
Collapsing Words?A. Cherubini1, A. Kisielewiz21 Politenio di Milano, Dipartimento di Matematia, Piazza Leonardo da Vini 32,20133 Milano, Italy,alessandra.herubini�polimi.it2 University of Wro law, Department of Mathematis and Computer Siene, pl.Grunwaldzki 2, 50-384 Wro law, Poland,kisiel�math.uni.wro.plAbstrat. Given a word w over a �nite alphabet � and a �nite deter-ministi automaton A = hQ;�; Æi, the inequality jÆ(Q;w)j � jQj � nmeans that under the natural ation of the word w the image of thestate set Q is redued by at least n states. A word w is n-ollapsing ifthis inequality holds for any deterministi �nite automaton that satis�essuh an inequality for at least one word. In this paper we prove that theproblem of reognizing n-ollapsing words is generally o-NP-omplete,while restrited to 2-ollapsing words over 2-element alphabet it belongsto P. This is onneted with introduing a new approah to ollapsingwords, whih is shown to be muh more e�etive in solving various prob-lems in the area. It leads to interesting onnetions with ombinatorialproblems onerning solving systems of permutation onditions on onehand, and oloring trees with distinguished nodes on the other hand.1 IntrodutionIn this paper by an automaton A = hQ;�; Æi we mean a �nite determinis-ti automaton with state set Q, input alphabet �, and transition funtionÆ : Q � � ! Q. The ation of � on Q given by Æ will be denoted simplyby onatenation: qa = Æ(q; a). This ation extends naturally on the ation ofthe words of �� on Q. Given a word w 2 ��, we are interested in the ardinalityjQwj of the image of Q by w.If jQwj = 1, then w is alled a reset word for A, and A itself is alledsynhronizing. Aording to the famous �Cern�y's onjeture, if A is synhronizing,then it has a reset word of length � (m� 1)2, where m = jQj is the number ofstates in A. This onjeture was formulated in 1964, and it is probably the mostlongstanding open problem in the theory of �nite automata. For interestingappliations and reent results onerning this onjeture we refer the readerto [4℄ and referenes given therein. Problems with settling �Cern�y's onjeture,on one hand, and its importane for the theory of �nite automata and �nitesemigroups, on the other, suggest a need of more systemati approah to the? This researh was done with the support of GNSAGA and of ESF projet Au-tomatha.



problem. Suh approah was initiated in papers [1, 8℄ basing on the earlier work[11℄.Generally, we are now interested in how the set of states is redued underthe ation of various words. Given w 2 ��, the di�erene of the ardinalitiesjQj � jQwj is alled the de�ieny of the word w with respet to A and denoteddfA(w). For n � 1, a word w is alled n-ompressing for A, if dfA(w) � n.An automaton A is n-ompressible, if there exists an n-ompressing word forA. A word w 2 �� is n-ollapsing (over �), if it is n-ompressing for everyn-ompressible automaton with the input alphabet �.It has been proved in [11℄ that n-ollapsing words always exist, for any � andany n � 1. In [8℄ it is shown that, over a �xed alphabet �, eah n-ollapsing wordis n-full, that is, it ontains any word of length n among its subwords. Surveysof results and problems in this area are given in [4℄ and in [5℄. In partiular, aresult showing that the problem of reognizing n-ollapsing words is deidable(and is in the lass o-NP) is proved in [9℄ and the question whether this problemis o-NP-omplete is formulated ([4, Problem 1℄).In [1℄ a haraterization of 2-ompressing words was given by assoiating toevery word a family of �nitely generated subgroups in some �nitely generatedfree groups; it was proved that the property of being 2-ollapsing is onnetedwith the indies of some subgroups in this ontext. A more geometri versionof this idea has been developed in [2℄. Some further results in this diretion areontained in [3, 10℄. Unfortunately, these haraterizations did not allow neitherto settle the omplexity of the above problem nor to generalize to n-ollapsingwords (f. remarks in [4℄).In this paper we apply another more ombinatorial approah to ollapsingwords, whih was introdued in [6℄. It made possible to answer a number ofopen questions formulated in [1℄, and attak related problems onerning resetwords ([7℄). In this paper we present the full solution to the entral problem ofomplexity whih was announed and shortly desribed in [6℄ and [7℄.Our main motivation in proving the NP-ompleteness result is preparing agood starting point for further researh by showing that (in view of this result)ertain haraterizations are not available here. Our proof exhibits a very tightonnetion with two other omputational problems: one is onneted with solvingertain onditions on permutations, a sort of systems of permutation equations(Setion 3), and another one onerns oloring trees with distinguished nodessatisfying some natural onditions (Setion 5). These problems seem interestingby themselves and are important from omputational point of view.First, a haraterization of 2-ollapsing words in terms of solving systems ofpermutation onditions is given in Setion 3. This haraterization is used bothfor diretly designing an eÆient algorithm for reognizing 2-ollapsing wordsover a 2-element alphabet (Setion 4), and for demonstrating that in other asesthe problem is intratable. The proof of this fat oupies the remaining setions.In our approah, we view an automaton A = hQ;�; Æi as a set of transforma-tions labeled by letters of � rather than as a standard triple. By transformationsof A we mean those transformations of Q that are indued via Æ by letters of



�. Note that to de�ne an automaton it is enough to assign just to any letter of� a transformation of Q. The monoid (semigroup) generated by the transfor-mations of A onsists preisely of the transformations orresponding to words in�� (�+). Those transformations that are permutations, if any, generate a groupalled the group of permutations of A.For a 2 �, dfA(a) = 0 if and only if the orresponding transformation isa permutation of Q. If dfA(a) = 1, then there is a uniquely determined statez 2 Q, whih does not belong to the image Qa, and two di�erent states x; y 2 Qsatisfying xa = ya; in suh a ase the orresponding transformation will bereferred to as a transformation of type fx; ygnz (x; y identi�ed, z missing). Moregenerally a transformation a of A is alled of type InM , for I;M subsets of Q,if I is the set of those x 2 Q for whih there is y 2 Q; y 6= x suh that xa = ya,and M = Q nQa. Our idea is that this is essentially all information we need toompute the de�ieny of any word.Note that ardinalities of I and M are related; in partiular, jIj � 2jM j,and the equality holds whenever no three di�erent elements of Q has the sameimage under a. Note also that the de�ieny is a nondereasing funtion of fatorrelation, in the sense that, if w = v1uv2, then dfA(u) � dfA(w). In partiular, ifw = a1a2 : : : an, thendfA(a1) � dfA(a1a2) � : : : � dfA(a1a2 : : : an):2 DeidabilityFor a �xed alphabet �, and �xed n > 1, let Cn denote the language of n-ollapsing words. For some time it was not even lear that n-ollapsing wordsan be reognized, i.e., that the language Cn is reursive. In fat, this is the mainresult announed in [4℄, where a large sketh of the proof of this fat is given.The full proof in [9℄ onsists of several lemmas and oupies more than 10 pages.Our new approah makes possible to obtain a shorter elementary proof.Theorem 1. For eah word w 2 �� that fails to be n-ollapsing there exists ann-ompressible automaton A satisfying dfA(w) < n whose number of states jQjis less than 5njwj.Proof. Suppose that w is not n-ollapsing, and let A = hQ;�; Æi be an n-ompressible automaton suh that dfA(w) < n. Conerning the atual de�ienyon word w, we may assume that dfA(w) = n� 1 (sine in ase of need one mayadd new states q0; q1; : : : ; qk to Q, all transformed into q0 by all the transforma-tions, and in suh a way suitably inrease the de�ieny on all the words). Ouraim is to onstrut an automaton A0 = hQ0; �; Æ0i over the same alphabet �,with dfA0(w) = n� 1, and dfA0(v) � n for some v 2 ��, and suh that Q0 � Qis small enough.Let w = 12 : : : t with i 2 �. We de�ne the partial de�ieny sets Djof w as the sets of elements missing in the partial images Q12 : : : j�1. More



preisely, we de�ne D1 = ;, and for 1 � j � t, if j is a permutation, thenDj+1 = (Dj)j , and if j is a non-permutation of type InM , thenDj+1 =M [Djj n (I nDj)j(f. Figure 1). Note that the sets Dj are fully determined by some partial infor-mation on transformations restrited to a ertain subset Q0 of Q.

