Uniqueness for the determination of unknown boundary and impedance with homogeneous Robin condition

Valeria Bacchelli *

Abstract

We consider the problem of determining the corroded portion of the boundary of a n-dimensional body (n=2, 3) and the impedance by two measures on the accessible portion of the boundary. On the unknown boundary part it is assumed the Robin homogeneous condition.

 $2000\ Mathematical\ Subject\ Classification.\ 35R30,\ 35R25,\ 35R3510.$

Key words. Inverse boundary value problems, corrosion, thermal imaging, unique continuation.

1 Introduction

In this paper we deal with a classical inverse problem. Assume Ω be a bounded connected domain in \mathbb{R}^n , whose boundary $\partial\Omega$ belongs to $C^{2,\alpha}$ class, $0 < \alpha < 1$; suppose $\partial\Omega = \overline{\Gamma^a} \cup \overline{\Gamma^i}$, where Γ^i and Γ^a are two open connected disjoint portions of $\partial\Omega$. Assume that Γ^i is unknown and inaccessible (perhaps Γ^i is some interior connected component of $\partial\Omega$ or some inaccessible portion of the exterior component of $\partial\Omega$), while Γ^a is known and accessible for input and output measurements. Let us consider the solution u of the following mixed boundary value problem

$$\begin{cases} \Delta u = 0, & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu} = g, & \text{on } \Gamma^a, \\ \frac{\partial u}{\partial \nu} + \gamma u = 0, & \text{on } \Gamma^i, \end{cases}$$
(1)

where ν is the exterior unit normal to $\partial\Omega$, g is an assigned function, $\gamma \neq 0$.

Suppose $g \in C^{1,\alpha}(\Gamma^a)$, $supp \ g \subset \Gamma^a$, $\gamma \in C^{1,\alpha}(\Gamma^i)$, $\gamma \ge 0$, $\gamma \ne 0$, $supp \ \gamma \subset \Gamma^i$; it is known [10] that the direct problem (1) has a unique solution $u \in C^{2,\alpha}(\overline{\Omega})$.

^{*}Politecnico di Milano, Dipartimento di Matematica "F.Brioschi", Piazza L. da Vinci, 32, 20133 Milano, Italy (valeria.bacchelli@polimi.it). This work is supported by the Italian Project PRIN 2006019280-003

The inverse problem consists in determining Γ^i and γ provided $u|_{\Sigma}$, $\Sigma \subset \Gamma^a$, is known.

This problem arises from non-destructive testing in corrosion detection, where Γ^i represents a corroded portion of $\partial\Omega$ and we will determine Γ^i and the impedance γ by suitable inspections and measurements on the accessible portion Γ^a of the boundary of Ω . We consider such an inverse problem also where $\Omega = \widetilde{\Omega} \setminus D$, Ω bounded connected, $D \subset \subset \widetilde{\Omega}$, $\Gamma^i = \partial D$, $\Gamma^a = \partial \widetilde{\Omega}$: we are interested, by electrostatic measures or thermal imaging techniques, in identifying D and the coefficient γ by measurements on Γ^a , the external and accessible part of $\partial\Omega$.

Many authors have treated uniqueness and stability of Γ^i in the case where on Γ^i it is assumed a Neumann or a Dirichlet condition (see, e.g., [1], [3], [12], [13], [14], [16], [19]).

Concerning the Robin condition, we recall that in [11], assuming Ω a thin rectangular plate, local uniqueness of Γ^i is proved. In [18] two different algorithms are presented in order to reconstruct Γ^i . Regarding the impedance γ , in [8] it is introduced a numerical algorithm for recovering such a coefficient. Moreover we recall that different stability estimates for γ have been proved: in [5] a monotone Lipschitz stability estimate, in [6] a local Lipschitz stability estimate, in [2] a log-type stability estimate.

In [4] it is proved, by counterexamples, that a single measurement $(g, u|_{\Sigma})$ is not sufficient to determine simultaneously the shape Γ^i and the impedance γ and the same holds if, fixed γ a known constant, the only aim is to determine Γ^i .

In the present paper we are able to show that two Cauchy data pairs, that is $(g, u|_{\Sigma})$, $(\tilde{g}, \tilde{u}|_{\Sigma})$, guarantee simultaneously uniqueness of Γ^i and γ , provided g, \tilde{g} are linearly independent and one of them, say g, is positive.

