ), one obtains (v′)2 + (w′)2 = v2 + w2.

We shall not detail any of the numerous results available in the extensive literature on the Kac
equation, but simply summarize some basic properties that are connected with our investigations
here. First, we remark that the microscopic conservation of the particles’ kinetic energy implies
the conservation of the average energy, which is the second moment of the solution µ(t) to (1).
Moreover, it is easily proven that the average velocity, i.e. the first moment of µ(t), converges to
zero exponentially fast. For t → +∞, the solution µ(t) converges weakly to a Gaussian measure
that is determined by the conserved second moment.

As already mentioned in the introduction, the study of the original Kac model can be reduced
to the study of a particular case of the model we are considering. Indeed, it is well-known that
the solution of the Kac equation can be written as

φ(t, ξ) = e−tIm
(
φ0(ξ)

)
+ φ∗(t, ξ)(9)

where φ∗ is the solution to problem (1) with Re(φ0) in the place of φ0, L = | sin(Θ)| and R =
| cos(Θ)|. Hence, we can invoke Theorem 3.4, which provides another proof of the large-time
convergence of solutions µ(t) to a Gaussian law. In fact, also Theorem 3.8 is applicable, which
shows that the densities of µ(t) converge in L1(R) and L2(R), provided µ(0) possesses a density
with finite Linnik functional.

These consequences are weak in comparison to the various extremely refined convergence es-
timates for the solutions to the Kac equation available in the literature. See, e.g., the review
Regazzini (2008). On the other hand, our proofs do not rely on any of the symmetry properties
that are specific for the Kac model. Thus, our aforementioned results extend — word by word —
to the wide class of problems (1)-(2) with L2 +R2 = 1 a.s.

The variant of the Kac equation, introduced in Pulvirenti and Toscani (2004), is called in-
elastic because the total kinetic energy of two colliding particles is not preserved in the collision
mechanism, but decreases in general. Consequently, if the second moment of the initial condition
µ(0) is finite, then the second moment of the solution µ(t) converges to zero exponentially fast
in t > 0. Non-trivial long-time limits are thus necessarily obtained from initial conditions with
infinite energy. In Bassetti et al. (2008), it is shown that the solution µ(t) converges weakly to a
α-stable law να if µ(0) belongs to the normal domain of attraction of να,

As for the Kac model, the study of the inelastic Kac model too can be reduced to the framework
of the present paper. Hence, Theorem 3.8 and Proposition 3.6 yield new results concerning strong
convergence of densities in L1(R) and convergence with respect to the Wasserstein metrics.

Inelastic Maxwell molecules. We shall now consider a variant of the Kac model in which the energy
is not conserved in the individual particle collisions, but gains and losses balance in such a way that
the average kinetic energy is conserved. This is achieved by relaxing the condition L2 + R2 = 1
to E[L2 +R2] = 1, which is (3) with α = 2.

Just as the Kac equation is a caricature of the Boltzmann equation for elastic Maxwell molecules,
the model at hand can be thought of as a caricature of a Boltzmann equation for inelastic Maxwell
molecules in three dimensions. For the definition of the corresponding model, its physical justifi-
cation, and a collection of relevant references, see Carrillo et al. (2008). We stress, however, that
the Kac caricature of inelastic Maxwell molecules is not the same as the inelastic Kac model from
the preceeding paragraph.
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Conservation of the total energy can be proven for centered solution µ(t); like symmetry, also
centering is propagated from µ(0) to any µ(t) by (1). The argument leading to energy conservation
is given in the remarks following Theorem 3.4.

Relaxation from strict energy conservation to conservation in the mean affects the possibilities
for the large-time dynamics of µ(t). It follows from Theorem 3.4 that if E[Lγ +Rγ ] < 1 for some
γ > 2, then any solution µ(t), which is centered and of finite second moment initially, converges
weakly to a non-trivial steady state µ∞. However, unless L2 +R2 = 1 a.s., µ∞ is not a Gaussian.
In fact, (L,R) can be chosen in such a way that µ∞ possesses only a finite number of moments.
In physics, such velocity distributions are referred to as “high energy tailed”, and typically appear
when the molecular gas is connected to a thermal bath.

An example leading to high energy tails is the following: let (L,R) such that P{L = 1/2} =

P{L =
√

5/2} = 1/2 and P{R = 1/2} = 1. One verifies that E[L2 + R2] = 1 and E[L4 + R4] =
7/8 < 1, so Theorem 3.4 guarantees the existence of a non-degenerate steady state µ∞. Moreover,
E[L6+R6] = 1, and one concludes further from Theorem 3.4 that the sixth moment of µ∞ diverges,
whereas all lower moments are finite.

Wealth distribution. Recently, an alternative interpretation of the equation (1) has become pop-
ular. The homogeneous gas of colliding molecules is replaced by a simple market with a large
number of interacting agents. The current “state” of each individual is characterized by a single
number, his or her wealth v. Correspondingly, the measure µ(t) represents the distribution of
wealth among the agents. The collision rule (8) describes how wealth is exchanged between agents
in binary trade interactions. See, e.g., Slanina (2004); Cordier et al. (2005).

Typically, it is assumed that µ(t) is supported on the positive semi-axis. In fact, the first
moment of µ(t) represents the total wealth of the society and plays the same rôle as the energy in
the previous discussion. In particular, it is conserved by the evolution.

In the first approaches, see e.g. Angle (1986), conservation of wealth in each trade was required,
i.e. v′ + w′ = v + w. Hence, assuming L1 = L2 and R1 = R2 in (8), this yields L + R = 1 a.s.
However, the obtained results were unsatisfactory: in the long time limit, the wealth distribution
µ(t) concentrates on the society’s average wealth, so that asymptotically, all agents possess the
same amount of money. This also follows from our Theorem 3.3.

More realistic results have been obtained by Matthes and Toscani (2008), where trade rules
(L,R) have been introduced that satisfy (3) with α = 1, but in general P{L+R = 1} < 1. Thus
wealth can be increased or diminished in individual trades, but the society’s total wealth, i.e. the
first moment of µ(t), remains constant in time. The proof of conservation of the mean wealth can
also be found in the remarks after Theorem 3.3.

A typical example for trade rules is the following. Let L1 = L2 and R1 = R2 with P{L =
1 − p + r} = P{L = 1 − p− r} = 1/2 and P{R = p} = 1, where p in (0, 1) is a relative price of
an investment and r in (0, p) is a risk factor. The interpretation reads as follows: each of the two
interacting agents buys from the other one some risky asset at the price of the pth fraction of the
respective buyer’s current wealth; these investments either pay off and produce some additional
wealth, or lose value, both proportional (with r) to their original price. Over-simplified as this
model might be, it is able to produce (for suitable choices of p and r) steady distributions µ∞ with
only finitely many moments, as are typical wealth distributions for western countries; see Matthes
and Toscani (2008) for further discussion.

An example is provided by choosing p = 1/4 and r = 1/2. One easily verifies that E[L+R] = 1,
E[L2 + R2] = 7/8 < 1 and E[L3 + R3] = 1. By Theorem 3.3, it follows that there exists a non-
degenerate steady distribution µ∞ that possesses all moments up to the third, whereas the third
moment diverges.

2.2. Probabilistic representation of the solution. As already mentioned, a convenient way
to represent the solution φ to the problem (1) is

(10) φ(t; ξ) =

∞∑

n=0

e−t(1 − e−t)nq̂n(ξ) (t ≥ 0, ξ ∈ R)
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where q̂n is recursively defined by

(11)

{
q̂0(ξ) := φ0(ξ)

q̂n(ξ) := 1
n

∑n−1
j=0 E[q̂j(Lξ)q̂n−1−j(Rξ)] (n = 1, 2, . . . ).

The series in (10) is referred to as Wild sum, since the representation (10) has been derived in
Wild (1951) for the solution of the Kac equation. In this section, we shall rephrase the Wild
sum in a probabilistic way. The idea goes back to McKean (1966, 1967), where McKean relates
the Wild series to a random walk on a class of binary trees, the so–called McKean trees. It is not
hard to verify that each of the expressions q̂n in the Wild series is indeed a characteristic function.
Now, following Gabetta and Regazzini (2006b), we shall define a sequence of random variables
Wn such that q̂n−1(ξ) = E[eiξWn ].

On a sufficiently large probability space (Ω,F , P ), let the following be given:

• a sequence (Xn)n∈N of independent and identically distributed random variables with
common distribution function F0;

• a sequence
(
(Ln, Rn)

)
n∈N

of independent and identically distributed random vectors, dis-

tributed as (L,R);
• a sequence (In)n∈N of independent integer random variables, where each In is uniformly

distributed on the indices {1, 2, . . . , n};
• a stochastic process (νt)t≥0 with values in N and P{νt = n} = e−t(1 − e−t)n−1.

We assume further that

(In)n≥1, (Ln, Rn)n≥1, (Xn)n≥1 and (νt)t>0

are stochastically independent. The random array of weights [βj,n : j = 1, . . . , n]n≥1 is recursively
defined as follows:

β1,1 := 1, (β1,2, β2,2) := (L1, R1)

and, for any n ≥ 2,

(12) (β1,n+1, . . . , βn+1,n+1) := (β1,n, . . . , βIn−1,n, LnβIn,n, RnβIn,n, βIn+1,n, . . . , βn,n).

Finally set

Wn :=

n∑

j=1

βj,nXj and Vt := Wνt
=

νt∑

j=1

βj,νt
Xj .(13)

I  =1 I  =1 I  =3 I  =2 

L 2 

L 1 R 1

L 3

2 R

R 3

2 R L 3

L 1

R 1

L 1

R 32 R

L 2 L 1β    = 1,4
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β    =

β    =4,4

3,4

2 RL 1

L 2 L 1
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R 1L 3

L R

R 1

2 3 3R

1

L 2 

L 

3
2 3 4

2

1

4

1

2 2

4,4

3,4

β    = 1,4

β    =2,4

β    =

β    =

33

Figure 1. Two McKean trees, with associated weights β.

There is a direct interpretation of this construction in terms of McKean trees. For an introduc-
tion to McKean trees, see, e.g., Carlen et al. (2000). Each finite sequence In = (I1, I2, . . . , In−1)
corresponds to a McKean tree with n leaves. The tree associated to In+1 is obtained from the
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tree associated to In upon replacing the In-th leaf (counting from the left) by a binary branching
with two new leaves. The left of the new branches is labelled with Ln, and the right one with Rn.
Finally, the weights βj,n are associated to the leaves of the In-tree; namely, βj,n is the product of
the labels assigned to the branches along the ascending path connecting the jth leaf to the root.
The trees with I4 = (1, 1, 2) and I4 = (1, 2, 3), respectively, are displayed in Figure 1.

