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A DIRICHLET PROBLEM
WITH FREE GRADIENT DISCONTINUITY

MICHELE CARRIERO, ANTONIO LEACI & FRANCO TOMARELLI

Abstract. We prove the existence of strong solution for Blake & Zisserman
functional under Dirichlet boundary condition. The result is obtained by show-
ing partial regularity of weak solutions up to the boundary through blow-up
technique and a decay property for bi-harmonic functions in half disk.

1. Introduction

The main result of this paper is the existence of strong minimizer of Blake &
Zisserman functional [5] with Dirichlet boundary datum in 2-dimensional image
segmentation; the boundary datum is prescribed by penalization.
We refer to [5],[8],[10],[16],[27],[28] for motivation and background analysis of vari-
ational approach to image segmentation and digital image processing.
Precisely we focus the functional
(1.1)

E(K0, K1, v) =
∫
eΩ\(K0∪K1)

∣∣ D2v
∣∣2 dx+ αH1

(
K0 ∩ Ω̃

)
+ βH1

(
(K1 \K0) ∩ Ω̃

)
,

with the aim of minimizing it among admissible triplets (K0,K1, v), say triplets
fulfilling

(1.2)





K0 , K1 Borel subsets of R2, K0 ∪K1 closed,

v ∈ C2
(
Ω̃ \ (K0 ∪K1)

)
, v approximately continuous in Ω̃ \K0,

v = w a.e. in Ω̃ \ Ω .

Theorem 1.1. (Strong solution of Dirichlet problem for BZ functional)
Let α, β , Ω, Ω̃ ,M , T0 , T1 and w be s.t.

(1.3) 0 < β ≤ α ≤ 2β,

(1.4) Ω ⊂⊂ Ω̃ ⊂⊂ R2 ,

(1.5) Ω is an open set with Lipschitz boundary

(1.6) ∃ M finite set : (∂Ω\M) ∈ C2 uniformly ,

(1.7) (T0 ∪ T1) ∩ ∂Ω is a finite set ,

(1.8) H1
(
(T0 ∪ T1) ∩ Ω̃

)
< +∞ , T0 ∪ T1 closed subset of R2,

(1.9) w ∈ C2
(
Ω̃ \ (T0 ∪ T1)

)
, w approximately continuous in Ω̃ \ T0 ,
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(1.10)





D2w ∈ L2(Ω̃ \ (T0 ∪ T1) ), D2w ∈ L∞
(
∂̃Ω \ (T0 ∪ T1)

)

with ∂̃Ω open set s.t. ∂Ω ⊂⊂ ∂̃Ω ⊂ Ω̃ ,

∃C > 0 : ‖w‖L∞, ‖∇w‖L∞, ‖∇2w‖L∞ ≤ C in ∂̃Ω ,

Lip(γ′) ≤ C with γ arc-length parametrization of ∂Ω ,

∃%̄ > 0 : H1
(
∂Ω ∩B%(x)

)
< C% ∀x ∈ ∂Ω , ∀% ≤ %̄ ,

(1.11) 6 ∃ (T0, T1, ω) fulfilling (1.8),(1.9), ω = aplim w Ω̃, (T0 ∪ T1)⊂6= (T0 ∪ T1) .

Then there is at least one triplet (C0, C1, u) minimizing the functional E defined by
(1.1) with finite energy, among admissible triplets (K0,K1, v) fulfilling (1.2).
Moreover any minimizing triplet (K0, K1, v) fulfills:

(1.12) K0 ∩ Ω̃ and K1 ∩ Ω̃ are (H1, 1) rectifiable sets,

(1.13) H1(K0 ∩ Ω̃) = H1(Sv) , H1(K1 ∩ Ω̃) = H1(S∇v \ Sv) ,

(1.14)
{

v ∈ GSBV 2(Ω̃), hence v and ∇v
have well defined two-sided traces,H1 a.e. finite onK0 ∪K1,

(1.15) v minimizes functional E defined by (2.1) among v s.t. v = w a.e. Ω̃ \ Ω,

(1.16) E(v) = E(K0,K1, ṽ) .

Theorem 1.2. Let α , β , µ , q , g , Ω, Ω̃ ,M , T0 , T1 and w be s.t. (1.3), (1.4),
(1.5), (1.6), (1.7), (1.8), (1.9), (1.10), (1.11) and

(1.17) µ > 0, q > 1, g ∈ Lq(Ω̃) ∩ L2q
loc(Ω̃) , w ∈ Lq(Ω̃)

hold true.
Then there is at least one triplet (C0, C1, u) minimizing the Blake & Zisserman
functional F :

(1.18) F (K0,K1, v) = E(K0,K1, v) + µ

∫
eΩ
| v − g |q dx ,

with finite energy, among triplets (K0, K1, v) fulfilling (1.2).
Moreover (1.12), (1.13) and (1.14) hold true for any minimizing triplet (K0,K1, v) ,
such v is also a minimizer of the weak functional F defined by (2.7) under constraint
v = w a.e. Ω̃ \ Ω and

(1.19) F(v) = F (K0,K1, ṽ) .

Theorem 1.3. Assume α , β , µ , q , g , Ω, Ω̃ ,M , T0 , T1 and w fulfil (1.3)-(1.11),
and

(1.20) α = β .

Then there is at least one pair (K, v) minimizing the functional

(1.21)
∫
eΩ\K

∣∣ D2v
∣∣2 dx + αH1

(
K ∩ Ω̃

)

among pairs (K, v) with closed K ⊂ R2 , v ∈ C2(Ω̃ \K) and v = w a.e. in Ω̃ \ Ω.
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If in addition (1.17) holds true then there is at least one pair (K, v) minimizing the
functional

(1.22)
∫
eΩ\K

(∣∣ D2v
∣∣2 + µ |v − g|q

)
dx + αH1

(
K ∩ Ω̃

)

among pairs (K, v) with closed K ⊂ R2 , v ∈ C2(Ω̃ \K) and v = w a.e. in Ω̃ \ Ω.

In both cases K ∩ Ω̃ is (H1, 1) rectifiable for optimal K .

Moreover:
if the pair (K, v) minimizes (1.22) then v minimizes F among v ∈ GSBV 2(Ω̃) s.t.
v = w a.e. Ω̃ \ Ω;
if the pair (K, v) minimizes (1.21) then v minimizes E among v ∈ GSBV 2(Ω̃) s.t.
v = w a.e. Ω̃ \ Ω .

Remark 1.4. Thanks to (1.7),(1.8),(1.9) the Dirichlet datum for the Blake & Zis-
serman functional (1.1) is given as an essential triplet (T0, T1, w) (see [9],[16],[18]).
The substantial meaning of the boundary condition amounts to impose a penal-
ization whenever the competing function and its gradient do not coincide with the
exterior traces of w and ∇w at ∂Ω.

Remark 1.5. About hypothesis (1.7) we notice that it is obviously fulfilled when
(T0 ∪ T1) ∩ ∂Ω is a single point; in such case Theorems 1.1-1.3 entail existence
of locally minimizing triplets of E, F with nontrivial Dirichlet data (see [17]): in
fact, if T0 is the negative real axis, T1 = ∅ and Ω = R2, then Definition 2.6 (locally
minimizing triplet) of [17] can be equivalently formulated with ∀B%(0) in place of
∀A ⊂⊂ R2 .

Remark 1.6. Finiteness of M and (T0 ∪ T1) ∩ ∂Ω in hypotheses (1.6), (1.7) can
be weakened as follows (in Theorems 1.1,1.2,1.3)

(1.6 ′) M closed subset of R2 : H1(M) = 0 , (1.7 ′) H1 ( (T0 ∪ T1) ∩ ∂Ω ) = 0 .

Remark 1.7. Requiring D2w in L∞ only around the boundary and far away from
singular set (T0∪T1) of Dirichlet datum in (1.10) allows to apply Theorem 1.1 with
the choices T0 = negative real axis, T1 = ∅ and w = W, where in polar coordinates

W (r, θ) = ±
√

α

193 π
r3/2

(√
21

(
sin

θ

2
− 5

3
sin

(3
2
θ
)) ±

(
cos

θ

2
− 7

3
cos

(3
2
θ
)))

is the candidate nontrivial local minimizer for E in R2(see [17]). Notice that W
belongs to H2(B1(0) \ T0) but D2W is not bounded around the origin: D2W has a
singularity of order r−1/2 .

Remark 1.8. Hypothesis (1.11) is only a technical assumption: actually (1.11)
is fulfilled by any Dirichlet datum (T0, T1, w) provided the datum is reasonably ex-
pressed! More precisely assumption (1.11) entails that (T0, T1, w) is an essential
triplet (in the sense of Definition 2.11 in [16]).

Theorems 1.1, 1.2, 1.3 are achieved by showing partial regularity of a suitably
defined weak solution with penalized Dirichlet datum (Theorem 2.1). The novelty
here consists in the regularization at the boundary for a free gradient discontinuity
problem; the regularity is proven at points with 2-dimensional energy density by:
blow-up (Theorems 6.1,6.2), suitable joining along lunulae filling half-disk (Lemma
3.1) and a decay estimate of weak functionals F and E evaluated at local minimizers
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(Theorems 6.3, 6.4). When performing such analysis, an essential tool is provided
by an L2 decay estimate of hessian for a bi-harmonic function in a half-disk vanish-
ing together with its normal derivative on the diameter (Theorem 5.1): proving this
decay requires a careful application of Duffin extension formula [21] and Almansi
decomposition [1], since the bi-harmonic extension to the whole disk may increase
a lot the L2 norm of the hessian in the complementary half-disk. The extension
of bi-harmonic functions is quite different from extension of an harmonic function
vanishing at the diameter which is based on to classical Schwarz reflection principle
(see Remark 5.4) that doubles L2 norm of the gradient in the whole disk: this
doubling property was exploited in [6] to prove decay property for local minimizers
of Mumford & Shah functional with Dirichlet boundary condition (see [26]); unfor-
tunately bi-harmonic extension lacks this doubling property (see Remark 5.5).
The present paper focuses the two dimensional case, nevertheless all the results
proven here are valid in the n dimensional case except the compactness property
(Theorem 4.4) and hessian decay (Theorem 5.1).
About minimization of functionals (1.18), (1.1) under Neumann boundary condi-
tion we refer to [8],[9]. About the description of the rich list of (differential, integral
and geometric) extremality conditions for (1.18), (1.1) we refer to [16]. The frame-
work and results of the present paper will allow to prove existence of strong local
minimizers for Blake & Zisserman functional and several extremality conditions ful-
filled by strong local minimizers in forthcoming paper [17]. In general uniqueness of
minimizers of functionals F and E fails due to lack of convexity: we refer to [4] for
explicit examples of multiplicity and property of generic uniqueness with respect
to data α, β, g .

Outline of the paper
1. Introduction
2. Weak Dirichlet problem for Blake & Zisserman functional
3. Joining and matching between lunulae
4. Truncation, Poincaré inequalities and compactness properties in GSBV and

GSBV 2

5. Hessian decay for bi-harmonic functions in half disk
6. Blow-up and Decay at boundary points
7. Proof of main results
8. References.

2. Weak Dirichlet problem for Blake & Zisserman functional

We denote by B%(x) the open ball {y ∈ R2; |y − x| < %}, and set B% = B%(0) ,
B+

% = B% ∩ {y > 0} , B−
% = B% ∩ {y < 0} . We denote by χU the characteristic

function of U for any U ⊂ R2. If x, y are real numbers we denote by [x] the integer
part of x and set x∨ y = max(x, y), x∧ y = min(x, y). For any pair of vectors a, b
we denote the tensor product by a⊗ b and set a¯ b = (1/2)(a⊗ b + b⊗ a) .

For any pair of 2 × 2 matrices A, B we set A : B =
∑2

i,j=1 Ai j Bi j . For any real
s > 1 we denote by s′ the conjugate exponent s′ = s/(s− 1).
For any Borel function v : Ω → R and x ∈ Ω, z ∈ R := R ∪ {−∞, +∞}, we set
z = ap limy→x v(y) (approximate limit of v at x) if, for every g ∈ C0(R),

g(z) = lim
ρ→0

−
∫

Bρ(0)

g(v(x + ξ))dξ ;
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the function ṽ(x) = ap limy→x v(y) is called representative of v ; the singular set of
v is Sv = {x ∈ Ω : 6 ∃z s.t. ap limy→x v(y) = z}.
By referring to [2] and [16]: Dv denotes the distributional gradient of v , ∇v(x)
denotes the approximate gradient of v , SBV (Ω) denotes the De Giorgi class of
functions v ∈ BV (Ω) such that

∫

Ω

|Dv| =
∫

Ω

|∇v| dx +
∫

Sv

|v+ − v−| dH1.