2 The uniqueness theorem

Theorem 1 Let Ω_j , j = 1, 2, be a bounded connected domain in \mathbb{R}^n , whose boundary $\partial \Omega_j$ is of $C^{2,\alpha}$ class, $0 < \alpha < 1$. Let us assume that $\partial \Omega_j = \overline{\Gamma^a} \cup \overline{\Gamma_j^i}$, j = 1, 2, where Γ^a , Γ_j^i are two open connected disjoint sets. Suppose $\gamma_j \in C^{1,\alpha}(\Gamma_j^i)$, j = 1, 2, $\gamma_j \ge 0$, $\gamma_j \not\equiv 0$, $supp \ \gamma_j \subset \Gamma_j^i$. Let be assigned two non trivial functions $g, \ \tilde{g} \in C^{1,\alpha}(\Gamma^a)$, $supp \ g, \ supp \ \tilde{g} \subset \Gamma^a$; $suppose \ g, \ \tilde{g}$ be linearly independent and $g \ge 0$. Let $u_j, \ j = 1, 2$, be the solution to (1), where $\Omega = \Omega_j$, $\gamma = \gamma_j$ and the Neumann datum on Γ^a is g. Let $\tilde{u}_j, \ j = 1, 2$, be the solution to (1), where $\Omega = \Omega_j, \ \gamma = \gamma_j$ and the Neumann datum on Γ^a is \tilde{g} . Let $be \ \Sigma \subset \Gamma^a$, Σ open in the relative topology of $\partial \Omega$.

Then, if

$$u_1|_{\Sigma} = u_2|_{\Sigma}, \quad \widetilde{u}_1|_{\Sigma} = \widetilde{u}_2|_{\Sigma}, \quad (2)$$

we have

$$\Gamma_1^i = \Gamma_2^i, \quad \gamma_1 = \gamma_2. \tag{3}$$

Proof. The regularity assumptions on Ω_j , γ_j , j = 1, 2, g, \tilde{g} garantee [10] that u_j , $\tilde{u}_j \in C^{2,\alpha}(\overline{\Omega_j})$, j = 1, 2. We observe moreover that u_j is positive on $\overline{\Omega_j}$, j = 1, 2; on the contrary, if there exists a point P in $\overline{\Omega_j}$ such that $u_j(P) \leq 0$, by the maximum principle [17], denoting $Q \in \partial \Omega_j$ the minimum point of u_j in $\overline{\Omega_j}$, also $u_j(Q) \leq 0$. The point Q cannot belong to Γ^a , since this contradicts the Hopf maximum principle [17], being $g = \frac{\partial u_j}{\partial \nu}(Q) \geq 0$; the point Q cannot belong to Γ_j^i , since the condition on Γ_j^i implies $\frac{\partial u_j}{\partial \nu}(Q) \geq 0$ and that contradicts again the Hopf maximum principle.

We prove first that $\Gamma_1^i = \Gamma_2^i$. By contradiction assume for istance that $\Omega_1 \setminus \Omega_2 \neq \emptyset$. Denote by G the connected component of $\Omega_1 \cap \Omega_2$ such that $\Sigma \subset \overline{G}$. Since

$$u_1|_{\Sigma} = u_2|_{\Sigma}, \quad \widetilde{u}_1|_{\Sigma} = \widetilde{u}_2|_{\Sigma}, \quad (4)$$

and

$$\frac{\partial u_1}{\partial \nu}|_{\Sigma} = \frac{\partial u_2}{\partial \nu}|_{\Sigma} , \quad \frac{\partial \widetilde{u}_1}{\partial \nu}|_{\Sigma} = \frac{\partial \widetilde{u}_2}{\partial \nu}|_{\Sigma} , \qquad (5)$$

Holmgren's theorem implies $u_1 \equiv u_2$, $\widetilde{u_1} \equiv \widetilde{u_2}$ in a small ball and then, by unique continuation property, we get that $u_1 \equiv u_2$ in G and $\widetilde{u_1} \equiv \widetilde{u_2}$ in G. Let us consider $\Omega_1 \setminus G$ and denote with N the exterior unit normal to $\partial(\Omega_1 \setminus G)$. Then u_1 satisfies the problem

$$\begin{cases} \Delta u_1 = 0, & \text{in } \Omega_1 \backslash G, \\ \frac{\partial u_1}{\partial N} + \gamma_1 u_1 = 0, & \text{on } \partial(\Omega_1 \backslash G) \cap \Gamma_1^i, \\ -\frac{\partial u_1}{\partial N} + \gamma_2 u_1 = 0, & \text{on } \partial(\Omega_1 \backslash G) \cap \Gamma_2^i, \end{cases}$$

that is u_1 satisfies on $\partial(\Omega_1 \setminus G) \cap \Gamma_1^i$ a Robin condition with coefficient γ_1 , while on $\partial(\Omega_1 \setminus G) \cap \Gamma_2^i$ a Steklov condition with coefficient γ_2 . The same is true for $\widetilde{u_1}$. As $u_1 > 0$, the function $\lambda = \frac{\widetilde{u_1}}{u_1}$ is regular in $\overline{\Omega_1 \setminus G}$.

