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Abstract. Given a word w over a finite alphabet X' and a finite deter-
ministic automaton A = (Q, X, d), the inequality |0(Q,w)| < |Q| — n
means that under the natural action of the word w the image of the
state set () is reduced by at least n states. A word w is m-collapsing if
this inequality holds for any deterministic finite automaton that satisfies
such an inequality for at least one word. In this paper we prove that the
problem of recognizing n-collapsing words is generally co-NP-complete,
while restricted to 2-collapsing words over 2-element alphabet it belongs
to P. This is connected with introducing a new approach to collapsing
words, which is shown to be much more effective in solving various prob-
lems in the area. It leads to interesting connections with combinatorial
problems concerning solving systems of permutation conditions on one
hand, and coloring trees with distinguished nodes on the other hand.

1 Introduction

In this paper by an automaton A4 = (Q,X,§) we mean a finite determinis-
tic automaton with state set (), input alphabet X, and transition function
d: @ xX — Q. The action of X' on @ given by § will be denoted simply
by concatenation: ga = 0(g,a). This action extends naturally on the action of
the words of X* on Q. Given a word w € X*, we are interested in the cardinality
|Quw| of the image of @ by w.

If |[Qw| = 1, then w is called a reset word for A, and A itself is called
synchronizing. According to the famous Cerny’s conjecture, if A is synchronizing,
then it has a reset word of length < (m — 1)2, where m = |@Q| is the number of
states in A. This conjecture was formulated in 1964, and it is probably the most
longstanding open problem in the theory of finite automata. For interesting
applications and recent results concerning this conjecture we refer the reader
to [4] and references given therein. Problems with settling Cerny’s conjecture,
on one hand, and its importance for the theory of finite automata and finite
semigroups, on the other, suggest a need of more systematic approach to the
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problem. Such approach was initiated in papers [1, 8] basing on the earlier work
[11].

Generally, we are now interested in how the set of states is reduced under
the action of various words. Given w € X*, the difference of the cardinalities
|Q| — |Quw] is called the deficiency of the word w with respect to A and denoted
df 4(w). For n > 1, a word w is called n-compressing for A, if df4(w) > n.
An automaton A is n-compressible, if there exists an n-compressing word for
A. A word w € X* is m-collapsing (over X), if it is n-compressing for every
n-compressible automaton with the input alphabet X.

It has been proved in [11] that n-collapsing words always exist, for any X and
any n > 1. In [8] it is shown that, over a fixed alphabet X, each n-collapsing word
is m-full, that is, it contains any word of length n among its subwords. Surveys
of results and problems in this area are given in [4] and in [5]. In particular, a
result showing that the problem of recognizing n-collapsing words is decidable
(and is in the class co-NP) is proved in [9] and the question whether this problem
is co-NP-complete is formulated ([4, Problem 1]).

In [1] a characterization of 2-compressing words was given by associating to
every word a family of finitely generated subgroups in some finitely generated
free groups; it was proved that the property of being 2-collapsing is connected
with the indices of some subgroups in this context. A more geometric version
of this idea has been developed in [2]. Some further results in this direction are
contained in [3, 10]. Unfortunately, these characterizations did not allow neither
to settle the complexity of the above problem nor to generalize to n-collapsing
words (cf. remarks in [4]).

In this paper we apply another more combinatorial approach to collapsing
words, which was introduced in [6]. It made possible to answer a number of
open questions formulated in [1], and attack related problems concerning reset
words ([7]). In this paper we present the full solution to the central problem of
complexity which was announced and shortly described in [6] and [7].

Our main motivation in proving the NP-completeness result is preparing a
good starting point for further research by showing that (in view of this result)
certain characterizations are not available here. Our proof exhibits a very tight
connection with two other computational problems: one is connected with solving
certain conditions on permutations, a sort of systems of permutation equations
(Section 3), and another one concerns coloring trees with distinguished nodes
satisfying some natural conditions (Section 5). These problems seem interesting
by themselves and are important from computational point of view.

First, a characterization of 2-collapsing words in terms of solving systems of
permutation conditions is given in Section 3. This characterization is used both
for directly designing an efficient algorithm for recognizing 2-collapsing words
over a 2-element alphabet (Section 4), and for demonstrating that in other cases
the problem is intractable. The proof of this fact occupies the remaining sections.

In our approach, we view an automaton A = (@, X, §) as a set of transforma-
tions labeled by letters of X' rather than as a standard triple. By transformations
of A we mean those transformations of () that are induced via § by letters of



X, Note that to define an automaton it is enough to assign just to any letter of
XY a transformation of ). The monoid (semigroup) generated by the transfor-
mations of A consists precisely of the transformations corresponding to words in
X* (X71). Those transformations that are permutations, if any, generate a group
called the group of permutations of A.

For a € X, df4(a) = 0 if and only if the corresponding transformation is
a permutation of Q. If df 4(a) = 1, then there is a uniquely determined state
z € @, which does not belong to the image Qa, and two different states z,y € Q
satisfying xa = ya; in such a case the corresponding transformation will be
referred to as a transformation of type {x,y}\z (z,y identified, z missing). More
generally a transformation a of A is called of type I\M, for I, M subsets of @,
if I is the set of those z € @ for which there is y € @,y # z such that za = ya,
and M = @ \ Qa. Our idea is that this is essentially all information we need to
compute the deficiency of any word.

Note that cardinalities of I and M are related; in particular, |I| < 2|M]|,
and the equality holds whenever no three different elements of () has the same
image under a. Note also that the deficiency is a nondecreasing function of factor
relation, in the sense that, if w = viuvs, then df 4(u) < df4(w). In particular, if
w = aias...ay, then

de(al) S df_A(Cllaz) S . S de(alaz .- .(Ln).

2 Decidability

For a fixed alphabet X, and fixed n > 1, let C, denote the language of n-
collapsing words. For some time it was not even clear that n-collapsing words
can be recognized, i.e., that the language C,, is recursive. In fact, this is the main
result announced in [4], where a large sketch of the proof of this fact is given.
The full proof in [9] consists of several lemmas and occupies more than 10 pages.
Our new approach makes possible to obtain a shorter elementary proof.

Theorem 1. For each word w € X* that fails to be n-collapsing there exists an
n-compressible automaton A satisfying df 4(w) < n whose number of states |Q)|
is less than 5n|w|.