In the Wild construction (11), McKean trees with n leaves are obtained by joining pairs of trees
with k and n− k leaves, respectively, at a new common root. Wheras our construction produces
the n leaved trees from the n−1 leaved trees replacing a leaf by a binary branching. In a way, the
second construction is much more natural — or, at least, more biological! The next proposition
shows that both constructions indeed lead to the same result.

In the rest of the paper expectations with respect to P will be denoted by E.

Proposition 2.1 (Probabilistic representation). Equation (1) has a unique solution φ(t), which
coincides with the characteristic function of Vt, i.e.

φ(t, ξ) = E[eiξVt ] =

∞∑

n=0

e−t(1 − e−t)n
E[eiξWn+1 ] (t > 0, ξ ∈ R).

Proof. The respective proof for the Kac case is essentially already contained in McKean (1966).
See Gabetta and Regazzini (2006b) for a more complete proof. Here, we extend the argument to
the problem (1). First of all it is easy to prove, following Wild (1951) and McKean (1966), that
formulas (10) and (11) produce the unique solution to problem (1). See also Sznitman (1986).
Hence, comparing the Wild sum representation (10) and the definition of Vt in (13), it obviously
suffices to prove that

(14) q̂`−1(ξ) = E[eiξW` ],

which we will show by induction on ` ≥ 1. First, note that E[exp(iξW1)] = E[exp(iξX1)] =
φ0(ξ) = q̂0(ξ) and

E[eiξW2 ] = E[eiξ(L1X1+R1X2)] = E[E[eiξ(L1X1+R1X2)|L1, R1]] = q̂1(ξ),

which shows (14) for ` = 1 and ` = 2. Let n ≥ 3, and assume that (14) holds for all 1 ≤ ` < n; we
prove (14) for ` = n.

Recall that the weights βj,n are products of random variables Li and Ri. By the recursive
definition in (12), one can define a random index Kn < n such that all products βj,n with j ≤ Kn

contain L1 as a factor, while the remaining products βj,n with Kn + 1 ≤ j ≤ n contain R1. (In
terms of McKean trees, Kn is the number of leaves in the left sub-tree, and n −Kn the number
of leaves in the right one.) By induction it is easy to see that

P{Kn = i} =
1

n− 1
i = 1, . . . , n− 1;

c.f. Lemma 2.1 in Carlen et al. (2000). Now,

AKn
:=

Kn∑

j=1

βj,n

L1
Xj , BKn

:=

n∑

j=Kn+1

βj,n

R1
Xj and (L1, R1)

are conditionally independent given Kn. By the recursive definition of the weights βj,n in (12),
the following is easily deduced: the conditional distribution of AKn

, given {Kn = k}, is the same

as the (unconditional) distribution of
∑k

j=1 βj,kXj , which clearly is the same distribution as that

of Wk . Analogously, the conditional distribution of BKn
, given {Kn = k}, equals the distribution



8 englishFEDERICO BASSETTI, LUCIA LADELLI, AND DANIEL MATTHES

of
∑n−k

j=1 βj,n−kXj , which further equals the distribution of Wn−k. Hence,

E[eiξWn ] =
1

n− 1

n−1∑

k=1

E
[
eiξ(L1Ak+R1Bk)

∣∣{Kn = k}
]

=
1

n− 1

n−1∑

k=1

E
[
E[eiξL1Wk |L1, R1]E[eiξR1Wn−k |L1, R1]

]

=
1

n− 1

n−1∑

k=1

E[q̂k−1(L1ξ)q̂n−k−1(R1ξ)] =
1

n− 1

n−2∑

j=0

E[q̂n−2−j(L1ξ)q̂j(R1ξ)]

which is q̂n−1 by the recursive definition in (11). �

3. Convergence results

In order to state our results we need to review some elementary facts about the central limit
theorem for stable distributions. Let us recall that a probability distribution is said to be a centered
stable law of exponent α (with 0 < α ≤ 2) if its characteristic function is of the form

(15) ĝα(ξ) =





exp{−k|ξ|α(1 − iη tan(πα/2) sign ξ)} if α ∈ (0, 1) ∪ (1, 2)
exp{−k|ξ|(1 + 2iη/π log |ξ| sign ξ)} if α = 1
exp{−σ2|ξ|2/2} if α = 2.

where k > 0 and |η| ≤ 1.
By definition, a distribution function F belongs to the domain of normal attraction of a stable

law of exponent α if for any sequence of independent and identically distributed real-valued random
variables (Xn)n≥1 with common distribution function F , there exists a sequence of real numbers
(cn)n≥1 such that the law of

1

n1/α

n∑

i=1

Xi − cn

converges weakly to a stable law of exponent α ∈ (0, 2].
It is well-known that, provided α 6= 2, F belong to the domain of normal attraction of an

α-stable law if and only if F satisfies

lim
x→+∞

xα(1 − F (x)) = c+ < +∞,

lim
x→−∞

|x|αF (x) = c− < +∞.
(16)

Typically, one also requires that c+ + c− > 0 in order to exclude convergence to the probability
measure concentrated in x = 0, but here we shall include the situation c+ = c− = 0 as a special
case. The parameters k and η of the associated stable law in (15) are identified from c+ and c−

by

(17) k = (c+ + c−)
π

2Γ(α) sin(πα/2)
, η =

c+ − c−

c+ + c−
,

with the convention that η = 0 if c+ + c− = 0. In contrast, if α = 2, F belongs to the domain of
normal attraction of a Gaussian law if and only if it has finite variance σ2.

For more information on stable laws and central limit theorem see, for example, Chapter 2 of
Ibragimov and Linnik (1971) and Chapter 17 of Fristedt and Gray (1997).

3.1. Convergence in distribution. We return to our investigation of solutions to the initial
value problem (1)-(2). For definiteness, let the two non-negative random variables L and R, which
define the dynamics in (2), be fixed from now on. We assume that they satisfy

E[Lα +Rα] = 1(18)

for some number α ∈ (0, 2]. We introduce the convex function S : [0,∞) → [−1,∞] by

S(s) = E[Ls +Rs] − 1,
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where we adopt the convention 00 = 0. From (18) it follows that S(α) = 0. Recall that F0 is the
probability distribution function of the initial condition X0 for (1), and its characteristic function
is φ0.

The main results presented below show that if F0 belongs to the domain of normal attraction
of an α-stable law, then the solution φ(t; ·) to the problem (1)-(2) converges, as t → +∞, to the
characteristic function of a mixture of stable distributions of exponent α. The mixing distribution
is given by the law of the limit for n→ ∞ of the random variables

M (α)
n =

n∑

j=1

βα
j,n,

which are defined in terms of the random weights defined in (12). The content of the following

lemma is that M
(α)
n converges almost surely to a random variable M

(α)
∞ .

Lemma 3.1. Under condition (18),

E[M (α)
n ] = E[M (α)

νt
] = 1 for all n ≥ 1 and t > 0,(19)

and M
(α)
n converges almost surely to a non-negative random variable M

(α)
∞ .

In particular,

• if Lα + Rα = 1 a.s., then S(s) ≥ 0 for every s < α and S(s) ≤ 0 for every s > α.

Moreover, M
(α)
n = M

(α)
∞ = 1 almost surely;

• if P{Lα +Rα = 1} < 1 and if S(γ) < 0 for some 0 < γ < α, then M
(α)
∞ = 0 almost surely;

• if P{Lα + Rα = 1} < 1 and if S(γ) < 0 for some γ > α, then M
(α)
∞ is a non-degenerate

random variable with E[M
(α)
∞ ] = 1 and E[(M

(α)
∞ )

γ
α ] < +∞. Moreover, the characteristic

function ψ of M
(α)
∞ is the unique solution of

(20) ψ(ξ) = E[ψ(ξLα)ψ(ξRα)] (ξ ∈ R)

with −iψ′(0) = 1. Finally, for any p > α, the moment E[(M
(α)
∞ )

p
α ] is finite if and only if

S(p) < 0.

We are eventually in the position to formulate our main results. The first statement concerns
the case where α 6= 1 and α 6= 2.

Theorem 3.2. Assume that (18) holds with α ∈ (0, 1)∪ (1, 2) and that S(γ) < 0 for some γ > 0.
Moreover, let condition (16) be satisfied for F = F0 and let X0 be centered if α > 1. Then Vt

converges in distribution, as t → +∞, to a random variable V∞ with the following characteristic
function

(21) φ∞(ξ) = E[exp(iξV∞)] = E[exp{−|ξ|αkM (α)
∞ (1 − iη tan(πα/2) sign ξ)}] (ξ ∈ R),

where the parameters k and η are defined in (17). In particular, V∞ is a non-degenerate random
variable if c+ + c− > 0 and γ > α, whereas V∞ = 0 a.s. if c+ = c− = 0, or if γ < α. Moreover, if
Lα +Rα = 1 a.s., then the distribution of V∞ is an α-stable law. Finally, if V∞ is non-degenerate,
then E[|V∞|p] < +∞ if and only if p < α.

If c− = c+ then the limit distribution is a mixture of symmetric stable distributions. For
instance this is true if F0 is the distribution function of a symmetric random variable.

If α < 1 andX0 ≥ 0, then clearly c− = 0 and the limit distribution is a mixture of positive stable
distributions. Recall that a positive stable distribution is characterized by its Laplace transform
s 7→ exp(−ksα); hence, in this case,

E[exp(−sV∞)] = E[exp{−sαk̄M (α)
∞ }] for all s > 0, with k̄ = c+

∫ +∞

0
(1−e−y)

yα+1 dy.

A consequence of Theorem 3.2 is that if E[|X0|α] <∞, then the limit V∞ is zero almost surely,
since c+ = c− = 0. The situation is different in the cases α = 1 and α = 2, where V∞ is non-trivial
provided that the first respectively second moment of X0 is finite.
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Theorem 3.3. Assume that (18) holds with α = 1 and that S(γ) < 0 for some γ > 0. If the
initial condition possesses a finite first moment m0 = E[X0], then Vt converges in distribution, as

t → +∞, to V∞ := m0M
(1)
∞ . In particular, V∞ is non-degenerate if γ > 1 and m0 6= 0, whereas

V∞ = 0 if γ < 1. Moreover, if L+R = 1 a.s., then V∞ = m0 a.s. Finally, if V∞ is non-degenerate
and p > 1, then E[|V∞|p] < +∞ if and only if S(p) < 0.

We remark that under the hypotheses of the previous theorem, the first moment of the solution
is preserved in time. Indeed one has,

E[Vt] = E
[
E
[∑νt

j=1 βj,νt
Xj

∣∣νt, β1,νt
, . . . , βνt,νt

]]
= m0E[M (1)

νt
] = m0,

where the last equality follows from (19).
Theorem 3.3 above is the most natural generalization of the results in Matthes and Toscani

(2008), where the additional condition E[|X0|1+ε] < ∞ for some ε > 0 has been assumed. The
respective statement for α = 2 reads as follows.