SBVloc(Ω) := {v ∈ SBV (Ω′) : ∀Ω′ ⊂⊂ Ω} ,

GSBV (Ω) :=
{
v : Ω → R Borel function;−k ∨ v ∧ k ∈ SBVloc(Ω) ∀k ∈ N}

.

GSBV 2(Ω) :=
{
v ∈ GSBV (Ω), ∇v ∈ (

GSBV (Ω)
)2}

.

We will exploit the weak formulation E of functional E introduced in [8]:

(2.1) E(v) =
∫
eΩ\(Sv∪S∇v)

|∇2v|2 dx + αH1 (Sv) + βH1 (S∇v \ Sv) .

Theorem 2.1. (Dirichlet problem for weak form of Blake & Zisserman:
functionals F and E)
Assume (1.3), (1.4), (1.5) and

(2.2) w ∈ C2
(
Ω̃ \ (Sw ∪ S∇w)

)
, w approximately continuous in Ω̃ \ Sw ,

(2.3) E(w) < +∞

(2.4) H1
(

(Sw ∪ S∇w) \ (Sw ∪ S∇w)
)

= 0 ,

(2.5) H1
(
(Sw ∪ S∇w) ∩ ∂Ω

)
= 0 ( or (Sw ∪ S∇w) ∩ ∂Ω finite) .

Set

(2.6) X(Ω̃)
def=

{
v ∈ GSBV 2(Ω̃) s.t. v = w a.e. in Ω̃ \ Ω

}
.

Then there is at least one u minimizing functional E in X(Ω̃) with finite energy.
Moreover, if µ > 0, g ∈ Lq(Ω̃) and w ∈ Lq(Ω̃), then there is at least one u mini-
mizing functional F in X(Ω̃) with finite energy:
(2.7)

F(v) =
∫
eΩ\(Sv∪S∇v)

|∇2v|2 dx + αH1 (Sv) + βH1 (S∇v \ Sv) + µ

∫
eΩ
|v− g|q dx

Proof. Obviously F(v) ≥ 0 ∀v ∈ X(Ω̃) .

Assumptions (2.2), (2.3), (2.4), (2.5) entail w ∈ X(Ω̃) and F(w) < +∞ .
Let vh ∈ X be a minimizing sequence for F . By Theorem 8 in [8] there is v∞ in
X(Ω̃) and a subsequence s.t., without relabeling, vh → v∞ a.e. in Ω̃.

vh = w in Ω̃ \ Ω entails v∞ = w in Ω̃ \ Ω. By Theorem 10 in [8]:

F(v∞) ≤ lim inf
h

F(vh) ,

hence F(v∞) = inf
v∈X(eΩ)

F(v) . The same argument applies to E . ¤
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Remark 2.2. Assumptions of Theorems 1.1, 1.2 and 1.3 (about Dirichlet datum for
strong formulation) on triplets (T0, T1, w) entails the assumptions (about Dirichlet
datum for weak formulation) on w of Theorem 2.1.

Remark 2.3. So far we know that both E and F achieve finite minimum under
Dirichlet boundary condition provided the structural assumptions ((1.3)-(1.11) and
(1.17)) of the paper hold true. We want to show that also E, F have the same
property.

Definition 2.4. About functionals defined by (1.1), (1.18), (2.1), (2.7) we will often
use the short notation E, F, E ,F ; nevertheless, whenever required by clearness of
exposition about interchange of various ingredients (functions, parameters, sets,
Dirichlet datum) we will use several different (self-explaining) notation:

F(v), Fg(v), Fg w(v), F(v, A), Fg w(v, µ, α, β, A); F (K0, K1, v), Fg(K0,K1, v),

E(v), E(v, A), E(v, α, β, A); E(K0,K1, v) .

Lemma 2.5. (Scaling) Let v ∈ GSBV 2(Br(x0)) where x0 = (x0, y0).
For λ > 0 and for every x ∈ B1 set

(2.8) vr(x) =
v(x0 + rx)
λ1/2 r3/2

, gr(x) =
g(x0 + rx)
λ1/2 r3/2

.

Then vr ∈ GSBV 2(B1) and

(2.9) Fg(v, µ, α, β, Br(x0)) = λrFgr (vr, µλ
q
2−1r1+ 3

2 q,
α

λ
,
β

λ
,B1)

and , by setting K0r = (K0 − x0) /r, K1r = (K1 − x0) /r ,
(2.10)

Fg(K0,K1, v, µ, α, β, Br(x0)) = λrFgr (K0r, K1r, vr, µλ
q
2−1r1+ 3

2 q,
α

λ
,
β

λ
,B1).

Proof. The thesis follows by change of variables. ¤

Definition 2.6. For any x ∈ Ω̃ and r s.t. 0 < r < dist(x, ∂Ω̃), we say that u is an
Ω local minimizer of Fg w(·, µ, α, β,A) if
(2.11)




u ∈ GSBV 2(Br(x))) : u = w a.e. Br(x)\Ω, Fgw(u, µ, α, β, A) < +∞,

Fg w(u, µ, α, β,A) ≤ Fg w(u + η, µ, α, β, A)

∀A ⊂⊂ Br(x),∀η ∈ GSBV 2(Br(x)) : spt η ⊂ A, η = 0 a.e.Br(x)\Ω.

Definition 2.7. For any x ∈ Ω̃ and r s.t. 0 < r < dist(x, ∂Ω̃), we say that u is an
Ω local minimizer of Ew(·, α, β, A) if

(2.12)





u ∈ GSBV 2(Br(x))) : u = w a.e. Br(x) \ Ω, Ew(u, α, β, A) < +∞,

Ew(u, α, β, A) ≤ Ew(u + η, α, β,A)

∀A ⊂⊂ Br(x), ∀η ∈ GSBV 2(Br(x)) : spt η ⊂ A, η = 0 a.e.Br(x)\Ω.

Remark 2.8. Definitions 2.6 and 2.7 will be used also with open sets different from
Ω provided suitable data g, w are defined in the contest.
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Definitions 2.6 and 2.7 though different from the ones given in [9] are in fact equiv-
alent to them since sublevels of energy F (or E) are linear subspaces of GSBV 2

(due to Corollary 4.5 in [3]).

Remark 2.9. Due to Lemma 2.5, if u is a B%(x) local minimizer of Fg,w(·, µ, α, β, B%(x))
then for any a, λ, c

y → u(y) = λ−1/2%−3/2
(
u(x + %y)− %a · y − c

)

is a B1(0) local minimizer of Fγ,ω(·, µλ
q
2−1r1+ 3

2 q, α/λ, β/λ,B1(0)) where

γ = λ−1/2%−3/2
(
g(x + %y)− %a · y − c

)

ω = λ−1/2%−3/2
(
w(x + %y)− %a · y − c

)
,

The same property holds true for Ew.

Now we prove a density upper bound for the functional F near the points x ∈ ∂Ω
analogous to the estimate in [16]: Thm 2.12 and Rmk 2.13.

Theorem 2.10. (Density upper bound for the functional F at the bound-
ary) Let u be a minimizer in X(Ω̃) for the functional F with (1.3)–(1.5), (1.17),
(2.2)–(2.6) and

(2.13) ∃%̄ > 0 : H1
(
∂Ω ∩B%(x)

)
< C% ∀x ∈ ∂Ω , ∀% ≤ %̄ .

Then for every 0 < % ≤ %̄∧1 and for every x ∈ ∂Ω\(Sw ∪ S∇w) such that B%(x) ⊂ Ω̃
we have

(2.14) F(u, B%(x)) ≤ c0%

where c0 = C2π + 2q−1π
1
2 µ

(‖w‖q
L2q(B%(x)) + ‖g‖q

L2q(B%(x))

)
+ (2π + C)α.

If q = 2 and g, w ∈ L∞(Ω̃), then we can choose

c0 = C2π + 2πµ
(‖w‖2L∞ + ‖g‖2L∞

)
+ (2π + C)α .

Proof. By minimality of u for F we get

F(u) ≤ F(v) ,

where
v = uχeΩ\(B%(x)∩Ω).

Taking into account β ≤ α, since F(u, Ω̃ \B%(x)) = F(v, Ω̃ \B%(x)) then

F(u, B%(x)) ≤ F(v, B%(x)) ≤
∫

B%(x)\Ω

(|∇2w|2 + µ|w − g|q) dy + µ

∫

B%(x)∩Ω

|g|q dy

+ αH1
(
∂B%(x) ∩ Ω

)
+ αH1

(
∂Ω ∩B%(x)

)

≤ C2 π %2 + 2q−1µ

∫

B%(x)\Ω
(|w|q + |g|q) dy

+ µ

∫

B%(x)∩Ω

|g|q dy + 2πα% + αH1
(
∂Ω ∩B%(x)

)

≤ C2 π %2 + 2q−1µ
(‖w‖q

L2q(B%(x) + ‖g‖q
L2q(B%(x)

)
(πρ2)

1
2

+2πα% + Cα% ,
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hence we achieve the proof. ¤

3. Joining and matching between lunulae

In this Section we prove some technical tools aimed to the proof of partial regularity
at boundary points.

Lemma 3.1. (Joining between lunulae)
Assume (1.3), (1.4), (1.17), z, u in GSBV 2(Ω̃), x0 = (x0, y0) ∈ ∂Ω , 0 < d < σ <

s < t < 1 and σ− d < t− s s.t. Bt(x0) ⊂ Ω̃, ∂Ω∩Bt(x0) ∈ C2 and d denotes the
inner normal to ∂Ω at x0. Set

(3.1) Bd
t = Bt(x0) ∩ {(x− x0) · d > d} , Md,σ

t,s = Bd
t \Bσ

s .

Then for every θ ∈ (0, 1) there are c = c(θ) > 0 and a cut-off function Ψ in
C2(Bt(x0)) ∩ C2

0 (Bd
t (x0)) s.t. Ψ ≡ 1 in a neighborhood of Bσ

s = Bs(x0) ∩ {(x −
x0) · d > σ} and, by setting

U = Ψu + (1−Ψ)z

we have
F(U,Bd

t ) ≤ (1 + θ)
(
F(u, Bd

t ) + F(z, Bd
t \Bσ

s )
)

+

+
c

(σ − d)2

(∫

Bd
t \Bσ

s

|∇(u− z)|2dx +
c

θ d2 (σ − d)2

∫

Bd
t \Bσ

s

|u− z|2dx
)

and
E(U,Bd

t ) ≤ (1 + θ)
(
E(u, Bd

t ) + E(z, Bd
t \Bσ

s )
)

+

+
c

(σ − d)2

(∫

Bd
t \Bσ

s

|∇(u− z)|2dx +
c

θ d2 (σ − d)2

∫

Bd
t \Bσ

s

|u− z|2dx
)

Proof. Again it will be enough proving the estimates for the terms containing |∇2·|2.
Without loss of generality we assume x0 = 0 and d = e2 so that

{(x− x0) · d > d} = {y > d}
We fix θ ∈ (0, 1) and N = N(θ) where N = 1 + [C/θ] and C is a suitable constant.
Let

sj = s + j
t− s

N
, j = 0, . . . , N,

d0 = σ , dj = d0 − j
σ − d

N
, j = 0, . . . , N,

and ψj (j = 0, . . . , N − 1) a list of C2 cut-off functions between Bsj and Bsj+1 (say
0 ≤ ψj ≤ 1, ψj ≡ 1 in a neighborhood of Bsj , ψj vanishes outside Bsj+1 ) with

|Dψj | ≤ 2 N

σ − d
,

∣∣D2ψj

∣∣ ≤ 8 N2

d (σ − d)2
, in Cj

def= Bsj+1 \Bsj

and a list of 1-dimensional cut-off functions ηj , j = 1, . . . , N, between {y > dj}
and {y > dj+1} (say 0 ≤ ηj ≤ 1, ηj ≡ 1 in a neighborhood of {y > dj}, ηj vanishes
outside {y > dj+1} ) with

|Dηj | ≤ 2 N

σ − d
,

∣∣D2ηj

∣∣ ≤ 2 N2

(σ − d)2
, in Ej

def= {dj+1 < y < dj}
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Then define
Uj = ηj ψj u + (1− ηjψj) z .

