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t. Given a word w over a �nite alphabet � and a �nite deter-ministi
 automaton A = hQ;�; Æi, the inequality jÆ(Q;w)j � jQj � nmeans that under the natural a
tion of the word w the image of thestate set Q is redu
ed by at least n states. A word w is n-
ollapsing ifthis inequality holds for any deterministi
 �nite automaton that satis�essu
h an inequality for at least one word. In this paper we prove that theproblem of re
ognizing n-
ollapsing words is generally 
o-NP-
omplete,while restri
ted to 2-
ollapsing words over 2-element alphabet it belongsto P. This is 
onne
ted with introdu
ing a new approa
h to 
ollapsingwords, whi
h is shown to be mu
h more e�e
tive in solving various prob-lems in the area. It leads to interesting 
onne
tions with 
ombinatorialproblems 
on
erning solving systems of permutation 
onditions on onehand, and 
oloring trees with distinguished nodes on the other hand.1 Introdu
tionIn this paper by an automaton A = hQ;�; Æi we mean a �nite determinis-ti
 automaton with state set Q, input alphabet �, and transition fun
tionÆ : Q � � ! Q. The a
tion of � on Q given by Æ will be denoted simplyby 
on
atenation: qa = Æ(q; a). This a
tion extends naturally on the a
tion ofthe words of �� on Q. Given a word w 2 ��, we are interested in the 
ardinalityjQwj of the image of Q by w.If jQwj = 1, then w is 
alled a reset word for A, and A itself is 
alledsyn
hronizing. A

ording to the famous �Cern�y's 
onje
ture, if A is syn
hronizing,then it has a reset word of length � (m� 1)2, where m = jQj is the number ofstates in A. This 
onje
ture was formulated in 1964, and it is probably the mostlongstanding open problem in the theory of �nite automata. For interestingappli
ations and re
ent results 
on
erning this 
onje
ture we refer the readerto [4℄ and referen
es given therein. Problems with settling �Cern�y's 
onje
ture,on one hand, and its importan
e for the theory of �nite automata and �nitesemigroups, on the other, suggest a need of more systemati
 approa
h to the? This resear
h was done with the support of GNSAGA and of ESF proje
t Au-tomatha.



problem. Su
h approa
h was initiated in papers [1, 8℄ basing on the earlier work[11℄.Generally, we are now interested in how the set of states is redu
ed underthe a
tion of various words. Given w 2 ��, the di�eren
e of the 
ardinalitiesjQj � jQwj is 
alled the de�
ien
y of the word w with respe
t to A and denoteddfA(w). For n � 1, a word w is 
alled n-
ompressing for A, if dfA(w) � n.An automaton A is n-
ompressible, if there exists an n-
ompressing word forA. A word w 2 �� is n-
ollapsing (over �), if it is n-
ompressing for everyn-
ompressible automaton with the input alphabet �.It has been proved in [11℄ that n-
ollapsing words always exist, for any � andany n � 1. In [8℄ it is shown that, over a �xed alphabet �, ea
h n-
ollapsing wordis n-full, that is, it 
ontains any word of length n among its subwords. Surveysof results and problems in this area are given in [4℄ and in [5℄. In parti
ular, aresult showing that the problem of re
ognizing n-
ollapsing words is de
idable(and is in the 
lass 
o-NP) is proved in [9℄ and the question whether this problemis 
o-NP-
omplete is formulated ([4, Problem 1℄).In [1℄ a 
hara
terization of 2-
ompressing words was given by asso
iating toevery word a family of �nitely generated subgroups in some �nitely generatedfree groups; it was proved that the property of being 2-
ollapsing is 
onne
tedwith the indi
es of some subgroups in this 
ontext. A more geometri
 versionof this idea has been developed in [2℄. Some further results in this dire
tion are
ontained in [3, 10℄. Unfortunately, these 
hara
terizations did not allow neitherto settle the 
omplexity of the above problem nor to generalize to n-
ollapsingwords (
f. remarks in [4℄).In this paper we apply another more 
ombinatorial approa
h to 
ollapsingwords, whi
h was introdu
ed in [6℄. It made possible to answer a number ofopen questions formulated in [1℄, and atta
k related problems 
on
erning resetwords ([7℄). In this paper we present the full solution to the 
entral problem of
omplexity whi
h was announ
ed and shortly des
ribed in [6℄ and [7℄.Our main motivation in proving the NP-
ompleteness result is preparing agood starting point for further resear
h by showing that (in view of this result)
ertain 
hara
terizations are not available here. Our proof exhibits a very tight
onne
tion with two other 
omputational problems: one is 
onne
ted with solving
ertain 
onditions on permutations, a sort of systems of permutation equations(Se
tion 3), and another one 
on
erns 
oloring trees with distinguished nodessatisfying some natural 
onditions (Se
tion 5). These problems seem interestingby themselves and are important from 
omputational point of view.First, a 
hara
terization of 2-
ollapsing words in terms of solving systems ofpermutation 
onditions is given in Se
tion 3. This 
hara
terization is used bothfor dire
tly designing an eÆ
ient algorithm for re
ognizing 2-
ollapsing wordsover a 2-element alphabet (Se
tion 4), and for demonstrating that in other 
asesthe problem is intra
table. The proof of this fa
t o

upies the remaining se
tions.In our approa
h, we view an automaton A = hQ;�; Æi as a set of transforma-tions labeled by letters of � rather than as a standard triple. By transformationsof A we mean those transformations of Q that are indu
ed via Æ by letters of



�. Note that to de�ne an automaton it is enough to assign just to any letter of� a transformation of Q. The monoid (semigroup) generated by the transfor-mations of A 
onsists pre
isely of the transformations 
orresponding to words in�� (�+). Those transformations that are permutations, if any, generate a group
alled the group of permutations of A.For a 2 �, dfA(a) = 0 if and only if the 
orresponding transformation isa permutation of Q. If dfA(a) = 1, then there is a uniquely determined statez 2 Q, whi
h does not belong to the image Qa, and two di�erent states x; y 2 Qsatisfying xa = ya; in su
h a 
ase the 
orresponding transformation will bereferred to as a transformation of type fx; ygnz (x; y identi�ed, z missing). Moregenerally a transformation a of A is 
alled of type InM , for I;M subsets of Q,if I is the set of those x 2 Q for whi
h there is y 2 Q; y 6= x su
h that xa = ya,and M = Q nQa. Our idea is that this is essentially all information we need to
ompute the de�
ien
y of any word.Note that 
ardinalities of I and M are related; in parti
ular, jIj � 2jM j,and the equality holds whenever no three di�erent elements of Q has the sameimage under a. Note also that the de�
ien
y is a nonde
reasing fun
tion of fa
torrelation, in the sense that, if w = v1uv2, then dfA(u) � dfA(w). In parti
ular, ifw = a1a2 : : : an, thendfA(a1) � dfA(a1a2) � : : : � dfA(a1a2 : : : an):2 De
idabilityFor a �xed alphabet �, and �xed n > 1, let Cn denote the language of n-
ollapsing words. For some time it was not even 
lear that n-
ollapsing words
an be re
ognized, i.e., that the language Cn is re
ursive. In fa
t, this is the mainresult announ
ed in [4℄, where a large sket
h of the proof of this fa
t is given.The full proof in [9℄ 
onsists of several lemmas and o

upies more than 10 pages.Our new approa
h makes possible to obtain a shorter elementary proof.Theorem 1. For ea
h word w 2 �� that fails to be n-
ollapsing there exists ann-
ompressible automaton A satisfying dfA(w) < n whose number of states jQjis less than 5njwj.Proof. Suppose that w is not n-
ollapsing, and let A = hQ;�; Æi be an n-
ompressible automaton su
h that dfA(w) < n. Con
erning the a
tual de�
ien
yon word w, we may assume that dfA(w) = n� 1 (sin
e in 
ase of need one mayadd new states q0; q1; : : : ; qk to Q, all transformed into q0 by all the transforma-tions, and in su
h a way suitably in
rease the de�
ien
y on all the words). Ouraim is to 
onstru
t an automaton A0 = hQ0; �; Æ0i over the same alphabet �,with dfA0(w) = n� 1, and dfA0(v) � n for some v 2 ��, and su
h that Q0 � Qis small enough.Let w = 
1
2 : : : 
t with 
i 2 �. We de�ne the partial de�
ien
y sets Djof w as the sets of elements missing in the partial images Q
1
2 : : : 
j�1. More



pre
isely, we de�ne D1 = ;, and for 1 � j � t, if 
j is a permutation, thenDj+1 = (Dj)
j , and if 
j is a non-permutation of type InM , thenDj+1 =M [Dj
j n (I nDj)
j(
f. Figure 1). Note that the sets Dj are fully determined by some partial infor-mation on transformations restri
ted to a 
ertain subset Q0 of Q.