j
xy

|{z}Dj |{z}I nDj xj = yj
M|{z} Dj+1|{z

}
(I nDj)j|{z}Fig. 1. Sheme of a non-permutation transformation.Our idea is to keep the de�ieny sets of w unhanged with respet to A0 =hQ0; �; Æ0i. To this end it is enough to put the following for every letter j in w:(i) j ats on Dj in the same way in A0 as in A, that is Æ0(x; j) = y wheneverx 2 Dj and xj = y;(ii) if j is a non-permutation of type IjnMj in A, then j ats on Ij in the sameway in A0 as in A, that is Æ0(x; j) = y whenever x 2 Ij and xj = y;We note that when we omit the pairs (x; y) given by (ii), then the remainingpairs (x; xj) forms a 1-1 orrespondene between the sets Q n Ij and Q n (Mj [Ijj). If we omit further pairs given by (i), for various ourrenes of letter jin w, then we have still a 1-1 orrespondene between ertain subsets of Q, andwhat are exatly the pairs in this 1-1 orrespondene is irrelevant for the setsDj . We make use of this fat to remove irrelevant elements from Q, and obtainan automaton A0 with a state set Q0 � Q and with required properties.Namely, let Q0 onsist of those elements x and y that our in (i) or (ii) forany j , 1 � j � t. More preisely, we putQ0 = [1�j�t(Dj+1 [ Ij [ Ijj)(of ourse, if j is a permutation, we put Ij = ;; note that we have Ii = Ijwhenever i = j).



We de�ne a new ation of j on Q0 as follows. For a �xed j, let i1 = i2 =: : : = is represent all the ourrenes of the letters j in w (where s = s(j)depends on j, and let D�j = Di1 [ Di2 [ : : : Dis). We agree �rst that the newation of j on the set Ij [D�j is exatly the same as in the old ation on Q, thatis Æ0(x; j) = y whenever x 2 Ij [D�j and Æ(x; j) = y. By the remark above thesets Q n (Ij [D�j ) and Q n (Mj [ (Ij [D�j )j)are equinumerous, and therefore the setsQ0 n (Ij [D�j ) and Q0 n (Mj [ (Ij [D�j )j)are equinumerous, as well (note that Mj � Dj+1 � Q0). We omplete the de�ni-tion of the new ation of j on Q0 by hoosing any 1-1 orrespondene �j betweensets Q0 n (Ij [D�j ) and Q0 n (Mj [ (Ij [D�j )j), and setting Æ0(x; j) = �j(x) forx 2 Q0 n (Ij [D�j ).It should be now lear that the de�ieny sets of w with respet to A0 =hQ0; �; Æ0i are exatly the same at those with respet toA. In partiular, dfA0(w) =jDt+1j = dfA(w) < n.To estimate the size of Q0, note that by assumption jDj j � n� 1, and reallthat jIj j � 2jMj j and Mj � Dj+1, for all j. It follows that jQ0j � 4(n� 1)jwj.Yet, we still need to ensure that A0 is n-ompressible, and to this end we mayneed to enlarge Q0 a little. By n-ompressibility of A, it follows that there existsa word u suh that dfA(u) � n. Consequently, dfA(wu) � n, and we assume thatu is the shortest word with this property.Sine dfA(w) � n, there are x; y 2 Q0w = Q0 n Dt+1 suh that xu = yu.For u = Æ1 : : : Æs, denote x1 = x, and xi+1 = xiÆi, and similarly, y1 = y, andyi+1 = yiÆi, for all 1 � i � s. Note that xs+1 = xu = yu = ys+1. If allxi; yi 2 Q0, then the automaton A0 de�ned above satis�es dfA0(wu) � n, and soit is as required.Hene, we suppose �rst that all xi 2 Q0, but there is j suh that yj =2 Q0,and all yi 2 Q0 for all i > j. Note that j < s, sine ys�s = xs�s = ys+1 andtherefore all xs; ys; ys+1 2 Q0. Further, sine u is the shortest with dfA(wu) � n,all x1; : : : ; xj are pairwise distint and belong to Dt+1. In partiular, j � n� 1.Now, we add j new states to Q0, say, Q00 = Q0 [ fp01; : : : ; p0jg, and rather thanompleting the de�nition of the new ation of j onQ0 we omplete this de�nitionon the set Q00 by hoosing a suitable 1-1 orrespondene between the sets Q00 n(Ij [ D�j ) and Q00 n (Mj [ (Ij [ D�j )j) suh that the following j independentonditions hold: pi+1 = Æ0(pi; �i) for all 1 � i < j, and Æ0(pj ; �i) = yj+1. Sineyj =2 Q0, suh a 1-1 orrespondene obviously exists. The resulting automatonon Q00 has the same de�ieny sets on w as A, and p1u = x1u. Consequently,dfA0(wu) � n, as required. The ardinality jQ00j � 5(n � 1)jwj + n � 1, whih(taking into aount that for jwj < n our statement is trivial) yields the requiredbound.Finally, if there are j and k suh that yj ; xk =2 Q0, then assuming that k � j,we may simply take Q0 [ fxkg to get the previous ase. Up to symmetry, thisexhausts all the possibilities, thus ompleting the proof.



Theorem 1 obviously shows that, for eah n > 1, the language of n-ollapsingwords over � is reursive (it is always enough to hek a �nite number of au-tomata to see whether a word is n-ollapsing or not). The bound in our theoremis linear both in n and in the length of w with a oeÆient C = 5, but it ispossible to improve it, observing that in fat we do not need all the states in Q0,and we need only one y for eah x with x = y, to ensure that the resultingautomata have the same de�ieny sets. With some additional e�ort, one ouldobtain a oeÆient as low as C = 2, whih is the one given by Petrov in [9℄. Sinethe algorithm based on this idea is non-pratial anyway, we leave this possibleimprovement to the reader. Another improvement is an observation that a morepreise estimation in our proof yields, in fat, jQ0j � (n� 1)(jwj+ 3j�j).3 New haraterization of 2-ollapsing wordsThe known fat that eah ollapsing word is n-full suggests the following de�ni-tion. An n-ompressible automaton A is alled proper ([1℄), if no word of lengthn is n-ompressing for it. In order to deide whether a word w 2 � is n-ollapsingit is enough to hek whether it is n-full, and if so, whether it is n-ompressingfor eah proper n-ompressible automaton.It is not diÆult to see that the n-ollapsing words over a one-element alpha-bet are simply the words of length larger or equal to n, while 1-ollapsing wordsover any alphabet are simply 1-full words (i.e. those involving all the letters).From now on our study is foused on 2-ollapsing words over an �nite al-phabet � of ardinality greater than 1. We start from a lassi�ation of proper2-ompressible automata, whih has been established in [1℄. We rephrase it (to-gether with the arguments) in the language of our approah.Obviously, any n-ompressible automatonA has at least one non-permutationtransformation. Yet, for A to be proper 2-ompressible, non-permutation trans-formations have to satisfy quite strong onditions. In order to formulate andprove a suitable result, �rst we note that a proper 2-ompressible automatonannot have any transformation with de�ieny larger than 2. Indeed, in suha ase a suitable single letter forms a 2-ompressing word. Also no transforma-tion of type fx; ygnz with z =2 fx; yg is allowed. This is beause omposing suha transformation with itself yields the de�ieny larger than one, whih meansthat a suitable subword of the form �2 is 2-ompressing. Furthermore, if we havetwo transformations of type fx1; y1gnz1 and fx2; y2gnz2, then we may assumethat z1 2 fx2; y2g (and z2 2 fx1; y1g); otherwise a suitable word of the form ��is 2-ompressing.These remarks show that there are the following two possibilities for a proper2-ompressible automaton: either all non-permutation transformations are of thesame type, and in this ase there are x; y suh that eah non-permutation trans-formation is of type fx; ygnx, or there are at least two non-permutation transfor-mations of di�erent types. In the latter ase we have again two possibilities: eitherthere is x suh that eah non-permutation transformation is of type fx; zgnx for