Theorem 3.4. Assume that (18) holds with α = 2 and that S(γ) < 0 for some γ > 0. If
E[X0] = 0 and σ2 = E[X2

0 ] < +∞, then Vt converges in distribution, as t → +∞, to a random
variable V∞ with characteristic function

φ∞(ξ) = E[exp(iξV∞)] = E

[
exp(−ξ2σ

2

2
M (2)

∞ )

]
(ξ ∈ R).(22)

In particular, V∞ is a non-degenerate random variable if γ > 2 and σ2 > 0, whereas V∞ = 0 a.s.
if γ < 2. Moreover, if L2 + R2 = 1 a.s., then V∞ is a Gaussian random variable. Finally, if V∞
is non-degenerate and p > 2, then E[|V∞|p] < +∞ if and only if S(p) < 0.

Some additional properties of the solution Vt should be mentioned: centering is obviously
propagated from the initial condition X0 to the solution Vt at all later times t ≥ 0. Moreover,
under the hypotheses of the theorem, the second moment of the solution is preserved in time.
Indeed, taking into account that the Xi are independent and centered,

E[V 2
t ] = E

[
E
[∑νt

j,k=1 βj,νt
βk,νt

XjXk

∣∣νt, β1,νt
, . . . , βνt,νt

]]
= σ2

E[M (2)
νt

] = σ2,

where we have used (19) in the last step.
The technically most difficult result concerns the situation α = 1 for an initial condition of

infinite first moment. Weak convergence to a limit can still be proven if E[|X0|] = ∞, but the law
of X0 belongs to the domain of normal attraction of a 1-stable distribution. However, a suitable
time-dependent centering needs to be applied to the random variables Vt.

Theorem 3.5. Assume that (18) holds with α = 1 and that S(γ) < 0 for some γ > 0. Moreover,
let the condition (16) be satisfied for F = F0. Then the random variable

(23) V ∗
t := Vt −

νt∑

j=1

qj,νt
, where qj,n :=

∫

R

sin(βj,nx)dF0(x),

converges in distribution to a limit V ∗
∞ with characteristic function

(24) φ∞(ξ) = E[exp(iξV ∗
∞)] = E[exp{−|ξ|kM (1)

∞ (1 + 2iη/π log |ξ| sign ξ)}] (ξ ∈ R)

where the parameters k and η are defined in (17). In particular, V∞ is a non-degenerate random
variable if c+ + c− > 0 and γ > 1, whereas V∞ = 0 a.s. if c+ = c− = 0, or if γ < 1. Moreover,
if L+R = 1 a.s., then the distribution of V∞ is a 1-stable law. Finally, if V∞ is non-degenerate,
then E[|V∞|p] < +∞ if and only if p < 1.

3.2. Rates of convergence in Wasserstein metrics. Recall that the Wasserstein distance of
order γ > 0 between two random variables X and Y is defined by

Wγ(X,Y ) := inf
(X′,Y ′)

(E|X ′ − Y ′|γ)1/ max(γ,1).(25)

The infimum is taken over all pairs (X ′, Y ′) of real random variables whose marginal distribution
functions are the same as those of X and Y , respectively. In general, the infimum in (25) may be
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infinite; a sufficient (but not necessary) condition for finite distance is that both E[|X |γ ] <∞ and
E[|Y |γ ] <∞. For more information on Wasserstein distances see, for example, Rachev (1991).

Recall that the Vt are random variables whose characteristic functions φ(t) solve the initial
value problem (1) for the Boltzmann equation for t ≥ 0, and V∞ is the limit in distribution of Vt

as t→ ∞.

Proposition 3.6. Assume (18) and S(γ) < 0, for some γ with 1 ≤ α < γ ≤ 2 or α < γ ≤ 1.
Assume further that (16) holds if α 6= 1, or that E[|X0|γ ] < +∞ if α = 1, respectively. Then

(26) Wγ(Vt, V∞) ≤ AWγ(X0, V∞)e−Bt|S(γ)|,

with A = B = 1 if γ ≤ 1, or A = 21/γ and B = 1/γ otherwise.

Clearly, the content of Proposition 3.6 is void unless

Wγ(X0, V∞) <∞.(27)

In the case α = 1, the hypothesis E|X0|γ < +∞ guarantees (27). In all other cases, (27) is a
non-trivial requirement since, by Theorem 3.2, either V∞ = 0 or E[|V∞|α] = +∞. The following
Lemma provides a sufficient criterion for (27), tailored to the situation at hand.

Lemma 3.7. Assume, in addition to the hypotheses of Proposition 3.6, that γ < 2α and that F0

satisfies hypothesis (16) in the more restrictive sense that there exists a constant K > 0 and some
0 < ε < 1 with

|1 − c+x−α − F0(x)| < Kx−(α+ε) for x > 0,(28)

|F0(x) − c−(−x)−α| < K(−x)−(α+ε) for x < 0.(29)

Provided that γ < α/(1 − ε) it follows Wγ(X0, V∞) <∞, and then estimate (26) is non-trivial.

3.3. Strong convergence of densities. As already mentioned in the introduction, under suit-
able hypotheses, the probability densities of µ(t) exist and converge strongly in the Lebesgue
spaces L1(R) and L2(R).

Theorem 3.8. For given α ∈ (0, 1)∪(1, 2], let the hypotheses of Theorem 3.2 or Theorem 3.4 hold
with γ > α. Assume further that (16) holds with c− + c+ > 0 if α < 2, so that the Vt converges
in distribution, as t→ +∞, to a non-degenerate limit V∞. Moreover assume also that

(H1) Lr +Rr ≥ 1 a.s. for some r > 0,
(H2) X0 possesses a density f0 with finite Linnik-Fisher functional, i.e. h :=

√
f0 ∈ H1(R), or

equivalently, its Fourier transform ĥ satisfies∫

R

|ξ|2
∣∣ĥ(ξ)

∣∣2 dξ < +∞.

Then, the random variable Vt possesses a density f(t) for all t ≥ 0, V∞ has a density f∞, and the
f(t) converges, as t→ +∞, to f∞ in any Lp(R) with 1 ≤ p ≤ 2, that is

lim
t→+∞

∫

R

|f(t; v) − f∞(v)|pdv = 0.

Remark 1. Some comments on the hypotheses (H1) and (H2) are in order.

• In view of S(α) = 1, condition (H1) can be satisfied only if r < α. Notice that (H1)
becomes the weaker the smaller r > 0 is; in fact, the sets {(x, y)|xr + yr ≥ 1} ⊂ R

2

exhaust the first quadrant as r ↘ 0.
• The smoothness condition (H2) is not quite as restrictive as it may seem. For instance,

recall that the convolution of any probability density f0 with an arbitrary “mollifier” of
finite Linnik-Fisher functional (e.g. a Gaussian) produces again a probability density of
finite Linnik-Fisher functional.

4. Proofs

We continue to assume that the law of the random vector (L,R) is given and satisfies (18) with
α ∈ (0, 2], implying S(α) = 0.
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4.1. Properties of the weights βj,n (Lemma 3.1). In this subsection we shall prove a gener-
alization of a useful result obtained in Gabetta and Regazzini (2006a). Set

(30) Gn = (I1, . . . , In−1, L1, R1, . . . , Ln−1, Rn−1).

and denote by Gn the σ-algebra generated by Gn.

Proposition 4.1. If E[Ls +Rs] < +∞ for some s > 0, then

E[M (s)
n ] = E[

n∑

j=1

βs
j,n] =

Γ(n+ S(s))

Γ(n)Γ(S(s) + 1)

and
E[M (s)

νt
] =

∑

n≥1

e−t(1 − e−t)n−1
E[M (s)

n ] = etS(s).

If in addition S(s) = 0, for some s > 0, then M
(s)
n is a martingale with respect to (Gn)n≥1.

Proof. Recall that (β1,1, β1,2, β2,2, . . . , βn,n) is Gn–measurable, see (12). We first prove that

E[M
(s)
n+1|Gn] = M

(s)
n (1 +S(s)/n), which implies that M

(s)
n is a (Gn)n–martingale whenever S(s) =

0, since M
(s)
n ≥ 0 and, as we will see, E[M

(s)
n ] < +∞ for every n ≥ 1. To prove the claim write

E[M
(s)
n+1|Gn] = E

[ n∑

i=1

I{In = i}
n+1∑

j=1

βs
j,n+1

∣∣∣Gn

]

= E

[ n∑

i=1

I{In = i}
( ∑

j=1,...,n+1,j 6=i,i+1

βs
j,n+1 + βs

i,n+1 + βs
i+1,n+1

)∣∣∣Gn

]

= E

[ n∑

i=1

I{In = i}
( n∑

j=1

βs
j,n + βs

i,n(Ls
n +Rs

n − 1)
)∣∣∣Gn

]

= M (s)
n + S(s)E

[ n∑

i=1

I{In = i}βs
i,n|Gn

]

= M (s)
n + S(s)

n∑

i=1

βs
j,nE[I{In = i}] = M (s)

n (1 + S(s)/n).

Taking the expectation of both sides one gets

E[M
(s)
n+1] = E[M (s)

n ](1 +
1

n
S(s)).

Since E[M
(s)
2 ] = S(s) + 1 it follows easily that

E[M (s)
n ] =

n−1∏

i=1

(1 + S(s)/i) =
Γ(n+ S(s))

Γ(n)Γ(S(s) + 1)
.

To conclude the proof use formula 5.2.13.30 in Prudnikov et al. (1986). �

Lemma 4.2. If S(γ) < 0 for some γ > 0, then

β(n) := max
1≤j≤n

βj,n

converges to zero in probability as n→ +∞.

Proof. Observe that, for every ε > 0,

P{β(n) > ε} ≤ P
{ n∑

j=1

βγ
j,n ≥ εγ

}

and hence, by Markov’s inequality and Proposition 4.1,

P{β(n) > ε} ≤ 1

εγ
E[M (γ)

n ] =
1

εγ
Γ(n+ S(γ))

Γ(n)Γ(S(γ) + 1)
≤ C

1

εγ
nS(γ).
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The last expression tends to zero as n→ ∞ because S(γ) < 0. �

Proof of Lemma 3.1. Since S(α) = 0, the random variables M
(α)
n form a positive martingale with

respect to (Gn)n by Proposition 4.1. By the martingale convergence theorem, see e.g. Theorem 19

in Chapter 24 of Fristedt and Gray (1997), it converges a.s. to a positive random variable M
(α)
∞

with E[M
(α)
∞ ] ≤ E[M

(α)
1 ] = 1. The goal of the following is to determine the law of M

(α)
∞ in the

different cases we consider.
First, suppose that Lα + Rα = 1 a.s. It follows that Lα ≤ 1 and Rα ≤ 1 a.s., and hence

S(s) ≤ S(α) = 0 for all s > α. Moreover, it is plain to check that M
(α)
n = 1 a.s. for every n, and

hence M
(α)
∞ = 1 a.s.

