Uniqueness for the determination of unknown boundary and impedance with homogeneous Robin condition

Valeria Bacchelli *

Abstract

We consider the problem of determining the corroded portion of the boundary of a n-dimensional body (n=2, 3) and the impedance by two measures on the accessible portion of the boundary. On the unknown boundary part it is assumed the Robin homogeneous condition.

2000 Mathematical Subject Classification. 35R30, 35R25, 35R35, 10.

Key words. Inverse boundary value problems, corrosion, thermal imaging, unique continuation.

1 Introduction

In this paper we deal with a classical inverse problem. Assume Ω be a bounded connected domain in \mathbb{R}^n, whose boundary $\partial \Omega$ belongs to $C^{2,\alpha}$ class, $0 < \alpha < 1$; suppose $\partial \Omega = \Gamma^a \cup \Gamma^i$, where Γ^i and Γ^a are two open connected disjoint portions of $\partial \Omega$. Assume that Γ^i is unknown and inaccessible (perhaps Γ^i is some interior connected component of $\partial \Omega$ or some inaccessible portion of the exterior component of $\partial \Omega$), while Γ^a is known and accessible for input and output measurements. Let us consider the solution u of the following mixed boundary value problem

\[
\begin{aligned}
\triangle u &= 0, & \text{in } \Omega, \\
\frac{\partial u}{\partial \nu} &= g, & \text{on } \Gamma^a, \\
\frac{\partial u}{\partial \nu} + \gamma u &= 0, & \text{on } \Gamma^i,
\end{aligned}
\]

where ν is the exterior unit normal to $\partial \Omega$, g is an assigned function, $\gamma \not\equiv 0$.

Suppose $g \in C^{1,\alpha}(\Gamma^a)$, $\text{supp } g \subset \Gamma^a$, $\gamma \in C^{1,\alpha}(\Gamma^i)$, $\gamma \geq 0$, $\gamma \not\equiv 0$, $\text{supp } \gamma \subset \Gamma^i$; it is known [10] that the direct problem (1) has a unique solution $u \in C^{2,\alpha}(\overline{\Omega})$.

*Politecnico di Milano, Dipartimento di Matematica "F.Brioschi", Piazza L. da Vinci, 32, 20133 Milano, Italy (valeria.bacchelli@polimi.it). This work is supported by the Italian Project PRIN 2006019280-003
The inverse problem consists in determining $Γ^i$ and $γ$ provided $u|_Σ$, $Σ ⊂ Γ^a$, is known.

This problem arises from non-destructive testing in corrosion detection, where $Γ^i$ represents a corroded portion of $∂Ω$ and we will determine $Γ^i$ and the impedance $γ$ by suitable inspections and measurements on the accessible portion $Γ^a$ of the boundary of $Ω$. We consider such an inverse problem also where $Ω = ˜Ω \setminus D$, $Ω$ bounded connected, $D ⊂⊂ ˜Ω$, $Γ^i = ∂D$, $Γ^a = ∂ ˜Ω$: we are interested, by electrostatic measures or thermal imaging techniques, in identifying D and the coefficient $γ$ by measurements on $Γ^a$, the external and accessible part of $∂Ω$.

Many authors have treated uniqueness and stability of $Γ^i$ in the case where on $Γ^i$ it is assumed a Neumann or a Dirichlet condition (see, e.g., [1], [3], [12], [13], [14], [16], [19]).

Concerning the Robin condition, we recall that in [11], assuming $Ω$ a thin rectangular plate, local uniqueness of $Γ^i$ is proved. In [18] two different algorithms are presented in order to reconstruct $Γ^i$. Regarding the impedance $γ$, in [8] it is introduced a numerical algorithm for recovering such a coefficient. Moreover we recall that different stability estimates for $γ$ have been proved: in [5] a monotone Lipschitz stability estimate, in [6] a local Lipschitz stability estimate, in [2] a log-type stability estimate.

In [4] it is proved, by counterexamples, that a single measurement $(g, u|_Σ)$ is not sufficient to determine simultaneously the shape $Γ^i$ and the impedance $γ$ and the same holds if, fixed $γ$ a known constant, the only aim is to determine $Γ^i$.

In the present paper we are able to show that two Cauchy data pairs, that is $(g, u|_Σ)$, $(˜g, ˜u|_Σ)$, guarantee simultaneously uniqueness of $Γ^i$ and $γ$, provided g, $˜g$ are linearly independent and one of them, say g, is positive.

