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Abstract

We consider the inverse problem of recovering the shape of an inclusion or of a crack contained
in a connected domain €2, and the problem of reconstructing part of the boundary 02 itself, when
a condition of the third kind (Robin condition) is prescribed on the defects. We prove a result of
uniqueness by two measures: two different defects, with different coefficients of the Robin condition,
cannot be compatible with same two pairs of Cauchy data on the (accessible) boundary. In case of
cracks, we also prove that a single measure is sufficient if the coefficient of the Robin condition is
known.

AMS Subject Classification: 35N10.

1 Introduction

The purpose of this work is to study some problems of identifiability arising in the field of non de-
structive evaluation. A specimen is given, which is marked by some imperfections due to various
causes, which are located either in the interior of the specimen or on an inaccessible part of its bound-
ary. The most common techniques used to detect these imperfections are the electrical impedance
tomography (where static voltage and surface current measurements are used to determine the con-
ductivity distribution at the interior) or the thermal imaging (where static temperature and heat flow
are measured).

The body to be inspected is represented by a connected bounded domain Q C R" (n = 2,3) and we
assume that the voltage potential (or the static temperature) w is harmonic through the undamaged
part of Q. The defects are modeled either by a simply connected domain D (an inclusion) with
boundary o (a closed curve) contained in €2 or by a curve o (a crack) or by a piece of the boundary
09 itself (still denoted by o).

These three typical situations (and other more complicated) have been largely considered in the
literature, when the most common conditions assumed on o are the Dirichlet (perfectly conducting
defect) or Neumann (perfectly insulating defect) conditions. In this paper, we allow for a more general
boundary condition, namely a condition of the third kind (or Robin condition)

% + Au =0, on o, (1.1)

where the normal vector is pointing inward D in the case of the inclusion and outward €2 in the case
of a surface defect (for the case of a crack see § 3 below). The coefficient A = A\(x) is strictly positive:

A=Az)>A>0, on o. (1.2)

Condition (1.1) is called Robin condition and is sometime used to model damages due to corrosion
(especially when o is part of the boundary of ). For sure, corrosion is a complicated electrochemical
phenomenon and the linear condition (1.1) can not be assumed to model it realistically; however, from
a mathematical point of view, it shares some crucial features with more effective nonlinear conditions.



The coefficient A, in the electrostatic context, represents the reciprocal of the surface impedance; in
heat conduction problems, it is related to the surface conductivity. If we call I" the accessible part of
the external boundary 02 (which is the whole of 92 in the case of the inclusion and of the crack, only a
subset of 0 in the third case) the avaible data are represented by a fixed choice of the current density
on I and the measurement of the corresponding boundary voltage on some arc of I" (or, viceversa, we
apply some voltage and measure the current); our main goal is to address the question of uniqueness
of o: are two different defects compatible with the same pair of Cauchy data on I" ?

This problem was addressed in [1]-[5]. An answer comes in an unexpectedly simple way by the
application of an integral identity found by Martin (in 1958) to positive solutions of the classical
Steklov problem, i.e. to positive harmonic functions satisfying the boundary condition d,u = hu,
with h a given function on a boundary of a domain [6]. In [7] it is noticed that from Martin’s result
the unique identification of an unknown C' boundary immediately derives. It should be remarked,
however, that the same integral identity gives a solution also for the other problems and we will prove
this under suitable regularity assumptions of the domain (see § 4). Moreover, we stress that such
identity is a special case of a general one constructed in [6] which holds for any pair of smooth enough
functions in a bounded domain with smooth boundary; in this paper, we will deduce from Martin’s
results another identity for the solutions of the Steklov problem, which applies to identification of
cracks by a single measure (see § 5).

The paper is organized as follows: in § 2 we present the inverse problems for the inclusion and for
the boundary and illustrate the relation of the uniqueness question to the Steklov problem. Section
3 is devoted to the study of the cracks: we define this kind of defect and study in some detail the
direct problem, stressing the behaviour of the solution in the neighborhood of the end points of the
crack. In § 4 we present the Martin’s integral identity and apply it to the three problems: as an
immediate consequence we get that two measures suffice to identify uniquely the defects together with
the coefficient A\. By exploiting the above mentioned new integral identity for the solutions of the
Steklov problem, we refine the result for the crack by proving that a single measure is sufficient for
identifying o.