Next, assume that S(γ) < 0 for γ < α. Minkowski’s inequality and Proposition 4.1 give

E
[
(M (α)

n )γ/α
]
≤ E[

n∑

j=1

βγ
j,n] =

Γ(n+ S(γ))

Γ(n)Γ(S(γ) + 1)
≤ CnS(γ).

Hence, M
(α)
n converges a.s. to 0.

It remains to treat the case with S(γ) < 0 and γ > α. Since S(·) is a convex function satisfying
S(α) = 0 and S(γ) < 0 with γ > α, it is clear that S ′(α) < 0; also, we can assume without loss of
generality that γ < 2α. Further, by hypothesis,

E[(Lα +Rα)1+(γ/α−1)] ≤ 2γ/α−1
E[Lγ +Rγ ] < +∞.

Hence, one can resort to Theorem 2(a) of Durrett and Liggett (1983) — see also Corollaries 1.1,
1.4 and 1.5 in Liu (1998) — which provides existence and uniqueness of a probability distribution
ν∞ 6= δ0 on R

+, whose characteristic function ψ is a solution of equation (20), with
∫

R+ xν∞(dx) =

1. Moreover, Theorem 2.1 in Liu (2000) ensures that
∫

R+ x
γ/αν∞(dx) < +∞ and, more generally,

that
∫

R+ x
p/αν∞(dx) < +∞ for some p > α if and only if S(p) < 0.

Consequently, our goal is to prove that the law of M
(α)
∞ is ν∞. In what follows, enlarge the

space (Ω,F , P ) in order to contain all the random elements needed. In particular, let (Mj)j≥1

be a sequence of independent random variables with common characteristic function ψ, such that
(Mj)j≥1 and (Gn)n≥1, defined in (30), are independent. Recalling that ψ is a solution of (20) it
follows that, for every n ≥ 2,

E

[
exp

{
iξ

n∑

j=1

βα
j,nMj

}]

=

n−1∑

k=1

1

n− 1
E

[
exp

{
iξ

( k−1∑

j=1

βα
j,n−1Mj + βα

k,n−1 (Lα
n−1Mk +Rα

n−1Mk+1)︸ ︷︷ ︸
=d Mk

+

n∑

j=k+1

βα
j,n−1Mj

)}]

= E

[
exp

{
iξ

n−1∑

j=1

βα
j,n−1Mj

}]
.

By induction on n ≥ 2, this shows that
∑n

j=1 Mjβ
α
j,n has the same law as M1, which is ν∞. Hence

Wγ/α
γ/α (M (α)

n ,M1) ≤ E

[∣∣∣
n∑

j=1

βα
j,n −

n∑

j=1

Mjβ
α
j,n

∣∣∣
γ/α]

= E

[
E

[∣∣∣
n∑

j=1

(1 −Mj)β
α
j,n

∣∣∣
γ/α

∣∣∣∣Gn

]]
.

We shall now employ the following result from von Bahr and Esseen (1965). Let 1 < η ≤ 2, and
assume that Z1, . . . , Zn are independent, centered random variables and E|Zj |η < +∞. Then

(31) E

∣∣∣
n∑

j=1

Zj

∣∣∣
η

≤ 2

n∑

j=1

E|Zj |η .
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We apply this result with η = γ/α and Zj = βα
j,n(1 −Mj), showing that

E

[∣∣∣
n∑

j=1

(1 −Mj)β
α
j,n

∣∣∣
γ/α∣∣∣Gn

]
≤ 2

n∑

j=1

βγ
j,nE

[∣∣∣1 −Mj

∣∣∣
γ/α∣∣∣Gn

]
= 2

n∑

j=1

βγ
j,nE|1 −M1|γ/α

almost surely. In consequence,

(32) Wγ/α
γ/α (M (α)

n ,M1) ≤ 2E

[ n∑

j=1

βγ
j,n

]
E

[
|1 −M1|γ/α

]
.

By means of Proposition 4.1, one obtains

Wγ/α
γ/α (M (α)

n ,M1) ≤ C ′nS(γ).

This proves that the law of M
(α)
n converges with respect to the Wγ/α metric – and then also weakly

– to the law of M1. Hence, M
(α)
∞ has law ν∞. The fact that M

(α)
∞ is non-degenerate, provided

Lα +Rα = 1 does not hold a.s., follows immediately. �

4.2. Proof of convergence for α 6= 1 (Theorems 3.2 and 3.4). Denote by B the σ-algebra
generated by {βj,n : n ≥ 1, j = 1, . . . , n}. The proof of Theorems 3.2 and 3.4 is essentially an
application of the central limit theorem to the conditional law of

Wn :=
n∑

j=1

βj,nXj

given B. Set

Qj,n(x) := F0

(
β−1

j,nx
)
,

where, by convention, F0(·/0) := I[0,+∞)(·). In this subsection we will use the functions:

ζn(x) := I{x < 0}
n∑

j=1

Qj,n(x) + I{x > 0}
n∑

j=1

(1 −Qj,n(x)) (x ∈ R)

σ2
n(ε) :=

n∑

j=1

{ ∫

(−ε,+ε]

x2 dQj,n(x) −
(∫

(−ε,+ε]

x dQj,n(x)
)2}

(ε > 0)

ηn :=

n∑

j=1

{
1 −Qj,n(1) −Qj,n(−1) +

∫

(−1,1]

x dQj,n(x)
}
.

In terms of Qj,n, the conditional distribution function Fn of Wn given B is the convolution,

Fn = Q1,n ∗ · · · ∗Qn,n.

To start with, we show that the Qj,ns satisfy the uniform asymptotic negligibility (UAN) assump-
tion (34) below.

Lemma 4.3. Let the assumptions of Theorem 3.4 or Theorem 3.5 be in force. Then, for every
divergent sequence (n′) of integer numbers, there exists a divergent subsequence (n′′) ⊂ (n′) and a
set Ω0 of probability one such that

lim
n′′→+∞

M
(α)
n′′ (ω) = M (α)

∞ (ω) <∞,

lim
n′′→+∞

β(n′′)(ω) = 0,
(33)

holds for every ω ∈ Ω0. Moreover, for every ω ∈ Ω0 and for every ε > 0

(34) lim
n′′→+∞

max
1≤j≤n′′

{
1 −Qj,n′′(ε) +Qj,n′′(−ε)

}
= 0.
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Proof. The existence of a sub-sequence (n′′) and a set Ω0 satisfying (33) is a direct consequence
of Lemmata 4.2 and 3.1. To prove (34) note that, for 0 < α ≤ 2 and α 6= 1,

max
1≤j≤n′′

(
1 −Qj,n′′(ε) +Qj,n′′(−ε)

)
≤ 1 − F0

( ε

β(n′′)

)
+ F0

( −ε
β(n′′)

)
.

The claim hence follows from (33). �

Lemma 4.4. Let the assumptions of Theorem 3.2 be in force. Then for every divergent sequence
(n′) of integer numbers there exists a divergent subsequence (n′′) ⊂ (n′) and a measurable set Ω0

of probability one such that

lim
n′′→+∞

E[eiξWn′′ |B](ω) = exp{−|ξ|αkM (α)
∞ (ω)(1 − iη tan(πα/2) sign ξ)} (ξ ∈ R)(35)

for every ω in Ω0.

Proof. Let (n′′) and Ω0 be the same as in Lemma 4.3. To prove (35), we apply the central limit
theorem for every ω ∈ Ω0 to the conditional law of Wn′′ given B.

For every ω in Ω0, we know that Fn′′ is a convolution of probability distribution functions
satisfying the asymptotic negligibility assumption (34). Here, we shall use the general version of
the central limit theorem as presented e.g., in Theorem 30 in Section 16.9 and in Proposition 11
in Section 17.3 of Fristedt and Gray (1997). According to these results, the claim (35) follows if,
for every ω ∈ Ω0,

lim
n′′→+∞

ζn′′(x) =
c+M

(α)
∞

xα
(x > 0),(36)

lim
n′′→+∞

ζn′′(x) =
c−M

(α)
∞

|x|α (x < 0),(37)

lim
ε→0+

lim sup
n′′→+∞

σ2
n′′(ε) = 0,(38)

lim
n′′→+∞

ηn′′ =
1

1 − α
M (α)

∞ (c+ − c−)(39)

are simultaneously satisfied.
In what follows we assume that P{L = 0} = P{R = 0} = 0, which yields that βj,n > 0 almost

surely. The general case can be treated with minor modifications.
In order to prove (36), fix some x > 0, and observe that

ζn′′(x) =
n′′∑

j=1

[1 − F0(β
−1
j,n′′x)] =

n′′∑

j=1

[1 − F0(β
−1
j,n′′x)](β

−1
j,n′′x)

α
βα

j,n′′

xα
.

Since limy→+∞(1 − F0(y))y
α = c+ by assumption (16), for every ε > 0 there exists a Y = Y (ε)

such that if y > Y , then c+ − ε ≤ (1 − F0(y))y
α ≤ c+ + ε. Hence if x > β(n′′)Y , then

x−α(c+ − ε)M
(α)
n′′ ≤

n′′∑

j=1

(1 − F0(β
−1
j,n′′x)) ≤ x−α(c+ + ε)M

(α)
n′′ .(40)

In view of (33), the claim (36) follows immediately. Relation (37) is proved in a completely
analogous way.

In order to prove (38), it is clearly sufficient to show that for every ε > 0

lim sup
n′′→+∞

n′′∑

j=1

∫

(−ε,+ε]

x2dQj,n′′(x) ≤ CM (α)
∞ ε2−α(41)

with some constant C independent of ε. Recalling the definition of Qj,n, an integration by parts
gives

∫

(0,ε]

x2dF0

(
β−1

j,nx
)

= −ε2
[
1 − F0

(
β−1

j,nε
)]

+ 2

∫ ε

0

x
[
1 − F0

(
β−1

j,nx
)]
dx,
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and similarly for the integral from −ε to zero. With

K := sup
x>0

xα[1 − F (x)] + sup
x<0

(−x)αF (x),(42)

which is finite by hypothesis (16), it follows that
∫

(−ε,+ε]

x2dF0

(
β−1

j,nx
)
≤ 2Kε2(β−1

j,nε)
−α + 4Kβα

j,n

∫ ε

0

x1−α dx ≤ 2K
(
1 +

2

2 − α

)
βα

j,nε
2−α.

To conclude (41), it suffices to recall that
∑

j β
α
j,n′′ = M

(α)
n′′ →M

(α)
∞ by (33).