Proof. Suppose that w is not n-collapsing, and let A = (Q,X,d) be an n-
compressible automaton such that df 4 (w) < n. Concerning the actual deficiency
on word w, we may assume that df 4 (w) =n — 1 (since in case of need one may
add new states qo, q1,...,qr to @, all transformed into gg by all the transforma-
tions, and in such a way suitably increase the deficiency on all the words). Our
aim is to construct an automaton A' = (Q’, X, d") over the same alphabet X,
with df 4/ (w) =n — 1, and df 4 (v) > n for some v € X*, and such that Q' C @
is small enough.

Let w = v172...7 with v; € X. We define the partial deficiency sets D;
of w as the sets of elements missing in the partial images Q172 ...vj—1. More



precisely, we define D; = (), and for 1 < j < t, if y; is a permutation, then
Djt1 = (Dj)vj, and if v; is a non-permutation of type I\ M, then

Dji1=MUDjv; \ (I\Dj)y;

(cf. Figure 1). Note that the sets D; are fully determined by some partial infor-
mation on transformations restricted to a certain subset Q' of Q.

* Djy1

rY; =Y
(I\ Dj)v;

Fig. 1. Scheme of a non-permutation transformation.

Our idea is to keep the deficiency sets of w unchanged with respect to A’ =
(Q',X,6"). To this end it is enough to put the following for every letter v; in w:

(i) 7; acts on D; in the same way in A’ as in A, that is ¢'(x,v;) = y whenever
z € D; and zv; = y;

(i) if ; is a non-permutation of type I;\M; in A, then ~; acts on I; in the same
way in A" as in A, that is 6'(z,y;) = y whenever & € I; and zvy; = y;

We note that when we omit the pairs (z,y) given by (ii), then the remaining
pairs (z,z7;) forms a 1-1 correspondence between the sets @ \ I; and Q \ (M; U
I;v;). If we omit further pairs given by (i), for various occurrences of letter ;
in w, then we have still a 1-1 correspondence between certain subsets of ), and
what are exactly the pairs in this 1-1 correspondence is irrelevant for the sets
D;. We make use of this fact to remove irrelevant elements from (), and obtain
an automaton A’ with a state set @' C (Q and with required properties.

Namely, let Q' consist of those elements = and y that occur in (i) or (ii) for
any v;, 1 < j <t. More precisely, we put

Q= |J Djunuly)
1<j<t

(of course, if v; is a permutation, we put I; = §; note that we have I; = I;
whenever v; = ;).



We define a new action of y; on @)’ as follows. For a fixed j, let v;, = v, =
... = 7, represent all the occurrences of the letters v; in w (where s = s(j)
depends on j, and let D} = D;, U D;, U ...D;,). We agree first that the new
action of v; on the set I; U D7 is exactly the same as in the old action on @, that
is 6'(z,v;) = y whenever z € I; U D} and d(z,7v;) = y. By the remark above the
sets
Q\ (I; UDj) and Q\ (M; U (I; UDJ)y;)

are equinumerous, and therefore the sets

are equinumerous, as well (note that A/; C Djiq1 C Q). We complete the defini-
tion of the new action of v; on ' by choosing any 1-1 correspondence ¢; between
sets Q" \ (I; U D7) and Q" \ (M; U (I; U D7)v;), and setting 0'(z,v;) = ¢;(z) for
z€Q'\ (I; VD).

It should be now clear that the deficiency sets of w with respect to A’ =
(Q', X, §") are exactly the same at those with respect to A. In particular, df 4 (w) =
|Dt+1| = de(w) <n.

To estimate the size of ()', note that by assumption |D;| < n — 1, and recall
that |I;| < 2|M;| and M; C Djyq, for all j. It follows that |Q'| < 4(n — 1)|w|.

Yet, we still need to ensure that A’ is n-compressible, and to this end we may
need to enlarge @' a little. By n-compressibility of A, it follows that there exists
a word u such that df 4(u) > n. Consequently, df 4 (wu) > n, and we assume that
u is the shortest word with this property.

Since df4(w) < n, there are z,y € Q'w = Q' \ D¢41 such that zu = yu.
For u = §;...d,, denote x; = =z, and x;41 = z;J;, and similarly, y; = y, and
Yir1 = y;d;, for all 1 < i < s. Note that zs41 = zu = yu = ysyq. If all
x;,y; € Q', then the automaton A’ defined above satisfies df 4 (wu) > n, and so
it is as required.

Hence, we suppose first that all z; € @', but there is j such that y; ¢ Q’,
and all y; € Q' for all i > j. Note that j < s, since ys7s = Ts7s = ysy1 and
therefore all 4, ys,ys+1 € Q'. Further, since u is the shortest with df 4 (wu) > n,
all z1,...,z; are pairwise distinct and belong to D¢y ;. In particular, j <n — 1.
Now, we add j new states to @', say, Q" = Q" U {py,...,p;}, and rather than
completing the definition of the new action of v; on Q' we complete this definition
on the set Q" by choosing a suitable 1-1 correspondence between the sets Q' \
(I; UDj3) and Q" \ (M; U (I; U D7)y;) such that the following j independent
conditions hold: p;y1 = §'(p;, ;) for all 1 < i < 4, and &' (p;,7;) = yj+1. Since
y;j ¢ @', such a 1-1 correspondence obviously exists. The resulting automaton
on Q" has the same deficiency sets on w as A, and pyu = xu. Consequently,
df 4 (wu) > n, as required. The cardinality |Q"] < 5(n — 1)|w| + n — 1, which
(taking into account that for |w| < n our statement is trivial) yields the required
bound.

Finally, if there are j and k such that y;,x; ¢ @', then assuming that k < j,
we may simply take @' U {z} to get the previous case. Up to symmetry, this
exhausts all the possibilities, thus completing the proof.



Theorem 1 obviously shows that, for each n > 1, the language of n-collapsing
words over X' is recursive (it is always enough to check a finite number of au-
tomata to see whether a word is n-collapsing or not). The bound in our theorem
is linear both in n and in the length of w with a coefficient C = 5, but it is
possible to improve it, observing that in fact we do not need all the states in @',
and we need only one y for each x with zy = y7, to ensure that the resulting
automata have the same deficiency sets. With some additional effort, one could
obtain a coefficient as low as C' = 2, which is the one given by Petrov in [9]. Since
the algorithm based on this idea is non-practical anyway, we leave this possible
improvement to the reader. Another improvement is an observation that a more
precise estimation in our proof yields, in fact, |Q’'| < (n — 1)(Jw| + 3|X)).