For any w,

∇2 (ηj ψj w) = ηj ∇2 (ψj w) +
(

0 (ηj)y (ψjw)x

(ηj)y (ψjw)x (ηj)yy ψj w

)

We introduce the handles Mj
def= (Cj ∩ {y > dj+1}) ∪ (Ej ∩ {|x| < sj+1}) for j =

1, . . . , N − 1 and the lunula M0 = E0 ∩ {|x| < s} : we notice that the sets Mj , j =
0, . . . , N−1, are pair-wise disjoint ( j 6= k ⇒ Mj ∩Mk = ∅ ) and their union covers
the whole lunula {|x| < t} ∩ {y > d} up to a set of measure 0.
Since ψj is a radial function we obtain, for every j,
∫

Bd
t

|∇2Uj |2 dx ≤
∫

Bd
sj

|∇2u|2 dx +
∫

Bd
t \B

dj+1
sj

|∇2z|2 dx

+
∫

Mj

∣∣ ηj

(
ψj ∇2u + (1− ψj)∇2z + 2 Dψj ¯∇(u− z) + D2ψj (u− z)

)

+ (e1 ⊗ e2 + e2 ⊗ e1) (ηj)y (ψju)x + e2 ⊗ e2 (ηj)yy ψj u

+ (e1 ⊗ e2 + e2 ⊗ e1) (ηj)y ((1− ψj)z)x + e2 ⊗ e2 (ηj)yy (1− ψj) z|2 dx

≤
∫

Bd
t

|∇2u|2 dx +
∫

Bd
t \Bσ

s

|∇2z|2 dx

+C

∫

Mj

(
|∇2u|2 + |∇2z|2 + |Dψj |2|∇(u− z)|2 + |D2ψj |2|u− z|2

+ |Dηj |2|Dψj |2|u− z|2 + |Dηj |2|∇(u− z)|2 + |D2ηj |2|u− z|2
)

dx .

By taking into account that spt(ηjψj) ⊂
j+1⋃

k=0

Mk we add the last inequalities with

respect to j from 0 to N − 1 :

min
j

∫

Bd
t

|∇2Uj |2 dx ≤
∫

Bd
t

|∇2u|2 dx +
∫

Bd
t \Bσ

s

|∇2z|2 dx

+
C

N

∫

Bd
t \Bσ

s

(
|∇2u|2 + |∇2z|2 +

(
2N

σ − d

)2

|∇(u− z)|2 +
(

12N2

d(σ − d)2

)2

|u− z|2
)

dx

We select the index j achieving such minimum and set U = Uj . Hence
∫

Bd
t

|∇2U |2 dx ≤
∫

Bd
t

|∇2u|2 dx +
∫

Bd
t \Bσ

s

|∇2z|2 dx

+θ

∫

Bd
t \Bσ

s

(
|∇2u|2 + |∇2z|2 +

(
2(C + 1)
θ(σ − d)

)2

|∇(u− z)|2 +
(

12(C + 1)2

θd(σ − d)2

)2

|u− z|2
)

dx

and the thesis follows by inequalities with c = 12 (C +1)2/ θ , Ψ = ηjψj , since the
terms not containing ∇2 fulfill the inequality in the thesis with θ = 0 :

(3.2)
H1

(
SU ∩Bd

t

)
= H1

(
Su ∩B

dj
sj

)
+H1

(
Sz ∩ (Bd

t \B
dj+1
sj+1 )

)

+H1
(
Su ∩ (Bdj+1

sj+1 \B
dj
sj )

)
+H1

(
Sz ∩ (Bdj+1

sj+1 \B
dj
sj )

)
,
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(3.3)

H1
(
(S∇U \ SU ) ∩Bd

t

)
=

= H1
(
(S∇u \ Su) ∩B

dj
sj

)
+H1

(
(S∇z \ Sz) ∩ (Bd

t \B
dj+1
sj+1 )

)

+H1
(
(S∇u \ Sv) ∩ (Bdj+1

sj+1 \B
dj
sj )

)
+H1

(
(S∇z \ Sz) ∩ (Bdj+1

sj+1 \B
dj
sj )

)
,

(3.4)

∫
Bd

t
|U − g|q dx ≤ ∫

B
dj
sj

|u− g|q dx +
∫

Bd
t \B

dj+1
sj+1

|z − g|q dx

+
∫

B
dj+1
sj+1 \B

dj
sj

(ψj |u− g|q + (1− ψj)|z − g|q) dx .

¤

Lemma 3.2. (Matching with lunulae) Let x0 = (x0, y0), z, v ∈ GSBV 2(Ω̃),
Bt(x0) ⊂ Ω̃ and

H1
(
Sz ∩ ∂Bd

t

)
= H1

(
S∇z ∩ ∂Bd

t

)
= H1

(
Sv ∩ ∂Bd

t

)
= H1

(
S∇v ∩ ∂Bd

t

)
= 0

where Bd
t = Bt(x0) ∩ {y > y0 + d} . Then, by setting

u =
{

z in Bd
t

v in Ω̃ \Bd
t

we have

Fg(u, µ, α, β, Ω̃) ≤ Fg(z, µ, α, β, Bd
t ) + Fg(v, µ, α, β, Ω̃ \Bd

t ) +
+ αH1

({z̃ 6= ṽ} ∩ ∂Bd
t

)
+ βH1

(({∇̃z 6= ∇̃v} \ {z̃ 6= ṽ}) ∩ ∂Bd
t

)
,

E(u, α, β, Ω̃) ≤ E(z, α, β, Bd
t ) + E(v, α, β, Ω̃ \Bd

t ) +
+ αH1

({z̃ 6= ṽ} ∩ ∂Bd
t

)
+ βH1

(({∇̃z 6= ∇̃v} \ {z̃ 6= ṽ}) ∩ ∂Bd
t

)
.

Proof. The thesis follows by the definitions. ¤

Lemma 3.3. Let v ∈ GSBV 2(Ω) s.t.

Fg(v, µ, α, β, T ) < +∞ ∀ compact set T ⊂ Ω .

Then

lim
%→0

%−1 Fg( v, µ, α, β, B%(x) ) = 0 for H1 a.e. x ∈ Ω \ (Sv ∪ S∇v) .

Proof. Apply the same argument of Lemma 2.6 in [20]. ¤

4. Truncation, Poincaré inequalities and compactness properties in
GSBV and GSBV 2

We recall a Poincaré-Wirtinger type inequality in the class GSBV which was proven
in [9] allowing surgical truncations of non integrable functions of several variables
and we refine its statement with the aim of taming blow-up at boundary points in
case of functions vanishing in a full sector. We emphasize that v ∈ GSBV 2(Ω) does
not even entail that either v or ∇v belongs to L1

loc(Ω).
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Let B be an open ball in R2. For every measurable function v : B → R we define
the least median of v in B as

med(v, B) = inf{ t ∈ R; |{v < t} ∩B| ≥ 1
2
|B|}.

We remark that med(·, B) is a non linear operator and in general it has no rela-
tionship with the averaged integral

∫
B
· dy / |B| .

Obviously we have med(vχB\E + med(v, B)χE , B) = med(v, B) for every E ⊂ B.
For every v ∈ GSBV (B) and a ∈ R with (2γ2H1(Sv))2 ≤ a ≤ 1

2 |B|, we set

τ ′(v, a, B) = inf {t ∈ R; |{v < t}| ≥ a} ,

τ ′′(v, a,B) = inf {t ∈ R; |{v ≥ t}| ≤ a} ,

here γ2 is the isoperimetric constant relative to the balls of R2, i.e.

min{|E ∩B| 12 , |B \ E| 12 } ≤ γ2P (E, B) ∀ Borel set E ,

and P (E,B) denotes the perimeter of E in B : P (E, B) =
∫

B
|DχE | .

For η ≥ 0 we define the truncation operator

(4.1) T (v, a, η) = (τ ′(v, a, B)− η) ∨ v ∧ (τ ′′(v, a, B) + η).

We get easily T (T (v, a, η), a, η) = T (v, a, η), med(T (v, a, η), B) = med(v, B) and
T (λv, a, λη) = λT (v, a, η) for every λ > 0 . Moreover |∇T (v, a, η)| ≤ |∇v| a.e. on
B and

(4.2) |{v 6= T (v, a, η)}| ≤ 2a.

In case v is vector-valued the operators med and T are defined componentwise.

For any given function in GSBV , we define an affine polynomial correction such
that both median and gradient median vanish.

Let Br(x) ⊂ Ω and v ∈ GSBV (Br(x)); for every y ∈ R2 we set

(4.3) (Mx,r v)(y) = med(∇v, Br(x)) · (y − x)

(4.4) (Px,r v)(y) = (Mx,r v)(y) + med(v −Mx,r v, Br(x)).

Since med(v − c,Br(x)) = med(v, Br(x))− c for every c ∈ R and
∇(Px,r v) = ∇(Mx,r v) = med(∇v, Br(x)) then we have Px,r (v − Px,r v) = 0, say

med(v −Px,r v, Br(x)) = 0, med(∇(v − Px,r v), Br(x)) = 0.

We notice that there are v such that med(v,Br(x)) 6= med(Px,r v,Br(x)), take e.g.
v(x, y) = (x2 − x)H(−x)− x

2H(x), where H is the Heaviside function.

The following statement was proven by Theorem 4.1 in [9].

Theorem 4.1. (Poincaré-Wirtinger inequality for GSBV functions in a
ball)
Let B ⊂ R2 be an open ball, v ∈ GSBV (B) and a ∈ R with

(4.5)
(
2γ2H1(Sv)

)2 ≤ a ≤ 1
2
|B|,

let η ≥ 0 and T (v, a, η) as in (4.1). Then

(4.6)
∫

B

|D T (v, a, η)| ≤ 2|B| 12
(∫

B

|∇T (v, a, η)|2 dy

) 1
2

+ 2ηH1(Sv).



12 MICHELE CARRIERO, ANTONIO LEACI & FRANCO TOMARELLI

We have also, for every s ≥ 2,

(4.7)

∫

B

|T (v, a, η)−med(v,B)|sdy ≤

≤ 2s−1 (γ2s)s

(∫

B

|∇T (v, a, 0)|2 dy

) s
2

|B|+ (2η)sa.

Theorem 4.2. (Classical Poincaré inequality in BV [22] Thm. 5.6.1(iii) )
For any x ∈ R2, r > 0, and 0 < ϑ ≤ 1 there is Kϑ such that

(4.8) ‖v‖L2(Br(x)) ≤ Kϑ

∫

Br(x)

|Dv| ∀v ∈ BV (Br(x)) s.t.

(4.9) |{y ∈ Br(x) : v(y) = 0} | / |Br(x)| ≥ ϑ .

Theorem 4.3. (Poincaré-Wirtinger inequality for GSBV functions va-
nishing in a sector)
Let B ⊂ R2 be an open ball, v ∈ GSBV (B) s.t. (4.9) holds true and a ∈ R with

(4.10)
(
2γ2H1(Sv)

)2 ≤ a ≤ 1
2
|B|,

let η ≥ 0 and T (v, a, η) as in (4.1). Then

(4.11)
∫

B

|D T (v, a, η)| ≤ 2|B| 12
(∫

B

|∇T (v, a, η)|2 dy

) 1
2

+ 2ηH1(Sv).

We have also, for every s ≥ 2,

(4.12)

∫

B

|T (v, a, η)|sdy ≤

≤ 2s−1 (Kϑs)s

(∫

B

|∇T (v, a, 0)|2 dy

) s
2

|B|+ (2η)sa.

Proof. Identical to the proof of Theorem 4.1 in [9]) except for the use of Theorem
4.2 instead of classical Poincaré-Wirtinger inequality ((4.12) in [9]), since we do not
need to force vanishing of least median of v. ¤

Theorem 4.4. (Compactness and lower semicontinuity for GSBV 2 func-
tions vanishing in a set of full measure)
Assume Br(x) ⊂ R2, uh ∈ GSBV 2(Br(x)), 0 < ϑ ≤ 1

(4.13) |{y ∈ Br(x) : uh(y) = 0}| / |Br(x)| ≥ ϑ ,

(4.14) sup
h

∫

Br(x)

|∇2uh|2 dy < +∞

and

(4.15) lim
h

Lh = 0 , where Lh = H1(Suh
∪ S∇uh

) .