In order to prove (39), we need to distinguish if 0 < α < 1, or if 1 < α < 2. In the former case,
integration by parts in the definition of ηn′′ reveals

ηn′′ =

∫ 1

−1

ζn′′(x)dx.

Having already shown (36) and (37), we know that the integrand converges pointwise with respect
to x. The dominated convergence theorem applies since, by hypothesis (16),

|ζn′′(x)| ≤ K|x|−α sup
n′′

M
(α)
n′′(43)

with the constant K defined in (42); observe that |x|−α is integrable on (−1, 1] since we have
assumed 0 < α < 1. Consequently,

lim
n′′→∞

ηn′′ = c−M (α)
∞

∫ 0

−1

|x|−α dx+ c+M (α)
∞

∫ 1

0

|x|−α dx =
c+ − c−

1 − α
M (α)

∞ .

It remains to check (39) for 1 < α < 2. Since
∫

R
x dQj,n′′(x) = 0, one can write

ηn′′ = ηn′′ −
n′′∑

j=1

∫

R

x dQj,n′′(x) = −
n′′∑

j=1

∫

(−∞,−1]

(1 + x)dQj,n′′(x) −
n′′∑

j=1

∫

(1,+∞)

(x− 1)dQj,n′′(x).

Similar as for 0 < α < 1, integration by parts reveals that

ηn′′ =

∫

{|x|>1}

ζn′′(x) dx.(44)

From this point on, the argument is the same as in the previous case: (36) and (37) provide
pointwise convergence of the integrand; hypothesis (16) leads to (43), which guarantees that the
dominated convergence theorem applies, since |x|−α is integrable on the set {|x| > 1}. It is
straightforward to verify that the integral of the pointwise limit indeed yields the right-hand side
of (39). �

Proof of Theorem 3.2. By Lemma 4.4 and the dominated convergence theorem, every divergent
sequence (n′) of integer numbers contains a divergent subsequence (n′′) ⊂ (n′) for which

lim
n′′→+∞

E[exp{iξWn′′}] = E
[
exp

{
− |ξ|αkM (α)

∞ (1 − iη tan(πα/2) sign ξ)
}]
,(45)

where the limit is pointwise in ξ ∈ R. Since the limiting function is independent of the arbitrarily
chosen sequence (n′), a classical argument shows that (45) is true with n → +∞ in place of
n′′ → +∞. In view of Proposition 2.1, the stated convergence follows.

By Lemma 3.1, the assertion about (non)-degeneracy of V∞ follows immediately from the
representation (21). To verify the claim about moments for γ > α, observe that (21) implies that

(46) E[|V∞|p] =

∫

R

|x|pdF∞(x) = E
[(
M (α)

∞

)p]
∫

R

|u|pdGα(u),

where Gα is the distribution function of the centered α-stable law with characteristic function ĝα

defined in (15).

The p-th moment of M
(α)
∞ is finite at least for all p < γ by Lemma 3.1. On the other hand, the

p-th moment of Gα is finite if and only if p < α. �

The following lemma replaces Lemma 4.4 in the case α = 2.
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Lemma 4.5. Let the assumptions of Theorem 3.4 hold. Then for every divergent sequence (n′) of
integer numbers, there exists a divergent subsequence (n′′) ⊂ (n′) and a set Ω0 of probability one
such that

lim
n′′→+∞

E[eiξWn′′ |B](ω) = e−ξ2 σ2

2 M(2)
∞

(ω) (ξ ∈ R)

for every ω in Ω0.

Proof. Let (n′′) and Ω0 have the properties stated in Lemma 4.3. The claim follows if for every ω
in Ω0,

lim
n′′→+∞

ζn′′(x) = 0 (x 6= 0),(47)

lim
ε→0+

lim
n′′→+∞

σ2
n′′ (ε) = σ2M (2)

∞ ,(48)

lim
n′′→+∞

ηn′′ = 0(49)

are simultaneously satisfied.
First of all note that since

y2(1 − F0(y)) ≤
∫

(y,+∞)

x2dF0(x) and y2F0(−y) ≤
∫

(−∞,−y]

x2dF0(x) (y > 0)

and
∫

R
x2dF0(x) < +∞, it follows that limy→+∞ y2(1− F0(y)) = limy→−∞ y2(F0(y)) = 0. Hence,

given ε > 0, there exists a Y = Y (ε) such that y2(1 − F0(y)) < ε for every y > Y . Since

ζn′′(x) =

n′′∑

j=1

(β−1
j,n′′x)

2(1 − F0(β
−1
j,n′′x))β

2
j,n′′/x2 (x > 0),

one gets

ζn′′ (x) ≤ εM
(2)
n′′

1

x2

whenever x > β(n′′)Y . In view of property (33), the first relation (47) follows for x > 0. The
argument for x < 0 is analogous.

We turn to the proof of (48). A simple computation reveals

s2n′′(ε) :=

n′′∑

j=1

∫

(−ε,ε]

x2dQj,n′′(x) = σ2M
(2)
n′′ −Rn′′ ,

with the remainder term

Rn′′ :=
n′′∑

j=1

β2
j,n′′

∫

|βj,n′′x|>ε

x2dF0(x) ≤M
(2)
n′′

∫

|β(n′′)x|>ε

x2dF0(x).

Invoking property (33) again, it follows that Rn′′ → 0 as n′′ → ∞; recall that F0 has finite second
moment by hypothesis. Consequently,

(50) lim
n′′→+∞

s2n′′(ε) = σ2M (2)
∞

for every ε. Since
∫

R
x dQj,n(x) = 0,

n′′∑

j=1

(∫

(−ε,ε]

x dQj,n(x)
)2

≤
n′′∑

j=1

β2
j,n′′

(∫

|βj,n′′x|≥ε

xdF0(x)
)2

≤
(∫

|β(n′′)x|≥ε

|x|dF0(x)
)2 n′′∑

j=1

β2
j,n′′ ,

which yields that

lim
n′′→+∞

n′′∑

j=1

(∫

(−ε,ε]

x dQj,n(x)
)2

= 0.

Combining this last fact with (50) gives (48).
Finally, in order to obtain (49), we use (47) and the dominated convergence theorem; the

argument is the same as for (44) in the proof of Lemma 4.4. �
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Proof of Theorem 3.4. Use Lemma 4.5 and repeat the proof of Theorem 3.2. A trivial adaptation
is needed in the calculation of moments if γ > 2: consider (46) with Gα = G2, the distribution
function of a Gaussian law, and note that it posses finite moments of every order. Hence E[|V∞|p] is

finite if and only if E[(M
(2)
∞ )p] is finite, which, by Lemma 3.1, is the case if and only if S(p) < 0. �

4.3. Proof of convergence for α = 1 (Theorems 3.3 and 3.5). Let us first prove Theorem
3.5. We shall apply the central limit theorem to the random variables

W ∗
n =

n∑

j=1

(βj,nXj − qj,n)

with qj,n defined in (23). In what follows,

Qj,n(x) := F0

(x+ qj,n
βj,n

)
.

The next Lemma is the analogue of Lemma 4.3 above.

Lemma 4.6. Suppose the assumptions of Theorem 3.5 are in force. Then, for every δ ∈ (0, 1),

(51) |qj,n| =
∣∣∣
∫

sin(βj,ns)dF0(s)
∣∣∣ ≤ Cδβ

1−δ
j,n

with Cδ =
∫

R
|x|1−δdF0(x) < +∞. Furthermore, for every divergent sequence (n′) of integer

numbers, there exists a divergent subsequence (n′′) ⊂ (n′) and a set Ω0 of probability one such that
for every ω in Ω0 and for every ε > 0, the properties (33) and (34) are verified.

Proof. First of all note that Cδ < +∞ for every δ ∈ (0, 1) because of hypothesis (16). Using
further that | sin(x)| ≤ |x|1−δ for δ ∈ (0, 1), one immediately gets

|qj,n| =

∣∣∣∣
∫

R

sin(βj,ns)dF0(s)

∣∣∣∣ ≤ β1−δ
j,n

∫

R

|s|1−δdF0(s).

To prove (34) note that, as a consequence of (51),

ε+ qj,n
βj,n

≥ β−1
(n)(ε− Cδβ

1−δ
(n) ).

Clearly, the expression inside the bracket is positive for sufficiently small β(n). Defining (n′′) and
Ω0 in accordance to Lemma 4.3, it thus follows

max
1≤j≤n′′

(
1 −Qj,n′′(ε) +Qj,n′′(−ε)

)
≤ 1 − F0(c̄β

−1
(n′′)) + F0(−c̄β−1

(n′′))

for a suitable constant c̄ depending only on ε, δ and F0. An application of (33) yields (34). �

Lemma 4.7. Suppose the assumptions of Theorem 3.5 are in force, then for every divergent
sequence (n′) of integer numbers there exists a divergent subsequence (n′′) ⊂ (n′) and a measurable
set Ω0 with P (Ω0) = 1 such that

lim
n′′→+∞

E[eiξW∗

n′′ |B](ω) = exp{−|ξ|k1M
(1)
∞ (ω)(1 + i2η log |ξ| sign ξ)} (ξ ∈ R)(52)

for every ω in Ω0.

Proof. Define (n′′) and Ω0 according to Lemma 4.6, implying the convergencies (33), and the UAN
condition (34). In the following, let ω ∈ Ω0 be fixed. In view of Proposition 11 in Section 17.3 of
Fristedt and Gray (1997) the claim (52) follows if (36), (37) and (38) are satisfied with α = 1,
and in addition

(53) lim
n→+∞

n∑

j=1

∫

R

χ(t)dQj,n′′(t) = M (1)
∞ (c+ − c−)

∫ ∞

0

χ(t) − sin(t)

t2
dt

with χ(t) = −I{t ≤ −1}+ tI{−1 < t < 1}+ I{t ≥ 1}.
Let us verify (36) for an arbitrary x > 0. Given ε > 0, there exists some Y = Y (ε) such that

c+ − ε ≤ y(1 − F0(y)) ≤ c+ + ε(54)
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for all y ≥ Y because of hypothesis (16). Moreover, in view in Lemma 4.6,

ŷj,n′′ :=
x+ qj,n′′

βj,n′′

≥
x− C1/2β

1/2
(n′′)

β(n′′)
,

which clearly diverges to +∞ as n′′ → ∞ because of (33); in particular, ŷj,n′′ ≥ Y for n′′ large
enough. It follows by (54) that for those n′′,

c+ − ε

x+ qj,n′′

βj,n′′ ≤ 1 − F (ŷj,n′′) ≤ c+ + ε

x+ qj,n′′

βj,n′′ .(55)

Recalling that ζn′′(x) =
∑n′′

j=1[1 − F (ŷj,n′′)], summation of (55) over j = 1, . . . , n′′ gives

c+ − ε

x+ qj,n′′

M
(1)
n′′ ≤ ζn′′(x) ≤ c+ + ε

x+ qj,n′′

M
(1)
n′′ .