j
xy

|{z}Dj |{z}I nDj x
j = y
j
M|{z} Dj+1|{z

}
(I nDj)
j|{z}Fig. 1. S
heme of a non-permutation transformation.Our idea is to keep the de�
ien
y sets of w un
hanged with respe
t to A0 =hQ0; �; Æ0i. To this end it is enough to put the following for every letter 
j in w:(i) 
j a
ts on Dj in the same way in A0 as in A, that is Æ0(x; 
j) = y wheneverx 2 Dj and x
j = y;(ii) if 
j is a non-permutation of type IjnMj in A, then 
j a
ts on Ij in the sameway in A0 as in A, that is Æ0(x; 
j) = y whenever x 2 Ij and x
j = y;We note that when we omit the pairs (x; y) given by (ii), then the remainingpairs (x; x
j) forms a 1-1 
orresponden
e between the sets Q n Ij and Q n (Mj [Ij
j). If we omit further pairs given by (i), for various o

urren
es of letter 
jin w, then we have still a 1-1 
orresponden
e between 
ertain subsets of Q, andwhat are exa
tly the pairs in this 1-1 
orresponden
e is irrelevant for the setsDj . We make use of this fa
t to remove irrelevant elements from Q, and obtainan automaton A0 with a state set Q0 � Q and with required properties.Namely, let Q0 
onsist of those elements x and y that o

ur in (i) or (ii) forany 
j , 1 � j � t. More pre
isely, we putQ0 = [1�j�t(Dj+1 [ Ij [ Ij
j)(of 
ourse, if 
j is a permutation, we put Ij = ;; note that we have Ii = Ijwhenever 
i = 
j).



We de�ne a new a
tion of 
j on Q0 as follows. For a �xed j, let 
i1 = 
i2 =: : : = 
is represent all the o

urren
es of the letters 
j in w (where s = s(j)depends on j, and let D�j = Di1 [ Di2 [ : : : Dis). We agree �rst that the newa
tion of 
j on the set Ij [D�j is exa
tly the same as in the old a
tion on Q, thatis Æ0(x; 
j) = y whenever x 2 Ij [D�j and Æ(x; 
j) = y. By the remark above thesets Q n (Ij [D�j ) and Q n (Mj [ (Ij [D�j )
j)are equinumerous, and therefore the setsQ0 n (Ij [D�j ) and Q0 n (Mj [ (Ij [D�j )
j)are equinumerous, as well (note that Mj � Dj+1 � Q0). We 
omplete the de�ni-tion of the new a
tion of 
j on Q0 by 
hoosing any 1-1 
orresponden
e �j betweensets Q0 n (Ij [D�j ) and Q0 n (Mj [ (Ij [D�j )
j), and setting Æ0(x; 
j) = �j(x) forx 2 Q0 n (Ij [D�j ).It should be now 
lear that the de�
ien
y sets of w with respe
t to A0 =hQ0; �; Æ0i are exa
tly the same at those with respe
t toA. In parti
ular, dfA0(w) =jDt+1j = dfA(w) < n.To estimate the size of Q0, note that by assumption jDj j � n� 1, and re
allthat jIj j � 2jMj j and Mj � Dj+1, for all j. It follows that jQ0j � 4(n� 1)jwj.Yet, we still need to ensure that A0 is n-
ompressible, and to this end we mayneed to enlarge Q0 a little. By n-
ompressibility of A, it follows that there existsa word u su
h that dfA(u) � n. Consequently, dfA(wu) � n, and we assume thatu is the shortest word with this property.Sin
e dfA(w) � n, there are x; y 2 Q0w = Q0 n Dt+1 su
h that xu = yu.For u = Æ1 : : : Æs, denote x1 = x, and xi+1 = xiÆi, and similarly, y1 = y, andyi+1 = yiÆi, for all 1 � i � s. Note that xs+1 = xu = yu = ys+1. If allxi; yi 2 Q0, then the automaton A0 de�ned above satis�es dfA0(wu) � n, and soit is as required.Hen
e, we suppose �rst that all xi 2 Q0, but there is j su
h that yj =2 Q0,and all yi 2 Q0 for all i > j. Note that j < s, sin
e ys�s = xs�s = ys+1 andtherefore all xs; ys; ys+1 2 Q0. Further, sin
e u is the shortest with dfA(wu) � n,all x1; : : : ; xj are pairwise distin
t and belong to Dt+1. In parti
ular, j � n� 1.Now, we add j new states to Q0, say, Q00 = Q0 [ fp01; : : : ; p0jg, and rather than
ompleting the de�nition of the new a
tion of 
j onQ0 we 
omplete this de�nitionon the set Q00 by 
hoosing a suitable 1-1 
orresponden
e between the sets Q00 n(Ij [ D�j ) and Q00 n (Mj [ (Ij [ D�j )
j) su
h that the following j independent
onditions hold: pi+1 = Æ0(pi; �i) for all 1 � i < j, and Æ0(pj ; �i) = yj+1. Sin
eyj =2 Q0, su
h a 1-1 
orresponden
e obviously exists. The resulting automatonon Q00 has the same de�
ien
y sets on w as A, and p1u = x1u. Consequently,dfA0(wu) � n, as required. The 
ardinality jQ00j � 5(n � 1)jwj + n � 1, whi
h(taking into a

ount that for jwj < n our statement is trivial) yields the requiredbound.Finally, if there are j and k su
h that yj ; xk =2 Q0, then assuming that k � j,we may simply take Q0 [ fxkg to get the previous 
ase. Up to symmetry, thisexhausts all the possibilities, thus 
ompleting the proof.



Theorem 1 obviously shows that, for ea
h n > 1, the language of n-
ollapsingwords over � is re
ursive (it is always enough to 
he
k a �nite number of au-tomata to see whether a word is n-
ollapsing or not). The bound in our theoremis linear both in n and in the length of w with a 
oeÆ
ient C = 5, but it ispossible to improve it, observing that in fa
t we do not need all the states in Q0,and we need only one y for ea
h x with x
 = y
, to ensure that the resultingautomata have the same de�
ien
y sets. With some additional e�ort, one 
ouldobtain a 
oeÆ
ient as low as C = 2, whi
h is the one given by Petrov in [9℄. Sin
ethe algorithm based on this idea is non-pra
ti
al anyway, we leave this possibleimprovement to the reader. Another improvement is an observation that a morepre
ise estimation in our proof yields, in fa
t, jQ0j � (n� 1)(jwj+ 3j�j).3 New 
hara
terization of 2-
ollapsing wordsThe known fa
t that ea
h 
ollapsing word is n-full suggests the following de�ni-tion. An n-
ompressible automaton A is 
alled proper ([1℄), if no word of lengthn is n-
ompressing for it. In order to de
ide whether a word w 2 � is n-
ollapsingit is enough to 
he
k whether it is n-full, and if so, whether it is n-
ompressingfor ea
h proper n-
ompressible automaton.It is not diÆ
ult to see that the n-
ollapsing words over a one-element alpha-bet are simply the words of length larger or equal to n, while 1-
ollapsing wordsover any alphabet are simply 1-full words (i.e. those involving all the letters).From now on our study is fo
used on 2-
ollapsing words over an �nite al-phabet � of 
ardinality greater than 1. We start from a 
lassi�
ation of proper2-
ompressible automata, whi
h has been established in [1℄. We rephrase it (to-gether with the arguments) in the language of our approa
h.Obviously, any n-
ompressible automatonA has at least one non-permutationtransformation. Yet, for A to be proper 2-
ompressible, non-permutation trans-formations have to satisfy quite strong 
onditions. In order to formulate andprove a suitable result, �rst we note that a proper 2-
ompressible automaton
annot have any transformation with de�
ien
y larger than 2. Indeed, in su
ha 
ase a suitable single letter forms a 2-
ompressing word. Also no transforma-tion of type fx; ygnz with z =2 fx; yg is allowed. This is be
ause 
omposing su
ha transformation with itself yields the de�
ien
y larger than one, whi
h meansthat a suitable subword of the form �2 is 2-
ompressing. Furthermore, if we havetwo transformations of type fx1; y1gnz1 and fx2; y2gnz2, then we may assumethat z1 2 fx2; y2g (and z2 2 fx1; y1g); otherwise a suitable word of the form ��is 2-
ompressing.These remarks show that there are the following two possibilities for a proper2-
ompressible automaton: either all non-permutation transformations are of thesame type, and in this 
ase there are x; y su
h that ea
h non-permutation trans-formation is of type fx; ygnx, or there are at least two non-permutation transfor-mations of di�erent types. In the latter 
ase we have again two possibilities: eitherthere is x su
h that ea
h non-permutation transformation is of type fx; zgnx for