3 New characterization of 2-collapsing words

The known fact that each collapsing word is n-full suggests the following defini-
tion. An n-compressible automaton A is called proper ([1]), if no word of length
n is n-compressing for it. In order to decide whether a word w € X is n-collapsing
it is enough to check whether it is n-full, and if so, whether it is n-compressing
for each proper n-compressible automaton.

It is not difficult to see that the n-collapsing words over a one-element, alpha-
bet are simply the words of length larger or equal to n, while 1-collapsing words
over any alphabet are simply 1-full words (i.e. those involving all the letters).

From now on our study is focused on 2-collapsing words over an finite al-
phabet X' of cardinality greater than 1. We start from a classification of proper
2-compressible automata, which has been established in [1]. We rephrase it (to-
gether with the arguments) in the language of our approach.

Obviously, any n-compressible automaton A has at least one non-permutation
transformation. Yet, for A to be proper 2-compressible, non-permutation trans-
formations have to satisfy quite strong conditions. In order to formulate and
prove a suitable result, first we note that a proper 2-compressible automaton
cannot have any transformation with deficiency larger than 2. Indeed, in such
a case a suitable single letter forms a 2-compressing word. Also no transforma-
tion of type {x,y}\z with z ¢ {z,y} is allowed. This is because composing such
a transformation with itself yields the deficiency larger than one, which means
that a suitable subword of the form a? is 2-compressing. Furthermore, if we have
two transformations of type {z1,y1}\2z1 and {z2,y2}\22, then we may assume
that 21 € {z2,y2} (and 22 € {z1,y1}); otherwise a suitable word of the form af
is 2-compressing.

These remarks show that there are the following two possibilities for a proper
2-compressible automaton: either all non-permutation transformations are of the
same type, and in this case there are x,y such that each non-permutation trans-
formation is of type {x,y}\, or there are at least two non-permutation transfor-
mations of different types. In the latter case we have again two possibilities: either
there is z such that each non-permutation transformation is of type {z, z}\z for



some z, or there are x,y such that each non-permutation transformation is of
type {z,y}\z or {z,y}\y.

None of these conditions is sufficient for an automaton to be proper 2-
compressible. In each case there have to be permutation transformations in order
to form a transformation corresponding to a 2-compressing word. It follows, in
particular, that a proper 2-compressible automaton has both non-permutation
and permutation transformations. All the remarks above are rephrasing of the
results established in Section 2 of [1]. We go a step further. Namely, it is not
difficult to see that in each of these cases there is a suitable necessary condition
on the group of permutations which makes the whole condition sufficient. This
is quite obvious after the discussion above, so we simply formulate the result.

Proposition 1. An automaton A is proper 2-compressible if and only if A sat-
isfies one of the following conditions:

(i) there are x,y such that all non-permutation transformations are of the same
type {z,y}\z, and the group of permutations fizes neither the element x nor
the set {z,y};

(ii) there is x such that each non-permutation transformation is of type {z, z}\z
for some z, at least two different types occur, and the group of permutations
does not fix x;

(iii) there are x,y such that each non-permutation transformation is of type {x,y}\z
or {z,y}\y, both the types occur, and the group of permutations does not fix
the set {z,y}.

Let us note that in the classification in [1], the automata in cases (i) and (ii)
are called MONO, and those satisfying (iii) are called STEREO.

Now, we wish to show that for a word w € X* being 2-collapsing over an
alphabet X is equivalent to the nonexistence of nontrivial solutions to certain sys-
tems of conditions on permutations. Consider partitions of X' into blocks, where
blocks are intended to represent types of transformations and closely correspond
to the role assignments introduced in [1]. A nontrivial partition {P, Bs,..., By}
of ¥ with a distinguished block P will be called a DB-partition and will be
denoted by (P,Y), where T = {Bs,..., By} is the induced partition of X'\ P
(h > 2). Roughly speaking the letters in P are intended to represent permuta-
tion transformations and letters in B; are intended to represent non-permutation
transformation of the type {1,i}\1 for 1,i fixed states of Q). Let w be a 2-full
word over Y. To each factor of w of the form awvf3, where v is a nonempty word
whose all letters belong to P (i.e. v € PT), while a ¢ P and § € B;, we assign
a permutation condition of the form

lv e {1,j},

where the letters of P are treated as permutation variables. Thus, the condi-
tion means that the image of 1 under the product v of permutations belongs to
the set {1,;}. The resulting set of permutation conditions (containing all con-
ditions corresponding to factors of w with the properties described above) will



be denoted I',(P,7) and referred to as the system of permutation conditions
determined by a word w and a DB-partition (P, 7). Note that different orderings
of blocks in {B,,..., By} lead to systems which are ”equivalent” in the sense
that one can be obtained from the other just by renaming the variables; so we
do not care of the orderings of blocks.

We say that this system has a solution if there exists an assignment of per-
mutations on a finite set {1,2,..., N} to letters in P such that all the conditions
in I, (P,T) are satisfied. A trivial solution is one with all permutations fixing
1. Also, in the special case when 7" consists of a unique block B (and in con-
sequence, all j’s on the right hand side of the conditions are equal 2), solutions
with all permutations fixing the set {1,2} are considered trivial. The remaining
solutions are nontrivial.

A partition (P,{B,B2}) of X' (into exactly 3 blocks, with a distinguished
block P) will be called a 3DB-partition. Again the letters in P are intended to
represent permutation transformations while letters in B;,¢ = 1,2 are intended
to represent non-transformation permutations of the type {1,2}\i for 1,2 fixed
states of ). For such partition, we define another system of permutation con-
ditions as follows. To each factor of w of the form avj, with a € B;, 8 € B;,
i,j € {1,2}, and v € P*, we assign a permutation condition of the form

iv € {1,2}

(the image of ¢ under v belongs to {1,2}). The resulting set of permutation
conditions will be denoted by I, (P, {Bi, B2}). For such a system, a solution in
permutations is nontrivial if the image of the set {1,2} does not remain fixed
under all the permutations.