Finally, observe that |qj,n′′ | ≤ C1/2β
1/2
(n′′) → 0 as n′′ → ∞, and that M

(1)
n′′ → M

(1)
∞ by (33). Since

ε > 0 has been arbitrary, the claim (36) follows. The proof of (37) for arbitrary x < 0 is completely
analogous.

Concerning (38), it is obviously enough to prove that

lim
ε→0

lim sup
n′′→+∞

s2n′′(ε) = 0(56)

where s2n′′(ε) :=
∑n′′

j=1

∫
(−ε,ε] x

2dQj,n′′(x). We split the domain of integration in the definition of

s2n′′ at x = 0, and integrate by parts to get

s2n′′(ε) = − ε2
n′′∑

j=1

Qj,n′′(−ε) −
n′′∑

j=1

∫

(−ε,0]

Qj,n′′(u)2udu

− ε2
n′′∑

j=1

(1 −Qj,n′′(ε)) +

n′′∑

j=1

∫

(0,ε]

(1 −Qj,n′′(u))2udu

=:An′′(ε) +Bn′′(ε) + Cn′′(ε) +Dn′′(ε).

Having already proven (36) and (37), we conclude

(57) lim
ε→0+

lim
n′′→+∞

{|An′′(ε)| + |Cn′′ (ε)|} = 0.

Fix ε > 0; assume that n′′ is sufficiently large to have |qj,n′′ | < ε/2 for j = 1, . . . , n′′. Then

|Bn(ε)| ≤
n′′∑

j=1

2

∫ ε

0

wF0

(−w + qj,n′′

βj,n′′

)
dw

≤
n′′∑

j=1

{∫ 2|qj,n′′ |

0

2w dw + 2

∫ ε

2|qj,n′′ |

wF0

(−w + qj,n′′

βj,n′′

)
dw

}

≤
n′′∑

j=1

{
4|qj,n′′ |2 + 2

∫ ε

2|qj,n′′ |

w
( Kβj,n′′

w − qj,n′′

)
dw

}

≤
n′′∑

j=1

{
4C2

1/4β
3/2
j,n′′ + βj,n′′

∫ ε

0

4K dw
}
≤

(
4C2

1/4β
1/2
(n′′) + 4Kε

)
M

(1)
n′′ ,

with the constant K defined in (42). In view of (33), it follows

(58) lim
ε→0+

lim sup
n′′→+∞

|Bn′′(ε)| = 0

as desired. A completely analogous reasoning applies to Dn′′ . At this stage we can conclude (56),
and thus also (38).
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In order to verify (53), let us first show that

(59) lim
n′′→∞

n′′∑

j=1

∫

R

sin(x) dQj,n′′ (x) = 0.

We find

∣∣∣
n′′∑

j=1

∫

R

sin(x)dQj,n′′ (x)
∣∣∣ =

∣∣∣
n′′∑

j=1

∫

R

sin(tβj,n′′ − qj,n′′)dF0(t)
∣∣∣

≤
n′′∑

j=1

∣∣∣ cos(qj,n′′ )

∫

R

sin(tβj,n′′)dF0(t) − sin(qj,n′′)

∫

R

cos(tβj,n′′)dF0(t)
∣∣∣

=

n′′∑

j=1

∣∣∣(cos(qj,n′′) − 1)qj,n′′ + (qj,n′′ − sin(qj,n′′)) + sin(qj,n′′)

∫

R

(1 − cos(tβj,n′′))dF0(t)
∣∣∣

≤
n′′∑

j=1

(
|I1| + |I2| + |I3|

)
.

The elementary inequalities | cos(x) − 1| ≤ x2/2 and |x− sin(x)| ≤ x3/6 provide the estimate

n′′∑

j=1

(
|I1| + |I2|

)
≤

n′′∑

j=1

|qj,n′′ |3 ≤ C3
1/2β

1/2
(n′′)M

(1)
n′′ .

By (33), the last expression converges to zero as n′′ → ∞. In order to estimate I3, observe that,
since |1 − cos(x)| ≤ 2x3/4 for all x ∈ R,

∫

R

(1 − cos(tβj,n′′))dF0(t) ≤ 2β
3/4
j,n′′

∫

R

|t|3/4dF0(dt) = 2C1/4β
3/4
j,n′′ .

Consequently, applying Lemma 4.6 once again,

n′′∑

j=1

|I3| ≤
n′′∑

j=1

|qj,n′′ |
∣∣∣
∫

R

(1 − cos(tβj,n′′))dF0(t)
∣∣∣ ≤ 2C2

1/4β
1/2
(n′′)M

(1)
n′′ ,

which converges to zero on grounds of (33).
Having proven (59), the condition (53) becomes equivalent to

n′′∑

j=1

∫

R

(χ(t) − sin(t))dQj,n′′(t) →M (1)
∞ (c+ − c−)

∫

R+

χ(t) − sin(t)

t2
dt.(60)

The proof of this fact follows essentially the line of the proof of Theorem 12 of Fristedt and Gray
(1997). Let us first prove that, if −∞ < x < 0 < y < +∞,

(61) lim
n′′→+∞

∫

(x,y]

dνn′′(t) = M (1)
∞ (c+y − c−x),

where the sequence (νn) of measures on R is defined by

νn[B] =

n∑

j=1

∫

B

t2dQj,n(t)
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for Borel sets B ⊂ R. For fixed ε ∈ (0, y), one uses (36) to conclude

lim
n′′→∞

∫

(ε,y]

dνn′′ (t) = lim
n′′→∞

(
t2

n′′∑

j=1

(
1 −Qj,n′′(t)

)∣∣∣
ε

y
+ 2

∫

(ε,y]

t

n′′∑

j=1

(
1 −Qj,n′′(t)

)
dt

)

= ε2
c+M

(1)
∞

ε
− y2 c

+M
(1)
∞

y
+ 2

∫

(ε,y]

t
c+M

(1)
∞

t
dt

= (y − ε)c+M (1)
∞ .

Notice that we have used the dominated convergence theorem to pass to the limit under the
integral; this is justified in view of the upper bound provided by (40). In a similar way, one shows
for fixed ε ∈ (0, |x|) that

lim
n′′→∞

∫

(x,−ε]

dνn′′(t) = (|x| − ε)c−M (1)
∞ .

Combining this with (56), one concludes

lim sup
n′′→∞

∫

(x,y]

dνn′′(t)

≤ lim sup
ε→0

lim sup
n′′→∞

( ∫

(x,−ε]

dνn′′(t) +

∫

(−ε,ε]

dνn′′(t) +

∫

(ε,y]

dνn′′(t)
)

≤ lim
ε→0

(y − ε)c+M (1)
∞ − lim

ε→0
(x+ ε)c−M (1)

∞ + lim
ε→0

lim sup
n′′→∞

n′′∑

j=1

∫

(−ε,ε]

t2dQj,n′′(t)

= (c+y − c−x)M (1)
∞ .

On the other hand, trivially,

lim inf
n′′→∞

∫

(x,y]

dνn′′(t) ≥ lim inf
ε→0

lim inf
n′′→∞

(∫

(x,−ε]

dνn′′(t) +

∫

(ε,y]

dνn′′ (t)
)

= (c+y − c−x)M (1)
∞ .

This proves (61). Now fix 0 < R < +∞, and note that (61) yields that for every bounded and
continuous function f : [−R,R] → R

lim
n′′→∞

∫

[−R,R]

f(t)dνn′′(t) = M (1)
∞ c−

∫ 0

−R

f(t)dt+M (1)
∞ c+

∫ R

0

f(t)dt(62)

holds true. In particular, using f(t) = (χ(t) − sin t)/t2, for every 0 < R < +∞, one gets

lim
n′′→∞

n′′∑

j=1

∫

[−R,R]

(χ(t) − sin(t))dQj,n′′ (t)

= M (1)
∞ (c+ − c−)

∫ R

0

(χ(t) − sin(t))

t2
dt.

(63)

Moreover, since |χ(t) − sin t| ≤ 2,

|
n′′∑

j=1

∫

[−R,R]c
(χ(t) − sin(t))dQj,n′′ (t)| ≤ 2[ζn′′(−R) + ζn′′ (R)].

Applying (36) and (37) one obtains

lim sup
n′′→+∞

|
n′′∑

j=1

∫

[−R,R]c
(χ(t) − sin(t))dQj,n′′(t)| ≤ 2M (α)

∞ (c+ + c−)
1

R
,

which gives

lim sup
R→+∞

lim sup
n′′→+∞

|
n′′∑

j=1

∫

[−R,R]c
(χ(t) − sin(t))dQj,n′′ (t)| = 0.(64)
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Combining (63) with (64) one gets (60). �

Proof of Theorem 3.5. Use Lemma 4.7 and repeat the proof of Theorem 3.2. �

Proof of Theorem 3.3. The theorem is a corollary of Theorem 3.5. Since m0 =
∫

R
x dF0(x) < ∞

by hypothesis, it follows that c+ = c− = 0, and so V ∗
t converges to 0 in probability. Now write

Vt = m0M
(1)
νt

+ V ∗
t −Rνt

,

with the remainder

Rn :=
n∑

j=1

(qj,n − βj,nm0).

Thanks to Lemma 3.1, m0M
(1)
νt converges in distribution to m0M

(1)
∞ . It remains to prove that Rνt

converges to 0 in probability. Since
∣∣∣ sin(x)

x
− 1

∣∣∣ ≤ H(x) := 1/6
[
x2

I{|x| < 1} + I{|x| ≥ 1}
]
≤ 1/6,

it follows that

|Rn| ≤
n∑

j=1

βj,n

∫

R

∣∣∣ sin(βj,nx)

βj,nx
− 1

∣∣∣|x|dF0(x)

≤
n∑

j=1

βj,n

∫

R

H(βj,nx)|x|dF0(x) ≤M (1)
n

∫

R

H(β(n)x)|x|dF0(x).

Recall that M
(1)
n converges a.s. to M

(1)
∞ and β(n) converges in probability to 0 by (33). By

dominated convergence it follows that also
∫

R
H(β(n)x)|x|dF0(x) converges in probability to 0.