2 The uniqueness theorem

Theorem 1 Let $Ω_j$, $j = 1, 2$, be a bounded connected domain in \mathbb{R}^n, whose boundary $∂Ω_j$ is of $C^{2,α}$ class, $0 < α < 1$. Let us assume that $∂Ω_j = Γ^a_j \cup ˜Γ_j$, $j = 1, 2$, where $Γ^a_j$, $Γ^o_j$ are two open connected disjoint sets. Suppose $Γ^a_j \subset C^{1,α}(Γ^o_j)$, $j = 1, 2$, $γ_j ≥ 0$, $γ_j \neq 0$, $supp γ_j \subset Γ^i_j$. Let be assigned two non trivial functions g, $˜g \in C^{1,α}(Γ^a_j)$, $supp g$, $supp ˜g \subset Γ^a_j$; suppose g, $˜g$ be linearly independent and $g ≥ 0$. Let u_j, $j = 1, 2$, be the solution to (1), where $Ω = Ω_j$, $γ = γ_j$ and the Neumann datum on $Γ^a_j$ is g. Let u_j, $j = 1, 2$, be the solution to (1), where $Ω = Ω_j$, $γ = γ_j$ and the Neumann datum on $Γ^a_j$ is $˜g$. Let be $Σ \subset Γ^a_j$, $Σ$ open in the relative topology of $∂Ω$.

Then, if

$$u_1|_Σ = u_2|_Σ, \quad ˜u_1|_Σ = ˜u_2|_Σ,$$

we have

$$Γ^i_1 = Γ^i_2, \quad γ_1 = γ_2.$$
Proof. The regularity assumptions on Ω_j, γ_j, $j = 1, 2$, g, \tilde{g} guarantee [10] that $u_j - \tilde{u}_j \in C^{2,\alpha}(\overline{\Omega}_j)$, $j = 1, 2$. We observe moreover that u_j is positive on $\overline{\Omega}_j$, $j = 1, 2$; on the contrary, if there exists a point P in $\overline{\Omega}_j$ such that $u_j(P) \leq 0$, by the maximum principle [17], denoting $Q \in \partial \Omega_j$ the minimum point of u_j in $\overline{\Omega}_j$, also $u_j(Q) \leq 0$. The point Q cannot belong to Γ^a, since this contradicts the Hopf maximum principle [17], being $g = \frac{\partial u_j}{\partial n}(Q) \geq 0$; the point Q cannot belong to Γ^b_j, since the condition on Γ^b_j implies $\frac{\partial u_j}{\partial n}(Q) \geq 0$ and that contradicts again the Hopf maximum principle.

We prove first that $\Gamma^b_1 = \Gamma^b_2$. By contradiction assume for instance that $\Omega_1 \backslash \Omega_2 \neq \emptyset$. Denote by G the connected component of $\Omega_1 \cap \Omega_2$ such that $\Sigma \subset \overline{G}$. Since $u_1 | \Sigma = u_2 | \Sigma$, $\tilde{u}_1 | \Sigma = \tilde{u}_2 | \Sigma$, (4) and

$$
\frac{\partial u_1}{\partial \nu}|_\Sigma = \frac{\partial u_2}{\partial \nu}|_\Sigma, \quad \frac{\partial \tilde{u}_1}{\partial \nu}|_\Sigma = \frac{\partial \tilde{u}_2}{\partial \nu}|_\Sigma,
$$

Holmgren’s theorem implies $u_1 \equiv u_2$, $\tilde{u}_1 \equiv \tilde{u}_2$ in a small ball and then, by unique continuation property, we get that $u_1 \equiv u_2$ in G and $\tilde{u}_1 \equiv \tilde{u}_2$ in G. Let us consider $\Omega_1 \backslash G$ and denote with N the exterior unit normal to $\partial(\Omega_1 \backslash G)$. Then u_1 satisfies the problem

\[
\begin{align*}
\Delta u_1 &= 0, & \text{in } \Omega_1 \backslash G, \\
\frac{\partial u_1}{\partial \nu} + \gamma_1 u_1 &= 0, & \text{on } \partial(\Omega_1 \backslash G) \cap \Gamma^b_1, \\
-\frac{\partial u_1}{\partial \nu} + \gamma_2 u_1 &= 0, & \text{on } \partial(\Omega_1 \backslash G) \cap \Gamma^b_2,
\end{align*}
\]

that is u_1 satisfies on $\partial(\Omega_1 \backslash G) \cap \Gamma^b_1$ a Robin condition with coefficient γ_1, while on $\partial(\Omega_1 \backslash G) \cap \Gamma^b_2$ a Steklov condition with coefficient γ_2. The same is true for \tilde{u}_1. As $u_1 > 0$, the function $\lambda = \frac{\tilde{u}_1}{u_1}$ is regular in $\Omega_1 \backslash G$.