some z, or there are x; y su
h that ea
h non-permutation transformation is oftype fx; ygnx or fx; ygny.None of these 
onditions is suÆ
ient for an automaton to be proper 2-
ompressible. In ea
h 
ase there have to be permutation transformations in orderto form a transformation 
orresponding to a 2-
ompressing word. It follows, inparti
ular, that a proper 2-
ompressible automaton has both non-permutationand permutation transformations. All the remarks above are rephrasing of theresults established in Se
tion 2 of [1℄. We go a step further. Namely, it is notdiÆ
ult to see that in ea
h of these 
ases there is a suitable ne
essary 
onditionon the group of permutations whi
h makes the whole 
ondition suÆ
ient. Thisis quite obvious after the dis
ussion above, so we simply formulate the result.Proposition 1. An automaton A is proper 2-
ompressible if and only if A sat-is�es one of the following 
onditions:(i) there are x; y su
h that all non-permutation transformations are of the sametype fx; ygnx, and the group of permutations �xes neither the element x northe set fx; yg;(ii) there is x su
h that ea
h non-permutation transformation is of type fx; zgnxfor some z, at least two di�erent types o

ur, and the group of permutationsdoes not �x x;(iii) there are x; y su
h that ea
h non-permutation transformation is of type fx; ygnxor fx; ygny, both the types o

ur, and the group of permutations does not �xthe set fx; yg.Let us note that in the 
lassi�
ation in [1℄, the automata in 
ases (i) and (ii)are 
alled mono, and those satisfying (iii) are 
alled stereo.Now, we wish to show that for a word w 2 �� being 2-
ollapsing over analphabet� is equivalent to the nonexisten
e of nontrivial solutions to 
ertain sys-tems of 
onditions on permutations. Consider partitions of � into blo
ks, whereblo
ks are intended to represent types of transformations and 
losely 
orrespondto the role assignments introdu
ed in [1℄. A nontrivial partition fP;B2; : : : ; Bhgof � with a distinguished blo
k P will be 
alled a DB-partition and will bedenoted by (P; � ), where � = fB2; : : : ; Bhg is the indu
ed partition of � n P(h � 2). Roughly speaking the letters in P are intended to represent permuta-tion transformations and letters in Bi are intended to represent non-permutationtransformation of the type f1; ign1 for 1; i �xed states of Q. Let w be a 2-fullword over �. To ea
h fa
tor of w of the form �v�, where v is a nonempty wordwhose all letters belong to P (i.e. v 2 P+), while � =2 P and � 2 Bj , we assigna permutation 
ondition of the form1v 2 f1; jg;where the letters of P are treated as permutation variables. Thus, the 
ondi-tion means that the image of 1 under the produ
t v of permutations belongs tothe set f1; jg. The resulting set of permutation 
onditions (
ontaining all 
on-ditions 
orresponding to fa
tors of w with the properties des
ribed above) will



be denoted �w(P; � ) and referred to as the system of permutation 
onditionsdetermined by a word w and a DB-partition (P; � ). Note that di�erent orderingsof blo
ks in fB2; : : : ; Bhg lead to systems whi
h are "equivalent" in the sensethat one 
an be obtained from the other just by renaming the variables; so wedo not 
are of the orderings of blo
ks.We say that this system has a solution if there exists an assignment of per-mutations on a �nite set f1; 2; : : : ; Ng to letters in P su
h that all the 
onditionsin �w(P; � ) are satis�ed. A trivial solution is one with all permutations �xing1. Also, in the spe
ial 
ase when � 
onsists of a unique blo
k B2 (and in 
on-sequen
e, all j's on the right hand side of the 
onditions are equal 2), solutionswith all permutations �xing the set f1; 2g are 
onsidered trivial. The remainingsolutions are nontrivial.A partition (P; fB1; B2g) of � (into exa
tly 3 blo
ks, with a distinguishedblo
k P ) will be 
alled a 3DB-partition. Again the letters in P are intended torepresent permutation transformations while letters in Bi; i = 1; 2 are intendedto represent non-transformation permutations of the type f1; 2gni for 1; 2 �xedstates of Q. For su
h partition, we de�ne another system of permutation 
on-ditions as follows. To ea
h fa
tor of w of the form �v�, with � 2 Bi; � 2 Bj ,i; j 2 f1; 2g, and v 2 P+, we assign a permutation 
ondition of the formiv 2 f1; 2g(the image of i under v belongs to f1; 2g). The resulting set of permutation
onditions will be denoted by � 0w(P; fB1; B2g). For su
h a system, a solution inpermutations is nontrivial if the image of the set f1; 2g does not remain �xedunder all the permutations.Theorem 2. A word w 2 �� is 2-
ollapsing if and only if it is 2-full and thefollowing 
onditions holds:(i) �w(P; � ) has no nontrivial solution for any DB-partition (P; � ) of �;(ii) � 0w(P; fB1; B2g) has no nontrivial solution for any 3DB-partition (P; fB1; B2g)of �.The reader may observe an expli
it similarity with the 
hara
terization in[1, Theorem 3.3℄. Yet while, indeed, there is a 
orresponden
e in the generalstru
ture, our approa
h is almost 
onverse: rather then looking into an alge-brai
 stru
ture behind, we redu
e the problem to the simplest 
onditions onpermutations.Proof. We prove the ,,only if" part. We know that if w is 2-
ollapsing, then it is 2-full. Suppose by 
ontradi
tion that the system �w(P; � ) has a nontrivial solutionfor some DB-partition (P; � ), and that this solution 
onsists of permutations ona set Q = f1; 2; : : : ; Ng. We build an automaton A over � with the set Q ofstates as follows: the letters in P a
t as the permutations given in the solution,and the letters in ea
h of blo
ks Bi 2 � a
t as (arbitrary) transformations oftype f1; ign1. Sin
e the solution is nontrivial, the group of permutations does