Since $\partial(\Omega_1 \setminus G) \subset \partial\Omega_1 \cup \partial\Omega_2$, we have $\mathcal{H}^{n-1}(\partial(\Omega_1 \setminus G)) < +\infty$ (\mathcal{H}^{n-1} denotes the n-1 Hausdorff measure), so we get that [7] $\Omega_1 \setminus G$ is a set of finite perimeter. Therefore, also by the regularity properties of u_1 , $\widetilde{u_1}$, we are able to apply in $\Omega_1 \setminus G$ the Gauss-Green formula (see for istance [9], [7]); more precisely we make use of the following equality (see [15]), that is an easy consequence of the Gauss-Green formula

$$\begin{aligned} \int_{\Omega_1 \setminus G} \lambda \left(u_1 \triangle \widetilde{u_1} - \widetilde{u_1} \triangle u_1 \right) + \int_{\Omega_1 \setminus G} u_1^2 \ |\nabla \lambda|^2 \\ &= \int_{\partial^* (\Omega_1 \setminus G)} \lambda \left(u_1 \frac{\partial \widetilde{u_1}}{\partial N} - \widetilde{u_1} \frac{\partial u_1}{\partial N} \right), \end{aligned}$$
(6)

where $\partial^*(\Omega_1 \setminus G)$ is the reducing boundary in the De Giorgi sense. Since on $\partial(\Omega_1 \setminus G) \cap \Gamma_1^i$ we have $u_1 \frac{\partial \widetilde{u}_1}{\partial N} - \widetilde{u_1} \frac{\partial u_1}{\partial N} = u_1(-\gamma_1 \widetilde{u_1}) - \widetilde{u_1}(-\gamma_1 u_1) = 0$, while on $\partial(\Omega_1 \setminus G) \cap \Gamma_2^i$, we have $u_1 \frac{\partial \widetilde{u}_1}{\partial N} - \widetilde{u_1} \frac{\partial u_1}{\partial N} = u_1(\gamma_2 \widetilde{u_1}) - \widetilde{u_1}(\gamma_2 u_1) = 0$, than by (6) we get $\lambda = const$, so that there exist $\alpha, \beta \in \mathbb{R}, (\alpha, \beta) \neq (0, 0)$, such that $\alpha u_1 + \beta \widetilde{u_1} \equiv 0$ in $\Omega_1 \setminus G$. Again by unique continuation property we have $\alpha g + \beta \widetilde{g} \equiv 0$, that contradicts the assumption that g, \widetilde{g} are linearly independent.

Now we prove that $\gamma_1 = \gamma_2$. Since $u_1 \equiv u_2$ in Ω_1 , we get on Γ^i

$$\frac{\partial u_1}{\partial \nu} + \gamma_1 u_1 = 0, \ \frac{\partial u_1}{\partial \nu} + \gamma_2 u_1 = 0.$$

Subtracting one to the other, we obtain $(\gamma_1 - \gamma_2)u_1 = 0$ on Γ^i ; if, by contradiction, there exists $P \in \Gamma^i$ such that $(\gamma_1 - \gamma_2)(P) \neq 0$, we get, as $\gamma_1 - \gamma_2 \in C^{1,\alpha}(\Gamma^i)$, $(\gamma_1 - \gamma_2) \neq 0$ in $U(P) \cap \Gamma^i$, that implies $u_1 = 0$ in $U(P) \cap \Gamma^i$ and, at the same time, $\frac{\partial u_1}{\partial \nu} = 0$ in $U(P) \cap \Gamma^i$. This contradicts the assumption $g \neq 0$.

Remark 2 We will remark that the uniqueness result of theorem 1 holds, without any change, also in the case, already presented in the introduction, where Ω is a bounded connected domain such that $\Omega = \widetilde{\Omega} \setminus D$, $D \subset \subset \widetilde{\Omega}$, and $\Gamma^i = \partial D$, $\Gamma^a = \partial \widetilde{\Omega}$.