The (non-)degeneracy of V∞ and the (in)finiteness of its moments is an immediate consequence
of Lemma 3.1. �

4.4. Estimates in Wasserstein metric (Proposition 3.6).

Proof of Proposition 3.6. The proof uses the techniques employed in Lemma 3.1.
We shall assume that Wγ(X0, V∞) < +∞, since otherwise the claim is trivial. Then, there

exists an optimal pair (X∗, Y ∗) realizing the infimum in the definition of the Wasserstein distance,

∆ := Wmax(γ,1)
γ (X0, V∞) = Wmax(γ,1)

γ (X∗, Y ∗) = E|X∗ − Y ∗|γ .(65)

Let (X∗
j , Y

∗
j )j≥1 be a sequence of independent and identically distributed random variables with

the same law of (X∗, Y ∗), which are further independent of Bn = (β1,1, β1,2, . . . , βn,n). Conse-
quently,

∑n
j=1 X

∗
j βj,n has the same law of Wn, and

∑n
j=1 Y

∗
j βj,n has the same law of V∞. By

definition of Wγ ,

Wmax(γ,1)
γ (Wn, V∞) ≤ E

[∣∣∣
n∑

j=1

X∗
j βj,n −

n∑

j=1

Y ∗
j βj,n

∣∣∣
γ]

= E

[
E

[∣∣∣
n∑

j=1

(X∗
j − Y ∗

j )βj,n

∣∣∣
γ
∣∣∣∣Bn

]]
.

For further estimates, we distinguish two cases. In the first case, 0 < α < γ ≤ 1, we apply the
elementary inequality

∣∣∣∣
n∑

j=1

zj

∣∣∣∣
γ

≤
n∑

j=1

|zj |γ

for real numbers z1, . . . , zn to obtain

Wγ(Wn, V∞) ≤ E

[
E

[ n∑

j=1

βγ
j,n|X∗

j − Y ∗
j |γ

∣∣∣∣Bn

]]
= E

[ n∑

j=1

βγ
j,n

]
∆;
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where ∆ is defined in (65). In the second case, 1 ≤ α < γ ≤ 2, we can apply the Bahr-Esseen
inequality (31) since E(X∗

j −Y ∗
j ) = E(X1)−E(V∞) = 0 and E|X∗

j −Y ∗
j |γ = W γ

γ (X0, V∞) < +∞.
Thus,

Wγ
γ (Wn, V∞) ≤ E

[[
2

n∑

j=1

βγ
j,n|X∗

j − Y ∗
j |γ

∣∣∣∣Fn

]
= 2E

[ n∑

j=1

βγ
j,n

]
∆.

By convexity of the Wasserstein metric,

Wmax(γ,1)
γ (Vt, V∞) ≤

∑

n≥1

e−t(1 − e−t)n−1Wmax(γ,1)
γ (Wn, V∞).

Combining the previous estimates with Proposition 4.1, we obtain

Wmax(γ,1)
γ (Vt, V∞) ≤ a∆

∑

n≥1

e−t(1 − e−t)n−1
E

[ n∑

j=1

βγ
j,n

]

= a∆etS(γ),

with a = 1 if 0 < α < γ ≤ 1 and a = 2 if 1 ≤ α < γ ≤ 2. �

Lemma 3.7 is a corollary of the following.

Lemma 4.8. Let two random variables X1 and X2 be given, and assume that their distribution
functions F1 and F2 both satisfy the conditions (28) and (29) with the same constants α > 0,
0 < ε < 1, K and c+, c− ≥ 0. Then Wγ(X1, X2) <∞ for all γ that satisfy α < γ < α

1−ε .

Proof. Define the auxiliary functions H , H+ and H− on R \ {0} by

H(x) = I{x > 0}(1− c+x−α) + I{x < 0}c−|x|−α, H±(x) = H(x) ±K|x|−(α+ε),

so that H− ≤ Fi ≤ H+ for i = 1, 2 by hypothesis. It is immediately seen that H(x), H+(x) and
H−(x) all tend to one (to zero, respectively) when x goes to +∞ (−∞, respectively). Moreover,
evaluating the functions’ derivatives, one verifies that H and H− are strictly increasing on R+,
and that H+ is strictly increasing on some interval (R+,+∞). Let Ř > 0 be such that H(Ř) >
H+(R+); then, for every x > Ř, the equation

H−(x̂) = H(x) = H+(x̌)(66)

possesses precisely one solution pair (x̌, x̂) satisfying R+ < x̌ < x < x̂. Likewise, H and H+ are

strictly increasing on R−, and H− is strictly increasing on (−∞,−R−). Choosing R̂ > 0 such that

H(−R̂) < H−(−R−), equation (66) has exactly one solution (x̌, x̂) with x̌ < x < x̂ < −R− for

every x < −R̂.
A well-known representation of the Wasserstein distance of measures on R reads

Wmax(γ,1)
γ (X1, X2) =

∫ 1

0

|F−1
1 (y) − F−1

2 (y)|γ dy,

where F−1
i : (0, 1) → R denotes the pseudo-inverse function of Fi. We split the domain of

integration (0, 1) into the three intervals (0, H(−R̂)), [H(−R̂), H(Ř)] and (H(Ř), 1), obtaining:

Wγ(X1, X2)
max(γ,1) =

∫ −R̂

−∞

|F−1
1 (H(x)) − F−1

2 (H(x))|γH ′(x) dx

+

∫ H(Ř)

H(−R̂)

|F−1
1 (y) − F−1

2 (y)|γ dy

+

∫ ∞

Ř

|F−1
1 (H(x)) − F−1

2 (H(x))|γH ′(x) dx.

The middle integral is obviously finite. To prove finiteness of the first and the last integral, we
show that ∫ ∞

Ř

|F−1
1 (H(x)) − x|γH ′(x) dx <∞;
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the estimates for the remaining contributions are similar. Let some x ≥ Ř be given, and let
x̂ > x̌ > Ř satisfy (66). From H− < F1 < H+, it follows that

F1(x̌) < H(x) < F1(x̂),

which implies further that

x̌− x < F−1
1 (H(x)) − x < x̂− x.(67)

From the definition of H , it follows that

x = x̂(1 + κx̂−ε)−1/α,

with κ = K/c+. Combining this with a Taylor expansion, and recalling that x̂ > x > Ř > 0, one
obtains

x̂− x = x
[
(1 + κx̂−ε)1/α − 1

]
< x

[
(1 + κx−ε)1/α − 1

]
< Ĉx1−ε,(68)

where Ĉ is defined in terms of α, κ and Ř. In an analogous manner, one concludes from

x = x̌(1 − κx̌−ε)−1/α,

in combination with 0 < R+ < x̌ < x and 0 < ε < 1 that

x̌− x = x̌
[
1 − (1 − κx̌−ε)−1/α

]
≥ x̌

[
1− (1 + Čx̌−ε)

]
= −Čx̌1−ε > −Čx1−ε,(69)

where Č only depends on α, κ and R+. Substitution of (68) and (69) into (67) yields
∫ ∞

Ř

|F−1
1 (H(x)) − x|γH ′(x) dx < max(Ĉ, Č)γ

∫ ∞

Ř

xγ(1−ε)−α−1 dx,

which is finite provided that 0 < γ < α/(1 − ε). �

Proof of Lemma 3.7. In view of Lemma 4.8, it suffices to show that the distribution function F∞

of V∞ satisfies (28) and (29) with the same constants c+ and c− as the initial condition F0 (possibly
after diminishing ε and enlarging K).

The proof is based on the representation of F∞ as a mixture of stable laws. More precisely, let
Gα be the distribution function whose characteristic function is ĝα as in (15), then

F∞(x) = E

[
Gα

((
M (α)

∞

)−1/α
x
)]
,

see (21). Since α < γ < 2α, then there exists a finite constant K > 0 such that

|1 − c+x
−α −Gα(x)| ≤ Kx−γ

for x > 0, and similarly for x < 0; see, e.g. Sections 2.4 and 2.5 of Zolotarev (1986)). Using that

E[M
(α)
∞ ] = 1 and C := E[(M

(α)
∞ )γ/α] <∞ (since S(γ) < 0) it follows further that

∣∣1 − c+x−α − F∞(x)
∣∣ =

∣∣1 − c+E
[
M (α)

∞

]
x−α − E

[
Gα((M (α)

∞ )−1/αx)
]∣∣

≤ E
[∣∣1 − c+

(
(M (α)

∞ )−1/αx
)−α −Gα((M (α)

∞ )−1/αx)
∣∣]

≤ E
[
K(M (α)

∞ )γ/αx−γ
]

= CKx−γ .

This proves (28) for F∞, with ε = γ − α and K ′ = CK. A similar argument proves (29). �

4.5. Proofs of strong convergence (Theorem 3.8). We shall use the Wild sum representation
of the solution to the Boltzmann equation, see (10) and (11). The idea is to prove that certain
ξ-pointwise a priori bounds on the characteristic functions q̂n are preserved by the collisional
operator, and hence are propagated from the initial condition to any later time.

A first intermediate result is

Lemma 4.9. Under the hypotheses of Theorem 3.8, there exists a constant θ > 0 and a radius
ρ > 0, both independent of n ≥ 0, such that |q̂n(ξ)| ≤ (1 + θ|ξ|α)−1/r for all |ξ| ≤ ρ.
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Proof. By the explicit representation (21) or (22), respectively, we conclude that

|φ∞(ξ)| ≤ Φ(ξ) := E[exp(−|ξ|αkM (α)
∞ )],

with the parameter k from (17), or k = σ2/2 if α = 2. Notice further that, by (20), Φ satisfies

Φ(ξ) = E[Φ(Lξ)Φ(Rξ)].(70)

Moreover, since M
(α)
∞ 6= 0, E[M

(α)
∞ ] = 1 and E[(M

(α)
∞ )γ/α] < +∞, the function Φ is positive and

strictly convex in |ξ|α, with Φ(ξ) = 1 − k|ξ|α + o(|ξ|α). It follows that for each κ > 0 with κ < k,
there exists exactly one point Ξκ > 0 with Φ(Ξκ) + κ|Ξκ|α = 1, and Ξκ decreases monotonically
from +∞ to zero as κ increases from zero to k.

Since q̂0 = φ0 is the characteristic function of the initial datum, satisfying the condition (16),
it follows by Theorem 2.6.5 of Ibragimov and Linnik (1971) that

q̂0(ξ) = 1 − k|ξ|α(1 − iη tan(πα/2) sign ξ) + o(|ξ|α),

with the same k as before, and η determined by (17). For α = 2, clearly q̂0(ξ) = 1−σ2ξ2/2+o(ξ2).
By the aforementioned properties of Φ, there exists a κ ∈ (0, k) such that

|q̂0(ξ)| ≤ Φ(ξ) + κ|ξ|α(71)

for all ξ ∈ R. This is evident, since for small ξ,

|q̂0(ξ)| = |φ0(ξ)| = 1 − k|ξ|α + o(|ξ|α),

while inequality (71) is trivially satisfied for |ξ| ≥ Ξk, since |φ0| ≤ 1.
Starting from (71), we shall now prove inductively that

|q̂`(ξ)| ≤ Φ(ξ) + κ|ξ|α.(72)

Fix n ≥ 0, and assume (72) holds for all ` ≤ n. Choose j ≤ n. Using the invariance property (70)
of Φ, as well as the uniform bound of characteristic functions by one, it easily follows that

|Q̂+[q̂j , q̂n−j ](ξ)| − Φ(ξ) ≤ E
[
|q̂j(Lξ)||q̂n−j(Rξ)| − Φ(Lξ)Φ(Rξ)

]

≤ E
[(
|q̂j(Lξ)| − Φ(Lξ)

)
|q̂n−j(Rξ)|

]
+ E

[
Φ(Lξ)

(
|q̂n−j(Rξ)| − Φ(Rξ)

)]

≤ E
[
κ(L|ξ|)α

]
+ E

[
κ(R|ξ|)α

]
= κ|ξ|α.