Then there are a positive constant c (dependent on the left-hand side of (4.14)),
u∞ ∈ H2(Br(x)) and a sequence zh ∈ GSBV 2(Br(x)) (whose explicit construction
is given by (4.23)-(4.28) ) s.t., up to a finite number of indices,

(4.16) | {zh 6= uh} | ≤ cLh
2

(4.17) P ( {zh 6= uh}, Br(x)) ≤ cLh
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and there is a subsequence zhk
such that

(4.18) lim
k

zhk
= u∞ strongly in Lp(Br(x)) , ∀p ≥ 1 ,

(4.19) lim
k

∇ zhk
= Du∞ strongly in Lp(Br(x)) , ∀p ≥ 1 ,

(4.20)∫

Br(x)

|D2u∞|2 dy ≤ lim inf
k

∫

Br(x)

|∇2zhk
|2 dy ≤ lim inf

k

∫

Br(x)

|∇2uhk
|2 dy ,

(4.21) lim
k

uhk
= u∞ a.e. in Br(x) ,

(4.22) lim
k

∇uhk
= Du∞ a.e. in Br(x) .

Proof. Identical to the proof of Theorem 4.3 in [9], except for the fact that we can
avoid forcing least median of uh and ∇uh to vanish since we can use Theorem 4.3
for functions vanishing in a sector instead of GSBV Poincaré-Wirtinger inequality
given by Theorem 4.1 in [9].
For reader convenience we recall the explicit construction of the sequence zh :
by setting ah = 4γ2

2Lh
2 we have ah ≤ |Br|/2 for large h. Hence there is c dependent

on the left-hand side of (4.14) and there are ηk
h ∈ (0, 1) , h ∈ N, k = 1, 2, s.t.

(4.23)
∣∣ {T (∇k uh, ah, ηk

h) 6= ∇k uh }
∣∣ ≤ c Lh

2

(4.24) P
( {T (∇k uh, ah, ηk

h) 6= ∇k uh }, Br

) ≤ c
(
Lh +H1(S∇k uh

)
)

Referring to definition (4.1) of truncating operator T , we set

(4.25) Eh =
⋃

k=1,2

{y ∈ Br : T (∇k uh, ah, ηk
h) 6= ∇k uh }

(4.26) ξh = uh χBr\Eh

(4.27) bh = 4 Kϑ
2

(H1(Sξh
∪ S∇ξh

)
)2 ≤ 1

2
|Br|

(4.28) zh = T (ξh, bh, ηh)

¤

5. Hessian decay for bi-harmonic functions in half disk

In this Section we prove that any function which is bi-harmonic in a half-disk and
vanishes together with its normal derivative on the diameter has a suitable decay
of hessian L2-norm.

Theorem 5.1. (L2-hessian decay for bi-harmonic functions in half-disk
which vanish together with normal derivative along diameter)
Set B+

1 = B1(0) ∩ {(x, y) ∈ R2 : y > 0} ⊂ R2 .
Assume z ∈H2(B+

1 ), ∆2z = 0 on B+
1, z = ∂z/∂y = 0 on B1(0)∩{(x, y)∈R2 : y = 0}.

Then

(5.1) ‖D2z‖2
L2(B+

% )
≤ %2 ‖D2z‖2

L2(B+
1 )

.
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Moreover there exists an unique extension Z of z in whole B1 such that ∆2Z ≡ 0
and both z, Z have the following expansion in polar coordinates, which is strongly
convergent in L2(B1) and strongly convergent in H2(B+

1 ) :

(5.2) Z(x, y) =
∞∑

k=0

(
ak cos(kϑ) + bk sin(kϑ) + (αk cos(kϑ) + βk sin(kϑ)) r2

)
rk .

Proof. Since z belongs to H2(B+
1 ), is bi-harmonic in B+

1 and z = ∂z/∂y = 0 on
B1(0)∩{y = 0}, then z solves a boundary value problem in B+

1 for the bilaplacian
operator with homogeneous Dirichlet boundary conditions on the diameter; hence
regularity properties at a flat portion of the boundary (see [25], Chap.7) entail
z ∈ C1(B+

1 (0)∪ (B1(0)∩ {y = 0})). So the classical Duffin formula [21] holds true:
z has a bi-harmonic extension Z in B1 defined by Z(x, y) = z(x, y) in B+

1 and by

Z(x,−y) = −z(x, y) + 2yzy(x, y)− y2∆z(x, y) , ∀ (x, y) ∈ B+
1 .

Function Z belongs to L2(B1) by construction. Z is bi-harmonic in B1, hence by
Almansi decomposition [1], there exist two harmonic functions ψ,ϕ in L2(B1) such
that Z = ψ + (x2 + y2)ϕ: in polar co-ordinates,

(5.3) ϕ(r, ϑ) =
1
4 r

∫ r

0

∆z(%, ϑ) d% , ψ = z − r2ϕ .

Hence Z can be represented, with suitable coefficients, by the expansion (5.2) which
is strongly convergent in L2(B1) and hence in H2(B%) for all % < 1.
Notice that only suitable combinations of terms in expansion (5.2), say

(5.4)





vk = rk+1
(
sin((k − 1)ϑ))− k−1

k+1 sin((k + 1)ϑ)
)

, k = 2, 3, 4, . . .

ωk = rk+1
(

cos((k − 1)ϑ))− cos((k + 1)ϑ)
)

, k = −1 and 1, 2, 3, . . .

fulfill also conditions on diameter, nevertheless we disregard this complicate rela-
tionship on coefficients (though it is implicitly understood) which is useless in the
following since system (5.4) is strongly entangled and far from providing orthogonal
basis either in H2(B+

r ) or in L2(B+
r ).

By denoting fk the k-th term of the expansion (5.2), we compute the second deriv-
atives of f0 and f1:

D2
xxf0 = 2α0 , D2

xyf0 = 0 D2
yyf0 = 2α0 ,

D2
xxf1 = 2r (3α1 cos(ϑ) + β1 sin(ϑ)) , D2

xyf1 = 2r (β1 cos(ϑ) + α1 sin(ϑ)) ,

D2
yyf1 = 2r (α1 cos(ϑ) + 3β1 sin(ϑ)) ,

then we compute the second derivatives of fk, with k ≥ 2:

D2
xxfk = rk−2

(
k

(
ak (k − 1) + αk (k + 1) r2

)
cos((k − 2) ϑ) + 2αk (k + 1) r2 cos(kϑ)

+k
(
bk (k − 1) + βk (k + 1) r2

)
sin((k − 2)ϑ) + 2βk (k + 1) r2 sin(kϑ)

)
,

D2
xyfk = krk−2

( (
bk (k − 1) + βk (k + 1) r2

)
cos((k − 2)ϑ)

− (
ak (k − 1) + αk (k + 1) r2

)
sin((k − 2)ϑ)

)
,

D2
yyfk = rk−2

(− (
k

(
ak (k − 1) + αk (k + 1) r2

)
cos((k − 2) ϑ)

)
+ 2αk (k + 1) r2 cos(kϑ)

−k
(
bk (k − 1) + βk (k + 1) r2

)
sin((k − 2)ϑ) + 2βk (k + 1) r2 sin(kϑ)

)
.
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Hence for suitable coefficients ck = ci,j
k , dk = di,j

k , γk = γi,j
k , δk = δi,j

k , any second
derivative of z has the following strongly L2(B+

% ) convergent expansion, for every
% < 1 and i, j = 1, 2:

(5.5) D2
ijz =

∞∑

k=0

(
ck cos(kϑ) + dk sin(kϑ) + (γk cos(kϑ) + δk sin(kϑ)) r2

)
rk ,

Due to strong convergence, we can select partial sums in (5.5) as follows, by splitting
terms with different arguments in trigonometric functions,

(5.6)

D2
ijz = c0 + γ0 r2

+ (c1 cos(ϑ) + d1 sin(ϑ)) r + (γ1 cos(ϑ) + δ1 sin(ϑ)) r3

+ (c2 cos(2ϑ) + d2 sin(2ϑ)) r2 + (γ2 cos(2ϑ) + δ2 sin(2ϑ)) r4

+ (c3 cos(3ϑ) + d3 sin(3ϑ)) r3 + (γ3 cos(3ϑ) + δ3 sin(3ϑ)) r5

+ (c4 cos(4ϑ) + d4 sin(4ϑ)) r4 + (γ4 cos(4ϑ) + δ4 sin(4ϑ)) r6

+ . . .

Since the system {cos(2kϑ), sin(2kϑ)}k∈N is an orthogonal complete system in
L2(0, π) we have that odd lines in (5.6) are mutually orthogonal also in L2(B+

r )
and we can expand all the trigonometric functions with odd multiple of ϑ with
respect to this system, in such a way that even lines will be absorbed by odd ones.
This is carefully performed by suppressing even lines (the ones where (2k + 1)ϑ
appears) in (5.6) one at a time and taking into account of L2(B+

r ) orthogonal
splitting L2(B+

r ) = V ⊕ V ⊥ , where V is the space

V
def= span { 1, r , r2 , r2k+1 , k = 1, 2, . . .} .

At first the L2(0, π) convergent expansions

cos(ϑ) =
∞∑

n=1

ξ1
n sin(2nϑ) , sin(ϑ) = φ1

0 +
∞∑

n=1

φ1
n cos(2nϑ)

allow to cancel second line (related to ϑ) in (5.6) by allocating all terms with
trigononometric functions evaluated at 2nϑ on (2n + 1)-th line and, taking into
account r powers and convergence properties, writing

D2
ijz = S1+Σ1 , with S1 ∈ V, and Σ1 with empty first and second line of (5.6) :

S1 = c0 + γ0 r2 + d1 φ1
0 r + δ1 φ1

0 r3 .

Then the L2(0, π) convergent expansions

cos(3ϑ) =
∞∑

n=1

ξ3
n sin(2nϑ) , sin(3ϑ) = φ3

0 +
∞∑

n=1

φ3
n cos(2nϑ)

allow to cancel fourth line (related to 3ϑ) in (5.6) by allocating all terms with
trigononometric functions evaluated at 2nϑ on (2n + 1)-th line and, taking into
account r powers and convergence properties, writing

D2
ijz = S2+Σ2 with S2 ∈ V, and Σ2 with empty second and fourth lines of (5.6) :

S2 = S1 + d3 φ3
0 r3 + δ3 φ3

0 r5 .

By iteration (after expanding sin((2k + 1)ϑ), cos((2k + 1)ϑ), k = 0, . . . , n− 1, and
getting D2

ijz = Sn−1 + Σn−1), we expand sin((2n + 1)ϑ), cos((2n + 1)ϑ), and get

D2
ijz = Sn + Σn with Sn ∈ V, and Σn with empty first n odd lines ,
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where Sn is a finite sum in the space V :

Sn = Sn−1 + d2n−1 φ2n−1
0 r2n−1 + δ2n−1 φ2n−1

0 r2n+1 .

Though Σn might not belong to V ⊥, by exploiting L2(B+
r ) convergence in (5.6) we

denote by Ξn the modified odd lines from the third odd line (say the fifth one of
(5.6)) to the n-th odd line, explicitly (referring to the lines position in (5.6)):

Ξ1 = expansion of the second line ,

Σ1 = Ξ1 + all the lines after the second ,

Ξ2 = Ξ1 + third line + expansion of the fourth line ,

Σ2 = Ξ2 + all the lines after the fourth ,

Ξn = Ξn−1 + (2n− 1)-th line + expansion of the (2n)-th line ,

Σn = Ξn + all the lines after the (2n)-th line .

Then

(5.7) D2
ijz = Sn + Ξn + εn Sn ∈ V , Ξn ∈ V ⊥, εn → 0 strongly in L2(B+

r ) .

(5.8) Sn → S strongly in L2(B+
r ) , Ξn → Ξ strongly in L2(B+

r ).