not �x 1, and in 
ase when � 
onsists of one blo
k B2, the group of permutationsdoes not �x the set f1; 2g, either. Thus, by Proposition 1, in ea
h 
ase A is aproper 2-
ompressible automaton (of type mono). To get a 
ontradi
tion weshow that dfA(w) = 1 (whi
h means that w is not 2-
ompressing for A, andhen
e not 2-
ollapsing).First, suppose that w has no fa
tor of the form �v�, with v 2 P+, � 2 Biand � 2 Bj (whi
h means that the system �w(P; � ) is empty, and permutationsin the solution are restri
ted only by the 
ondition of being nontrivial). Thenw is of the form v�i1 : : : �imu with v; u 2 P � and �ij =2 P , and we show thatdfA(w) = 1. Indeed, for the �rst segment with permutation variables we havedfA(v) = 0, and next, dfA(v�i1 ) = 1. Sin
e the type of �i1 is f1; ign1 for some i,then 1 is missing in the image Qv�i1 . Sin
e the type of �i2 is f1; ign1 for some i,�i2 simply permutes the elements in Qv�i1 ; the de�
ien
y set is again f1g, andit is easy to see that the same happens at every step. Consequently, dfA(w) = 1,as 
laimed.Now, let �v� be a fa
tor of w with v 2 P+, � 2 Bi and � 2 Bj , and assumethat it is the �rst fa
tor of this form in w. It follows that w = s�v�t, wheres; t 2 ��, and by the previous argument dfA(s�) = 1, and 1 is missing in theimageQs�. Now, sin
e v is nonempty, the permutation 
ondition 1v 2 f1; jg is in�w(P; � ). It means that 1 is moved into 1 or j by v, and 
onsequently it is 1 or jthat is missing in the image Qs�v. Sin
e � identi�es 1 and j, dfA(s�v�) = 1, andit is again 1 that is missing in the image Qs�v�. Repeating this argument severaltimes we see the de�
ien
y does not de
rease, and 
onsequently dfA(w) = 1,whi
h is the required 
ontradi
tion.As the se
ond 
ase we assume that the system � 0w(P; fB1; B2g) has a non-trivial solution for some 3DB-partition (P; fB1; B2g). The proof is analogous,and we only point out the di�eren
es. Here, we build an automaton A whereletters in ea
h of the two blo
ks Bi a
t as arbitrary transformations of typef1; 2gni. Sin
e the solution is nontrivial, the group of permutations does not�x the set f1; 2g. Thus, in this 
ase, A is a proper 2-
ompressible automaton(of type stereo). If w has no fa
tor of the form �v�, with v 2 P+, � 2 Biand � 2 Bj , then the same argument as before shows that dfA(w) = 1. If ithas one, and w = s�v�t exhibits the �rst fa
tor of this type, then dfA(s�) = iand i is missing in the image Qs�. By the 
orresponding permutation 
onditioniv 2 f1; 2g, and therefore dfA(s�v�) = 1 with j missing in the image Qs�v�.Sin
e i; j 2 f1; 2g, we may 
ontinue this argument, to get that dfA(w) = 1, asrequired.To prove the ,,if" part, assume by 
ontradi
tion that w is not 2-
ollapsing.Then, sin
e by assumption it is 2-full, there has to be a proper 2-
ompressibleautomaton A over �, with the set of states Q = f1; 2; : : : ; Ng, for whi
h w is not2-
ompressing. IfA is of type mono ((i) or (ii) in Proposition 1), then we 
onsiderthe DB-partition of �, where P represents permutations of A, and B2; : : : ; Bhrepresent transformations of types f1; 2gn1, . . . , f1; hgn1, respe
tively (we as-sume without loss of generality that x = 1 is the distinguished state). The fa
tthat w is not 2-
ompressing for A means that de�
ien
y does not de
rease, ex-




ept for the �rst initial segment of the form v� with v 2 P � and � 2 Bi, forsome i. The only segments where the de�
ien
y 
ould de
rease are those of theform �v�, with � 2 Bi; � 2 Bj and v 2 P+. The fa
t that the de�
ien
y doesnot de
rease on these segments is equivalent to that the permutations satisfy
orresponding 
onditions 1v 2 f1; jg, as required. The solution they form isnontrivial be
ause of respe
tive 
onditions (i) or (ii) in Proposition 1.If A is of type stereo (Proposition 1 (iii)), we 
onsider the 3DB-partitionof �, where P represents again permutations of A, and B1; B2 represent trans-formations of types f1; 2gn1 and f1; 2gn2, respe
tively, and we use the sameargument as before.4 2-element alphabetIn this se
tion we 
onsider the simplest nontrivial 
ase of � = fa; bg. In this 
asewe have only two DB-partitions, those into two singletons. The 
orrespondingtwo systems �w(P; � ) are ea
h in one variable, and to present them in detail weintrodu
e additional notation. Let us de�neEa(w) = fk � 1 : bakb is a fa
tor of wg;Eb(w) = fk � 1 : abka is a fa
tor of wg:Then, depending on whether P = fag or P = fbg, the system �w(P; � ) = �a(w)is one of the following�a(w) = f1ak 2 f1; 2g : k 2 Ea(w)g�b(w) = f1bk 2 f1; 2g : k 2 Eb(w)gBy Theorem 2 a word w 2 fa; bg� is 2-
ollapsing if and only if it is 2-full and noneof the systems �a(w) or �b(w) has a nontrivial solution. Nontrivial solution is,in this 
ase, a single permutation a or b, respe
tively, �xing neither 1 nor f1; 2g.Whether su
h a solution exists or not depends only on the sets of integers Ea(w)or Eb(w) de�ned above, and the 
onditions have purely arithmeti
al form.Theorem 3. A word w 2 fa; bg� is 2-
ollapsing if and only if it is 2-full and forall E = Ea(w) or Eb(w), n � 3, and r < n, the set E modulo n is not 
ontainedin f0; rg.Proof. In view of Theorem 2 it is enough to prove that one of the systems �a(w)or �b(w) has a nontrivial solution if and only if there are n � 3 and r < n su
hthat E = Ea(w) or Eb(w) is 
ontained in f0; rg modulo n.Suppose �rst that the system �a(w) has a nontrivial solution. In this 
asethe solution is a single permutation a, whi
h we 
onsider as a produ
t of disjoint
y
les. If 1 and 2 are in the same 
y
le, then this 
y
le is of length n � 3, sin
ea does not �x the set f1; 2g. We may assume that a = (1; : : : ; 2; : : : ; n) : : :, with2 standing on (r+1)-th pla
e, 0 < r < n. Then the 
onditions 1ak 2 f1; 2gmean that either k � 0 or k � r (mod n), for ea
h k 2 Ea(w). It follows that



Ea(w) � f0; rg modulo n, as required. If 1 and 2 are in di�erent 
y
les of a, thenthe 
y
le 
ontaining 1 has length n � 2, sin
e a does not �x 1. For n = 2, the
onditions means that k � 0 (mod 2) for ea
h k 2 Ea(w), whi
h is equivalentto Ea(w) � f0; 2gmodulo 4. For n > 2, we obtain Ea(w) � f0g modulo n, whi
h
ompletes the 
ase of the system �a(w). For �b(w) the proof is analogous.Conversely, if for instan
e Ea(w) � f0; rg modulo n (n � 3, r < n), thenthe permutation a = (1; : : : ; 2; : : : ; n) : : :, with 2 standing on (r+1)-th pla
e isobviously a nontrivial solution of the system �a(w). The same argument appliesto Eb(w) � f0; rg.We note that the 
ondition on n in the theorem 
an be restri
ted to n notex
eeding the value of the se
ond smallest element in E. This is so, be
ause forlarger n the two smallest elements are two di�erent non-zero remainders modulon, and therefore E 
annot be 
ontained modulo n in any set f0; rg. Takingthis into a

ount we have the following algorithm for 
he
king whether a wordw 2 fa; bg� is 2-
ollapsing.1 if w is not 2-full then return NO;2 for all E  fk � 1 : bakb is a fa
tor of wgor E  fk � 1 : abka is a fa
tor of wg do3 if jEj > 1 then4 N  the se
ond smallest element in E5 for n 1 to N do6 E  E mod n7 if E � f0; rg for some r < n then return NO8 return YESSin
e the sum of the elements in E is smaller than the length jwj of w, weobtain the followingCorollary 1. For a 2-element alphabet �, 
he
king whether a word w 2 �� is2-
ollapsing may be done in polynomial time with respe
t to jwj.We note that another 
hara
terization of 2-
ollapsing words over a 2-elementalphabet, based on the general result of [1℄, is given in [10, Proposition 3℄. Thisalso 
an be used to infer the 
orollary above. The fa
t that 2-
ollapsing wordsover a 2-element alphabet may be re
ognized in polynomial time was also ob-tained in [2℄ as a 
onsequen
e of a general algorithm to 
he
k whether a word is2-
ollapsing.5 Related 
omputational problemsWe pro
eed to show that for the 
ase j�j = 3 the situation is essentially di�erent.In this 
ase we have three types of DB-partitions and one type of 3DB-partition.In order to 
he
k whether a word w 2 �� is 2-
ollapsing or not, we need to
he
k all the 
orresponding systems �w(P; � ) and � 0w(P; fB1; B2g), a