Theorem 2. A word w € X* is 2-collapsing if and only if it is 2-full and the
following conditions holds:

(i) I'y(P,T) has no nontrivial solution for any DB-partition (P,T1) of X;
(ii) I,,(P,{Bi,B2}) has no nontrivial solution for any 3DB-partition (P, {B1, B2})
of X.

The reader may observe an explicit similarity with the characterization in
[1, Theorem 3.3]. Yet while, indeed, there is a correspondence in the general
structure, our approach is almost converse: rather then looking into an alge-
braic structure behind, we reduce the problem to the simplest conditions on
permutations.

Proof. We prove the ,,only if” part. We know that if w is 2-collapsing, then it is 2-
full. Suppose by contradiction that the system I',,(P,Y") has a nontrivial solution
for some DB-partition (P,7"), and that this solution consists of permutations on
aset @ = {1,2,...,N}. We build an automaton 4 over ¥ with the set @ of
states as follows: the letters in P act as the permutations given in the solution,
and the letters in each of blocks B; € 1" act as (arbitrary) transformations of
type {1,i}\1. Since the solution is nontrivial, the group of permutations does



not fix 1, and in case when 7" consists of one block By, the group of permutations
does not fix the set {1,2}, either. Thus, by Proposition 1, in each case A is a
proper 2-compressible automaton (of type MONO). To get a contradiction we
show that df4(w) = 1 (which means that w is not 2-compressing for A, and
hence not 2-collapsing).

First, suppose that w has no factor of the form avf3, with v € P, o € B;
and § € B; (which means that the system I,(P,7) is empty, and permutations
in the solution are restricted only by the condition of being nontrivial). Then
w is of the form vay, ...a;, u with v,u € P* and a;; ¢ P, and we show that
df 4(w) = 1. Indeed, for the first segment with permutation variables we have
df 4(v) = 0, and next, df 4(va;,) = 1. Since the type of a;, is {1,i}\1 for some 1,
then 1 is missing in the image Quay;, . Since the type of «;, is {1,:}\1 for some 1,
«;, simply permutes the elements in Quay, ; the deficiency set is again {1}, and
it is easy to see that the same happens at every step. Consequently, df 4 (w) = 1,
as claimed.

Now, let avf3 be a factor of w with v € P*, « € B; and 3 € B;, and assume
that it is the first factor of this form in w. It follows that w = sawvft, where
s,t € X*, and by the previous argument df 4(sa) = 1, and 1 is missing in the
image @sa. Now, since v is nonempty, the permutation condition 1v € {1, j} isin
I',(P,7). It means that 1 is moved into 1 or j by v, and consequently it is 1 or j
that is missing in the image @Qsawv. Since £ identifies 1 and j, df 4 (savf) = 1, and
it is again 1 that is missing in the image @)sav . Repeating this argument several
times we see the deficiency does not decrease, and consequently df 4(w) = 1,
which is the required contradiction.

As the second case we assume that the system I') (P, {B1, Bs2}) has a non-
trivial solution for some 3DB-partition (P,{Bi,Bs}). The proof is analogous,
and we only point out the differences. Here, we build an automaton A where
letters in each of the two blocks B; act as arbitrary transformations of type
{1,2}\i. Since the solution is nontrivial, the group of permutations does not
fix the set {1,2}. Thus, in this case, A4 is a proper 2-compressible automaton
(of type STEREO). If w has no factor of the form avB, with v € PT, a € B;
and § € Bj, then the same argument as before shows that df4(w) = 1. If it
has one, and w = savft exhibits the first factor of this type, then df 4(sa) =i
and ¢ is missing in the image )sa. By the corresponding permutation condition
iv € {1,2}, and therefore df 4(savff) = 1 with j missing in the image Qsavf.
Since i,j € {1,2}, we may continue this argument, to get that df 4(w) = 1, as
required.

To prove the ,,if” part, assume by contradiction that w is not 2-collapsing.
Then, since by assumption it is 2-full, there has to be a proper 2-compressible
automaton A over X', with the set of states Q = {1,2,..., N}, for which w is not
2-compressing. If A is of type MONO ((i) or (ii) in Proposition 1), then we consider
the DB-partition of X', where P represents permutations of A, and Bs, ..., By
represent transformations of types {1,2}\1, ..., {1,h}\1, respectively (we as-
sume without loss of generality that = 1 is the distinguished state). The fact
that w is not 2-compressing for A means that deficiency does not decrease, ex-



cept for the first initial segment of the form va with v € P* and a € B;, for
some i. The only segments where the deficiency could decrease are those of the
form avf, with a € B;, 3 € Bj and v € P*. The fact that the deficiency does
not decrease on these segments is equivalent to that the permutations satisfy
corresponding conditions 1lv € {1,5}, as required. The solution they form is
nontrivial because of respective conditions (i) or (ii) in Proposition 1.

If A is of type STEREO (Proposition 1 (iii)), we consider the 3DB-partition
of X, where P represents again permutations of A, and B;, By represent trans-
formations of types {1,2}\1 and {1,2}\2, respectively, and we use the same
argument as before.

4 2-element alphabet

In this section we consider the simplest nontrivial case of X' = {a, b}. In this case
we have only two DB-partitions, those into two singletons. The corresponding
two systems I, (P,T) are each in one variable, and to present them in detail we
introduce additional notation. Let us define

E,(w) = {k>1 : ba*b is a factor of w};
Ey(w) = {k>1 : abka is a factor of w}.

Then, depending on whether P = {a} or P = {b}, the system I,(P,T) = I,(w)
is one of the following

I,(w) ={1a* € {1,2} : k€ E,(w)}
Iy(w) = {10F € {1,2} : k € Ey(w)}

By Theorem 2 a word w € {a, b}* is 2-collapsing if and only if it is 2-full and none
of the systems I, (w) or I';(w) has a nontrivial solution. Nontrivial solution is,
in this case, a single permutation a or b, respectively, fixing neither 1 nor {1, 2}.
Whether such a solution exists or not depends only on the sets of integers E, (w)
or Ey(w) defined above, and the conditions have purely arithmetical form.

Theorem 3. A word w € {a,b}* is 2-collapsing if and only if it is 2-full and for
all E = Eq,(w) or Ey(w), n > 3, and r < n, the set E modulo n is not contained
in {0,r}.

Proof. In view of Theorem 2 it is enough to prove that one of the systems I, (w)
or I';(w) has a nontrivial solution if and only if there are n > 3 and r < n such
that E = E,(w) or Ey(w) is contained in {0, 7} modulo n.

