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Abstract

We consider the problem of determining the corroded portion of the
boundary of a n-dimensional body (n=2, 3) and the impedance by two
measures on the accessible portion of the boundary. On the unknown
boundary part it is assumed the Robin homogeneous condition.
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1 Introduction

In this paper we deal with a classical inverse problem. Assume Ω be a bounded
connected domain in Rn, whose boundary ∂Ω belongs to C2,α class, 0 < α <
1; suppose ∂Ω = Γa ∪ Γi, where Γi and Γa are two open connected disjoint
portions of ∂Ω. Assume that Γi is unknown and inaccessible (perhaps Γi is
some interior connected component of ∂Ω or some inaccessible portion of the
exterior component of ∂Ω), while Γa is known and accessible for input and
output measurements. Let us consider the solution u of the following mixed
boundary value problem





4u = 0, in Ω ,
∂u

∂ν
= g, on Γa,

∂u

∂ν
+ γu = 0, on Γi,

(1)

where ν is the exterior unit normal to ∂Ω, g is an assigned function, γ 6≡ 0.
Suppose g ∈ C1,α(Γa), supp g ⊂ Γa, γ ∈ C1,α(Γi), γ ≥ 0, γ 6≡ 0, supp γ ⊂ Γi;

it is known [10] that the direct problem (1) has a unique solution u ∈ C2,α(Ω).
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The inverse problem consists in determining Γi and γ provided u |Σ , Σ ⊂ Γa,
is known.

This problem arises from non-destructive testing in corrosion detection,
where Γi represents a corroded portion of ∂Ω and we will determine Γi and
the impedance γ by suitable inspections and measurements on the accessible
portion Γa of the boundary of Ω. We consider such an inverse problem also
where Ω = Ω̃\D, Ω bounded connected, D ⊂⊂ Ω̃, Γi = ∂D, Γa = ∂Ω̃: we are
interested, by electrostatic measures or thermal imaging techniques, in identify-
ing D and the coefficient γ by measurements on Γa, the external and accessible
part of ∂Ω.

Many authors have treated uniqueness and stability of Γi in the case where
on Γi it is assumed a Neumann or a Dirichlet condition (see, e.g., [1], [3], [12],
[13], [14], [16], [19]).

Concerning the Robin condition, we recall that in [11], assuming Ω a thin
rectangular plate, local uniqueness of Γi is proved. In [18] two different algo-
rithms are presented in order to reconstruct Γi. Regarding the impedance γ,
in [8] it is introduced a numerical algorithm for recovering such a coefficient.
Moreover we recall that different stability estimates for γ have been proved:
in [5] a monotone Lipschitz stability estimate, in [6] a local Lipschitz stability
estimate, in [2] a log-type stability estimate.

In [4] it is proved, by counterexamples, that a single measurement (g, u |Σ )
is not sufficient to determine simultaneously the shape Γi and the impedance γ
and the same holds if, fixed γ a known constant, the only aim is to determine
Γi.

In the present paper we are able to show that two Cauchy data pairs, that
is (g, u |Σ ), (g̃, ũ |Σ ), guarantee simultaneously uniqueness of Γi and γ, provided
g, g̃ are linearly independent and one of them, say g, is positive.

2 The uniqueness theorem

Theorem 1 Let Ωj , j = 1, 2, be a bounded connected domain in Rn, whose
boundary ∂Ωj is of C2,α class, 0 < α < 1. Let us assume that ∂Ωj = Γa ∪ Γi

j ,

j = 1, 2, where Γa, Γi
j are two open connected disjoint sets. Suppose γj ∈

C1,α(Γi
j), j = 1, 2, γj ≥ 0, γj 6≡ 0, supp γj ⊂ Γi

j . Let be assigned two non
trivial functions g, g̃ ∈ C1,α(Γa), supp g, supp g̃ ⊂ Γa; suppose g, g̃ be linearly
independent and g ≥ 0. Let uj , j = 1, 2, be the solution to (1), where Ω = Ωj ,
γ = γj and the Neumann datum on Γa is g. Let ũj , j = 1, 2, be the solution to
(1), where Ω = Ωj , γ = γj and the Neumann datum on Γa is g̃. Let be Σ ⊂ Γa,
Σ open in the relative topology of ∂Ω.

Then, if
u1 |Σ = u2 |Σ , ũ1 |Σ = ũ2 |Σ , (2)

we have
Γi

1 = Γi
2, γ1 = γ2. (3)
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Proof. The regularity assumptions on Ωj , γj , j = 1, 2, g , g̃ garantee [10] that
uj , ũj ∈ C2,α(Ωj), j = 1, 2. We observe moreover that uj is positive on Ωj ,
j = 1, 2; on the contrary, if there exists a point P in Ωj such that uj(P ) ≤ 0,
by the maximum principle [17], denoting Q ∈ ∂Ωj the minimum point of uj in
Ωj , also uj(Q) ≤ 0. The point Q cannot belong to Γa, since this contradicts
the Hopf maximum principle [17], being g = ∂uj

∂ν (Q) ≥ 0; the point Q cannot
belong to Γi

j , since the condition on Γi
j implies ∂uj

∂ν (Q) ≥ 0 and that contradicts
again the Hopf maximum principle.