some z, or there are x; y suh that eah non-permutation transformation is oftype fx; ygnx or fx; ygny.None of these onditions is suÆient for an automaton to be proper 2-ompressible. In eah ase there have to be permutation transformations in orderto form a transformation orresponding to a 2-ompressing word. It follows, inpartiular, that a proper 2-ompressible automaton has both non-permutationand permutation transformations. All the remarks above are rephrasing of theresults established in Setion 2 of [1℄. We go a step further. Namely, it is notdiÆult to see that in eah of these ases there is a suitable neessary onditionon the group of permutations whih makes the whole ondition suÆient. Thisis quite obvious after the disussion above, so we simply formulate the result.Proposition 1. An automaton A is proper 2-ompressible if and only if A sat-is�es one of the following onditions:(i) there are x; y suh that all non-permutation transformations are of the sametype fx; ygnx, and the group of permutations �xes neither the element x northe set fx; yg;(ii) there is x suh that eah non-permutation transformation is of type fx; zgnxfor some z, at least two di�erent types our, and the group of permutationsdoes not �x x;(iii) there are x; y suh that eah non-permutation transformation is of type fx; ygnxor fx; ygny, both the types our, and the group of permutations does not �xthe set fx; yg.Let us note that in the lassi�ation in [1℄, the automata in ases (i) and (ii)are alled mono, and those satisfying (iii) are alled stereo.Now, we wish to show that for a word w 2 �� being 2-ollapsing over analphabet� is equivalent to the nonexistene of nontrivial solutions to ertain sys-tems of onditions on permutations. Consider partitions of � into bloks, wherebloks are intended to represent types of transformations and losely orrespondto the role assignments introdued in [1℄. A nontrivial partition fP;B2; : : : ; Bhgof � with a distinguished blok P will be alled a DB-partition and will bedenoted by (P; � ), where � = fB2; : : : ; Bhg is the indued partition of � n P(h � 2). Roughly speaking the letters in P are intended to represent permuta-tion transformations and letters in Bi are intended to represent non-permutationtransformation of the type f1; ign1 for 1; i �xed states of Q. Let w be a 2-fullword over �. To eah fator of w of the form �v�, where v is a nonempty wordwhose all letters belong to P (i.e. v 2 P+), while � =2 P and � 2 Bj , we assigna permutation ondition of the form1v 2 f1; jg;where the letters of P are treated as permutation variables. Thus, the ondi-tion means that the image of 1 under the produt v of permutations belongs tothe set f1; jg. The resulting set of permutation onditions (ontaining all on-ditions orresponding to fators of w with the properties desribed above) will



be denoted �w(P; � ) and referred to as the system of permutation onditionsdetermined by a word w and a DB-partition (P; � ). Note that di�erent orderingsof bloks in fB2; : : : ; Bhg lead to systems whih are "equivalent" in the sensethat one an be obtained from the other just by renaming the variables; so wedo not are of the orderings of bloks.We say that this system has a solution if there exists an assignment of per-mutations on a �nite set f1; 2; : : : ; Ng to letters in P suh that all the onditionsin �w(P; � ) are satis�ed. A trivial solution is one with all permutations �xing1. Also, in the speial ase when � onsists of a unique blok B2 (and in on-sequene, all j's on the right hand side of the onditions are equal 2), solutionswith all permutations �xing the set f1; 2g are onsidered trivial. The remainingsolutions are nontrivial.A partition (P; fB1; B2g) of � (into exatly 3 bloks, with a distinguishedblok P ) will be alled a 3DB-partition. Again the letters in P are intended torepresent permutation transformations while letters in Bi; i = 1; 2 are intendedto represent non-transformation permutations of the type f1; 2gni for 1; 2 �xedstates of Q. For suh partition, we de�ne another system of permutation on-ditions as follows. To eah fator of w of the form �v�, with � 2 Bi; � 2 Bj ,i; j 2 f1; 2g, and v 2 P+, we assign a permutation ondition of the formiv 2 f1; 2g(the image of i under v belongs to f1; 2g). The resulting set of permutationonditions will be denoted by � 0w(P; fB1; B2g). For suh a system, a solution inpermutations is nontrivial if the image of the set f1; 2g does not remain �xedunder all the permutations.Theorem 2. A word w 2 �� is 2-ollapsing if and only if it is 2-full and thefollowing onditions holds:(i) �w(P; � ) has no nontrivial solution for any DB-partition (P; � ) of �;(ii) � 0w(P; fB1; B2g) has no nontrivial solution for any 3DB-partition (P; fB1; B2g)of �.The reader may observe an expliit similarity with the haraterization in[1, Theorem 3.3℄. Yet while, indeed, there is a orrespondene in the generalstruture, our approah is almost onverse: rather then looking into an alge-brai struture behind, we redue the problem to the simplest onditions onpermutations.Proof. We prove the ,,only if" part. We know that if w is 2-ollapsing, then it is 2-full. Suppose by ontradition that the system �w(P; � ) has a nontrivial solutionfor some DB-partition (P; � ), and that this solution onsists of permutations ona set Q = f1; 2; : : : ; Ng. We build an automaton A over � with the set Q ofstates as follows: the letters in P at as the permutations given in the solution,and the letters in eah of bloks Bi 2 � at as (arbitrary) transformations oftype f1; ign1. Sine the solution is nontrivial, the group of permutations does