Suppose first that the system I}, (w) has a nontrivial solution. In this case
the solution is a single permutation a, which we consider as a product of disjoint
cycles. If 1 and 2 are in the same cycle, then this cycle is of length n > 3, since
a does not fix the set {1,2}. We may assume that a = (1,...,2,...,n)..., with
2 standing on (r+1)-th place, 0 < r < n. Then the conditions la* € {1,2}
mean that either k =0 or k =r (mod n), for each k € E,(w). It follows that



E,(w) C {0,7} modulo n, as required. If 1 and 2 are in different cycles of a, then
the cycle containing 1 has length n > 2, since a does not fix 1. For n = 2, the
conditions means that k =0 (mod 2) for each k € E,(w), which is equivalent
to Eq(w) C {0,2} modulo 4. For n > 2, we obtain E,(w) C {0} modulo n, which
completes the case of the system I, (w). For I',(w) the proof is analogous.

Conversely, if for instance E,(w) C {0,r} modulo n (n > 3, r < n), then
the permutation a = (1,...,2,...,n)..., with 2 standing on (r+1)-th place is
obviously a nontrivial solution of the system I, (w). The same argument applies
to Ep(w) C {0,7}.

We note that the condition on n in the theorem can be restricted to n not
exceeding the value of the second smallest element in E. This is so, because for
larger n the two smallest elements are two different non-zero remainders modulo
n, and therefore E cannot be contained modulo n in any set {0,7}. Taking
this into account we have the following algorithm for checking whether a word
w € {a,b}* is 2-collapsing.

1 if w is not 2-full then return NO;
2 forall E + {k>1 : bakb is a factor of w}
or E <+ {k>1: ab¥ais a factor of w} do

3 if |[E| > 1 then

4 N + the second smallest element in E

5 for n < 1 to N do

6 E + Emodn

7 if E C {0,r} for some r < n then return NO
8 return YES

Since the sum of the elements in E is smaller than the length |w| of w, we
obtain the following

Corollary 1. For a 2-element alphabet X, checking whether a word w € X* is
2-collapsing may be done in polynomial time with respect to |w|.

We note that another characterization of 2-collapsing words over a 2-element
alphabet, based on the general result of [1], is given in [10, Proposition 3]. This
also can be used to infer the corollary above. The fact that 2-collapsing words
over a 2-element alphabet may be recognized in polynomial time was also ob-
tained in [2] as a consequence of a general algorithm to check whether a word is
2-collapsing.

5 Related computational problems

We proceed to show that for the case | X| = 3 the situation is essentially different.
In this case we have three types of DB-partitions and one type of 3DB-partition.
In order to check whether a word w € X* is 2-collapsing or not, we need to
check all the corresponding systems I, (P,7) and I}, (P,{B1, B2}), according to



Theorem 2. The cases with |P| = 1 are still easy; they lead to systems in one
variable, and one may prove that all these systems can be solved in polynomial
time. The case |P| = 2 leads to the system I',,(P, 1) in two variables of the form

I'(uy, ... us) = {lug,..., lus € {1,2}},  u; € {B,7}".

and the following PERMUTATION CONDITIONS problem:

INSTANCE: A finite set of words {uy,...,us} over a 2-element alphabet ¥ =
{8,7}.

QUESTION: Does the corresponding system I'(uy, ..., us) of permutation con-
ditions in two variables have a nontrivial solution: i.e. are there permutations
and « fixing neither {1} nor {1,2} satisfying all the conditions of this system?

Our first aim is to show that this problem is NP-complete.

Permutations are generally not easy to visualize. Therefore we convert the
above problem into a problem concerning coloring of a binary tree with dis-
tinguished nodes. Namely, we consider trees representing words u € {3,v}T,
assuming that edges going to the left child represent applying permutation /3,
while edges going to the right child represent applying permutation ~. To repre-
sent a set U = {uy,...,us} of words we take the minimal binary tree in which all
words uq,...,us are represented. The nodes representing these words together
with the root form the set of distinguished nodes of the tree. The resulting tree
with distinguished nodes will be denoted T(U) = T (u1, ..., us).

A 1-2-coloring of a binary tree 17" with distinguished nodes is a coloring of the
nodes with positive integers such that each distinguished node has color either
1 or 2. The root is always colored 1. The coloring is nontrivial, if there is a color
different from 1 and 2. It is coherent, if for any two nodes s,t having the same
color the following conditions hold: if both s and ¢ are left (right) children then
their parents have the same color; if both s and ¢ have left (right) children, then
these children have the same color. Nontrivial coherent 1-2-colorings are called
briefly nc-colorings. We have the following

Lemma 1. Let uy,...,us be words over alphabet {53,~}, such that any word of
length 2 is a prefix of some u;, 1 <i < s. Then the tree T = T(uy,...,us) has
an ne-coloring if and only if the system I'(uy,...,us) has a nontrivial solution.

Proof. For the .,if” part, we assign simply the color 1u to the node s in T
corresponding to the word w. Then, such a coloring is nontrivial due to the
assumption that all nodes representing words of length less or equal 2 are in the
tree. Indeed, the children of the root are colored 15 and 1. If any of them is
different from 1 and 2, we are done; otherwise, at least one of them must be 2,
since the permutations do not fix 1. It follows that both colors 23 and 2v occur
in the tree, and since the permutations do not fix {1, 2}, one of them is different
from 1 and 2, as required. The coherency is by the fact that the action of # and
v is the same at each node.



Conversely, if T = T'(uy, ..., us) has a nontrivial coherent 1-2-coloring, then
it determines (at least partially) the action of 8 and 7 on the colors (which is
unique by coherency). As a result one can get partial representations of 8 and
v as products of cycles. One may easily add new colors, absent in the given
1-2-coloring, to form full representations, and thus get a nontrivial solution of
the system I'(uq,...,us).

This leads us to the following NC-COLORINGS problem:

INSTANCE: A binary tree T' = T'(uy, ..., us) with distinguished nodes.
QUESTION: Does T have a nontrivial coherent 1-2-coloring?

We consider an example, which is the starting point of our construction. Let
Wo ={8,8%,8%, 87, 87°, 8278, 827 8%, 7,7, v 182, v8% 7 B2, v B°7° ).