2 Inclusions and boundaries

Let us consider the boundary value problem

Au = 0 inQ\D
u = f onl'=0Q (2.1)
@ 4+ = 0 ono=9D
ov

Here Q is a bounded domain of R" (n = 2,3) with Lipschitz boundary I' and D (the inclusion) is a
simply connected domain with Lipschitz boundary ¢ and such that D C €. Moreover, the coefficient
A satisfies (1.2) and the normal v points inward D.

For f € H'/*(T') problem (2.1) admits a unique variational solution, thanks to (1.2) that guarantees
the coercivity of the associated bilinear form.

The inverse problem for the inclusion consists of recovering o and \ when, in addition to the prescribed

voltage f, the measured current
u

a9

is known on some arc of T".



The uniqueness for the inverse problem is easily proved if A = 0 (corresponding to a perfect insulating
body D) and if A = +o0 (corresponding to a perfectly conducting body). Let us sketch the argument
for A = 0.

Let D and D’ denote two inclusions bounded by simple curves o, ¢’; u and «' are two harmonic
functions in Q\D and Q\D', satisfying condition (2.1) on o, ¢’ respectively and assuming the same
value f (not constant) on 9. If the traces of the normal derivatives of u and «’ on some arc of 99
are also equal, then u =« on Q\(D U D’) (by Holmgren’s theorem); since %—“j/’ =0 on ¢’, then % =0
on o’ N (D U D), thus 9 = 0 on the boundary of D'\(D N D’); but this implies u = constant in
D'\(D N D’) and then constant on Q\D, contradicting the assumption on f.

Clearly, if A > 0 the assertion that u = «’ on Q\(D U D’) remains true, but the subsequent argument
cannot be applied. In this case, the real problem is the treatment of (partially) overlapping domains
D, D';if DN D" = (), uniqueness follows trivially. For, the function v which equals » in Q\D and «’ in
O\ D’ is harmonic in the whole of Q; if we take a voltage f > 0 on 052, then v > 0 on Q. In particular,
u/|p is a positive harmonic function such that (by condition (2.1)) [, %—11‘// < 0, a contradiction. The
same argument applies to u|pr.

On the other hand, on one connected component of D’\(D N D'), C say, we have

ou

W +X = 0 ononoC (2.2)
ou B ,

e A = 0 ono NoC (2.3)

where v is pointing outward C. This boundary value problem (with a Robin condition on part of the
boundary and a Steklov condition on the remaining part) is no more variational; if we take A constant,
we may speak of the Robin-Steklov (or generalized Steklov) eigenvalue problem. In principle such a
problem (for a fixed domain) has infinitely many eigenvalues, each with finite multiplicity; but, since in
our problem the domain is unknown, nothing in general can be said about the eigenfunctions u. Notice
that a similar problem has to be satisfied by ' in any connected component of D\D’. The harmonic
functions u and u’ extend to Q\D and Q\ D’ respectively and identically coincide on Q\(D U D’). We
have shown before that this is impossible if DN D’ is empty. If D’ C D, next example illustrates many
cases in which two different inclusions produce the same Cauchy data on T'.

Ezample 1. (D and D’ are concentric circles).

This example appears also in [4], but is presented here in a different and more complete version.
Consider the sequence of disjoint open intervals

Inz{u %(M—1)<u<n},

Assume D = Bp (the ball of radius R centered at the origin) and D’ = B, with 0 < r < R. For
a fixed constant A > 0, we say that R is an admissible radius if AR € I,, for some n. For every
admissible R there exists precisely one associated r such that the pairs of functions u,, v, given
below are eigenfunctions (corresponding to the same eigenvalue \) of the Robin-Steklov problem in
the annulus Bgr\B;:

n=12, .. (2.4)