We prove first that Γi
1 = Γi

2. By contradiction assume for istance that
Ω1\Ω2 6= ∅. Denote by G the connected component of Ω1 ∩ Ω2 such that
Σ ⊂ G. Since

u1 |Σ = u2 |Σ , ũ1 |Σ = ũ2 |Σ , (4)

and
∂u1

∂ν
|Σ =

∂u2

∂ν
|Σ ,

∂ũ1

∂ν
|Σ =

∂ũ2

∂ν
|Σ , (5)

Holmgren’s theorem implies u1 ≡ u2, ũ1 ≡ ũ2 in a small ball and then, by
unique continuation property, we get that u1 ≡ u2 in G and ũ1 ≡ ũ2 in G.
Let us consider Ω1\G and denote with N the exterior unit normal to ∂(Ω1\G).
Then u1 satisfies the problem





4u1 = 0, in Ω1\G,
∂u1

∂N
+ γ1u1 = 0, on ∂(Ω1\G) ∩ Γi

1,

−∂u1

∂N
+ γ2u1 = 0, on ∂(Ω1\G) ∩ Γi

2,

that is u1 satisfies on ∂(Ω1\G)∩Γi
1 a Robin condition with coefficient γ1, while

on ∂(Ω1\G) ∩ Γi
2 a Steklov condition with coefficient γ2. The same is true for

ũ1. As u1 > 0, the function λ = fu1
u1

is regular in Ω1\G.

Since ∂(Ω1\G) ⊂ ∂Ω1∪∂Ω2, we have Hn−1(∂(Ω1\G)) < +∞ (Hn−1denotes
the n−1 Hausdorff measure), so we get that [7] Ω1\G is a set of finite perimeter.
Therefore, also by the regularity properties of u1, ũ1, we are able to apply in
Ω1\G the Gauss-Green formula (see for istance [9], [7]); more precisely we make
use of the following equality (see [15]), that is an easy consequence of the Gauss-
Green formula

∫
Ω1\G λ (u14ũ1 − ũ14u1) +

∫
Ω1\G u2

1 |∇λ|2

=
∫

∂∗(Ω1\G)
λ(u1

∂eu1
∂N − ũ1

∂u1
∂N ),

(6)

where ∂∗(Ω1\G) is the reducing boundary in the De Giorgi sense. Since on
∂(Ω1\G) ∩ Γi

1 we have u1
∂eu1
∂N − ũ1

∂u1
∂N = u1(−γ1ũ1) − ũ1(−γ1u1) = 0, while

on ∂(Ω1\G) ∩ Γi
2, we have u1

∂eu1
∂N − ũ1

∂u1
∂N = u1(γ2ũ1) − ũ1(γ2u1) = 0, than

by (6) we get λ = const, so that there exist α, β ∈ R, (α, β) 6= (0, 0), such
that αu1 + βũ1 ≡ 0 in Ω1\G. Again by unique continuation property we have
αg+βg̃ ≡ 0, that contradicts the assumption that g, g̃ are linearly independent.
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Now we prove that γ1 = γ2. Since u1 ≡ u2 in Ω1, we get on Γi

∂u1

∂ν
+ γ1u1 = 0,

∂u1

∂ν
+ γ2u1 = 0.

Subtracting one to the other, we obtain (γ1 − γ2)u1 = 0 on Γi; if, by contradic-
tion, there exists P ∈ Γi such that (γ1−γ2)(P ) 6= 0, we get, as γ1−γ2 ∈ C1,α(Γi),
(γ1 − γ2) 6= 0 in U(P ) ∩ Γi, that implies u1 = 0 in U(P ) ∩ Γi and, at the same
time, ∂u1

∂ν = 0 in U(P ) ∩ Γi. This contradicts the assumption g 6≡ 0.

Remark 2 We will remark that the uniqueness result of theorem 1 holds, with-
out any change, also in the case, already presented in the introduction, where Ω
is a bounded connected domain such that Ω = Ω̃\D, D ⊂⊂ Ω̃, and Γi = ∂D,

Γa = ∂Ω̃.

Remark 3 Instead of problem (1), we can consider the following





4u = 0, in Ω,
u = f on Γa,
∂u

∂ν
+ γu = 0, on Γi,

(7)

with f assigned, f ∈ C2,α(Γa), γ ∈ C1,α(Γi), γ ≥ 0, γ 6≡ 0. In such a case the
inverse problem consists in determining Γi and γ by the knowledge of ∂u

∂ν |Σ ,
Σ ⊂ Γa, being u the solution to (7). Also in this case it is possible to state a
theorem analogous to the previous one, that is one can determine Γi and γ with
two pairs of measurements (f , ∂u

∂ν |Σ ), (f̃ , ∂eu
∂ν |Σ ), provided f , f̃ are linearly

independent and one of them, say f , is positive.

Remark 4 The result of theorem 1 can be easily extended to the case in which
we consider, instead of problem (1), the following





div(A ∇u) = 0, in Ω,
∂u

∂ν
= g, on Γa,

A∇u · ν + γu = 0, on Γi ,

(8)

where A = {aij}, i, j = 1, ..., n, is a symmetric matrix satisfying the uniform
ellipticity condition, with aij ∈ C1,α(Ω), g is a non trivial assigned function
and γ ≥ 0, γ 6≡ 0.
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