The tree T'(Wy) representing this set of words is pictured in Figure 2. The
distinguished nodes are marked as black filled circles. The labels represent a
nontrivial coherent 1-2-coloring. This coloring is the most general one in the
sense that any other nec-coloring of T'(Wy) can be obtained from it by suitable
identifications of colors. For example, we can identify z = y obtaining another
nc-coloring; note however that other identifications (for instance z = y) may
lead to non-coherent or trivial colorings. We have

Fig. 2. The most general nc-coloring of T'(Wy).

Lemma 2. The coloring in Figure 2 is the most general nc-coloring of T'(Wy).
In each nc-coloring of this tree the colors x and y are different from 1 and 2.

Proof. The proof of this lemma is routine. It requires checking a number of cases,
using coherency and the fact that distinguished nodes have to be colored 1 or 2.
We give only the beginning of the proof. First note that the nodes corresponding



to § and 7y (the children of the root) are distinguished, so they have to be colored
1 or 2. We consider possible cases. If both these nodes are colored 1, then since
by assumption the root is colored 1, by coherency, both the left and the right
children of any node colored 1 are colored the same, and consequently all the
nodes in the tree are colored 1, which yields a trivial coloring.

As the second case we assume that J is colored 1 and +y is colored 2. Then,
by coherency, nodes corresponding to 32, 3%, and #* are all colored 1. Now /37y is
colored 2 (the same as 7?), 37? and 72 are colored the same, 1 or 2 (since 3v? is
distinguished). Consequently, the nodes corresponding to v" are colored 1 if n is
even, and 2 if n is odd, which by coherency yields again a trivial coloring. The
third case is symmetrical, and it follows that in a nontrivial coherent coloring
both the children of the root have to be colored 2. The next step is to exclude
the cases that one of the nodes labeled z or y in Figure 2 is colored 1 or 2. This
and the completion of the proof is left to the reader.

It follows that in any system of permutation conditions containing I'(Wy)
the nontrivial solutions are all of the form

B =012z)(yz)..., 7= 12y)(za)...

Further cycles involving further colors can occur in 8 and . We note that the
action of # on a and the action of v on z are not determined by the conditions
so far. We make use of this fact in showing that 3SAT can be reduced to NC-
COLORINGS.

6 General construction

For each instance of 3SAT consisting of a collection {C4,...,C,} of clauses on
a finite set (x1,...,2z,) (with |C;| = 3) we construct a binary tree

T:T(Cl,...,C’r,ml,...,xn)

with distinguished nodes such that it has an nc-coloring if and only if there is
a truth assignment satisfying all the clauses. The tree T consists of the main
part M(T), the path P(T) attached to M(T), and 3r paths attached to some
distinguished nodes of P(T). The 3r paths correspond to all occurrences of
variables in the instance of 3SAT (cf. Figure 3). Each of these paths consists of 3
segments bounded and determined by distinguished nodes: the variable segment,
the negation segment, and the clause segment. The nodes on P(T) beginning
variable segments will be referred to as the starting nodes.

The tree is constructed so that in any nc-coloring the starting nodes have
always the same fixed color. The distinguished nodes finishing variable segments
are called the variable valuation nodes; their color may be 1 or 2, and is intended
to reflect the valuation, FALSE or TRUE, of variables in the 3SAT instance. The
negation segment may be missing; it is present if and only if the corresponding
occurrence of variable is negated in the clause it occurs. In such a case the
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distinguished node finishing the negation segment is called the literal valuation
node, and its color, in any nc-coloring (due to properties of the segment) is
always opposite to that of the preceding variable valuation node. In case of
lacking the negation segment the literal valuation node is identified with the
variable valuation node.

7 Structure of permutations

The main part M(T) is an extension of T'(Wy) described in the previous sec-
tion. This implies, in particular, that a nontrivial solution of the corresponding
system of permutation conditions needs to be of the form g = (12z)(yz)...,
and v = (12y)(za) . ... We add further parts to T'(Wy) corresponding to further
permutation conditions, which determine much more details in the structure of
B and 7. Our aim is to make § in a nontrivial solution to be the product of
cycles of the form

B = (12z)(yz)(aa; ...a,ataial ... afabal)(bby ... bybibsbs .. bTBEDE) ... (1)

. (Alcjdje;) ... (BIBIBY) ... (4iX))...(BiYi)...... ,

where ¢ = 1,...,n, j = 1,2,...,r (with n and r given in the 3SAT instance).
Thus, g is intended to consist of two cycles of length 3 and 2, respectively, two
long cycles of length N = 1+n+ 3r each, r cycles of length 4, r additional cycles
of length 3, and n cycles (4;X;) which may be of length 2 or 1 (since we will allow
in this case that X; = A;). Generally, all the letters are intended to represent
different elements (colors), except that X;,Y; € {4;, B;}, and {A4]c;dje;} =
{ATAJ AL A?}, where A} are extra colors, not mentioned yet. The latter condition
means that the elements {A7 A7 A2 A7} are to be arranged in an arbitrary cycle;
we did not mention cycles (B;Y;) because they are either one-element or are
supposed to coincide with a suitable cycle (A;B;).
We intend 7 to be of the form

v = (12y)(za)(zb) ... (a;A;) ... (0;B;) ... (alA)) ... (bIB})..., (2)

wherei=1,...,n,7=1,2,...,r, and t = 1,2,3. Thus it is intended to consist
of one cycle of length 3, and 2 + n + 3r cycles of the length 2.

To achieve this we add to the tree T'(1W,) additional binary branches corre-
sponding to additional words. First we add to Wy two additional words 5%2y3~ 3
and 32yBN~yB32, where N = 1+4n+ 3r. This results in attaching to T'(W,) an ad-
ditional path of length N + 3 with 2 distinguished nodes; it is shown in Figure 4
as one starting in the node labeled a. This construction includes a trick we wish
to describe now, since we apply it repeatedly while adding further branches.

Let us consider an nc-coloring of the tree constructed so far, pictured in
Figure 4. The colors of the nodes in the part corresponding to T'(W) are already
determined by earlier consideration and are copied from Figure 3. For the colors
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Fig. 4. The first additional path attached to T'(Wp).
of the nodes on the additional path we will use letters ay,...,a,, al,a3,al,...,

al,al,a} (corresponding to the intended long cycle in ), and ag, zo, d;,dy for
the last four nodes. We prove that the latter have to be, in fact, a,z,1 and 2,
respectively. Indeed, the last node is distinguished, so it has to be colored 1 or 2;
by coherency, the parent of a node colored 1 is colored x, which by Lemma 2 is
different from 1 and 2; hence, by coherency, it has to be dy = 2, and consequently,
di = 1,29 = x and ag = a, as claimed.