Hence

D2
ijz =

∞∑

k=0

(( ∞∑

h=0

(Ah,k + Bh,kr2)rh

)
cos(2kϑ) +

( ∞∑

h=0

(Ch,k + Dh,kr2)rh

)
sin(2kϑ)

)

where the expansion is strongly L2(B+
% ) convergent, ∀% ∈ (0, 1) .

Since
∫ %

0
r dr = %2/2 and

‖1 = cos 0‖2L2(0,π) = π, ‖ cos(2nϑ)‖2L2(0,π) = ‖ sin(2nϑ)‖2L2(0,π) = π/2 n = 1, 2, . . . ,

by setting λ2 = λ
(i,j)
2 = π

2

(∑∞
h=0(A

i,j
h,0)

2 +
∑∞

h=0(B
i,j
h,0)

2
)

, Λ2 =
∑

ij λ
(i,j)
2 ,

via Plancherel identity in L2(B+
r ), we get

‖D2
ijz‖L2(B+

% ) =
∫ %

0



π

∣∣∣∣∣
∞∑

h=0

(Ah,0 + Bh,0 r2) rh

∣∣∣∣∣

2

+

+
π

2

∞∑

k=1




∣∣∣∣∣
∞∑

h=0

(Ah,k + Bh,k r2) rh

∣∣∣∣∣

2

+

∣∣∣∣∣
∞∑

h=0

(Ch,k + Dh,k r2) rh

∣∣∣∣∣

2





 r dr =

= λ2 %2 +
∞∑

l=3

λl %
l

but this power sum with positive coefficients is convergent (so the inner sums do
converge) and is estimated (uniformly in % < 1) by ‖D2

ijz‖L2(B+
1 ) < +∞; then

it is (absolutely) convergent even for % = 1, and the sum is estimated in the
same way. Then D2z ∈ L2(B+

1 ) and has the same expansion since coefficients
Ah,k, Bh,k, Ch,k, Dh,k are independent of % ∈ (0, 1] . Moreover (Sn + Ξn) converges
strongly in L2(B+

1 ) to D2
ijz, together with every reordering of its.

By summarizing the following expansion is strongly L2(B+
% ) convergent, ∀% ∈ (0, 1] :

D2
ijz =

∞∑

k=0

(( ∞∑

h=0

(Ah,k + Bh,kr2)rh

)
cos(2kϑ) +

( ∞∑

h=0

(Ch,k + Dh,kr2)rh

)
sin(2kϑ)

)
.
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So, if ‖D2z‖L2(B+
1 ) 6= 0, then

‖D2z‖2
L2(B+

% )

‖D2z‖2
L2(B+

1 )

=

(
Λ2 %2 +

∞∑

l=3

Λl %
l

) /(
Λ2 +

∞∑

l=3

Λl

)
≤ %2 .

¤
Remark 5.2. Since λ

(1,2)
2 = 0, by the proof of Theorem 5.1 we get a faster decay

of mixed derivative:

‖D2
xyz‖2

L2(B+
% )

≤ %3 ‖D2
xyz‖2

L2(B+
1 )

.

Remark 5.3. No nontrivial harmonic function fulfil assumptions of Theorem 5.1.
Precisely any z ∈ H2(B+

1 ) s.t. ∆2z = 0 on B+
1 and z =∂z/∂y=0 on B1(0)∩{y = 0}

satisfies also ∆z = 0 in B+
1 if and only if z ≡ 0.

Nevertheless there are (simple) examples with ∆z 6= 0 = ∆2z on B+
1 , z =∂z/∂y=0

on B1(0) ∩ {y = 0} with non trivial harmonic part in Almansi decomposition: e.g.
z(x, y) = y2 = (y2 − x2)/2 + (x2 + y2)/2.

Remark 5.4. Theorem 5.1 cannot be deduced by Schwarz reflection principle for
harmonic functions vanishing on the diameter, since the Almansi decomposition on
the half-disk B+

1 ([16], [1]) may not respect the vanishing value on the diameter:
e.g. %3

(
cosϑ−cos(3ϑ)

)
= %2ϕ+ψ where ϕ = x, ψ = 3xy2−x3 are both harmonic

but do not vanish on the diameter {y = 0} (see [1] and Theorem 3.2 of [17]).

Remark 5.5. While Schwarz reflection for harmonic functions vanishing on the
diameter is bounded by 1 as a linear operator from H1(B+

1 ) to H1(B−
1 ), Duffin

extension map for bi-harmonic functions vanishing on the diameter together with
normal derivative provides a poor control of H2(B−

1 ) in term of H2(B+
1 ) as shown

by the following example: referring to (5.4), if we choose z = ω2−v3 +ω4−v5 then
‖D2z‖L2(B−1 ) ≈ 12.5761 ‖D2z‖L2(B+

1 ).
This depends on the fact that bi-harmonic extension of z may be either even in y
(e.g. z = y2) or odd in y (e.g. z = r3(3 sin ϑ− sin(3ϑ)) = 4y3) or a mixing of the
two (e.g. z = ω2 − v3).

Remark 5.6. Bi-harmonic functions like %3(cos ϑ − cos(3ϑ)) and, quite surpris-
ingly, also combinations of multi-valued functions like %3/2

(
cos(ϑ/2) − cos(3ϑ/2)

)

or like %5/3
(
cos(ϑ/3) − cos(5ϑ/3)

)
actually turn out to be (H2(B+

1 ) strongly con-
vergent) infinite sums of kind given by (5.2) above: hence they have single-valued
analytic (and bi-harmonic) extension to the whole disk B% and fulfil decay property
(5.1).

Remark 5.7. We remark that, by setting ϕt(ϑ) = (sin(tϑ)− sin((t− 2)ϑ) t/(t− 2)) ,
ψτ (ϑ) = ( cos(τϑ) − cos((τ − 2)ϑ) ) , both rtϕt(ϑ), rτψτ (ϑ), though built with poly-
dromic functions, do have (unique) bi-harmonic extension to the whole disk B%(0) :
in fact ∂h

ϑ ϕt(ϑ) |ϑ=0 = ∂h
ϑ ϕt(ϑ) |ϑ=2π ∀h (due to 2π periodicity of sin and cos), so

that their gluing at 2π is not only continuous but also analytic. The same argument
holds true for ψτ .

6. Blow-up and Decay at boundary points

In this section we analyze the boundary locally around any point belonging to
∂Ω\(T0∪T1∪M) . At first (Theorems 6.1, 6.2) we perform a blow-up of functionals
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F and E around the origin under the additional assumption that 0 belongs to ∂Ω.
Then we exploit this results (by translating and scaling) to estimate the decay
of these functionals when evaluated on local minimizers around boundary points
(Theorems 6.3, 6.4).

Theorem 6.1. (Blow-up of functional F at boundary points)
Assume (1.4), (1.5), (1.6), (1.7), (1.8) and:
0 ∈ ∂Ω\(T0 ∪ T1 ∪M) , Br(0) ⊂ Ω̃, ψh ∈ C2(−r, r) with ψh → 0 in W 2,∞(−r,+r),
ωh ∈ C2(Br) with ωh → ω∞ ≡ 0 in W 2,∞(Br(0))

(6.1)





ψh ∈ C2(−r, r) , ψh(0) = 0, ψ′h(0) = 0 Lip (ψ′h) ≤ 1 ,

Bψh+ def= Br(0) ∩ {y > ψh(x) } , Bψh− def= Br(0) ∩ {y < ψh(x) } ,

Bτ
% = {x = (x, y) : |x| < %, y > τ)} for 0 < τ < % < r .

γh ∈ Lq(Ω̃)∩L2q
loc(Ω̃), let αh, βh, µh, three sequences of positive numbers with βh ≤

αh, and let v∞ ∈ H2(Br(0)) s.t. v∞ ≡ 0 in B−
r (0). Assume vh ∈ GSBV 2(Ω̃) ∩

Lq(Ω̃), vh = ωh a.e. in Bψh− and
(i) vh are Ω local minimizers of Fγh ωh

( · , µh, αh, βh, Br(0)) ,

(ii) limhH1 ((Svh
∪ S∇vh

) ∩Br(0)) = 0 ,

(iii) ∃ limh Fγh ωh
( vh, µh, αh, βh, Bτ

% ) def= δ(%, τ) ≤ 1
for a.e. %, τ ∈ (0, r) with τ < % , and set δ(%, τ) = 0 if % < τ .

(iv) limh vh = v∞ a.e. in Br(0) ,

(v) limh µh = 0 , limh µh‖γh‖q
Lq(Br(0)) = 0 .

Then, for every % ∈ (0, r), τ ∈ (0, %), v∞ minimizes the functional

(6.2)
∫

Bτ
% (0)

∣∣ D2v
∣∣2 dx

over {v ∈ H2(Br(0)) : v = v∞ in Br(0)\Bτ
% ; in particular v = 0 in B−

r (0)} .
Moreover

(6.3) δ(%, τ) =
∫

Bτ
% (0)

∣∣ D2v∞
∣∣2 dx for almost all %, τ : 0 < τ < % < r .

In particular ∆2v∞ = 0 in B+
r (0), v∞ = 0 = ∂v∞/∂y in Br(0) ∩ {y = 0}, and

v∞ ∈ C1(Br(0)) .

Proof. By convergence assumptions on ψh, for any κ ∈ (0, r/2) we can assume
|ψh| < κ < r/2 for large h, that is hypo-graph of ψh contains a fixed sector (of the
disk Br) where vh = ωh, hence uh = vh − ωh fulfil assumption (4.13) uniformly in
h with ϑ ≥ 1/3, while Dirichlet datum ωh is not imposed on the portion of the disk
where y > κ.
By (iv) (v) we get, up to subsequences,

lim
h

µh
1/q |vh − γh| = 0 a.e in Br .

By (ii) (iii) sequence uh = vh − ωh fulfils all the assumptions of Theorem 4.4:

(6.4) sup
%,τ

sup
h

∫

Bτ
%

|∇2vh|2 dx ≤ 1 .
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Then we can build a sequence zh as in (4.23)-(4.28), choose subsequences (without
relabeling) zh, uh, vh = uh + ωh and u∞ ∈ H2 s.t. (4.16)-(4.20) hold true. Since
ωh → 0 and vh → v∞ a.e., we get uh → u∞ = v∞, a.e. By (4.20), ωh → 0 in W 2,∞

and by (iii) we obtain, for a.e. %, τ , 0 < τ < % < r ,∫

Bτ
%

∣∣ D2v∞
∣∣2 dy ≤ lim inf

h

∫

Bτ
%

(∣∣∇2uh

∣∣2 + µh|uh − γh|q
)

dy ≤

≤ lim inf
h

∫

Bτ
%

(∣∣∇2vh

∣∣2 + µh|vh − γh|q
)

dy ≤ lim
h

Fγh ωh
(vh, Bτ

% ) = δ(%, τ) .

To achieve the proof we have to show that for a.e. %, τ, 0 < τ < % < r, for every
κ ∈ (0, r/2), and every u ∈ H2(Br) with u = v∞ in B+

r (0) \ B2κ
% (hence u = 0 in

B−
r (0)):

(6.5)
∫

Bτ
%

∣∣ D2u
∣∣2 dy ≥ δ(%, τ) .

In fact (6.5) implies ∆v∞ = 0, B+
% and v∞ = ∂v∞/∂y = 0 on B1 ∩ {y = 0}; hence

v∞ ∈ C1(B+
r ∪ (Br ∩ {y = 0}) ) ([25]). We prove the inequality (6.5) for fixed

κ ∈ (0, r/2) : the convergence property of ψh allows to repeat the proof for any
such κ by selecting large enough h .
Map δ is monotone non decreasing in % and monotone non incresing in τ, hence:
for any frozen τ, map δ is continuous up to a countable set of values for %,
for any frozen %, map δ is continuous up to a countable set of values for τ.
For any selection of %, τ s.t. δ is separately continuous at %, τ, we get by monotonic-
ity that actually δ is a (two-variables) continuous map at %, τ. This continuity prop-
erty holds true for a.e. %, τ ∈ (0, r).
Assume by contradiction there exist u ∈ H2(Br), ε > 0, s, σ, s.t. 2κ < σ < s < r,
δ is continuous at % = s, τ = σ, u = v∞ in B+

r \B2κ
s (hence u = 0 in Br

−) and

(6.6)
∫

Bσ
s

∣∣ D2u
∣∣2 dy ≤ δ(s, σ)− ε .