not �x 1, and in ase when � onsists of one blok B2, the group of permutationsdoes not �x the set f1; 2g, either. Thus, by Proposition 1, in eah ase A is aproper 2-ompressible automaton (of type mono). To get a ontradition weshow that dfA(w) = 1 (whih means that w is not 2-ompressing for A, andhene not 2-ollapsing).First, suppose that w has no fator of the form �v�, with v 2 P+, � 2 Biand � 2 Bj (whih means that the system �w(P; � ) is empty, and permutationsin the solution are restrited only by the ondition of being nontrivial). Thenw is of the form v�i1 : : : �imu with v; u 2 P � and �ij =2 P , and we show thatdfA(w) = 1. Indeed, for the �rst segment with permutation variables we havedfA(v) = 0, and next, dfA(v�i1 ) = 1. Sine the type of �i1 is f1; ign1 for some i,then 1 is missing in the image Qv�i1 . Sine the type of �i2 is f1; ign1 for some i,�i2 simply permutes the elements in Qv�i1 ; the de�ieny set is again f1g, andit is easy to see that the same happens at every step. Consequently, dfA(w) = 1,as laimed.Now, let �v� be a fator of w with v 2 P+, � 2 Bi and � 2 Bj , and assumethat it is the �rst fator of this form in w. It follows that w = s�v�t, wheres; t 2 ��, and by the previous argument dfA(s�) = 1, and 1 is missing in theimageQs�. Now, sine v is nonempty, the permutation ondition 1v 2 f1; jg is in�w(P; � ). It means that 1 is moved into 1 or j by v, and onsequently it is 1 or jthat is missing in the image Qs�v. Sine � identi�es 1 and j, dfA(s�v�) = 1, andit is again 1 that is missing in the image Qs�v�. Repeating this argument severaltimes we see the de�ieny does not derease, and onsequently dfA(w) = 1,whih is the required ontradition.As the seond ase we assume that the system � 0w(P; fB1; B2g) has a non-trivial solution for some 3DB-partition (P; fB1; B2g). The proof is analogous,and we only point out the di�erenes. Here, we build an automaton A whereletters in eah of the two bloks Bi at as arbitrary transformations of typef1; 2gni. Sine the solution is nontrivial, the group of permutations does not�x the set f1; 2g. Thus, in this ase, A is a proper 2-ompressible automaton(of type stereo). If w has no fator of the form �v�, with v 2 P+, � 2 Biand � 2 Bj , then the same argument as before shows that dfA(w) = 1. If ithas one, and w = s�v�t exhibits the �rst fator of this type, then dfA(s�) = iand i is missing in the image Qs�. By the orresponding permutation onditioniv 2 f1; 2g, and therefore dfA(s�v�) = 1 with j missing in the image Qs�v�.Sine i; j 2 f1; 2g, we may ontinue this argument, to get that dfA(w) = 1, asrequired.To prove the ,,if" part, assume by ontradition that w is not 2-ollapsing.Then, sine by assumption it is 2-full, there has to be a proper 2-ompressibleautomaton A over �, with the set of states Q = f1; 2; : : : ; Ng, for whih w is not2-ompressing. IfA is of type mono ((i) or (ii) in Proposition 1), then we onsiderthe DB-partition of �, where P represents permutations of A, and B2; : : : ; Bhrepresent transformations of types f1; 2gn1, . . . , f1; hgn1, respetively (we as-sume without loss of generality that x = 1 is the distinguished state). The fatthat w is not 2-ompressing for A means that de�ieny does not derease, ex-



ept for the �rst initial segment of the form v� with v 2 P � and � 2 Bi, forsome i. The only segments where the de�ieny ould derease are those of theform �v�, with � 2 Bi; � 2 Bj and v 2 P+. The fat that the de�ieny doesnot derease on these segments is equivalent to that the permutations satisfyorresponding onditions 1v 2 f1; jg, as required. The solution they form isnontrivial beause of respetive onditions (i) or (ii) in Proposition 1.If A is of type stereo (Proposition 1 (iii)), we onsider the 3DB-partitionof �, where P represents again permutations of A, and B1; B2 represent trans-formations of types f1; 2gn1 and f1; 2gn2, respetively, and we use the sameargument as before.4 2-element alphabetIn this setion we onsider the simplest nontrivial ase of � = fa; bg. In this asewe have only two DB-partitions, those into two singletons. The orrespondingtwo systems �w(P; � ) are eah in one variable, and to present them in detail weintrodue additional notation. Let us de�neEa(w) = fk � 1 : bakb is a fator of wg;Eb(w) = fk � 1 : abka is a fator of wg:Then, depending on whether P = fag or P = fbg, the system �w(P; � ) = �a(w)is one of the following�a(w) = f1ak 2 f1; 2g : k 2 Ea(w)g�b(w) = f1bk 2 f1; 2g : k 2 Eb(w)gBy Theorem 2 a word w 2 fa; bg� is 2-ollapsing if and only if it is 2-full and noneof the systems �a(w) or �b(w) has a nontrivial solution. Nontrivial solution is,in this ase, a single permutation a or b, respetively, �xing neither 1 nor f1; 2g.Whether suh a solution exists or not depends only on the sets of integers Ea(w)or Eb(w) de�ned above, and the onditions have purely arithmetial form.Theorem 3. A word w 2 fa; bg� is 2-ollapsing if and only if it is 2-full and forall E = Ea(w) or Eb(w), n � 3, and r < n, the set E modulo n is not ontainedin f0; rg.Proof. In view of Theorem 2 it is enough to prove that one of the systems �a(w)or �b(w) has a nontrivial solution if and only if there are n � 3 and r < n suhthat E = Ea(w) or Eb(w) is ontained in f0; rg modulo n.Suppose �rst that the system �a(w) has a nontrivial solution. In this asethe solution is a single permutation a, whih we onsider as a produt of disjointyles. If 1 and 2 are in the same yle, then this yle is of length n � 3, sinea does not �x the set f1; 2g. We may assume that a = (1; : : : ; 2; : : : ; n) : : :, with2 standing on (r+1)-th plae, 0 < r < n. Then the onditions 1ak 2 f1; 2gmean that either k � 0 or k � r (mod n), for eah k 2 Ea(w). It follows that



Ea(w) � f0; rg modulo n, as required. If 1 and 2 are in di�erent yles of a, thenthe yle ontaining 1 has length n � 2, sine a does not �x 1. For n = 2, theonditions means that k � 0 (mod 2) for eah k 2 Ea(w), whih is equivalentto Ea(w) � f0; 2gmodulo 4. For n > 2, we obtain Ea(w) � f0g modulo n, whihompletes the ase of the system �a(w). For �b(w) the proof is analogous.Conversely, if for instane Ea(w) � f0; rg modulo n (n � 3, r < n), thenthe permutation a = (1; : : : ; 2; : : : ; n) : : :, with 2 standing on (r+1)-th plae isobviously a nontrivial solution of the system �a(w). The same argument appliesto Eb(w) � f0; rg.We note that the ondition on n in the theorem an be restrited to n notexeeding the value of the seond smallest element in E. This is so, beause forlarger n the two smallest elements are two di�erent non-zero remainders modulon, and therefore E annot be ontained modulo n in any set f0; rg. Takingthis into aount we have the following algorithm for heking whether a wordw 2 fa; bg� is 2-ollapsing.1 if w is not 2-full then return NO;2 for all E  fk � 1 : bakb is a fator of wgor E  fk � 1 : abka is a fator of wg do3 if jEj > 1 then4 N  the seond smallest element in E5 for n 1 to N do6 E  E mod n7 if E � f0; rg for some r < n then return NO8 return YESSine the sum of the elements in E is smaller than the length jwj of w, weobtain the followingCorollary 1. For a 2-element alphabet �, heking whether a word w 2 �� is2-ollapsing may be done in polynomial time with respet to jwj.We note that another haraterization of 2-ollapsing words over a 2-elementalphabet, based on the general result of [1℄, is given in [10, Proposition 3℄. Thisalso an be used to infer the orollary above. The fat that 2-ollapsing wordsover a 2-element alphabet may be reognized in polynomial time was also ob-tained in [2℄ as a onsequene of a general algorithm to hek whether a word is2-ollapsing.5 Related omputational problemsWe proeed to show that for the ase j�j = 3 the situation is essentially di�erent.In this ase we have three types of DB-partitions and one type of 3DB-partition.In order to hek whether a word w 2 �� is 2-ollapsing or not, we need tohek all the orresponding systems �w(P; � ) and � 0w(P; fB1; B2g), aording to