Pt n—ARR"
un(p,0) = (ﬁ + —y )\Rp_”> cos(nd)
" n—ARR" .
un(p,0) = (% + s )\Rp_”> sin(nf), n=1,2,.. (2.5)

For, it is easy to check that: i) wy,, v, are harmonic in R*\{0}; ii) w, = Aw for p = R (where w is



either u, or v,); iii) w, = Aw for p = r provided the ratio t = r/R satisfies the equation

—tn — AT = —&t where A = n- AR
4+ At " n+ AR’

Inspecting the function
Gt A) 1 [0,1] 3t (77 = A) (™" + A) 7

one easily proves that, for a fixed n, ¢, intersects the straight line ¢ — ARt/n exactly once in the open
interval (0,1) provided AR < n and \/(AR)? + AR > n, i.e., if and only if R is an admissible value.
Thus, for every positive integer n, we have a continuum of admissible pairs (R,r), so that 0 = 0Bpr
and ¢’ = 0B, are two different solutions of our inverse problem whenever we assign on I' either the
restriction of u, or v,.

The inverse problem for an unknown boundary has quite similar features. Let I" be the accessible
part of the boundary and o the unknown part; we denote by €2, the domain. Then the potential u is
harmonic in 2, and satisfies the Robin condition % + Au = 0 on o; we prescribe a voltage f on I' and
measure the resulting current g on some arc of I'. If we have two domains €0, and €2,/ corresponding to
the same Cauchy pair (f, g), then we have two harmonic functions v and " which identically coincide
on Q; N Q. On one connected component of Q,\ (2, N Qy) u solves the Robin-Steklov problem.
Examples of non-uniqueness have been illustrated by [1]; here is another example of different nature.
Example 2

r

Let Q, and €, be the domains represented in fig. 1; in one case the unknown boundary o consists of
two arcs of circles (in the half plane y > 0) of equation

1
(o= 43P = 55, 2.7)

with a suitable ¢, joined by a segment on the line y = %; in the other case ¢’ is made of various
(arbitrarily chosen) arcs of the same family of circles with different ¢’s. If we choose f =y on I, then
the harmonic function u(z,y) = y satisfies the conditions of the problem on both o and ¢’. Notice
that here we have infinitely many possible boundaries ¢’, which could be taken arbitrarily close to o,
but only one is of class C'.

3 Cracks
What is a crack? Roughly, in two dimensions is the limit of a thin imperfection
Di={zeQ: zxz=ux,+tdlz,), x5 €0, t € (—€,€)} (3.1)

when € — 0; here ¢ is a simple curve, v a unit normal vector field to ¢ and d represents the thickness
variation along . When ¢ — 0, D, tends to o, but it is necessary to distinguish limits on the two



sides of 0. A crack is to be considered as an abstract simple closed curve obtained from two copies of
o and glueing two by two the corresponding end points. Having chosen the normal direction v, the
direct problem for the crack is to find a harmonic function u in Q\o satisfying a Dirichlet or Neumann
condition on 0f) and the following two conditions on the two sides of o:

ou
2|, Ml =0, (3.2)

where |+ denotes the trace on the two sides of 0. Conditions of this type has also been considered on
open surfaces in three dimensions by Eller [5].

It can be readily shown that the direct problem has a unique weak solution in the Sobolev space
H'(Q\0); here we state the result together with some additional remarks concerning regularity of the
solution.

Theorem 3.1. Let Q C R? be an open, bounded domain with C' boundary 02 and let o C ) be a
non self-intersecting C' curve with end points Py # Py in Q. Then, for every f € HY/?(9) there is a
unique u € H'(Q\o) satisfying

Au = 0, in Q\o (3.3)
v = f, on 0N (3.4)

and such that (3.2) holds on o. Moreover, if h is reqular enough (e.g. h € H32(0Q)) u is continuous
up to the boundary OYU o; in particular, the traces uy satisfy uy (P;) = u—(P;), i =1,2.

Remark 3.2. The mapping u — g—z N is a continuous operator from the closed subspace of harmonic

functions in H' (Q\o) to the dual space of H'/?(0), a suitable trace space on (either side of ) o see [8]
§ 1.5 and 1.7. The boundary conditions (3.2) in the statement of theorem 3.1 are at first understood
in this dual space.