Thus we have forced the color ag to be the same as a in any nc-coloring.
Observe that this is achieved by attaching a path to the node labeled ag, which is
the same as that attached to the node labeled a, and whose coloring is determined
completely by coherency. In the construction of M (T), which is pictured in
Figure 5, we apply this trick several times. In Figure 5 it is shown by arrows: an
arrow attached to a node labeled £ symbolizes the path attached to the earlier
node having the same label; the direction of the arrow shows the direction of the
first edge in the path. In consequence, the colors of the two nodes have to be the
same in any nc-coloring. Dashed lines in Figure 5 mean that the gadgets attached
to all nodes a;,a] and b;,b] on these paths (i=1,...,n,i=j,...,7,t =1,2,3)
are analogous. A careful analysis of this construction yields the following:

Lemma 3. The coloring presented in Figure 5 is the most general nc-coloring
of the pictured tree M(T).

We show how to obtain the nc-coloring corresponding to the permutations 3
and vy of the form given in (1) and (2). First we identify X; and Y; with A; and B;



Fig. 5. The part M(T) with the most general nc-coloring.

choosing for each i either the equalities X; = B; and Y; = A;, which correspond
to the cycle (4;B;) in 3, or X; = A; and Y; = B;, which correspond to the fix-
points (A4;)(B;) in 3. In the sequel we refer to these as to (4;B;)- and (A;)(B;)-
identifications, respectively. Next, we identify colors ff = Bj and g{ = B}, this
1dent1ﬁcatlon by coherency umquely determines identifications of colors fz = BJ

= B!, fi = B/, and ¢} = B, and corresponds to the cycle (B!, B%, BJ) in S.
Slmllarly, if we choose any identification of colors {¢!, d! e, ) with {43, AL AT
then by coherency this determines uniquely identifications of colors ct,dt,et
for t = 1,2,3, and this is equivalent with arranging letters {47, A} A% AJ}
into an arbltrarlly chosen cycle. Of course, we can do it 1ndependent1y for each
J=1,...,n,and this corresponds to fixing n cycles of length 4 in 3. In the sequel
we refer to the above identifications as to (B!, B], B))- and {47, A}, A}, Al}-
identifications, respectively.

8 Encoding truth assignments

The second part denoted P(T) is just the path corresponding to set of words

{77’78, L 7731"—1-4 3r+5}_

This path has 2r distinguished nodes, and continues the pattern of distinguished
nodes started in M (T): two consecutive distinguished nodes follow one, which



is not distinguished (see Figure 3). In consequence, in any nc-coloring the dis-
tinguished nodes on P(T) have to be colored 1 and 2, alternately. The starting
nodes on P(T) are those labeled 2.

a) 2 b)
v 1,2
a
/
S 2,y
/ T,z
a; 1
A, Y
Xi B;, A; 2,1
bi,a;
/
/I N—i
/

b,a
Z,@
y,1
1,2
Fig. 6. Variable and negation segments.

As it was already mentioned, each path beginning in a starting node corre-
sponds to an occurrence of a variable z; in a clause Cj;. It consists of three or
two parts, depending on whether the variable occurs negated in C; or not. The
variable segment is always of the form

C(k) = T(ByB B8N *vB7),

where i is the index of the variable z; and N = 14n+3r as before (see Figure 6a).
Since in any nc-coloring the color of the starting node is 2, further colors in these
segments are also determined by the structure of M(T) and coherency. Thus,
the next two nodes have to be colored z, and a, respectively, and the next one,
according to the most general coloring given in Figure 5, has to be colored a;.
The next node is colored A;, and the next one X;. We show that X; = A;
or B;. Indeed, starting from the other end the distinguished variable valuation
node has to be colored 1 or 2. It follows, by coherency, that the alternatives for
preceding nodes are (y, 1), (z,z), and (b, a), respectively, as shown in Figure 6a.
Then, since the length of the dashed g-path is m = N — ¢, the color of the node
beginning this path, according to the most general coloring given in Figure 5, is
b; or a;, respectively. This implies that the color of the preceding node is B; or
A;, as claimed.



Let us note that choosing the color 1 for the variable valuation node corre-
sponds to identify X; = B; (and consequently, Y; = 4;), while choosing color 2
for this node corresponds to identify X; = A;. By coherency, the variable valu-
ation nodes corresponding to occurrences of the same variable z; must have the
same color, since the variable segments for these occurrences are identical. So
generally (A;B;)- and (A;)(B;)-identifications considered before correspond to
choose 1 or 2, respectively, as color of vertex x;.

For negated occurrences of variables we have the negated segment, which
we put to be the path T'(y3%y) drawn in Figure 6b. We leave to the reader to
check that, due to the main part M (T), it works exactly as assumed: in any
nc-coloring of T, the first node of this path is colored 1 if and only if the last
node is colored 2.

a,b
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(al,alal) (b],b,0))
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Chehed) (A5 o (BLBLBY) (4,4} 4)
(b, b%,b])  (a},a},al)

/
/' N—(m+1,m+2,m)
/

b,a

zZ,x

y,1
1,2

Fig. 7. Colors on the clause segment.

Finally, the clause segments corresponding to variables occurring in a clause
C; are similar to variable segments. They differ only in that they have an ad-
ditional y-edge at the beginning, and the lengths of long S-paths depend only
on the clause the variable occurs in. Namely, all the three clause segments cor-
responding to the clause C; have the form

C(k,0) = T(vByB* B8N tvB7),



where N = 1+4n+ 3r, as before, and for the three successive variables occurring
in C; the clause segments are:

Cim,m+1),C(m+1,m+2),C(m+2,m),

respectively, where m =1+ n + 3(j—1). They are intended to allow on the cor-
responding literal valuation nodes any triple of colors from {1, 2} except (1,1,1)
(which is the unique valuation corresponding to the false value of the clause!).

Similarly as for the variable segment, we consider possibilities for an nc-
coloring of the clause segments; this is illustrated in Figure 7.