Theorem 2. The ases with jP j = 1 are still easy; they lead to systems in onevariable, and one may prove that all these systems an be solved in polynomialtime. The ase jP j = 2 leads to the system �w(P; � ) in two variables of the form� (u1; : : : ; us) = f1u1; : : : ; 1us 2 f1; 2gg; ui 2 f�; g�:and the following Permutation Conditions problem:INSTANCE: A �nite set of words fu1; : : : ; usg over a 2-element alphabet � =f�; g.QUESTION: Does the orresponding system � (u1; : : : ; us) of permutation on-ditions in two variables have a nontrivial solution: i.e. are there permutations �and  �xing neither f1g nor f1; 2g satisfying all the onditions of this system?Our �rst aim is to show that this problem is NP-omplete.Permutations are generally not easy to visualize. Therefore we onvert theabove problem into a problem onerning oloring of a binary tree with dis-tinguished nodes. Namely, we onsider trees representing words u 2 f�; g+,assuming that edges going to the left hild represent applying permutation �,while edges going to the right hild represent applying permutation . To repre-sent a set U = fu1; : : : ; usg of words we take the minimal binary tree in whih allwords u1; : : : ; us are represented. The nodes representing these words togetherwith the root form the set of distinguished nodes of the tree. The resulting treewith distinguished nodes will be denoted T (U) = T (u1; : : : ; us).A 1-2-oloring of a binary tree T with distinguished nodes is a oloring of thenodes with positive integers suh that eah distinguished node has olor either1 or 2. The root is always olored 1. The oloring is nontrivial, if there is a olordi�erent from 1 and 2. It is oherent, if for any two nodes s; t having the sameolor the following onditions hold: if both s and t are left (right) hildren thentheir parents have the same olor; if both s and t have left (right) hildren, thenthese hildren have the same olor. Nontrivial oherent 1-2-olorings are alledbriey n-olorings. We have the followingLemma 1. Let u1; : : : ; us be words over alphabet f�; g, suh that any word oflength 2 is a pre�x of some ui, 1 � i � s. Then the tree T = T (u1; : : : ; us) hasan n-oloring if and only if the system � (u1; : : : ; us) has a nontrivial solution.Proof. For the ,,if" part, we assign simply the olor 1u to the node s in Torresponding to the word u. Then, suh a oloring is nontrivial due to theassumption that all nodes representing words of length less or equal 2 are in thetree. Indeed, the hildren of the root are olored 1� and 1. If any of them isdi�erent from 1 and 2, we are done; otherwise, at least one of them must be 2,sine the permutations do not �x 1. It follows that both olors 2� and 2 ourin the tree, and sine the permutations do not �x f1; 2g, one of them is di�erentfrom 1 and 2, as required. The ohereny is by the fat that the ation of � and is the same at eah node.



Conversely, if T = T (u1; : : : ; us) has a nontrivial oherent 1-2-oloring, thenit determines (at least partially) the ation of � and  on the olors (whih isunique by ohereny). As a result one an get partial representations of � and as produts of yles. One may easily add new olors, absent in the given1-2-oloring, to form full representations, and thus get a nontrivial solution ofthe system � (u1; : : : ; us).This leads us to the following n-Colorings problem:INSTANCE: A binary tree T = T (u1; : : : ; us) with distinguished nodes.QUESTION: Does T have a nontrivial oherent 1-2-oloring?We onsider an example, whih is the starting point of our onstrution. LetW0 = f�; �3; �4; �2; �3; �22�; �22�2; ; 3; 4; �2; �3; 2�2; 2�22g:The tree T (W0) representing this set of words is pitured in Figure 2. Thedistinguished nodes are marked as blak �lled irles. The labels represent anontrivial oherent 1-2-oloring. This oloring is the most general one in thesense that any other n-oloring of T (W0) an be obtained from it by suitableidenti�ations of olors. For example, we an identify z = y obtaining anothern-oloring; note however that other identi�ations (for instane x = y) maylead to non-oherent or trivial olorings. We have12 2x � y 1 2 x121 a z2 x12 y 1 2y 1 2Fig. 2. The most general n-oloring of T (W0).Lemma 2. The oloring in Figure 2 is the most general n-oloring of T (W0).In eah n-oloring of this tree the olors x and y are di�erent from 1 and 2.Proof. The proof of this lemma is routine. It requires heking a number of ases,using ohereny and the fat that distinguished nodes have to be olored 1 or 2.We give only the beginning of the proof. First note that the nodes orresponding



to � and  (the hildren of the root) are distinguished, so they have to be olored1 or 2. We onsider possible ases. If both these nodes are olored 1, then sineby assumption the root is olored 1, by ohereny, both the left and the righthildren of any node olored 1 are olored the same, and onsequently all thenodes in the tree are olored 1, whih yields a trivial oloring.As the seond ase we assume that � is olored 1 and  is olored 2. Then,by ohereny, nodes orresponding to �2; �3, and �4 are all olored 1. Now � isolored 2 (the same as 2), �2 and 2 are olored the same, 1 or 2 (sine �2 isdistinguished). Consequently, the nodes orresponding to n are olored 1 if n iseven, and 2 if n is odd, whih by ohereny yields again a trivial oloring. Thethird ase is symmetrial, and it follows that in a nontrivial oherent oloringboth the hildren of the root have to be olored 2. The next step is to exludethe ases that one of the nodes labeled x or y in Figure 2 is olored 1 or 2. Thisand the ompletion of the proof is left to the reader.It follows that in any system of permutation onditions ontaining � (W0)the nontrivial solutions are all of the form� = (12x)(yz) : : : ;  = (12y)(xa) : : :Further yles involving further olors an our in � and . We note that theation of � on a and the ation of  on z are not determined by the onditionsso far. We make use of this fat in showing that 3SAT an be redued to n-Colorings.6 General onstrutionFor eah instane of 3SAT onsisting of a olletion fC1; : : : ; Crg of lauses ona �nite set (x1; : : : ; xn) (with jCj j = 3) we onstrut a binary treeT = T(C1; : : : ; Cr; x1; : : : ; xn)with distinguished nodes suh that it has an n-oloring if and only if there isa truth assignment satisfying all the lauses. The tree T onsists of the mainpart M(T), the path P (T) attahed to M(T), and 3r paths attahed to somedistinguished nodes of P (T). The 3r paths orrespond to all ourrenes ofvariables in the instane of 3SAT (f. Figure 3). Eah of these paths onsists of 3segments bounded and determined by distinguished nodes: the variable segment,the negation segment, and the lause segment. The nodes on P (T) beginningvariable segments will be referred to as the starting nodes.The tree is onstruted so that in any n-oloring the starting nodes havealways the same �xed olor. The distinguished nodes �nishing variable segmentsare alled the variable valuation nodes; their olor may be 1 or 2, and is intendedto reet the valuation, False or True, of variables in the 3SAT instane. Thenegation segment may be missing; it is present if and only if the orrespondingourrene of variable is negated in the lause it ours. In suh a ase the
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distinguished node �nishing the negation segment is alled the literal valuationnode, and its olor, in any n-oloring (due to properties of the segment) isalways opposite to that of the preeding variable valuation node. In ase oflaking the negation segment the literal valuation node is identi�ed with thevariable valuation node.7 Struture of permutationsThe main part M(T) is an extension of T (W0) desribed in the previous se-tion. This implies, in partiular, that a nontrivial solution of the orrespondingsystem of permutation onditions needs to be of the form � = (12x)(yz) : : :,and  = (12y)(xa) : : :. We add further parts to T (W0) orresponding to furtherpermutation onditions, whih determine muh more details in the struture of� and . Our aim is to make � in a nontrivial solution to be the produt ofyles of the form� = (12x)(yz)(aa1 : : : ana11a12a13 : : : ar1ar2ar3)(bb1 : : : bnb11b12b13 : : : br1br2br3) : : : (1): : : (Aj1jdjej) : : : (Bj1Bj2Bj3) : : : (AiXi) : : : (BiYi) : : : : : : ;where i = 1; : : : ; n, j = 1; 2; : : : ; r (with n and r given in the 3SAT instane).Thus, � is intended to onsist of two yles of length 3 and 2, respetively, twolong yles of length N = 1+n+3r eah, r yles of length 4, r additional ylesof length 3, and n yles (AiXi) whih may be of length 2 or 1 (sine we will allowin this ase that Xi = Ai). Generally, all the letters are intended to representdi�erent elements (olors), exept that Xi; Yi 2 fAi; Big, and fAj1jdjejg =fAj1Aj2Aj3Aj0g, where Aj0 are extra olors, not mentioned yet. The latter onditionmeans that the elements fAj1Aj2Aj3Aj0g are to be arranged in an arbitrary yle;we did not mention yles (BiYi) beause they are either one-element or aresupposed to oinide with a suitable yle (AiBi).We intend  to be of the form = (12y)(xa)(zb) : : : (aiAi) : : : (biBi) : : : (ajtAjt ) : : : (bjtBjt ) : : : ; (2)where i = 1; : : : ; n, j = 1; 2; : : : ; r, and t = 1; 2; 3. Thus it is intended to onsistof one yle of length 3, and 2 + n+ 3r yles of the length 2.To ahieve this we add to the tree T (W0) additional binary branhes orre-sponding to additional words. First we add toW0 two additional words �2�N�and �2�N�2, where N = 1+n+3r. This results in attahing to T (W0) an ad-ditional path of length N +3 with 2 distinguished nodes; it is shown in Figure 4as one starting in the node labeled a. This onstrution inludes a trik we wishto desribe now, sine we apply it repeatedly while adding further branhes.Let us onsider an n-oloring of the tree onstruted so far, pitured inFigure 4. The olors of the nodes in the part orresponding to T (W0) are alreadydetermined by earlier onsideration and are opied from Figure 3. For the olors