Proof. Consider the weak form of the problem: find u € H'(Q\o) satisfying (5) and such that

Vu - Vudz + / Mugvy +u_v_}do =0, (3.5)
Q\o o

for every v € H'(Q\o) with v = 0 on 99; here dz = dzidry and do is the usual surface measure
on o. It is readily verified that the bilinear form at the right hand side is continuous and coercive
on the subspace of the H'(Q\o) functions with vanishing trace on 9€); hence, by the surjectivity of
the trace mapping u — ulsq from H'(Q\o) into HY2(99), unique solvability of (3.5) follows in the
standard way. Then, u is (weakly) harmonic in \o and (3.2) holds; in particular, this means that
g—m L €EH 12(g). Now, if we also assume f € H%?(9Q), we can apply known regularity results for
weak solutions of elliptic problems in domains with cuts; in order to avoid compatibility conditions
(typical for traces of H™ functions on polygonal boundaries) we look for regularity in the space I/Vp2
with 1 <p < 2.

1 1
We first recall the Sobolev imbeddings H'/?(s) C Wpl ?(0) and H3/%(09Q) C I/Vp2 - 7(9Q); this implies
that v is in I/Vp2 outside any neighborhood of the end points Py, Py of o (where the boundary forms
two "corners” of angle 27). Thus, again by Sobolev imbeddings, u is continuous in Q\o (actually,
Holder continuous with exponent o« = 2 — 2/p) up to the boundary except possibly at the end points
of 0. Let us now fix a ball B centered in P; (or P,) and assume, for the sake of simplicity, that c N B
is a segment; define polar coordinates (r,#) with origin in the center of B and such that § = 0 on the
upper side of o and 6 = 27 on the lower side. Then, by the results of [8] (theorem 5.1.3.5 and remark
5.1.3.7) we have u(r,0) — cr'/? cos(0/2) € W2(B\o) for some constant ¢, so that continuity holds up
to the whole boundary 02 U o. O



Remark 3.3. By recalling that u is smooth inside Q\o, it turns out that the continuity of u up to o
can be proved, by a slight modification of the above arguments, without further reqularity assumptions
on the datum f and with a Lipschitz boundary 0S). Also, the assumption that o is a straight line in
a neighborhood of the end points can be removed by using the results of [8] § 5.2 about curvilinear
polygons.

There is also an analogue of theorem 3.1 in the case of Neumann boundary conditions on 9€):

Theorem 3.4. Let Q C R? be an open, bounded domain with C' boundary 0Q and let o C Q be a non
self-intersecting C' curve with end points Py # Py in Q). Then, for every g € L*(0Q) there is a unique
u € HY(Q\o) satisfying

Au = 0, in Q\o (3.6)
du = g, on 00 (3.7)

and such that (3.2) holds on o. Moreover, if g is reqular enough (e.g. g € HY/?(9Q)) u is continuous
up to the boundary O U o; in particular, the traces uy satisfy uy (P;) = u—(P;), i =1,2.

The proof follows by obvious modifications of the proof of theorem 3.1.

Remark 3.5. In general, both u and Jy,u are discontinuous through o. Fither u or d,u could be
continuous, but if both are continuous through o at some point, they must be zero; if this happens
along an arc of o, v would identically vanish in §

Let us now consider the inverse problem for cracks. Hence, we are given two cracks o and o', and ask
if they are compatible with the same Cauchy data on I' = 0{2. Thanks to the previous remark, the
uniqueness for the inverse problem is trivial if o and ¢’ do not disconnect the domain € (e.g., they
are separated, or intersect at one point or partially overlap). In that case the solutions of the direct
problem w and u/, corresponding to o and A and to ¢’ and X respectively, coincide (by Holmgren’s
theorem) on Q\(ocUo’). Then, if |cUc’| = 0, it follows that u = v’ = 0 (a contradiction); furthermore,
if o and o’ overlap, we have no contradiction only if 0 = ¢’ (and then immediately follows that also
A=N).