¿From now on we fix η, κ s.t.

(6.7) s < η < r , 0 < κ <
1
2

σ <
1
2

√
r2 − η2

Referring to (4.25), (4.27), we set

(6.8) Lh = H1 ((Svh
∪ S∇vh

) ∩Br(0))

(6.9) Ξh = {y ∈ Br : zh 6= ξh } ,

(6.10) Ah = { zh 6= uh } .

In particular Ah = Eh ∪ Ξh .
In order to get a contradiction we will paste together uh and zh along the boundary
of a suitably chosen lunula (the energy addition will tend to 0 as h →∞ due to (iii),
(4.17) and Matching Lemma 3.2), then we will join such new function in a smaller
lunula with u (which has less squared hessian energy). Before some preliminary
estimates are needed.
We emphasize that

(6.11) H1(Svh
∩ ∂B%) = H1(S∇vh

∩ ∂B%) = 0 for a.e % ∈ (0, r)
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and by (4.17)

(6.12) P (Ah, Br) ≤ cLh .

By integrating first in polar coordinates, then in cartesian coordinates and taking
into account isoperimetric inequality we get

(6.13) αh

∫ r

0

H1(Ah∩∂B%) d% = αh|Ah∩Br| ≤ αh(γ2P (Ah, Br))2 ≤ c2γ2
2αhLh

2

(6.14)

αh

∫ √
r2−t2

0

H1(Ah ∩ {(x, y) : |x| ≤ t}) dy =

αh

∣∣∣ Ah ∩ {|x| ≤ t, 0 ≤ y ≤
√

r2 − t2}
∣∣∣ ≤

≤ αh|Ah ∩Br| ≤ αh(γ2P (Ah, Br))2 ≤ c2γ2
2αhLh

2

since the sequence αhLh is bounded by (iii), then (ii) entails

lim
h

αh Lh
2 = 0.

Hence, by (6.13), we have, up to subsequence and without relabeling,

(6.15) ∃ lim
h

αhH1
(
Ah ∩ ∂Bt

+
)

= 0 for a.e. t ∈ (0, r) .

By assumption (6.7), the interval (2κ,
√

r2 − η2) is not empty and contains σ.

For any choice of t ∈ (s, r) as above (fulfilling (6.15)) and for a.e. d ∈ (
2κ,

√
r2 − η2

)
(thanks to (6.14)) we have

(6.16) lim
h

αhH1 (Ah ∩ {|x| ≤ t, y = d}) = 0 ;

by summarizing, for any t fulfilling (6.15) for a.e. d ∈ (
2κ,

√
r2 − t2

)
both (6.15),

(6.16) hold true, so that, up to subsequence and without relabeling,

(6.17) ∃ lim
h

αhH1
(
Ah ∩ ∂Bd

t

)
= 0 for a.e. t, d ,

and by (6.11), (6.17), (ii) and βh ≤ αh we get,

(6.18)
lim
h

(
αhH1

(
Szh

∩ ∂Bd
t

)
+ βhH1

(
(S∇zh

\ Szh
) ∩ ∂Bd

t

))
= 0

for a.e t ∈ (s, η) and a.e d ∈ (
2κ,

√
r2 − t2

)
,

notice that the interval (2κ,
√

r2 − t2) is not empty since it contains σ due to (6.7).
By continuity of δ at % = s, τ = σ and by (6.17), (6.18) and (iii) we can choose
t ∈ (s, η) close to s as needed, d ∈ (2κ, σ) close to σ as needed (and let them fixed
in the following) and h̃ ∈ N s.t. σ − d < t − s and, setting Md,σ

t,s = Bd
t \ Bσ

s , the
following list of inequalities hold true:

(6.19) δ(t, d)− δ(s, σ) < ε/6 ,

(6.20) αhH1
(
Ah ∩ ∂ Md,σ

t,s

)
≤ ε/6 h > h̃ ,

(6.21) αhH1
(
Szh

∩ ∂ Md,σ
t,s

)
+ βhH1

(
(S∇zh

\ Szh
) ∩ ∂ Md,σ

t,s

)
≤ ε/6 h > h̃ ,
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(6.22)
∫

Bd
t \Bσ

s

|D2u|2 dx < ε/6 ,

(6.23) F
(
vh, Bd

t \Bσ
s

)
≤ 2 ε/6 h > h̃ ;

In fact (6.19) express the continuity of δ at (s, σ); feasibility of choices (6.20),
(6.21) follows by (6.17), (6.18); inequality (6.22) follows by the absolute continuity
of

∫
A
|D2u|2dx with respect to the Lebesgue measure of A, eventually (6.23) follows

by

lim
h
F

(
vh, Bd

t \Bσ
s

)
= δ(t, d)− δ(s, σ) + lim

h
F (vh, ∂Bσ

s )

which is estimated by 2 ε/6 thanks to (6.19), (6.21).
We fix the matching:

(6.24) ζh = uh χ
Br\Bd

t
+ zh χ

Bd
t

,

hence (6.17) and Lemma 3.2 entail, for a.e. % ∈ (0, r), τ ∈ (d, σ),
(6.25)

lim
h
Fγh ωh

(ζh, µh, αh, βh, Bτ
% ) = lim

h
Fγh ωh

(vh, µh, αh, βh, Bτ
% ) = δ(%, τ) ≤ 1 .

Eventually we perform the joining of u + ωh and ζh + ωh between lunulae Bd
t and

Bσ
s : by referring to Lemma 3.1, we choose Ψ ≡ 1 in a neighborhood of Bσ

s and set

(6.26) τh = Ψ (u + ωh) + (1−Ψ) (ζh + ωh) ,

so that

(6.27) τh = uh + ωh = vh in Br \Bd
t , τh = u + ωh in Bσ

s ,

hence

(6.28) F(τh, Br \Bd
t ) = F(vh, Br \Bd

t ) .

Then by Lemma 3.1 we obtain, for any θ > 0,

(6.29)

F(τh, Bd
t ) ≤ (1 + θ)

(
F(u + ωh, Bd

t ) + F(ζh + ωh, Bd
t \Bσ

s )
)

+

+
c

(σ − d)2

(∫

Bd
t \Bσ

s

|∇(u− ζh)|2dx +
c

θ d2 (σ − d)2

∫

Bd
t \Bσ

s

|u− ζh|2dx
)

By compactness Theorem 4.4, with our choice for d, σ fulfilling 2κ < d < σ :

(6.30) lim
h

∫

Bd
t \Bσ

s

|∇(v∞ − ζh)|2dx = lim
h

∫

Bd
t \Bσ

s

|v∞ − ζh|2dx = 0 ,

hence, thanks to u = v∞ in B+
r \B2κ

s , possibly by extracting subsequences without
relabeling and letting h → +∞ in (6.29) we obtain

(6.31) lim
h
F(τh, Bd

t ) ≤ (1+θ)
(

lim
h
F(u + ωh, Bd

t ) + lim
h
F(ζh + ωh, Bd

t \Bσ
s )

)
.

By convergence ωh → 0 in W 2,∞(Br) there is h0 ≥ h̃ s.t.

(6.32)

∣∣∣∣∣
∫

Bd
t \Bσ

s

|D2(u + ωh)|2 dx−
∫

Bd
t \Bσ

s

|D2u|2dx
∣∣∣∣∣ <

ε

6
for h > h0 .
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Figure 1. Joining along handle Md,σ
t,s = Bd

t \Bσ
s

By (4.26), ωh → 0 in W 2,∞, (6.23), (6.27) we get

(6.33)
lim
h
F

(
ζh + ωh, Bd

t \Bσ
s

)
=

= lim
h
F

(
zh + ωh, Bd

t \Bσ
s

)
≤ lim

h
F

(
vh, Bd

t \Bσ
s

)
≤ 2

ε

6
By letting ϑ → 0 in (6.31), taking into account (6.20)-(6.24), (6.27), (6.32) and
(6.33) we get

(6.34) F
(
τh, Bd

t \Bσ
s

)
≤ 4 ε/6 h > h0 ;

By exploiting (6.6),(6.20), (6.21), (6.23), (6.34), τh = u + ωh in Bσ
s and eventually

δ monotonicity with respect to inclusion of sets, we get the contradiction:

(6.35)

δ(t, d) = lim
h
F

(
vh , Bd

t

) minimality of vh≤ lim
h
F

(
τh , Bd

t

)
=

= lim
h
F (

τh , Bσ
s

)
+ lim

h
F

(
τh , Bd

t \Bσ
s

)
− lim

h
F ( τh , ∂Bσ

s )
(6.34)

≤

≤ lim
h
F (

τh , Bσ
s

)
+ 4

ε

6
=

= lim
h
F (

u + ωh , Bσ
s

)
+ 4

ε

6
= lim

h

∫

Bσ
s

|D2(u + ωh)|2 dx + 4
ε

6

(6.32)

≤

≤
∫

Bσ
s

|D2u|2 dx + 5
ε

6
≤ δ(s, σ) − ε + 5

ε

6
≤ δ(t, d)− ε

6
.

¤

Theorem 6.2. (Blow-up of functional E at boundary points)
Assume (1.4), (1.5), (1.6), (1.7), (1.8), (1.9), (1.10), (1.11), 0 ∈ ∂Ω\(T0 ∪ T1 ∪M)
and Br(0) ⊂ Ω̃, let αh, βh, two sequences of positive numbers with βh ≤ αh,
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ψh ∈ C2(−r, r) with ψh → 0 in W 2,∞(−r,+r), ωh ∈ C2(Br(0)) with ωh →
ω∞ ≡ 0 in W 2,∞ and let v∞ ∈ H2(Br(0)) s.t. v∞ ≡ 0 in B−

r (0). Assume (6.1),
vh ∈ GSBV 2(Ω̃), vh = ωh a.e. in Bψh− and

(i) vh are Ω local minimizers of Eωh
( · , αh, βh, Br(0)) ,

(ii) limhH1 ((Svh
∪ S∇vh

) ∩Br(0)) = 0 ,

(iii) ∃ limh Eωh
( vh, αh, βh, Bτ

% (0)) def= δ(%, τ) ≤ 1
for a.e. %, τ ∈ (0, r) with τ < % , and set δ(%, τ) = 0 if % < τ .

(iv) limh vh = v∞ a.e. in Br(0) .

Then, for every %, τ : 0 < τ < % < r , v∞ minimizes the functional

(6.36)
∫

B+
r (0)

∣∣ D2u
∣∣2 dx

over {u ∈ H2(B%(0)) : u = 0 in B−
r (0); u = v∞ in Br(0)\Bτ

% (0)} .
Moreover

(6.37) δ(%, τ) =
∫

Bτ
% (0)

∣∣ D2v∞
∣∣2 dx for almost all τ, % : 0 < τ < % < r .

In particular ∆2v∞ = 0 in B+
r (0), v∞ = 0 = ∂v∞/∂y in Br(0) ∩ {y = 0}.

Proof. Repeat the proof of the previous Theorem with µh = 0. ¤
Due to (1.5), (1.6) for any sequence of points xh ∈ ∂Ω\ (T0∪T1∪M) possibly after
suitable rotations of coordinates around each xh = (xh, yh), we can find %h and ϕh

s.t., by setting

(6.38) Ωϕh+ = Ω ∩B%h
(xh) , Ωϕh− = B%h

(xh) \ Ω ,

we have

(6.39)





w ∈ C2(B%h
(xh)) , Ωϕh+ = B%h

(xh) ∩ {y > ϕh(x) } ,

ϕh ∈ C2(xh − %h, xh + %h), ϕh(xh) = yh, ϕh
′(xh) = 0, Lip(ϕh

′) ≤ C.