12 2x y 1 2 x121 a z2 x12 y 1 2y 1 2a1
ar3a0 x0d1d2 Fig. 4. The �rst additional path attahed to T (W0).of the nodes on the additional path we will use letters a1; : : : ; an, a11; a12; a13; : : : ;ar1; ar2; ar3 (orresponding to the intended long yle in �), and a0; x0; d1; d2 forthe last four nodes. We prove that the latter have to be, in fat, a; x; 1 and 2,respetively. Indeed, the last node is distinguished, so it has to be olored 1 or 2;by ohereny, the parent of a node olored 1 is olored x, whih by Lemma 2 isdi�erent from 1 and 2; hene, by ohereny, it has to be d2 = 2, and onsequently,d1 = 1; x0 = x and a0 = a, as laimed.Thus we have fored the olor a0 to be the same as a in any n-oloring.Observe that this is ahieved by attahing a path to the node labeled a0, whih isthe same as that attahed to the node labeled a, and whose oloring is determinedompletely by ohereny. In the onstrution of M(T), whih is pitured inFigure 5, we apply this trik several times. In Figure 5 it is shown by arrows: anarrow attahed to a node labeled ` symbolizes the path attahed to the earliernode having the same label; the diretion of the arrow shows the diretion of the�rst edge in the path. In onsequene, the olors of the two nodes have to be thesame in any n-oloring. Dashed lines in Figure 5 mean that the gadgets attahedto all nodes ai; ajt and bi; bjt on these paths (i = 1; : : : ; n, i = j; : : : ; r, t = 1; 2; 3)are analogous. A areful analysis of this onstrution yields the following:Lemma 3. The oloring presented in Figure 5 is the most general n-oloringof the pitured tree M(T).We show how to obtain the n-oloring orresponding to the permutations �and  of the form given in (1) and (2). First we identify Xi and Yi with Ai and Bi



12x y 1 2 x121 a2 xai Ai aiXiAiajt Ajt ajtjtdjtejtAjta

2 yz 1y 2b zbi Bi biYiBibjt Bjt bjtf jtgjtBjtbFig. 5. The part M(T) with the most general n-oloring.hoosing for eah i either the equalities Xi = Bi and Yi = Ai, whih orrespondto the yle (AiBi) in �, or Xi = Ai and Yi = Bi, whih orrespond to the �x-points (Ai)(Bi) in �. In the sequel we refer to these as to (AiBi)- and (Ai)(Bi)-identi�ations, respetively. Next, we identify olors f j1 = Bj2 and gj1 = Bj3, thisidenti�ation by ohereny uniquely determines identi�ations of olors f j2 = Bj3,gj2 = Bj1, f j3 = Bj1, and gj3 = Bj2, and orresponds to the yle (Bj1; Bj2; Bj3) in �.Similarly, if we hoose any identi�ation of olors fj1; d1j ; ej1; g with fAj2; Aj3; Aj0g,then by ohereny this determines uniquely identi�ations of olors 1t ; d1t ; e1tfor t = 1; 2; 3, and this is equivalent with arranging letters fAj1; Aj2; Aj3; Aj0ginto an arbitrarily hosen yle. Of ourse, we an do it independently for eahj = 1; : : : ; n, and this orresponds to �xing n yles of length 4 in �. In the sequelwe refer to the above identi�ations as to (Bj1; Bj2; Bj3)- and fAj1; Aj2; Aj3; Aj0g-identi�ations, respetively.8 Enoding truth assignmentsThe seond part denoted P (T) is just the path orresponding to set of wordsf7; 8; : : : ; 3r+4; 3r+5g:This path has 2r distinguished nodes, and ontinues the pattern of distinguishednodes started in M(T): two onseutive distinguished nodes follow one, whih



is not distinguished (see Figure 3). In onsequene, in any n-oloring the dis-tinguished nodes on P (T) have to be olored 1 and 2, alternately. The startingnodes on P (T) are those labeled 2.a) 2x aai i AiXi Bi; Aibi; aib; a N�iz; xy; 1 1; 2

b) 1; 2 2; yx; z1; y 2; 1
Fig. 6. Variable and negation segments.As it was already mentioned, eah path beginning in a starting node orre-sponds to an ourrene of a variable xi in a lause Cj . It onsists of three ortwo parts, depending on whether the variable ours negated in Cj or not. Thevariable segment is always of the formC(k) = T (��i��N�i�);where i is the index of the variable xi andN = 1+n+3r as before (see Figure 6a).Sine in any n-oloring the olor of the starting node is 2, further olors in thesesegments are also determined by the struture of M(T) and ohereny. Thus,the next two nodes have to be olored x, and a, respetively, and the next one,aording to the most general oloring given in Figure 5, has to be olored ai.The next node is olored Ai, and the next one Xi. We show that Xi = Aior Bi. Indeed, starting from the other end the distinguished variable valuationnode has to be olored 1 or 2. It follows, by ohereny, that the alternatives forpreeding nodes are (y; 1), (z; x), and (b; a), respetively, as shown in Figure 6a.Then, sine the length of the dashed �-path is m = N � i, the olor of the nodebeginning this path, aording to the most general oloring given in Figure 5, isbi or ai, respetively. This implies that the olor of the preeding node is Bi orAi, as laimed.



Let us note that hoosing the olor 1 for the variable valuation node orre-sponds to identify Xi = Bi (and onsequently, Yi = Ai), while hoosing olor 2for this node orresponds to identify Xi = Ai. By ohereny, the variable valu-ation nodes orresponding to ourrenes of the same variable xi must have thesame olor, sine the variable segments for these ourrenes are idential. Sogenerally (AiBi)- and (Ai)(Bi)-identi�ations onsidered before orrespond tohoose 1 or 2, respetively, as olor of vertex xi.For negated ourrenes of variables we have the negated segment, whihwe put to be the path T (�2) drawn in Figure 6b. We leave to the reader tohek that, due to the main part M(T), it works exatly as assumed: in anyn-oloring of T, the �rst node of this path is olored 1 if and only if the lastnode is olored 2. 1; 2 2; yx; z a; b(aj1; aj2; aj3) (bj1; bj2; bj3) (m;m+1;m+2)(Aj1; Aj2; Aj3) (Bj1 ; Bj2 ; Bj3)(j1; j2; j3) (f j1 ; f j2 ; f j3 ) (Bj2; Bj3 ; Bj1) (Aj2; Aj3; Aj1)(bj2; bj3; bj1) (aj2; aj3; aj1)b; a N � (m+1;m+2;m)z; xy; 1 1; 2Fig. 7. Colors on the lause segment.Finally, the lause segments orresponding to variables ourring in a lauseCj are similar to variable segments. They di�er only in that they have an ad-ditional -edge at the beginning, and the lengths of long �-paths depend onlyon the lause the variable ours in. Namely, all the three lause segments or-responding to the lause Cj have the formC(k; `) = T (��k��N�`�);