Conversely, on one connected component D of Q\(o Uo’) we have

on oNID: du+ =0 and Jdu —Nu' =0 (3.8)
on o'NOD: Ju—Iu=0 and Ju' +Nu' =0 (3.9)

i.e., u and v satisfy a generalized Steklov problem in D, with coefficients —\ on o, A on ¢’ and A’ on
o, —X on o/, respectively.

4 Uniqueness theorems

It is now clear that informations about solutions of the (homogeneous) generalized Steklov problem
would help us to state the uniqueness for the inverse problems considered above. Before stating a first
result in such direction, we recall the definition of the Sobolev space H!(C) (C a connected domain of
R™): it is the space of all u € H'(C') which are restriction to C of elements of H'(R"); the crucial fact
is that the space of all functions which are restriction to C' of smooth functions with compact support
in R™ is dense in H'(C) without any assumption on C. Then, we have the following proposition :



Proposition 4.1. Let C_C R™ (n = 2,3) be a bounded connected domain with piecewise C* boundary
and let uy € HY(C)NC°(C) be a positive solution of the Steklov problem

Au = 0 inC
Ou = pu on dC (4.1)

where p = p(x) € L*(9C) (and may change sign on OC'). Then, any other finite energy solution us
continuous on C' is linearly dependent on u.

Proof. The proposition follows at once from the integral identity

2

/ %(ulf),,uQ — ug0,uy) = / [u%‘vﬁ + %(ulAug — ugAuy) (4.2)
ac U1 c U1 U1

which is readily verified for smooth u; > 0 and us by using the classical Green’s formula (see [6]).

The identity is subsequently extended by continuity to any pair of functions wy, us in H'(C)NC%(C),

with u; > 0 and Auy, Aus in L?(C). Now, if uy, us satisfy (4.1), then it follows that V(us/u1) = 0.

O

Remark 4.2. When applying (4.2), we assume a priori that the harmonic functions uy, us exist,
continuous in C and of finite energy in C and that are the resctrictions of elements of H'(R™). Notice
that C' (whose boundary in our applications consists partly of a piece of o and partly of a piece of o)
may even not have a continuous boundary in a neighborhood of the contact points between o and o’.

To apply Proposition 4.1 to our problems we need now to provide a positive solution for anyone of
the three direct problems: for the inclusion, for the boundary, for the crack; moreover, such solution
(restricted to C') should satisfy the regularity assumption of the Proposition.

The boundary condition (1.1) implies that, on o, the harmonic function w cannot have a positive
maximum as well as a negative minimum (for the crack, the assertion holds on both sides of o); then,
if we take f > 0 on T, it follows that v > 0 on Q; but, if « vanishes at some point of o, this point
is a minimum and, again by condition (1.1), the normal derivative is zero. This contradicts the Hopf
principle, provided this principle is applicable; for that, we need to assume some regularity for the
points of o, namely that they have the sphere property, or a uniform cone property with angle larger
than 7/2 [9] . For the sake of simplicity, we will assume o of class C*.

If we are given the current g on I' (and measure the potential f) we still may provide a positive
solution; for, take g > 0 on I'; then the minimum of u cannot be attained on I', but only on o, where
it must be greater than zero.

Finally, some regularity of the whole boundary I' U o is also required in order to assure that the
solution satisfies the conditions of Proposition 4.1 (see remark 4.2 above); the assumption that I' U o
is the boundary of a curvilinear polygon of class C' [8] suffices to obtain the required regularity and
extension properties in all the cases. Notice that we do not require C! regularity of ' U o as in [7]
(such assumption implies much more a priori information on the unknown o).

Then, we can state the following theorems of uniqueness.