ording to



Theorem 2. The 
ases with jP j = 1 are still easy; they lead to systems in onevariable, and one may prove that all these systems 
an be solved in polynomialtime. The 
ase jP j = 2 leads to the system �w(P; � ) in two variables of the form� (u1; : : : ; us) = f1u1; : : : ; 1us 2 f1; 2gg; ui 2 f�; 
g�:and the following Permutation Conditions problem:INSTANCE: A �nite set of words fu1; : : : ; usg over a 2-element alphabet � =f�; 
g.QUESTION: Does the 
orresponding system � (u1; : : : ; us) of permutation 
on-ditions in two variables have a nontrivial solution: i.e. are there permutations �and 
 �xing neither f1g nor f1; 2g satisfying all the 
onditions of this system?Our �rst aim is to show that this problem is NP-
omplete.Permutations are generally not easy to visualize. Therefore we 
onvert theabove problem into a problem 
on
erning 
oloring of a binary tree with dis-tinguished nodes. Namely, we 
onsider trees representing words u 2 f�; 
g+,assuming that edges going to the left 
hild represent applying permutation �,while edges going to the right 
hild represent applying permutation 
. To repre-sent a set U = fu1; : : : ; usg of words we take the minimal binary tree in whi
h allwords u1; : : : ; us are represented. The nodes representing these words togetherwith the root form the set of distinguished nodes of the tree. The resulting treewith distinguished nodes will be denoted T (U) = T (u1; : : : ; us).A 1-2-
oloring of a binary tree T with distinguished nodes is a 
oloring of thenodes with positive integers su
h that ea
h distinguished node has 
olor either1 or 2. The root is always 
olored 1. The 
oloring is nontrivial, if there is a 
olordi�erent from 1 and 2. It is 
oherent, if for any two nodes s; t having the same
olor the following 
onditions hold: if both s and t are left (right) 
hildren thentheir parents have the same 
olor; if both s and t have left (right) 
hildren, thenthese 
hildren have the same 
olor. Nontrivial 
oherent 1-2-
olorings are 
alledbrie
y n
-
olorings. We have the followingLemma 1. Let u1; : : : ; us be words over alphabet f�; 
g, su
h that any word oflength 2 is a pre�x of some ui, 1 � i � s. Then the tree T = T (u1; : : : ; us) hasan n
-
oloring if and only if the system � (u1; : : : ; us) has a nontrivial solution.Proof. For the ,,if" part, we assign simply the 
olor 1u to the node s in T
orresponding to the word u. Then, su
h a 
oloring is nontrivial due to theassumption that all nodes representing words of length less or equal 2 are in thetree. Indeed, the 
hildren of the root are 
olored 1� and 1
. If any of them isdi�erent from 1 and 2, we are done; otherwise, at least one of them must be 2,sin
e the permutations do not �x 1. It follows that both 
olors 2� and 2
 o

urin the tree, and sin
e the permutations do not �x f1; 2g, one of them is di�erentfrom 1 and 2, as required. The 
oheren
y is by the fa
t that the a
tion of � and
 is the same at ea
h node.



Conversely, if T = T (u1; : : : ; us) has a nontrivial 
oherent 1-2-
oloring, thenit determines (at least partially) the a
tion of � and 
 on the 
olors (whi
h isunique by 
oheren
y). As a result one 
an get partial representations of � and
 as produ
ts of 
y
les. One may easily add new 
olors, absent in the given1-2-
oloring, to form full representations, and thus get a nontrivial solution ofthe system � (u1; : : : ; us).This leads us to the following n
-Colorings problem:INSTANCE: A binary tree T = T (u1; : : : ; us) with distinguished nodes.QUESTION: Does T have a nontrivial 
oherent 1-2-
oloring?We 
onsider an example, whi
h is the starting point of our 
onstru
tion. LetW0 = f�; �3; �4; �
2; �
3; �2
2�; �2
2�2; 
; 
3; 
4; 
�2; 
�3; 
2�2
; 
2�2
2g:The tree T (W0) representing this set of words is pi
tured in Figure 2. Thedistinguished nodes are marked as bla
k �lled 
ir
les. The labels represent anontrivial 
oherent 1-2-
oloring. This 
oloring is the most general one in thesense that any other n
-
oloring of T (W0) 
an be obtained from it by suitableidenti�
ations of 
olors. For example, we 
an identify z = y obtaining anothern
-
oloring; note however that other identi�
ations (for instan
e x = y) maylead to non-
oherent or trivial 
olorings. We have12 2x � 
y 1 2 x121 a z2 x12 y 1 2y 1 2Fig. 2. The most general n
-
oloring of T (W0).Lemma 2. The 
oloring in Figure 2 is the most general n
-
oloring of T (W0).In ea
h n
-
oloring of this tree the 
olors x and y are di�erent from 1 and 2.Proof. The proof of this lemma is routine. It requires 
he
king a number of 
ases,using 
oheren
y and the fa
t that distinguished nodes have to be 
olored 1 or 2.We give only the beginning of the proof. First note that the nodes 
orresponding



to � and 
 (the 
hildren of the root) are distinguished, so they have to be 
olored1 or 2. We 
onsider possible 
ases. If both these nodes are 
olored 1, then sin
eby assumption the root is 
olored 1, by 
oheren
y, both the left and the right
hildren of any node 
olored 1 are 
olored the same, and 
onsequently all thenodes in the tree are 
olored 1, whi
h yields a trivial 
oloring.As the se
ond 
ase we assume that � is 
olored 1 and 
 is 
olored 2. Then,by 
oheren
y, nodes 
orresponding to �2; �3, and �4 are all 
olored 1. Now �
 is
olored 2 (the same as 
2), �
2 and 
2 are 
olored the same, 1 or 2 (sin
e �
2 isdistinguished). Consequently, the nodes 
orresponding to 
n are 
olored 1 if n iseven, and 2 if n is odd, whi
h by 
oheren
y yields again a trivial 
oloring. Thethird 
ase is symmetri
al, and it follows that in a nontrivial 
oherent 
oloringboth the 
hildren of the root have to be 
olored 2. The next step is to ex
ludethe 
ases that one of the nodes labeled x or y in Figure 2 is 
olored 1 or 2. Thisand the 
ompletion of the proof is left to the reader.It follows that in any system of permutation 
onditions 
ontaining � (W0)the nontrivial solutions are all of the form� = (12x)(yz) : : : ; 
 = (12y)(xa) : : :Further 
y
les involving further 
olors 
an o

ur in � and 
. We note that thea
tion of � on a and the a
tion of 
 on z are not determined by the 
onditionsso far. We make use of this fa
t in showing that 3SAT 
an be redu
ed to n
-Colorings.6 General 
onstru
tionFor ea
h instan
e of 3SAT 
onsisting of a 
olle
tion fC1; : : : ; Crg of 
lauses ona �nite set (x1; : : : ; xn) (with jCj j = 3) we 
onstru
t a binary treeT = T(C1; : : : ; Cr; x1; : : : ; xn)with distinguished nodes su
h that it has an n
-
oloring if and only if there isa truth assignment satisfying all the 
lauses. The tree T 
onsists of the mainpart M(T), the path P (T) atta
hed to M(T), and 3r paths atta
hed to somedistinguished nodes of P (T). The 3r paths 
orrespond to all o

urren
es ofvariables in the instan
e of 3SAT (
f. Figure 3). Ea
h of these paths 
onsists of 3segments bounded and determined by distinguished nodes: the variable segment,the negation segment, and the 
lause segment. The nodes on P (T) beginningvariable segments will be referred to as the starting nodes.The tree is 
onstru
ted so that in any n
-
oloring the starting nodes havealways the same �xed 
olor. The distinguished nodes �nishing variable segmentsare 
alled the variable valuation nodes; their 
olor may be 1 or 2, and is intendedto re
e
t the valuation, False or True, of variables in the 3SAT instan
e. Thenegation segment may be missing; it is present if and only if the 
orrespondingo