where N = 1+n+3r, as before, and for the three suessive variables ourringin Cj the lause segments are:C(m;m+ 1); C(m+ 1;m+ 2); C(m+ 2;m);respetively, where m = 1+ n+ 3(j�1). They are intended to allow on the or-responding literal valuation nodes any triple of olors from f1; 2g exept (1; 1; 1)(whih is the unique valuation orresponding to the false value of the lause!).Similarly as for the variable segment, we onsider possibilities for an n-oloring of the lause segments; this is illustrated in Figure 7.Similarly as for the variable segment, we onsider possibilities for a nontrivialoherent 1-2-oloring of the lause segments (see Figure 7). For the �rst node,whih is a literal valuation node, we have two possibilities 1 or 2. Sine at thebeginning the three segments are idential, the alternatives for suessive nodesare the same: (2; y); (x; z), and (a; b), respetively. Then, the segments di�erslightly in the length of the T (�k)-path, so we onsider further alternatives inform of triples with entries orresponding to the values k = m;m+1;m+2 withm = 1 + n + 3(j�1). From the most general oloring of M(T) given in Fig-ure 5, for the node ending the T (�k)-path the alternative of olors is (aj1; aj2; aj3)or (bj1; bj2; bj3), respetively. Then, for the two next nodes the alternatives are(Aj1; Aj2; Aj3) or (Bj1; Bj2; Bj3), and (j1; j2; j3) or (f j1 ; f j2 ; f j3 ), respetively. Sinefor now, we know nothing about the latter olors, we onsider olors of othernodes from the other end of the segment.The last node (as distinguished) may be olored 1 or 2, and the alternativesfor preeding nodes are (y; 1), (z; x), and (b; a), as before (f. Figure 6 andFigure 7). Now, sine the length of the T (�N�`)-path is N�(m+1); N�(m+2)or N � m, respetively, with m = 1 + n + 3(j� 1), the alternatives for thenode starting the T (�N�`)-path are (bj2; bj3; bj1) or (aj2; aj3; aj1), respetively. Hene,the alternatives for the preeding node are just (Bj2; Bj3; Bj1) or (Aj2; Aj3; Aj1),respetively, whih impose some onditions on the values of j1; j2; j3; f j1 ; f j2 ; f j3 ,depending on valuation of literal valuation nodes.For example, if the literal valuation node orresponding to the �rst ourreneof a variable in Cj is olored 1, then (in any nontrivial oherent 1-2 oloring) ithas to be j1 = Bj2 or Aj2. We show that the �rst possibility is exluded. Indeed,if j1 = Bj2, then by ohereny, dj1 = f j2 , ej1 = gj2, and Aj1 = Bj2. It follows furtherthat aj1 = bj2, and a = b1; and further, x = B1, 2 = Y1, 1 = B1, whih yields , theontradition x = 1. A similar argument shows that if the literal valuation nodeorresponding to the seond or third ourrene of a variable in Cj is olored 1,then j2 = Aj3 or j3 = Aj1, respetively.In partiular, if all the literal valuation nodes orresponding to the samelause Cj are olored 1, then it follows that the T (�4)-paths going from Ajt ,t = 1; 2; 3, are all olored with the same olor Aj1 = Aj2 = Aj3. This leads to aontradition as before (it follows suessively: aj1 = aj2, a = a1, x = A1, and1 = A1). This proves the �rst statement of the following.



Lemma 4. In any n-oloring, the literal valuation nodes orresponding to thesame lause Cj annot be all olored 1; any other oloring of these nodes mayour.For the seond statement, it is enough to apply �rst the (Bj1; Bj2; Bj3)-identi�ation,and then to hoose a suitable fA11; A12; A13; A10g-identi�ation. For example, if thesuessive literal valuation nodes orresponding to lause Cj are olored (1; 2; 1),then in Figure 7 we have olors (j1; f j2 ; j3) = (Aj2; Bj3; Aj1). Here Aj2 has to be theolor following Aj1, Bj3 has to be the olor following Bj2 (whih is now the ase),and Aj1 has to be the olor following Aj3. It is the (A11; A12; A10; A13)-identi�ationthat satis�es these onditions.Summarizing, if we have given any n-oloring ofT, then the olors of variablevaluation nodes determine, in a oherent way, the olors assigned to variablesx1; : : : ; xn, whih are always 1 or 2. The olors of literal valuation nodes arereverse or the same depending on whether the variable is negated in a lause ornot, and it never happens that the literal valuation nodes orresponding to thesame lause have all olor 1. It follows that if we treat 1 as the false value, and 2as the true value, then the n-oloring yields a truth assignment for (x1; : : : ; xn)satisfying all the lauses.Conversely, for any truth assignment for (x1; : : : ; xn) satisfying all the lauses,there exists an n-oloring of T orresponding to it. This is simply the most gen-eral oloring given in Figure 5 with suitable (AiBi)- and (Ai)(Bi)-identi�ations,the (Bj1; Bj2; Bj3)-identi�ation, and suitable fA11; A12; A10; A13g-identi�ations. Thelatter exists, as we have observed, for all lauses valuated true.Sine all those onstrutions may be done, obviously, in polynomial time, weobtainTheorem 4. The problems Permutation Conditions and n-Coloringsare both NP-omplete.9 Appliation to ollapsing wordsBy the result of Setion 2, we know that if a word w 2 �� is not n-ollapsingthen there is an n-ompressible automaton A = hQ;�; Æi with jQj � 5njwj suhthat dfA(w) < n. From this (ombined with the fat that n-ollapsing words aren-full) it follows that the following general problem of reognizing n-ollapsingwords is in o-NP.INSTANCE: A �nite alphabet �, a word w 2 �+, and an integer n > 0.QUESTION: Is w n-ollapsing over �?We now show how 3SAT an be redued in polynomial time to the aboveproblem. First, we assoiate, with eah instane of 3SAT the treeT = T(C1; : : : ; Cr; x1; : : : ; xn)



de�ned in the previous setion, and next, the set of words fw1; w2; : : : ; wsg �f�; g� determined by the distinguished nodes of T. We wish to de�ne the wordw = �(w1; w2; : : : ; ws) over the alphabet � = f�; �; g so that it satis�es thefollowing three onditions:(i) �v�, where no � ours in v, is a fator of w if and only if v = wi for somei;(ii) w ontains all fators of the form xyx and xy2x, for all di�erent x; y 2 �,x 6= �;(iii) ��; �� and ���; ��� are fators of w.To this end we put w = u1u2u3u4, where the four segments are de�ned asfollows: u1 = �w1�w2� : : : �ws�;note that by properties of T, ��� and �� are among fators of u1, while ��2�,�2 are not; u2 = ������2�����2;these are simply fators ���; ��2�� and �; �2 separated by letter � (thelater makes sure that no new fator of the form �v� arises);u3 = ���2��22������2�2�2���;i.e. the four words from ondition (iii) above separated by other words in suha way that that no new fator of the form �v� arises; note that fators ��2�,��22��, ��2�, and �2�2� ourring in u3, are (by properties of T) amongfators of u1; u4 = ��22�;this ensures that all the remaining words of the form xyx and xy2x, whih arethose not involving �, are among fators of w.Now, onsider the onditions for w = �(w1; w2; : : : ; ws) to be 2-ollapsing. Tothis end we need to onsider systems �w(P; � ) and � 0w(P; fB1; B2g) desribedin Setion 3. First, we observe that (due to properties of w) for the systems ofthe seond type have only trivial solutions.Indeed, if say P = f�g, B1 = f�g, B2 = fg, then sine ��� and � arefators of w, the onditions 1� 2 f1; 2g and 2� 2 f1; 2g are in � 0w(P; fB1; B2g),whih means that � �xes the set f1; 2g. The same argument works for otherases here.We onsider systems of the �rst type. If P = f�g and, say, � 2 B2 then sine��� and ��2� are fators of w, the onditions 1� 2 f1; 2g and 1�2 2 f1; 2g arein �w(P; � ), whih means that � �xes either f1g or f1; 2g. In ase when B2 isthe unique blok in � , we are done. Otherwise,  2 B3, and sine � is a fatorof w, 1� 2 f1; 3g, whih yields that � has to �x 1, as required. If P = f�g, thensimilar reasoning shows that sine � and �2 are fators of w, � �xes eitherf1g or f1; 2g, and sine ��� is a fator of w, � �xes 1, as required. In view ofsymmetry between � and  this exhausts all the possibilities for jP j = 1.