The final equality is a consequence of E[Lα + Rα] = 1. By (11), it is immediate to conclude (72)
with ` = n+ 1.

The proof is finished by noting that, since κ < k,
(
1 + θ|ξ|α

)−1/r ≥ Φ(ξ) + κ|ξ|α

holds for |ξ| ≤ ρ, provided that ρ > 0 and θ > 0 are sufficiently small. �

Lemma 4.10. Under the hypotheses of Theorem 3.8, let ρ > 0 be the radius introduced in Lemma
4.9 above. Then, there exists a constant λ > 0, independent of ` ≥ 0,

|q̂`(ξ)| ≤ (1 + λ|ξ|r)−1/r for all |ξ| ≥ ρ.(73)

Proof. Since the density f0 has finite Linnik–Fisher information by hypothesis (H2), it follows
that

|φ0(ξ)| ≤
(∫

R

|ζ|2|ĥ(ζ)|2 dζ
)
|ξ|−1

for all ξ ∈ R, where h =
√
f0 and ĥ is its Fourier transform. See Lemma 2.3 in Carlen et al.

(1999). For any sufficiently small λ > 0, one concludes

|φ0(ξ)| ≤ (1 + λ|ξ|r)−1/r(74)

for sufficiently large |ξ|.
Next, recall that the modulus of the characteristic function of a probability density is continuous

and bounded away from one, locally uniformly in ξ on R \ {0}. Diminishing the λ > 0 in (74) if
necessary, this estimate actually holds for |ξ| ≥ ρ.
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Thus, the claim (73) is proven for ` = 0. To proceed by induction, fix n ≥ 0 and assume that
(73) holds for all ` ≤ n. In the following, we shall conclude (73) for ` = n+ 1.

Recall that r < α in hypothesis (H1); see Remark 1. Hence, defining

ρλ = (λ/θ)1/(α−r),(75)

it follows that

(1 + θ|ξ|α)−1/r ≤ (1 + λ|ξ|r)−1/r

if |ξ| ≥ ρλ. Taking into account Lemma 4.9, estimate (74) for ` ≤ n extends to all |ξ| ≥ ρλ. We
assume ρλ < ρ from now on, which is equivalent to saying that 0 < λ < λ0 := θρα−r.

With these notations at hand, introduce the following “good” set:

MG
λ,δ :=

{
ω : Lr(ω) +Rr(ω) ≥ 1 + δr and min(L(ω), R(ω))ρ ≥ ρλ

}
,

depending on λ and a parameter δ > 0. We are going to show that if δ > 0 and λ > 0 are
sufficiently small, then MG

λ,δ has positive probability. First observe that the law of (L,R) cannot

be concentrated in the two point set {(0, 1), (1, 0)} because S(γ) < 0 by the hypotheses of Theorem
3.8. Hence we can assume P{Lr + Rr > 1} > 0, possibly after diminishing r > 0 (recall that if
(H1) holds for some r > 0, then it also holds for all smaller r′ > 0 as well). Moreover, notice that
Lr +Rr > 1 and L = 0 or R = 0 implies Lα +Rα > 1. But since E[Lα +Rα] = 1, it follows that
P{L > 0, R > 0, Lr +Rr > 1} > 0. In conclusion, the countable union of sets

∞⋃

k=1

MG
λ0/k,1/k =

{
ω : Lr(ω) +Rr(ω) > 1, L(ω) > 0, R(ω) > 0

}

has positive probability, and so has one of the components MG
λ0/k,1/k.

Also, we introduce a “bad” set, that depends on λ and ξ,

MB
λ,ξ :=

{
ω : min(L(ω), R(ω))|ξ| < ρλ

}
.

Notice that MG
λ,δ and MB

λ,ξ are disjoint provided |ξ| ≥ ρ.
We are now ready to carry out the induction proof, for a given λ small enough. Fix j ≤ n and

some |ξ| ≥ ρ. We prove that

Q̂+[q̂j , q̂n−j ](ξ) ≤ E[|q̂j(Lξ)||q̂n−j(Rξ)|] ≤ (1 + λ|ξ|r)−1/r.(76)

We distinguish several cases. If ω does not belong to the bad set MB
λ,ξ, then L|ξ| ≥ ρλ and

R|ξ| ≥ ρλ so that by induction hypothesis

|q̂j(Lξ)||q̂n−j(Rξ)| ≤
(
(1 + λLr|ξ|r)(q + λRr|ξ|r)

)−1/r

≤
(
1 + λ(Lr +Rr)|ξ|r

)−1/r ≤ (1 + λ|ξ|r)−1/r ;

indeed, recall that Lr +Rr ≥ 1 because of (H1). In particular, if ω belongs to the good set MG
λ,δ,

then the previous estimate improves as follows,

|q̂j(Lξ)||q̂n−j(Rξ)| ≤
(
1 + λ(1 + δr)|ξ|r

)−1/r ≤
( 1 + λρr

1 + λ(1 + δr)ρr

)1/r

(1 + λ|ξ|r)−1/r,

where we have used that |ξ| ≥ ρ. Notice further that there exists some c > 0 — depending on δ,
θ, λ0, ρ and r, but not on λ — such that for all sufficiently small λ > 0,

( 1 + λρr

1 + λ(1 + δr)ρr

)1/r

≤ 1 − cλ.

Finally, suppose that ω is a point in the bad set MB
λ,ξ, and assume without loss of generality that

L ≥ R. Then Lr|ξ|r ≥ (1 −Rr)|ξ|r ≥ |ξ|r − ρr
λ, and so, for sufficiently small λ and for any ξ ≥ ρ,

|q̂j(Lξ)||q̂n−j(Rξ)| ≤ (1 + λLr|ξ|r)−1/r ≤ (1 + λ|ξ|r − λρr
λ)−1/r ≤ (1 + λρr

λ)1/r(1 + λ|ξ|r)−1/r.

Again, there exists a λ-independent constant C such that, for all sufficiently small λ > 0,

(1 + λρr
λ)1/r ≤ 1 + Cλρr

λ.
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Putting the estimates obtained in the three cases together, one obtains

E[|q̂j(Lξ)||q̂n−j(Rξ)|]
≤ (1 + λ|ξ|r)−1/r

[(
1 − P (MG

λ,δ) − P (MB
λ,ξ)

)
+ P (MG

λ,δ)(1 − cλ) + P (MB
λ,ξ)(1 + Cλρr

λ)
]

≤ (1 + λ|ξ|r)−1/r
[
1 + λ(Cρr

λ − cP
(
MG

λ,δ)
)]
.

Notice that we have used the trivial estimate P (MB
λ,ξ) ≤ 1 in the last step, which eliminates any

dependence of the term in the square brackets on ξ. To conclude (76), it sufficies to observe that
as λ decreases to zero, ρλ tends to zero monotonically by (75), while the measure P (MG

λ,δ) is

obviously non-decreasing and we have already proved that P (MG
λ∗,δ) > 0 for λ∗ and δ suitably

chosen. Hence Cρr
λ ≤ cP (MG

λ,δ) when λ > 0 is small enough. From (76), it is immediate to

conclude (73), recalling the recursive definition of q̂n+1 in (11).
Thus, the induction is complete, and so is the proof of the lemma. �

Proof of Theorem 3.8. The key step is to prove convergence of the characteristic functions φ(t) →
φ∞ in L2(R). To this end, observe that the uniform bound on q̂n obtained in Lemma 4.10 above
directly carries over to the Wild sum,

|φ(t; ξ)| ≤ e−t
∞∑

n=0

(1 − e−t)n|q̂n(ξ)| ≤ (1 + λ|ξ|r)−1/r (|ξ| ≥ ρ).

Moreover, since limt→+∞ φ(t; ξ) = φ∞(ξ) for every ξ ∈ R, also

|φ∞(ξ)| ≤ (1 + λ|ξ|r)−1/r (|ξ| ≥ ρ).

Let ε > 0 be given. Then there exists a Ξ ≥ ρ such that

∫

|ξ|≥Ξ

|φ(t; ξ) − φ∞(ξ)|2 dξ ≤ 2

∫

|ξ|≥Ξ

(
|φ(t; ξ)|2 + |φ∞(ξ)|2

)
dξ

≤ 4

∫ ∞

Ξ

(1 + λ|ξ|r)−2/r dξ ≤ ε

2
.

On the other hand, by weak convergence of Vt to V∞, φ(t; ·) converges to φ∞ uniformly on every
compact set of R as t→ +∞, hence there exists a time T > 0 such that

|φ(t; ξ) − φ∞(ξ)|2 ≤ ε

4Ξ

for every |ξ| ≤ Ξ and t ≥ T . In combination, it follows that

‖φ(t) − φ∞‖2
L2 ≤ ε

for all t ≥ T . Since ε > 0 has been arbitrary, convergence of φ(t) to φ∞ in L2(R) follows. By
Plancherel’s identity, this immediately implies strong convergence of the densities f(t) of Vt to the
density f∞ of V∞ in L2.

Convergence in L1(R) is obtained by interpolation between weak and L2(R) convergence. Let
ε > 0 be given, and choose M > 0 such that

∫

|x|≥M

f∞(x) dx <
ε

4
.

By weak convergence of Vt to V∞ there exists a T > 0 such that

∫

|x|≥M

f(t;x) dx <
ε

2
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for all t ≥ T . Now Hölder’s inequality implies
∫

R

|f(t;x) − f∞(x)| dx ≤ (2M)1/2
( ∫

|x|≤M

|f(t;x) − f∞(x)|2 dx
)1/2

+

∫

|x|>M

(
|f(t;x)| + |f∞(x)|

)
dx

< (2M)1/2‖f(t) − f∞‖L2 +
3ε

4

Increasing T sufficiently, the last sum is less than ε for t ≥ T .
Finally, convergence in Lp(R) with 1 < p < 2 follows by interpolation between convergence in

L1(R) and in L2(R). �
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Sznitman, A.S. (1986). Équations de type de Boltzmann, spatialement homogènes. Z. Wahrsch.
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