urren
e of variable is negated in the 
lause it o

urs. In su
h a 
ase the
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distinguished node �nishing the negation segment is 
alled the literal valuationnode, and its 
olor, in any n
-
oloring (due to properties of the segment) isalways opposite to that of the pre
eding variable valuation node. In 
ase ofla
king the negation segment the literal valuation node is identi�ed with thevariable valuation node.7 Stru
ture of permutationsThe main part M(T) is an extension of T (W0) des
ribed in the previous se
-tion. This implies, in parti
ular, that a nontrivial solution of the 
orrespondingsystem of permutation 
onditions needs to be of the form � = (12x)(yz) : : :,and 
 = (12y)(xa) : : :. We add further parts to T (W0) 
orresponding to furtherpermutation 
onditions, whi
h determine mu
h more details in the stru
ture of� and 
. Our aim is to make � in a nontrivial solution to be the produ
t of
y
les of the form� = (12x)(yz)(aa1 : : : ana11a12a13 : : : ar1ar2ar3)(bb1 : : : bnb11b12b13 : : : br1br2br3) : : : (1): : : (Aj1
jdjej) : : : (Bj1Bj2Bj3) : : : (AiXi) : : : (BiYi) : : : : : : ;where i = 1; : : : ; n, j = 1; 2; : : : ; r (with n and r given in the 3SAT instan
e).Thus, � is intended to 
onsist of two 
y
les of length 3 and 2, respe
tively, twolong 
y
les of length N = 1+n+3r ea
h, r 
y
les of length 4, r additional 
y
lesof length 3, and n 
y
les (AiXi) whi
h may be of length 2 or 1 (sin
e we will allowin this 
ase that Xi = Ai). Generally, all the letters are intended to representdi�erent elements (
olors), ex
ept that Xi; Yi 2 fAi; Big, and fAj1
jdjejg =fAj1Aj2Aj3Aj0g, where Aj0 are extra 
olors, not mentioned yet. The latter 
onditionmeans that the elements fAj1Aj2Aj3Aj0g are to be arranged in an arbitrary 
y
le;we did not mention 
y
les (BiYi) be
ause they are either one-element or aresupposed to 
oin
ide with a suitable 
y
le (AiBi).We intend 
 to be of the form
 = (12y)(xa)(zb) : : : (aiAi) : : : (biBi) : : : (ajtAjt ) : : : (bjtBjt ) : : : ; (2)where i = 1; : : : ; n, j = 1; 2; : : : ; r, and t = 1; 2; 3. Thus it is intended to 
onsistof one 
y
le of length 3, and 2 + n+ 3r 
y
les of the length 2.To a
hieve this we add to the tree T (W0) additional binary bran
hes 
orre-sponding to additional words. First we add toW0 two additional words �2
�N
�and �2
�N
�2, where N = 1+n+3r. This results in atta
hing to T (W0) an ad-ditional path of length N +3 with 2 distinguished nodes; it is shown in Figure 4as one starting in the node labeled a. This 
onstru
tion in
ludes a tri
k we wishto des
ribe now, sin
e we apply it repeatedly while adding further bran
hes.Let us 
onsider an n
-
oloring of the tree 
onstru
ted so far, pi
tured inFigure 4. The 
olors of the nodes in the part 
orresponding to T (W0) are alreadydetermined by earlier 
onsideration and are 
opied from Figure 3. For the 
olors



12 2x y 1 2 x121 a z2 x12 y 1 2y 1 2a1
ar3a0 x0d1d2 Fig. 4. The �rst additional path atta
hed to T (W0).of the nodes on the additional path we will use letters a1; : : : ; an, a11; a12; a13; : : : ;ar1; ar2; ar3 (
orresponding to the intended long 
y
le in �), and a0; x0; d1; d2 forthe last four nodes. We prove that the latter have to be, in fa
t, a; x; 1 and 2,respe
tively. Indeed, the last node is distinguished, so it has to be 
olored 1 or 2;by 
oheren
y, the parent of a node 
olored 1 is 
olored x, whi
h by Lemma 2 isdi�erent from 1 and 2; hen
e, by 
oheren
y, it has to be d2 = 2, and 
onsequently,d1 = 1; x0 = x and a0 = a, as 
laimed.Thus we have for
ed the 
olor a0 to be the same as a in any n
-
oloring.Observe that this is a
hieved by atta
hing a path to the node labeled a0, whi
h isthe same as that atta
hed to the node labeled a, and whose 
oloring is determined
ompletely by 
oheren
y. In the 
onstru
tion of M(T), whi
h is pi
tured inFigure 5, we apply this tri
k several times. In Figure 5 it is shown by arrows: anarrow atta
hed to a node labeled ` symbolizes the path atta
hed to the earliernode having the same label; the dire
tion of the arrow shows the dire
tion of the�rst edge in the path. In 
onsequen
e, the 
olors of the two nodes have to be thesame in any n
-
oloring. Dashed lines in Figure 5 mean that the gadgets atta
hedto all nodes ai; ajt and bi; bjt on these paths (i = 1; : : : ; n, i = j; : : : ; r, t = 1; 2; 3)are analogous. A 
areful analysis of this 
onstru
tion yields the following:Lemma 3. The 
oloring presented in Figure 5 is the most general n
-
oloringof the pi
tured tree M(T).We show how to obtain the n
-
oloring 
orresponding to the permutations �and 
 of the form given in (1) and (2). First we identify Xi and Yi with Ai and Bi



12x y 1 2 x121 a2 xai Ai aiXiAiajt Ajt ajt
jtdjtejtAjta

2 yz 1y 2b zbi Bi biYiBibjt Bjt bjtf jtgjtBjtbFig. 5. The part M(T) with the most general n
-
oloring.
hoosing for ea
h i either the equalities Xi = Bi and Yi = Ai, whi
h 
orrespondto the 
y
le (AiBi) in �, or Xi = Ai and Yi = Bi, whi
h 
orrespond to the �x-points (Ai)(Bi) in �. In the sequel we refer to these as to (AiBi)- and (Ai)(Bi)-identi�
ations, respe
tively. Next, we identify 
olors f j1 = Bj2 and gj1 = Bj3, thisidenti�
ation by 
oheren
y uniquely determines identi�
ations of 
olors f j2 = Bj3,gj2 = Bj1, f j3 = Bj1, and gj3 = Bj2, and 
orresponds to the 
y
le (Bj1; Bj2; Bj3) in �.Similarly, if we 
hoose any identi�
ation of 
olors f
j1; d1j ; ej1; g with fAj2; Aj3; Aj0g,then by 
oheren
y this determines uniquely identi�
ations of 
olors 
1t ; d1t ; e1tfor t = 1; 2; 3, and this is equivalent with arranging letters fAj1; Aj2; Aj3; Aj0ginto an arbitrarily 
hosen 
y
le. Of 
ourse, we 
an do it independently for ea
hj = 1; : : : ; n, and this 
orresponds to �xing n 
y
les of length 4 in �. In the sequelwe refer to the above identi�
ations as to (Bj1; Bj2; Bj3)- and fAj1; Aj2; Aj3; Aj0g-identi�
ations, respe
tively.8 En
oding truth assignmentsThe se
ond part denoted P (T) is just the path 
orresponding to set of wordsf
7; 
8; : : : ; 
3r+4; 
3r+5g:This path has 2r distinguished nodes, and 
ontinues the pattern of distinguishednodes started in M(T): two 
onse
utive distinguished nodes follow one, whi
h



is not distinguished (see Figure 3). In 
onsequen
e, in any n
-
oloring the dis-tinguished nodes on P (T) have to be 
olored 1 and 2, alternately. The startingnodes on P (T) are those labeled 2.a) 2x aai i AiXi Bi; Aibi; aib; a N�iz; xy; 1 1; 2

b) 1; 2 2; yx; z1; y 2; 1
Fig. 6. Variable and negation segments.As it was already mentioned, ea
h path beginning in a starting node 
orre-sponds to an o

urren
e of a variable xi in a 
lause Cj . It 
onsists of three ortwo parts, depending on whether the variable o

urs negated in Cj or not. Thevariable segment is always of the formC(k) = T (�
�i
�
�N�i
�
);where i is the index of the variable xi andN = 1+n+3r as before (see Figure 6a).Sin
e in any n
-
oloring the 
olor of the starting node is 2, further 
olors in thesesegments are also determined by the stru
ture of M(T) and 
oheren
y. Thus,the next two nodes have to be 
olored x, and a, respe
tively, and the next one,a

ording to the most general 
oloring given in Figure 5, has to be 
olored ai.The next node is 
olored Ai, and the next one Xi. We show that Xi = Aior Bi. Indeed, starting from the other end the distinguished variable valuationnode has to be 
olored 1 or 2. It follows, by 
oheren
y, that the alternatives forpre
eding nodes are (y; 1), (z; x), and (b; a), respe
tively, as shown in Figure 6a.Then, sin
e the length of the dashed �-path is m = N � i, the 
olor of the nodebeginning this path, a

ording to the most general 
oloring given in Figure 5, isbi or ai, respe
tively. This implies that the 
olor of the pre
eding node is Bi orAi, as 
laimed.