Referring to (6.38), (6.39) we re-scale and translate at the origin sets Ωϕh
and choose

the graphs ψh to be used in the application of blow-up Theorem (with r = 1) as
follows:

(6.40) ψh(x) = %h
−1 (ϕh(xh + %hx)− yh)

(6.41) Bψh+ = B1(0)∩{(x, y) : yh +%hy > ϕh(xh +%hx)} = B1(0)∩{y > ψh(x)}
(6.42) Bψh− = B1(0)∩{(x, y) : yh+%hy < ϕh(xh+%hx)} = B1(0)∩{y < ψh(x)} ;

we get

(6.43)





Bψh± = (Ωϕh± − xh) /%h

ψh(0) = 0 , ψh
′(0) = 0

ψh
′(x) = ϕh

′(xh + %hx) = %hx ϕh
′′(xh) + o(%h)

ψh
′′(x) = %hϕh

′′(xh + %hx)

Lip(ψh) = Lip(ϕh) , Lip(ψh
′) = %h Lip(ϕh

′) .
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Theorem 6.3. (Decay of functional F at boundary points) Assume (1.3),
(1.4), (1.5), (1.6), (1.7), (1.8), (1.9), (1.10), (1.17). Then, by referring to (2.13)
and to (2.14) about the meaning of %̄ and c0,

(6.44) ∀k > 2, ∀η, σ ∈ (0, 1), ∃ε0 > 0, ∃ϑ0 > 0 such that

for all ε ∈ (0, ε0], for any x ∈ ∂Ω \ (T0 ∪ T1 ∪M) , for any u which is an Ωϕ+

local minimizer of Fg w(·, µ, α, β, Ωϕ+) , for any % s.t. B%(x) ⊂ Ω̃ (we can assume
without restriction (6.39)), 0 < % ≤ (

εk ∧ %̄ ∧ (c0 ∨ 1)−1
)
,
∫

B%(x)
|g|2q ≤ εk and

(6.45) αH1
(
Su ∩ Ωϕ+

)
+ βH1

(
(S∇u \ Su) ∩ Ωϕ+

)
< ε% ,

we have
(6.46)
Fg w(u,Bη%(x)) ≤ η2−σ max

{
Fg w(u,B%(x)) , %2 ϑ0

((
Lip(ϕ′)

)2 +
(
Lip(Dw)

)2
)}

.

Proof. Assume the Theorem is false. Then there are k > 2, η, σ ∈ (0, 1); three
sequences %h, εh, ϑh s.t. 0 < %h ≤

(
%̄ ∧ (c0 ∨ 1)−1

)
, εh > 0, ϑh > 0, ε1 = 1 , εh ↓ 0,

lim
h

ϑh = +∞; a sequence xh ∈ ∂Ω \ (T0 ∪ T1 ∪M) ; a sequence wh ∈ C2(B%h
(xh))

s.t. |wh| ≤ C, Lip(Dwh) ≤ C; a sequence ϕh ∈ C2
(
(xh − %h, xh + %h)

)
with

ϕh(xh) = yh, ϕ′h(xh) = 0, Lip(ϕh
′) ≤ C and

Ωϕh+ = Ω ∩B%h
(xh) ∩ {y > ϕh(x)} ;

a sequence uh ∈ X(Ω̃) of Ω local minimizers of Fg wh
(·, µ, α, β,B%h

(xh)) among v
s.t. v = wh on Ωϕh− ;

(6.47) %h ≤ εh
k ,

∫

B%h
(xh)

|g|2q ≤ εh
k ;

(6.48) αH1
(
Suh

∩ Ωϕh+

)
+ βH1

(
(S∇uh

\ Suh
) ∩ Ωϕh+

)
< εh %h

and
(6.49)

Fg wh
(uh, µ, α, β, Bη %h

(xh)) >

> η2−σ max
{
Fg wh

(uh, µ, α, β,B%h
(xh)), %2

h ϑh

((
Lip(ϕh

′)
)2 +

(
Lip(Dwh)

)2
)}

.

By translating xh to 0, re-scaling and applying a common affine linear correction
to data and local minimizers, we set, for y ∈ B1(0) :

(6.50) ωh(y) =
(
λh %h

3
)−1/2

(
wh(xh + %hy)− %hDwh(xh) · y − wh(xh)

)

(6.51) γh(y) =
(
λh %h

3
)−1/2

(
g(xh + %hy)− %hDwh(xh) · y − wh(xh)

)

(6.52) vh(y) =
(
λh %h

3
)−1/2

(
uh(xh + %hy)− %hDwh(xh) · y − wh(xh)

)

where

(6.53) λh =
(
%h
−1 Fg wh

(uh, µ, α, β, B%h
(xh))

) ∨
εh .

Notice that, due to density upper bound in Theorem 2.10 and %h ≤ %̄ ∧ (c0 ∨ 1)−1,

λh ≤ c0 ∨ 1 < +∞ and λh %h ≤ 1 ∀h
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and functions vh and ωh coincide on Bψh− = B1(0) ∩ {y < ψh(x)} .
Moreover, by uniform C2 property of wh, and applying Lagrange Theorem to each
component of Dωh

∀y ∈ B1, i, j = 1, 2 ∃ t̃(i) ∈ (0, 1) s.t. by setting ỹ(i) = t̃(i)y , we get

Dj ωh(y) = Dj ωh(0) +
∑

i

Dijωh(ỹ(i))yi

say, by denoting D̃2ωh(ỹ) the hessian of ωh with i-th row evaluated at ỹ(i),

Dωh(y) = Dωh(0) + D̃2ωh(ỹ) · y
then

(6.54)





ωh(0) = 0 , Dωh(0) = 0 ,

Dωh(y) = D̃2ωh(ỹ) · y

Dωh(y) = ( λh %h )−1/2
(

Dwh(xh + %hy)−Dwh(xh)
)

D2ωh(y) = ( %h/λh )1/2
D2wh(xh + %hy)

|D2ωh(y)| ≤ (%h/λh)1/2 Lip(Dwh)

|Dωh(y)| ≤ |D̃2ωh(ỹ)| |y| ≤ (%h/λh)1/2 Lip(Dwh)

Lip(Dωh) = (%h/λh)1/2 Lip(Dwh)

hence

(6.55) |Dωh(y)| ≤ C ε
(k−1)/2
h , |D2ωh(y)| ≤ C ε

(k−1)/2
h .

Due to (1.6) ϕh are uniformly C2, hence (6.43) entails ψh → 0 in W 2,∞(−1, 1).
Estimates (6.55) entail strong W 2,∞(B1) convergence of ωh to ω∞ ≡ 0.
Due to Remark 2.9 functions vh are Ω local minimizers of Fγh,ωh

(·, µh, αh, βh, B1(0))
among v with v = ωh in Bψh− where

(6.56) αh =
α

λh
, βh =

β

λh
, µh = µ λh

q
2−1 %h

1+ 3
2 q .

By scaling Lemma 2.5, (6.49), last identity in (6.43), (6.54), and λh %h ≤ 1 we have

(6.57)

{
Fg wh

(uh, µ, α, β,B%h
(xh)) = λh %h Fγh ωh

(vh, µh, αh, βh, B1(0))
Fg wh

(uh, µ, α, β,Bη%h
(xh)) = λh %h Fγh ωh

(vh, µh, αh, βh, Bη(0))

and

(6.58)

Fγh ωh
(vh, µh, αh, βh, Bη(0)) = Fg wh

(uh, µ, α, β, Bη%h
(xh))/(λh %h)

> η2−σ %h

λh
ϑh

((
Lip(ψh

′)
%h

)2

+
(

Lip(Dωh)√
%h/λh

)2 )

= η2−σ ϑh

λh

( (Lip(ψh
′))2

%h
+ λh (Lip(Dωh))2

)

≥ η2−σϑh

( (
Lip(ψh

′)
)2 + (Lip(Dωh))2

)
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so that by (6.53), (6.57)

(6.59) Fγh ωh
(vh, µh, αh, βh, B1(0)) ≤ 1 ,

(6.60) αhH1
(
Svh

∩Bψh+
)

+ βhH1
(
(S∇vh

\ Svh
) ∩Bψh+

)
< εh

and (6.49), (6.57), (6.58) entail

(6.61) Fγh ωh
(vh, µh, αh, βh, Bη(0)) > η2−σ Fγh ωh

(vh, µh, αh, βh, B1(0)) .

By (6.59) and Theorem 4.4, up to subsequences and without relabeling,

(6.62) ∃ v∞ ∈ H2(B1) : lim
h

vh = v∞ a.e. in B1

say hypothesis (iv) of Theorem 6.1, which we want to apply to handle vh and v∞.
We proceed by checking the other assumptions of the Theorem 6.1.
Since uh is an Ω local minimizer of Fg wh

then vh is a %h
−1(Ω− xh) local minimizer

of Fγh ωh
, that is (i) holds true; (6.60) entails (ii); we must verify (iii), (v) and the

structural assumptions.
Now we prove (iii): choose a dense (in (0,1) ) sequence of radii %j = τj . Thanks to
(6.59), for any pair j, l ∈ N such that 0 < τl < %j < 1 we can extract a subsequence
of vh and then diagonalize (without relabeling) in such a way that

∃ finite δ(%j , τl)
def= lim

h
Fγh ωh

(vh, µh, αh, βh, Bτl
%j

) ∀j, l ; δ(%j , τl) ∈ (0, 1) .

Since %j , τl → δ(%j , τl) is monotone non decreasing with respect to inclusion of
lunulae, there is a (unique) monotone non decreasing with respect to inclusion and
one-side continuous with respect to exterior approximation extension defined for all
lunulae in the two parameters family, defined as follows:

δ(%, τ) = inf
j, l

{ δ(%j , τl) : %j > %, τl < τ } .

obviously:
∀τ, % → δ(%, τ) is right-continuous everywhere and continuous up to a countable
set,
∀%, τ → δ(%, τ) is left-continuous everywhere and continuous up to a countable set.
Since separate continuity together with monotonicity entail continuity in 2 vari-
ables, we get

∀τ, % → δ(%, τ) is continuous for a.e. % , ∀%, τ → δ(%, τ) is continuous for a.e. τ

say, δ is continuous with respect to τ, % almost everywhere in 0 < τ < % < r .

Hence by monotonicity of Fγh,ωh
(vh, µh, αh, βh, · ) with respect to inclusion of sets

and the same monotonicity property of δ, together with the coincidence in a dense
set of δ(%, τ) with the limit of Fγh,ωh

(vh, µh, αh, βh, Bτ
% ) we get the existence of such

limit almost everywhere and its coincidence with δ almost everywhere.
Estimate (6.59) entails Fγh ωh

(vh, µh, αh, βh, Bτ
% ) ≤ 1 , hence δ(%, τ) ≤ 1 , for all

% , τ, 0 ≤ τ ≤ % ≤ r. Hence also the estimate in (iii) of Theorem 6.1 holds true.
Now we prove (v): by (6.53) λh ≥ εh, then by density upper bound in Theorem
2.10, and (6.47):

(6.63) 0 < µh ≤ %h

λh
≤ %h

εh
≤ εh

k−1 for large h,
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hence limh µh = 0 ; moreover, by (6.50), (6.51) and (6.56), changing variables, using
Hölder inequality and (6.47) we find for large h:
(6.64)

µh

∫

B1

|γh − ωh|q dx =

=
µh

%h
2

1
(λh%h

3)q/2

∫

B%h
(xh)

∣∣gh(xh)− wh(xh)± (
%hDwh(xh) · y − wh(xh)

)∣∣q dy ≤

=
µh

%h
2

1
(λh%h

3)q/2

∫

B%h
(xh)

|gh(xh)− wh(xh)|q dy ≤

≤ 2q−1µ%h
−1λh

−1

(∫

B%h
(xh)

|gh|qdy +
∫

B%h
(xh)

|wh|qdy
)
≤

≤ 2q−1µ%h
−1εh

−1

(∫

B%h
(xh)

|gh|2qdy

)1/2√
π%h + 2q−1µ%h

−1εh
−1Cqπ%2

h ≤

≤ 2q−1 µ
(√

π εh
k/2−1 + π Cq εh

k−1
) ≤ 2q µ

√
π ε

k/2−1
h

We know µh

∫
B1
|ωh|q → 0 as h → ∞ by the first statements in (6.54), (6.55).

Hence (6.64) entails limh µh

∫
B1
|γh|q dx = 0 .

By Theorem 6.1, v∞ is bi-harmonic in B+
1 (0), v∞ = 0 in B−

1 (0) by (6.62) and

(6.65)
∫

B%(0)

|D2v∞|2 dx =
∫

B+
% (0)

|D2v∞|2 dx % ∈ (0, 1) ,

hence, since v∞ ∈ H2(B1), (6.65) holds true also for % = 1.
Since v∞ = 0 in B−

1 (0), traces continuity in H2 entails v∞ = ∂v∞/∂y = 0 in
B1(0) ∩ {y = 0}. By (5.1) of Theorem 5.1 and (6.65) we get

(6.66)

∫

Bη(0)

|D2v∞|2 dx =
∫

B+
η (0)

|D2v∞|2 dx ≤

≤ η2

∫

B+
1 (0)

|D2v∞|2 dx = η2

∫

B1(0)

|D2v∞|2 dx .