Theorem 4.3. (inclusions) Let D and D' be two inclusions (simply connected domains with C*
boundaries o and o' respectively) in Q with D N D' not empty; let Q) = T of class and C' and
let HY/2(I') 5 f1 > 0, uy and u/y be the solutions of a problem 2.1 with f = f1 and D, D', o, o', X\, X
respectively. Let now fo € Hl/Q(F) be a voltage independent of f1 and ug, ul, be the solutions of the
same problem with f = fo and the rest as before. If the measured currents are equal

Jui _
v v

i=1,2, (4.3)



on some arc of I, then
o=0 and A= )\. (4.4)

Proof. Assume o # ¢’ and let C' a connected component of D’\(DND’). We have already established
that, in the stated hypotheses, uy is a continuous positive solution of the generalized Steklov problem
with coefficient p = —X on 0 N OC and = A on o' NAC (see (2.2)); if uy is another solution of the
same problem, then it is linearly dependent on u; by proposition (4.2). But the harmonic functions
u1, ug, both extend outside C' up to the boundary I' where they are respectively equal to f; and fo,
contradicting the assumption that f; and fs are independent. Then, D = D’; as a consequence, we
also have v} = u; in Q\D and this implies \' = . O

The assertion in case of the boundaries is similar to that for the inclusions and the proof is the same
(see also [7]).

Theorem 4.4. (boundaries) Let T', o and o’ be regular curves of class C*, Q, and Qqr two bounded
connected domains (curvilinear polygons of class C') whose boundaries are TUo and T'Uo’ respectively.
let HY/2(I') 5 fi > 0, u; and v} be the solutions of the direct problem for a boundary with f = f;
and o, o', X\, X respectively. Let now fy € Hl/Q(I‘) be a voltage independent of fi and uz, uly be the
solutions of the same problem with f = fo and the rest as before. If the measured currents are equal

— = =1,2 4.5
a]/ a]/ 1 ) ) ( )

on some arc of I, then
o=0o and A= ). (4.6)

A similar theorem holds for cracks; but in this case a refined result can be proved for the problem of
identification of a crack with known coefficient \: a single measure is sufficient. This comes from the
following integral identity:

Lemma 4.5. Let uy, us be two positive harmonic functions belonging to H*(C') N C°(C), where C s
a domain as in proposition 4.1. Then

uy Ouq w1 Ous 1 ‘U1VU2 - UQVU1‘2
i _|_ _— = —— (4.7)
ac Uul 81/ u9 81/ 2 C (u1u2)3/2

Proof. For the sake of brevity, we prove the result in the case n = 2; we start from the identity [6]

au,- _ 60@ au, 8uj au, (9Uj ) '
/ac You T /C [auj(ax 9z | dy Oy ) +0‘1A“1} (48)

where u;, i = 1,2 are smooth functions, a; = «a;(u1,uz) and the summation convention for repetead
indices is understood. For positive uj, ug, choose a1 = \J/ug/ui, ag = /uq/ug; then, if uy, ug are
harmonic, identity (4.7) follows. The more general case of uy, us in HY(C) N C°(C) is proved as in
proposition 4.1. O

Remark 4.6. It is worthwhile to stress that the former identity (4.2) of proposition 4.1 follows from
(4.8) by choosing oy = —u3/uy and ag = us.

Theorem 4.7. (cracks) Let o, o’ be two cracks of class C' contained in Q; for a given HY/?(0Q) 3

f>0,letue H/2(Q\o) and o' € H'?(Q\0') be the solutions of problem (3.2)-(3.4) respectively
with o, o', but with the same \. If the measured currents are equal

ou o

8



on some arc of I, then
oc=o.

Proof. We have already noticed that uniqueness follows at once when o and ¢’ do not disconnect the
domain §2; on a connected component C' of Q\ (o Uc’) (not containing 9Q2) w and v’ solve two Steklov
problems corresponding respectively to a coefficient p (1 = —X on o and = A on ¢') for u and —p
for u/'.

Considering now the integral identity (4.7) with u; = u, us = «’ and taking account of the boundary
conditions satisfied by u and u/, we see that the left member of (4.7) vanishes, so that

uVu' = u'Vu on C

and therefore

o’ ,0u
’UJ% =u 5 on 9C.
Then, on 0 N JD we have
Aur’ = —dudd,
which implies u (or «’) = 0, a contradiction. O

We stress that in [5] this same conclusion was reached by assuming the knowledge of the entire
Dirichlet-to-Neumann map.
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