Let us note that 
hoosing the 
olor 1 for the variable valuation node 
orre-sponds to identify Xi = Bi (and 
onsequently, Yi = Ai), while 
hoosing 
olor 2for this node 
orresponds to identify Xi = Ai. By 
oheren
y, the variable valu-ation nodes 
orresponding to o

urren
es of the same variable xi must have thesame 
olor, sin
e the variable segments for these o

urren
es are identi
al. Sogenerally (AiBi)- and (Ai)(Bi)-identi�
ations 
onsidered before 
orrespond to
hoose 1 or 2, respe
tively, as 
olor of vertex xi.For negated o

urren
es of variables we have the negated segment, whi
hwe put to be the path T (
�2
) drawn in Figure 6b. We leave to the reader to
he
k that, due to the main part M(T), it works exa
tly as assumed: in anyn
-
oloring of T, the �rst node of this path is 
olored 1 if and only if the lastnode is 
olored 2. 1; 2 2; yx; z a; b(aj1; aj2; aj3) (bj1; bj2; bj3) (m;m+1;m+2)(Aj1; Aj2; Aj3) (Bj1 ; Bj2 ; Bj3)(
j1; 
j2; 
j3) (f j1 ; f j2 ; f j3 ) (Bj2; Bj3 ; Bj1) (Aj2; Aj3; Aj1)(bj2; bj3; bj1) (aj2; aj3; aj1)b; a N � (m+1;m+2;m)z; xy; 1 1; 2Fig. 7. Colors on the 
lause segment.Finally, the 
lause segments 
orresponding to variables o

urring in a 
lauseCj are similar to variable segments. They di�er only in that they have an ad-ditional 
-edge at the beginning, and the lengths of long �-paths depend onlyon the 
lause the variable o

urs in. Namely, all the three 
lause segments 
or-responding to the 
lause Cj have the formC(k; `) = T (
�
�k
�
�N�`
�
);



where N = 1+n+3r, as before, and for the three su

essive variables o

urringin Cj the 
lause segments are:C(m;m+ 1); C(m+ 1;m+ 2); C(m+ 2;m);respe
tively, where m = 1+ n+ 3(j�1). They are intended to allow on the 
or-responding literal valuation nodes any triple of 
olors from f1; 2g ex
ept (1; 1; 1)(whi
h is the unique valuation 
orresponding to the false value of the 
lause!).Similarly as for the variable segment, we 
onsider possibilities for an n
-
oloring of the 
lause segments; this is illustrated in Figure 7.Similarly as for the variable segment, we 
onsider possibilities for a nontrivial
oherent 1-2-
oloring of the 
lause segments (see Figure 7). For the �rst node,whi
h is a literal valuation node, we have two possibilities 1 or 2. Sin
e at thebeginning the three segments are identi
al, the alternatives for su

essive nodesare the same: (2; y); (x; z), and (a; b), respe
tively. Then, the segments di�erslightly in the length of the T (�k)-path, so we 
onsider further alternatives inform of triples with entries 
orresponding to the values k = m;m+1;m+2 withm = 1 + n + 3(j�1). From the most general 
oloring of M(T) given in Fig-ure 5, for the node ending the T (�k)-path the alternative of 
olors is (aj1; aj2; aj3)or (bj1; bj2; bj3), respe
tively. Then, for the two next nodes the alternatives are(Aj1; Aj2; Aj3) or (Bj1; Bj2; Bj3), and (
j1; 
j2; 
j3) or (f j1 ; f j2 ; f j3 ), respe
tively. Sin
efor now, we know nothing about the latter 
olors, we 
onsider 
olors of othernodes from the other end of the segment.The last node (as distinguished) may be 
olored 1 or 2, and the alternativesfor pre
eding nodes are (y; 1), (z; x), and (b; a), as before (
f. Figure 6 andFigure 7). Now, sin
e the length of the T (�N�`)-path is N�(m+1); N�(m+2)or N � m, respe
tively, with m = 1 + n + 3(j� 1), the alternatives for thenode starting the T (�N�`)-path are (bj2; bj3; bj1) or (aj2; aj3; aj1), respe
tively. Hen
e,the alternatives for the pre
eding node are just (Bj2; Bj3; Bj1) or (Aj2; Aj3; Aj1),respe
tively, whi
h impose some 
onditions on the values of 
j1; 
j2; 
j3; f j1 ; f j2 ; f j3 ,depending on valuation of literal valuation nodes.For example, if the literal valuation node 
orresponding to the �rst o

urren
eof a variable in Cj is 
olored 1, then (in any nontrivial 
oherent 1-2 
oloring) ithas to be 
j1 = Bj2 or Aj2. We show that the �rst possibility is ex
luded. Indeed,if 
j1 = Bj2, then by 
oheren
y, dj1 = f j2 , ej1 = gj2, and Aj1 = Bj2. It follows furtherthat aj1 = bj2, and a = b1; and further, x = B1, 2 = Y1, 1 = B1, whi
h yields , the
ontradi
tion x = 1. A similar argument shows that if the literal valuation node
orresponding to the se
ond or third o

urren
e of a variable in Cj is 
olored 1,then 
j2 = Aj3 or 
j3 = Aj1, respe
tively.In parti
ular, if all the literal valuation nodes 
orresponding to the same
lause Cj are 
olored 1, then it follows that the T (�4)-paths going from Ajt ,t = 1; 2; 3, are all 
olored with the same 
olor Aj1 = Aj2 = Aj3. This leads to a
ontradi
tion as before (it follows su

essively: aj1 = aj2, a = a1, x = A1, and1 = A1). This proves the �rst statement of the following.



Lemma 4. In any n
-
oloring, the literal valuation nodes 
orresponding to thesame 
lause Cj 
annot be all 
olored 1; any other 
oloring of these nodes mayo

ur.For the se
ond statement, it is enough to apply �rst the (Bj1; Bj2; Bj3)-identi�
ation,and then to 
hoose a suitable fA11; A12; A13; A10g-identi�
ation. For example, if thesu

essive literal valuation nodes 
orresponding to 
lause Cj are 
olored (1; 2; 1),then in Figure 7 we have 
olors (
j1; f j2 ; 
j3) = (Aj2; Bj3; Aj1). Here Aj2 has to be the
olor following Aj1, Bj3 has to be the 
olor following Bj2 (whi
h is now the 
ase),and Aj1 has to be the 
olor following Aj3. It is the (A11; A12; A10; A13)-identi�
ationthat satis�es these 
onditions.Summarizing, if we have given any n
-
oloring ofT, then the 
olors of variablevaluation nodes determine, in a 
oherent way, the 
olors assigned to variablesx1; : : : ; xn, whi
h are always 1 or 2. The 
olors of literal valuation nodes arereverse or the same depending on whether the variable is negated in a 
lause ornot, and it never happens that the literal valuation nodes 
orresponding to thesame 
lause have all 
olor 1. It follows that if we treat 1 as the false value, and 2as the true value, then the n
-
oloring yields a truth assignment for (x1; : : : ; xn)satisfying all the 
lauses.Conversely, for any truth assignment for (x1; : : : ; xn) satisfying all the 
lauses,there exists an n
-
oloring of T 
orresponding to it. This is simply the most gen-eral 
oloring given in Figure 5 with suitable (AiBi)- and (Ai)(Bi)-identi�
ations,the (Bj1; Bj2; Bj3)-identi�
ation, and suitable fA11; A12; A10; A13g-identi�
ations. Thelatter exists, as we have observed, for all 
lauses valuated true.Sin
e all those 
onstru
tions may be done, obviously, in polynomial time, weobtainTheorem 4. The problems Permutation Conditions and n
-Coloringsare both NP-
omplete.9 Appli
ation to 
ollapsing wordsBy the result of Se
tion 2, we know that if a word w 2 �� is not n-
ollapsingthen there is an n-
ompressible automaton A = hQ;�; Æi with jQj � 5njwj su
hthat dfA(w) < n. From this (
ombined with the fa
t that n-
ollapsing words aren-full) it follows that the following general problem of re
ognizing n-
ollapsingwords is in 
o-NP.INSTANCE: A �nite alphabet �, a word w 2 �+, and an integer n > 0.QUESTION: Is w n-
ollapsing over �?We now show how 3SAT 
an be redu
ed in polynomial time to the aboveproblem. First, we asso
iate, with ea
h instan
e of 3SAT the treeT = T(C1; : : : ; Cr; x1; : : : ; xn)