Remark 3 Instead of problem (1), we can consider the following

$$\begin{cases} \Delta u = 0, & \text{in } \Omega, \\ u = f & \text{on } \Gamma^a, \\ \frac{\partial u}{\partial \nu} + \gamma u = 0, & \text{on } \Gamma^i, \end{cases}$$
(7)

with f assigned, $f \in C^{2,\alpha}(\Gamma^a)$, $\gamma \in C^{1,\alpha}(\Gamma^i)$, $\gamma \ge 0$, $\gamma \ne 0$. In such a case the inverse problem consists in determining Γ^i and γ by the knowledge of $\frac{\partial u}{\partial \nu}|_{\Sigma}$, $\Sigma \subset \Gamma^a$, being u the solution to (7). Also in this case it is possible to state a theorem analogous to the previous one, that is one can determine Γ^i and γ with two pairs of measurements $(f, \frac{\partial u}{\partial \nu}|_{\Sigma}), (\tilde{f}, \frac{\partial \tilde{u}}{\partial \nu}|_{\Sigma})$, provided f, \tilde{f} are linearly independent and one of them, say f, is positive.

Remark 4 The result of theorem 1 can be easily extended to the case in which we consider, instead of problem (1), the following

$$\begin{cases} div(A \nabla u) = 0, & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu} = g, & \text{on } \Gamma^a, \\ A \nabla u \cdot \nu + \gamma u = 0, & \text{on } \Gamma^i , \end{cases}$$
(8)

where $A = \{a_{ij}\}, i, j = 1, ..., n$, is a symmetric matrix satisfying the uniform ellipticity condition, with $a_{ij} \in C^{1,\alpha}(\overline{\Omega}), g$ is a non trivial assigned function and $\gamma \geq 0, \gamma \neq 0$.

References

- G. Alessandrini and L. Rondi, Optimal stability for the inverse problem of multiple cavities, J. Diff. Equations 176 (2001), 356-386.
- [2] G. Alessandrini, L. Del Piero and L. Rondi, Stable determination of corrosion by a single electrostatic boundary measurement, Inverse Problems 19 (2003), 973-984.
- [3] E. Beretta and S. Vessella, Stable determination of boundaries from Cauchy data, SIAM J. Math Anal. 30 (1999), 220-235.
- [4] F. Cakoni and R. Kress, Integral equations for inverse problems in corrosion detection from partial Cauchy data, Inverse Problems and Imaging 1 (2007), 229-245.
- [5] S. Chabane and M. Jaoua, Identification of Robin coefficients by means of boundary measurements, Inverse Problems 15 (1999), 1425-1438.
- [6] M. Choulli, Stability estimate for an inverse elliptic problem, J. Inv. Ill-Posed problems 10 (2002), 601-610.
- [7] L.C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton Ann Arbor London, 1992.
- [8] D. Fasino and G. Inglese, An inverse Robin problem for Laplace's equation: theoretical results and numerical methods, Inverse Problems 15 (1999), 41-48.
- [9] H. Federer, Geometric Measure Theory, Springer-Verlag, Berlin Heidelberg New York, 1969R.
- [10] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Elliptic Type, Springer-Verlag, 1983.
- [11] G. Inglese and F. Mariani, Corrosion detection in conducting boundaries, Inverse Problems 20 (2004), 1207-1215.
- [12] P. Kaup and F. Santosa, Nondestructive evaluation of corrosion damage using electrostatic measurements, J. Nondestruct. Eval. 14 (1995), 127-136.
- [13] R. Kress, Inverse Dirichlet problem and conformal mapping, Math. Comput. Simul. 6 (2004), 255-265.
- [14] R. Kress and W. Rundell, Non linear integral equations and the iterative solution for an inverse boundary value problem, Inverse Problems 21 (2005), 1207-1223.
- [15] M. H. Martin, Linear and non linear boundary problems for harmonic functions, Proceedings of the American Mathematical Society 10 (1958), 258-266.

- [16] A. Morassi and E. Rosset, Stable determination of cavities in elastic bodies, Inverse Problems 20 (2004), 453-480.
- [17] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984.
- [18] W. Rundell, Recovering an obstacle and its impedance from Cauchy data, Inverse problems 24 (2008), 1-22.
- [19] S. Vessella, Quantitative estimates of unique continuation for parabolic equations, determination of unknown time-varying boundaries and optimal stability estimates, Inverse Problems 24 (2008), 1-81.