Therefore, by exploiting (iii), (6.3) of Blow-up Theorem 6.1 and (6.66)

(6.67) lim sup
h

Fγh,ωh
(vh, µh, αh, βh, Bη(0)) ≤ η2

∫

B1(0)

|D2v∞|2 dx

whereas, by (6.61),

(6.68)
limh Fγhωh

(vh, µh, αh, βh, Bη(0)) ≥

≥ η2−σ limh Fγhωh
(vh, µh, αh, βh, B1(0)) = η2−σ

∫
B1(0)

|D2v∞|2 dx

contradicting the assumption on η and σ. ¤
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Theorem 6.4. (Decay of functional E at boundary points) Assume (1.3),
(1.4), (1.5), (1.6), (1.7), (1.8), (1.9), (1.10) and (1.11).
Then,

(6.69) ∀ k > 2, ∀η, σ ∈ (0, 1) , ∃ ε̃ > 0, ∃ϑ̃ > 0 such that

for any ε ∈ (0, ε̃], any x ∈ ∂Ω \ (T0 ∪ T1 ∪M) , any u an Ωϕ+ local minimizer of
E(·, α, β, Ωϕ+) , any % s.t. B%(x) ⊂ Ω̃ and (6.39), 0 < % ≤ (

εk ∧ %̄∧ (c0 ∨ 1)−1
)

and

(6.70) αH1
(
Su ∩ Ωϕ+

)
+ βH1

(
(S∇u \ Su) ∩ Ωϕ+

)
< ε% ,

we have
(6.71)
E(u,Bη%(x)) ≤ η2−σ max

{
E(u,B%(x)) , %2 ϑ̃

((
Lip(ϕ′)

)2 +
(
Lip(Dw)

)2
)}

.

Proof. Straightforward consequence of Theorem 6.3 ¤

7. Proof of main results

In this section we prove main results: say Theorems 1.1, 1.2, 1.3,
Proof of Theorem 1.2 - Assume v ∈ GSBV 2(Ω̃) ∩ Lq(Ω̃) minimizes F among
v ∈ GSBV 2(Ω̃) ∩ Lq(Ω̃) s.t. v = w a.e. in Ω̃ \ Ω . The existence of such v is proven
by Theorem 2.1 and Remark 2.2.
First of all we notice that if B ⊂ Ω̃ is an open ball and H1 (B ∩ (Sv ∪ S∇v)) = 0
then v is smooth in B since v ∈ H2(B) so that by standard regularity theory we
get ṽ ∈ C2(B ∩ Ω) (see [24]).
So we deduce ṽ ∈ C2

(
Ω̃ \ (Sv ∪ S∇v)

)
.

Now we evaluate H1
(

Ω̃ ∩ (
Sv ∪ S∇v \ (Sv ∪ S∇v)

))
. Set

(7.1) Ω0 =
{

x ∈ Ω̃ : lim
%→0

%−1 F(v,B%(x)) = 0
}

We are going to prove that Ω0 is open.
Notice that Ω0 ∩

(
Ω̃ \ Ω

)
is trivially open by assumptions (1.8), (1.9), (1.11) so

that we have only to analyze points x in Ω ∩Ω0, and show that they are all in the
interior part of Ω0.
The interior points x ∈ Ω can be handled by applying Theorems 5.1, 5.4 in [9], to
get

(7.2) H1
(
Ω ∩ (

Sv ∪ S∇v \ (Sv ∪ S∇v)
))

= 0 ,

so we have obtained the information that Ω0 ∩Ω is open, and thanks to (1.6) (1.7)
we are left to show that all points x ∈ Ω0∩ (∂Ω \ (T0 ∪ T1 ∪M)) are interior points
of Ω0.
From now on we fix

(7.3) x ∈ Ω0 ∩ (∂Ω \ (T0 ∪ T1 ∪M)) .

Let c0 be the constant in the density upper bound Theorem 2.10. In order to apply
Decay property of local minimizers (Theorem 6.3) fix k > 2, η ∈ (0, 1) , σ ∈ (0, 1),
and related constants ε0 = ε0(η, σ, α, β, . . .), ϑ0 = ϑ0(η, σ, α, β, . . .) whose existence



A DIRICHLET PROBLEM WITH FREE GRADIENT DISCONTINUITY 29

is warranted by Theorem 6.3 in the present paper and denote by ε̃ the constant ε0

whose existence is warranted by Theorem 5.4 of [9], then set

(7.4) L = (Lip(ϕ′))2 + (Lip(Dw))2 .

Choose η′ ∈ (0, η) s.t.

(7.5) (η′)1−σc0 < ε0 ∧ ε̃ .

and denote by ε′, ϑ′ the related constants ε′ = ε′(η′, σ, α, β, . . .), ϑ′ = ϑ′(η′, σ, α, β, . . .)
whose existence is warranted by Theorem 6.3.
Set ε = ε0 ∧ ε̃ ∧ ε′. Choose r s.t.

(7.6) 0 < r2ϑ0 < ϑ0 , 0 < r <
(
εk ∧ %̄ ∧ (c0 ∨ 1)−1

)
,

∫

Br(x)

|g|2q dy ≤ εk,

(7.7) r2(ϑ0 ∨ ϑ′)L < (c0 ∧ ε) r , Br(x) ∩ (T0 ∪ T1 ∪M) = ∅ ,

(7.8) F(v, Br(x)) ≤ ε η′ r .

We claim that B(1−η)r(x) ⊂ Ω0. In fact, if y ∈ B(1−η)r(x) there are 3 cases:
if y ∈ Ω̃\Ω then v coincides with w which is

(
C2 ∩W 2,∞)

(Bηr(y)) hence the
functional has a nice decay, if y ∈ Ω then we can repeat the argument in Section 6
of [9], if

(7.9) y ∈ ∂Ω ∩B(1−η)r(x)

additional analysis is required as follows.
In case (7.9) we have

(7.10) F(v,Bη′r(y)) ≤ F(v, Br(x)) ≤ ε η′ r .

By (7.5)-(7.8), Theorems 6.3 wih the choice % = η′r < r, and density upper bound
estimate (Theorem 2.10) we deduce

(7.11)
F(v, Bη′%(y)) ≤ (η′)2−σ

(F(v,B%(y)) ∨ (%2ϑ′L)
) ≤

≤ (η′)2−σ ( (c0 %) ∨ ((c0 ∧ ε) %) ) ≤ ε0 η′ % ,

(7.12) αH1(Sv ∩Bη′%(y)) + βH1 ((S∇v \ Sv) ∩Bη′%(y)) < ε0 η′ %

so that, by setting %′ = η′%, Theorem 6.3 with the choice η entails

(7.13)
F(v, Bη %′(y)) ≤ η2−σ

(F(v,B%′(y)) ∨ (
(%′)2ϑ0L

))

≤ η2−σ (F(v,B%′(y)) ∨ (ε0%
′)) .

Inequalities (7.11),(7.13) together with %′ = η′% entail

(7.14) F(v, Bη %′(y)) ≤ η2−σ ε0 %′ .

In the same way we get: for any h ∈ N
(7.15) F(v, Bηh %′(y)) ≤ ηh(2−σ) ε0 %′ .

entails

(7.16)




F(v,Bηh+1 %′(y)) ≤ η(h+1)(2−σ) ε0 %′ .

αH1(Sv ∩Bηh+1%′(y)) + βH1
(
(S∇v \ Sv) ∩Bηh+1%′(y)

)
< ε0 ηh+1%′ .
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Since (7.15) holds true for h = 1 due to (7.14), by induction we know that (7.16)
holds true for any h ∈ N. Then ∀h = 1, 2, ...

(7.17)

F(v,Bηh+1%′(y)) ≤ η(h+1)(2−σ) ε0 %′ =

= ηh(2−σ) η2−σ ε0 %′ ≤

≤ ηh(2−σ) ε0 η %′ =

= ηh(1−σ) ε0 (ηh+1 %′)

For every t s.t. 0 < t < η2%′ there is j ≥ 3 s.t. ηj %′ ≤ t ≤ ηj−1 %′ , so that,
by(7.17),

(7.18)

t−1 F(v, Bt(y)) ≤ t−1 F(v, Bηj−1%′(y)) ≤

≤ t−1 η(j−2)(1−σ) ε0 ηj−1 %′ =

=
(
t−1 ηj %′

)
η(j−2)(1−σ)−1 ε0 ≤

≤ η(j−2)(1−σ)−1 ε0

and passing to the limit as t → 0+ (say j → +∞) we get y ∈ Ω0 .
By summarizing we have shown that Ω0 is an open set.
Since Sv ∪ S∇v is countably (H1, 1) rectifiable, by Theorem 3.2.19 in [23] we get
H1 ((Sv ∪ S∇v) ∩ Ω0) = 0 , ∇v = Dv in Ω0 , ∇2v = D2v in Ω0 , so that ṽ ∈ C2(Ω0)
and (Sv ∪ S∇v) ∩ Ω0 = ∅ . Since Ω0 is open then Ω0 ∩ (Sv ∪ S∇v) = ∅ . By Lemma
3.3 we have

(7.19) H1
(
Ω̃ ∩

(
(Sv ∪ S∇v) \ (Sv ∪ S∇v)

))
= 0 .

By setting

(7.20) K0 = Sv \ (S∇v \ Sv) , K1 = S∇v \ Sv ,

thanks to (1.6), (1.7), (1.8), (1.11), (7.19), (7.20) we obtain

(7.21) K0 ∪K1 is closed, H1(K0 ∩ Ω̃) = H1(Sv) , H1(K1 ∩ Ω̃) = H1(S∇v \ Sv) ,

hence K0 ∩ Ω̃ and K1 ∩ Ω̃ are (H1, 1) rectifiable, moreover

(7.22) F (K0,K1, ṽ) = F(v) = min{F(z) : z ∈ GSBV 2(Ω̃) ∩ Lq(Ω̃), z = w Ω̃\Ω}.
Then (by Lemma 3.2 and Remark 3.3 of [9]) we conclude that (K0,K1, ṽ) is a
minimizing triplet for F in the class of admissible triplets.
By (7.20), (7.21), (7.22) and trace properties of GSBV 2 functions, we can say
that properties (1.12), (1.13), (1.14), (1.15) hold true for the minimizing triplet
(K0,K1, ṽ) obtained by partial regularity of a weak minimizer for F .
Eventually, by Lemma 3.2 of [9], we get for any other minimizing triplet (K0, K1, u)
of F

(7.23) Su ⊂ K0 , (S∇u \ Su) ⊂ (K1 \ K0)

(7.24) F(u) ≤ F (K0, K1, u) = F (K0, K1, v) ;
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assume by contradiction that inequality in (7.24) is strict, then (by Theorem 2.1)
there is z ∈ GSBV 2(Ω̃) ∩ Lq(Ω̃) s.t.

(7.25) F(z) = minF ≤ F(u)

and, by repeating on z the regularization procedure previously performed on v, we
find a minimizing triplet (Z0, Z1, z̃) for F fulfilling

(7.26) F (K0,K1, ṽ) = F (Z0,Z1, z̃) = F(z) .

Relationships (7.25) and (7.26) together contradict (7.24) with strict inequality; so
in (7.24) we must have equality, hence properties (1.12), (1.13), (1.14), (1.15) hold
true also for (K0, K1, u). ¤
Proof of Theorem 1.1 - The thesis follows immediately by Theorem 1.2 by dropping
the term µ

∫
eΩ |v − g|qdx and exploiting Theorem 6.4 instead of Theorem 6.3. ¤

Proof of Theorem 1.3 - The thesis follows immediately by Theorem 1.2 with the
choice K = Sv ∪ S∇v where v minimizes F and taking into account the assumption
α = β . ¤
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[26] F.A.Lops, F.Maddalena & S.Solimini, Hölder continuity conditions for the solvability of
Dirichlet problems involving functionals with free discontinuities, Ann. Inst. H. Poincaré
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