de�ned in the previous se
tion, and next, the set of words fw1; w2; : : : ; wsg �f�; 
g� determined by the distinguished nodes of T. We wish to de�ne the wordw = �(w1; w2; : : : ; ws) over the alphabet � = f�; �; 
g so that it satis�es thefollowing three 
onditions:(i) �v�, where no � o

urs in v, is a fa
tor of w if and only if v = wi for somei;(ii) w 
ontains all fa
tors of the form xyx and xy2x, for all di�erent x; y 2 �,x 6= �;(iii) 
��
; 
��
 and ��
�; �
�� are fa
tors of w.To this end we put w = u1u2u3u4, where the four segments are de�ned asfollows: u1 = �w1�w2� : : : �ws�;note that by properties of T, ��� and �
� are among fa
tors of u1, while ��2�,
�2
 are not; u2 = ������2��
�
�
�2
;these are simply fa
tors ���; ��2�� and 
�
; 
�2
 separated by letter � (thelater makes sure that no new fa
tor of the form �v� arises);u3 = �
��
2��2
2��
���
�2�
2�2
���;i.e. the four words from 
ondition (iii) above separated by other words in su
ha way that that no new fa
tor of the form �v� arises; note that fa
tors ��
2�,��2
2��, �
�2�, and �
2�2
� o

urring in u3, are (by properties of T) amongfa
tors of u1; u4 = �
�2
2�
;this ensures that all the remaining words of the form xyx and xy2x, whi
h arethose not involving �, are among fa
tors of w.Now, 
onsider the 
onditions for w = �(w1; w2; : : : ; ws) to be 2-
ollapsing. Tothis end we need to 
onsider systems �w(P; � ) and � 0w(P; fB1; B2g) des
ribedin Se
tion 3. First, we observe that (due to properties of w) for the systems ofthe se
ond type have only trivial solutions.Indeed, if say P = f�g, B1 = f�g, B2 = f
g, then sin
e ��� and 
�
 arefa
tors of w, the 
onditions 1� 2 f1; 2g and 2� 2 f1; 2g are in � 0w(P; fB1; B2g),whi
h means that � �xes the set f1; 2g. The same argument works for other
ases here.We 
onsider systems of the �rst type. If P = f�g and, say, � 2 B2 then sin
e��� and ��2� are fa
tors of w, the 
onditions 1� 2 f1; 2g and 1�2 2 f1; 2g arein �w(P; � ), whi
h means that � �xes either f1g or f1; 2g. In 
ase when B2 isthe unique blo
k in � , we are done. Otherwise, 
 2 B3, and sin
e 
�
 is a fa
torof w, 1� 2 f1; 3g, whi
h yields that � has to �x 1, as required. If P = f�g, thensimilar reasoning shows that sin
e 
�
 and 
�2
 are fa
tors of w, � �xes eitherf1g or f1; 2g, and sin
e ��� is a fa
tor of w, � �xes 1, as required. In view ofsymmetry between � and 
 this exhausts all the possibilities for jP j = 1.



If P = f�; �g then the fa
tors of w, 
�
 and 
�2
 yield that � �xes eitherf1g or f1; 2g, and fa
tors 
�
 and 
�2
 yield that also � �xes either f1g orf1; 2g. To make sure that either both �x f1g or both �x f1; 2g we use the fa
tthat 
��
 and 
��
 are fa
tors of w. It follows that 1��; 1�� 2 f1; 2g whi
hmakes impossible that one of them �xes 1, but not 2, while another one �xesf1; 2g, but not 1 alone. (For example, if 1� = 1 and 1� = 2, then 1�� = 2�).The same argument works for P = f�; 
g.It follows that the only nontrivial 
ase is that of P = f�; 
g. Consequently,�(w1; w2; : : : ; ws) is 2-
ollapsing if and only if � (w1; w2; : : : ; ws) has a nontriv-ial solution, whi
h holds if and only if T = T(C1; : : : ; Cr; x1; : : : ; xn) has ann
-
oloring, whi
h holds if and only if there is a truth assignment for the 
orre-sponding 3SAT instan
e. Thus we haveTheorem 5. The general problem of re
ognizing n-
ollapsing words de�ned aboveis 
o-NP-
omplete.Our proof gives also the result for the variant of the problem with a �xedalphabet on 3 letters. It 
an be easily modi�ed to get the followingTheorem 6. The problem of re
ognizing 2-
ollapsing words over a �xed alphabet� with more than 2 letters is 
o-NP-
omplete.Proof. The modi�
ation of the previous proof is the following. We wish to de�nethe word w0 =  (w1; w2; : : : ; ws) over alphabet � = f�; �; 
; Æ; : : :g with morethan 3 letters in su
h a way that it satis�es the following two 
onditions:(i) �v� is a fa
tor of w0 if and only if v = wi for some i (for any word v withno o

urren
e of letter �);(ii) w 
ontains all fa
tors of the form xyx, xy2, and xyzx, for x; y; z 2 � pairwisedistin
t, ex
ept for �
2�, ��2�, ��
�, and �
�� (unless they are amongwi);To this end we put w = v1v2v3v4v5, where v1 = u1u2u3 is the word overf�; �; 
g for U1; u2 and u3 de�ned before; v2 
onsists of all the words of the formx�x and x�2x separated by letter �, and �nishing with �, for all x 6= �; v3
onsists of all the words of the form x�yx and xy�x separated by letter � forall x 6= �, x 6= y, and fx; yg 6= f�; 
g; v4 
onsists of all the words of the form�xy� for all x 6= y, and fx; yg 6= f�; 
g; and v5 is the least word 
ontaining allthe possible words on four letters other than �.An essential property of w de�ned in this way is that, if �v� is a fa
tor ofw and v has no o

urren
e of �, then either v = wi or there is at most oneo

urren
e of � or 
 in v. Now, 
onsider the 
onditions for w being 2-
ollapsing.As before we prove that all the systems �w(P; � ) and � 0w(P; fB1; B2g), but one,have only trivial solutions.For the systems of the se
ond type the argument is the same as before. Forthe �rst type we assume �rst that there is a letter x 6= � not in P . Without lossof generality we may assume that x 2 B2. Then for any letter y 2 P we havefa
tors xyx and xy2x in w, whi
h as before means that y �xes either 1 or f1; 2g.



Moreover, if there are at least two blo
ks in � , and z 2 B3, then zyz is a fa
torof w (also if z = �), and it follows, as before, that all y 2 P �x 1, as required.If there is the unique blo
k B2 in � , then we need to show that either all y 2 P�x 1 or all y 2 P �x f1; 2g. To this end we use the fa
t that xyzx is a fa
tor ofw for all x 6= �. If y; z 2 P , then from the fa
ts that ea
h of them �xes either 1or f1; 2g, and 1yz; 1zy 2 f1; 2g, we infer easily that either both �x 1 or both �xf1; 2g. This extends obviously to all the elements of P , proving that there areonly trivial solutions in this 
ase.It remains the 
ase when the only letter not in P is �. Then, for all x 2P n f�; 
g, �x� and �x2� are fa
tors of w, and it follows that x �xes either 1 orf1; 2g. If the system � (w1; w2; : : : ; ws) has only trivial solutions, then (be
auseof the fa
tor u1 of w) the same holds also for � and 
. In su
h a 
ase fa
tors �xy�of w with fx; yg 6= f�; 
g guarantee, as in the previous 
ase, that �w(P; � ) hasonly trivial solutions. If there is a nontrivial solution (�; 
) for � (w1; w2; : : : ; ws),then taking all x 6= �; 
 su
h that they �x both 1 and 2, we obtain a nontrivialsolution of �w(P; � ). Indeed, by properties of u1, 1� = 1
 = 2, and by theessential property of w mentioned earlier, all the permutation 
onditions not
orresponding to the fa
tor u1 involve at most one o

urren
e of � or 
. Hen
e,in view of our assumption on other permutations, all these 
onditions are triviallysatis�ed. Consequently, w is 2-
ollapsing if and only if � (w1; w2; : : : ; ws) has anontrivial solution, whi
h as before 
ompletes the proof.Referen
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