If P = f�; �g then the fators of w, � and �2 yield that � �xes eitherf1g or f1; 2g, and fators � and �2 yield that also � �xes either f1g orf1; 2g. To make sure that either both �x f1g or both �x f1; 2g we use the fatthat �� and �� are fators of w. It follows that 1��; 1�� 2 f1; 2g whihmakes impossible that one of them �xes 1, but not 2, while another one �xesf1; 2g, but not 1 alone. (For example, if 1� = 1 and 1� = 2, then 1�� = 2�).The same argument works for P = f�; g.It follows that the only nontrivial ase is that of P = f�; g. Consequently,�(w1; w2; : : : ; ws) is 2-ollapsing if and only if � (w1; w2; : : : ; ws) has a nontriv-ial solution, whih holds if and only if T = T(C1; : : : ; Cr; x1; : : : ; xn) has ann-oloring, whih holds if and only if there is a truth assignment for the orre-sponding 3SAT instane. Thus we haveTheorem 5. The general problem of reognizing n-ollapsing words de�ned aboveis o-NP-omplete.Our proof gives also the result for the variant of the problem with a �xedalphabet on 3 letters. It an be easily modi�ed to get the followingTheorem 6. The problem of reognizing 2-ollapsing words over a �xed alphabet� with more than 2 letters is o-NP-omplete.Proof. The modi�ation of the previous proof is the following. We wish to de�nethe word w0 =  (w1; w2; : : : ; ws) over alphabet � = f�; �; ; Æ; : : :g with morethan 3 letters in suh a way that it satis�es the following two onditions:(i) �v� is a fator of w0 if and only if v = wi for some i (for any word v withno ourrene of letter �);(ii) w ontains all fators of the form xyx, xy2, and xyzx, for x; y; z 2 � pairwisedistint, exept for �2�, ��2�, ���, and ��� (unless they are amongwi);To this end we put w = v1v2v3v4v5, where v1 = u1u2u3 is the word overf�; �; g for U1; u2 and u3 de�ned before; v2 onsists of all the words of the formx�x and x�2x separated by letter �, and �nishing with �, for all x 6= �; v3onsists of all the words of the form x�yx and xy�x separated by letter � forall x 6= �, x 6= y, and fx; yg 6= f�; g; v4 onsists of all the words of the form�xy� for all x 6= y, and fx; yg 6= f�; g; and v5 is the least word ontaining allthe possible words on four letters other than �.An essential property of w de�ned in this way is that, if �v� is a fator ofw and v has no ourrene of �, then either v = wi or there is at most oneourrene of � or  in v. Now, onsider the onditions for w being 2-ollapsing.As before we prove that all the systems �w(P; � ) and � 0w(P; fB1; B2g), but one,have only trivial solutions.For the systems of the seond type the argument is the same as before. Forthe �rst type we assume �rst that there is a letter x 6= � not in P . Without lossof generality we may assume that x 2 B2. Then for any letter y 2 P we havefators xyx and xy2x in w, whih as before means that y �xes either 1 or f1; 2g.



Moreover, if there are at least two bloks in � , and z 2 B3, then zyz is a fatorof w (also if z = �), and it follows, as before, that all y 2 P �x 1, as required.If there is the unique blok B2 in � , then we need to show that either all y 2 P�x 1 or all y 2 P �x f1; 2g. To this end we use the fat that xyzx is a fator ofw for all x 6= �. If y; z 2 P , then from the fats that eah of them �xes either 1or f1; 2g, and 1yz; 1zy 2 f1; 2g, we infer easily that either both �x 1 or both �xf1; 2g. This extends obviously to all the elements of P , proving that there areonly trivial solutions in this ase.It remains the ase when the only letter not in P is �. Then, for all x 2P n f�; g, �x� and �x2� are fators of w, and it follows that x �xes either 1 orf1; 2g. If the system � (w1; w2; : : : ; ws) has only trivial solutions, then (beauseof the fator u1 of w) the same holds also for � and . In suh a ase fators �xy�of w with fx; yg 6= f�; g guarantee, as in the previous ase, that �w(P; � ) hasonly trivial solutions. If there is a nontrivial solution (�; ) for � (w1; w2; : : : ; ws),then taking all x 6= �;  suh that they �x both 1 and 2, we obtain a nontrivialsolution of �w(P; � ). Indeed, by properties of u1, 1� = 1 = 2, and by theessential property of w mentioned earlier, all the permutation onditions notorresponding to the fator u1 involve at most one ourrene of � or . Hene,in view of our assumption on other permutations, all these onditions are triviallysatis�ed. Consequently, w is 2-ollapsing if and only if � (w1; w2; : : : ; ws) has anontrivial solution, whih as before ompletes the proof.Referenes1. D. S. Ananihev, A. Cherubini, and M. V. Volkov, Image reduing words andsubgroups of free groups, Theor. Comput. Si. 307, no.1 (2003), 77-92.2. D. S. Ananihev, A. Cherubini, and M. V. Volkov, An inverse automata algorithmfor reognizing 2-ollapsing words, Let. Notes Comp. Si. 2450, Springer, Berlin2003, 270-282.3. D. S. Ananihev and I. V. Petrov, Quest for short synhronizing words and shortollapsing words, WORDS. Pro. 4th Int. Conf., Univ. of Turku, Turku, 2003,411-418.4. D. S. Ananihev, I. V. Petrov, and M. V. Volkov, Collapsing words: A ProgressReport, Let. Notes Comp. Si. 3572, Springer, Berlin 2005, 11-21.5. A. Cherubini, Synhronizing and Collapsing words, Milan j.math. 75, (2007), 305-321.6. A. Cherubini, P. Gawryhowski, A. Kisielewiz, B. Piohi, A ombinatorial ap-proah to ollapsing words, Let. Notes Comp. Si. 4162, Springer, Berlin, 2006,256-266.7. A. Cherubini, A. Kisielewiz, Reognizing ollapsing words is NP-omplete, in: Pro-eedings of Desriptional Complexity of Formal Systems (Las Crues, New Mexio,USA), 2006, 106-117.8. S. W. Margolis, J.-E. Pin, and M. V. Volkov, Words guaranteeing minimum image,Internat. J. Foundations Comp. Si. 15 (2004) 259-276.9. I. V. Petrov, An algorithm for reognition of n-ollapsing words, Theor. Comput.Si. 391, no.1-2 (2008), 99-108.10. E. V. Pribavkina, On some properties of the language of 2-ollapsing words, Let.Notes Comp. Si. 3572, Springer, Berlin, 2005, 374-384.
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