Since $\partial(\Omega_1 \backslash G) \subset \partial \Omega_1 \cup \partial \Omega_2$, we have $\mathcal{H}^{n-1}(\partial(\Omega_1 \backslash G)) < +\infty$ (\mathcal{H}^{n-1} denotes the $n-1$ Hausdorff measure), so we get that $[7]$ $\Omega_1 \backslash G$ is a set of finite perimeter. Therefore, also by the regularity properties of u_1, \tilde{u}_1, we are able to apply in $\Omega_1 \backslash G$ the Gauss-Green formula (see for instance [9], [7]); more precisely we make use of the following equality (see [15]), that is an easy consequence of the Gauss-Green formula

$$
\int_{\Omega_1 \backslash G} \lambda (u_1 \Delta \tilde{u}_1 - \tilde{u}_1 \Delta u_1) + \int_{\Omega_1 \backslash G} u_1^2 |\nabla \lambda|^2
$$

$$
= \int_{\partial^*(\Omega_1 \backslash G)} \lambda (u_1 \frac{\partial \tilde{u}_1}{\partial N} - \tilde{u}_1 \frac{\partial u_1}{\partial N}),
$$

where $\partial^*(\Omega_1 \backslash G)$ is the reducing boundary in the De Giorgi sense. Since on $\partial(\Omega_1 \backslash G) \cap \Gamma^b_1$ we have $u_1 \frac{\partial \tilde{u}_1}{\partial N} - \tilde{u}_1 \frac{\partial u_1}{\partial N} = u_1 (-\gamma_1 \tilde{u}_1) - \tilde{u}_1 (-\gamma_1 u_1) = 0$, while on $\partial(\Omega_1 \backslash G) \cap \Gamma^b_2$, we have $u_1 \frac{\partial \tilde{u}_1}{\partial N} - \tilde{u}_1 \frac{\partial u_1}{\partial N} = u_1 (\gamma_2 \tilde{u}_1) - \tilde{u}_1 (\gamma_2 u_1) = 0$, than by (6) we get $\lambda = const$, so that there exist $\alpha, \beta \in \mathbb{R}, (\alpha, \beta) \neq (0, 0)$, such that $\alpha u_1 + \beta \tilde{u}_1 \equiv 0$ in $\Omega_1 \backslash G$. Again by unique continuation property we have $\alpha g + \beta \tilde{g} \equiv 0$, that contradicts the assumption that g, \tilde{g} are linearly independent.
Now we prove that $\gamma_1 = \gamma_2$. Since $u_1 \equiv u_2$ in Ω_1, we get on Γ^i

$$\frac{\partial u_1}{\partial \nu} + \gamma_1 u_1 = 0, \quad \frac{\partial u_1}{\partial \nu} + \gamma_2 u_1 = 0.$$

Subtracting one to the other, we obtain $(\gamma_1 - \gamma_2)u_1 = 0$ on Γ^i; if, by contradiction, there exists $P \in \Gamma^i$ such that $(\gamma_1 - \gamma_2)(P) \not= 0$, we get, as $\gamma_1 - \gamma_2 \in C^{1,\alpha}(\Gamma^i)$, $(\gamma_1 - \gamma_2) \not= 0$ in $U(P) \cap \Gamma^i$, that implies $u_1 = 0$ in $U(P) \cap \Gamma^i$ and, at the same time, $\frac{\partial u_1}{\partial \nu} = 0$ in $U(P) \cap \Gamma^i$. This contradicts the assumption $g \not\equiv 0$.

Remark 2 We will remark that the uniqueness result of theorem 1 holds, without any change, also in the case, already presented in the introduction, where Ω is a bounded connected domain such that $\Omega = \Omega \backslash D$, $D \subset \subset \tilde{\Omega}$, and $\Gamma^i = \partial D$, $\Gamma^a = \partial \tilde{\Omega}$.

Remark 3 Instead of problem (1), we can consider the following

$$\begin{cases}
\triangle u = 0, & \text{in } \Omega, \\
u = f & \text{on } \Gamma^a, \\
\frac{\partial u}{\partial \nu} + \gamma u = 0, & \text{on } \Gamma^i,
\end{cases}$$

(7)

with f assigned, $f \in C^{2,\alpha}(\Gamma^a)$, $\gamma \in C^{1,\alpha}(\Gamma^i)$, $\gamma \geq 0, \gamma \not= 0$. In such a case the inverse problem consists in determining Γ^a and γ by the knowledge of $\frac{\partial u}{\partial \nu} |_{\Sigma}$, $\Sigma \subset \Gamma^a$, being u the solution to (7). Also in this case it is possible to state a theorem analogous to the previous one, that is one can determine Γ^a and γ with two pairs of measurements $(f, \frac{\partial u}{\partial \nu} |_{\Sigma})$, $(\tilde{f}, \frac{\partial \tilde{u}}{\partial \nu} |_{\Sigma})$, provided f, \tilde{f} are linearly independent and one of them, say f, is positive.

Remark 4 The result of theorem 1 can be easily extended to the case in which we consider, instead of problem (1), the following

$$\begin{cases}
\text{div}(A \nabla u) = 0, & \text{in } \Omega, \\
\frac{\partial u}{\partial \nu} = g, & \text{on } \Gamma^a, \\
A \nabla u \cdot \nu + \gamma u = 0, & \text{on } \Gamma^i,
\end{cases}$$

(8)

where $A = \{a_{ij}\}$, $i,j = 1,\ldots,n$, is a symmetric matrix satisfying the uniform ellipticity condition, with $a_{ij} \in C^{1,\alpha}(\overline{\Omega})$, g is a non trivial assigned function and $\gamma \geq 0, \gamma \not= 0$.

4
References