Similarly as for the variable segment, we consider possibilities for a nontrivial
coherent 1-2-coloring of the clause segments (see Figure 7). For the first node,
which is a literal valuation node, we have two possibilities 1 or 2. Since at the
beginning the three segments are identical, the alternatives for successive nodes
are the same: (2,y),(x,z), and (a,b), respectively. Then, the segments differ
slightly in the length of the T'(3*)-path, so we consider further alternatives in
form of triples with entries corresponding to the values k = m, m+1, m+2 with
m = 14 n + 3(j—1). From the most general coloring of M(T) given in Fig-
ure 5, for the node ending the T'(3*)-path the alternative of colors is (af, a3, a3)
or (b{,bg,bg), respectively. Then, for the two next nodes the alternatives are
(A{,Ag,Ag) or (B{,Bg,Bg), and (c{,cg,cg) or (ff,fg,fg), respectively. Since
for now, we know nothing about the latter colors, we consider colors of other
nodes from the other end of the segment.

The last node (as distinguished) may be colored 1 or 2, and the alternatives
for preceding nodes are (y,1), (z,z), and (b,a), as before (cf. Figure 6 and
Figure 7). Now, since the length of the T'(3Y ~¢)-path is N —(m+1), N —(m+2)
or N — m, respectively, with m = 1 + n + 3(j —1), the alternatives for the
node starting the 7'(8~ ~¢)-path are (b3, b3, b]) or (a3, a3, a]), respectively. Hence,
the alternatives for the preceding node are just (Bg,Bg,B{) or (A%,Ag,A{),
respectively, which impose some conditions on the values of c{, cg, c:’,;, ff , f2j , fg ,
depending on valuation of literal valuation nodes.

For example, if the literal valuation node corresponding to the first occurrence
of a variable in C; is colored 1, then (in any nontrivial coherent 1-2 coloring) it
has to be c{ = Bg or A%. We show that the first possibility is excluded. Indeed,
if ¢] = B, then by coherency, di = fi, €] = g}, and A7 = BJ. Tt follows further
that a{ = bé, and a = by; and further, z = By, 2 = Y7, 1 = By, which yields , the
contradiction z = 1. A similar argument shows that if the literal valuation node
corresponding to the second or third occurrence of a variable in C} is colored 1,
then ¢} = A} or ¢} = A7, respectively.

In particular, if all the literal valuation nodes corresponding to the same
clause C; are colored 1, then it follows that the T'(3*)-paths going from A7,
t =1,2,3, are all colored with the same color A7 = A} = AJ. This leads to a
contradiction as before (it follows successively: a{ = aé, a =a;, x = A, and
1= A;). This proves the first statement of the following.



Lemma 4. In any nc-coloring, the literal valuation nodes corresponding to the
same clause C; cannot be all colored 1; any other coloring of these nodes may
occur.

For the second statement, it is enough to apply first the (B{, Bg, Bg )-identification,
and then to choose a suitable { A}, A}, A}, Al}-identification. For example, if the
successive literal valuation nodes corresponding to clause C; are colored (1,2, 1),
then in Figure 7 we have colors (¢!, fJ,¢}) = (A}, B], A). Here A} has to be the
color following A7, BJ has to be the color following Bj (which is now the case),
and A7 has to be the color following AJ. It is the (A}, AL, AL, Al)-identification
that satisfies these conditions.

Summarizing, if we have given any nc-coloring of T, then the colors of variable
valuation nodes determine, in a coherent way, the colors assigned to variables
Z1,...,Tyn, which are always 1 or 2. The colors of literal valuation nodes are
reverse or the same depending on whether the variable is negated in a clause or
not, and it never happens that the literal valuation nodes corresponding to the
same clause have all color 1. It follows that if we treat 1 as the false value, and 2

as the true value, then the nc-coloring yields a truth assignment for (z1,...,z,)
satisfying all the clauses.
Conversely, for any truth assignment for (z1, ..., ;) satisfying all the clauses,

there exists an ne-coloring of T corresponding to it. This is simply the most gen-
eral coloring given in Figure 5 with suitable (A4;B;)- and (A;)(B;)-identifications,
the (B{, B3, B3)-identification, and suitable { A}, A}, A}, Al}-identifications. The
latter exists, as we have observed, for all clauses valuated true.

Since all those constructions may be done, obviously, in polynomial time, we
obtain

Theorem 4. The problems PERMUTATION CONDITIONS and NC-COLORINGS
are both NP-complete.

9 Application to collapsing words

By the result of Section 2, we know that if a word w € X* is not n-collapsing
then there is an n-compressible automaton A = (Q, X, 6) with |Q| < 5n|w]| such
that df 4 (w) < n. From this (combined with the fact that n-collapsing words are
n-full) it follows that the following general problem of recognizing n-collapsing
words is in co-NP.

INSTANCE: A finite alphabet X, a word w € YT, and an integer n > 0.
QUESTION: Is w n-collapsing over X7

We now show how 3SAT can be reduced in polynomial time to the above
problem. First, we associate, with each instance of 3SAT the tree

T:T(Cl,...,Cr,ml,...,mn)



defined in the previous section, and next, the set of words {w;,ws,...,ws} C
{B,~}* determined by the distinguished nodes of T. We wish to define the word
w = ¢(wy,ws,...,ws) over the alphabet ¥ = {a, 3,7} so that it satisfies the
following three conditions:

(i) ava, where no a occurs in v, is a factor of w if and only if v = w; for some
i
(i) w contains all factors of the form xyz and zy?z, for all different z,y € X,
T #
(iii) yaBy, vBay and Bayf, Byaf are factors of w.

To this end we put w = wujususuy, where the four segments are defined as
follows:
U] = QW1 QW . . . AW,

note that by properties of T, aa and aya are among factors of u;, while Ba? 8,
~ya?y are not;
uy = fafafa’ fayayayay;

these are simply factors Baj3, fa?Ba and yary, ya?y separated by letter a (the
later makes sure that no new factor of the form ava arises);

ug = ayafy’af?y* BayaBay oy’ B2 yafa;

i.e. the four words from condition (iii) above separated by other words in such
a way that that no new factor of the form ava arises; note that factors afy2a,
af?y2Ba, ayB?a, and ay?B2ya occurring in ug, are (by properties of T) among
factors of uq;

ug = ByB2y* B;

this ensures that all the remaining words of the form zyx and xy?z, which are
those not involving «, are among factors of w.

Now, consider the conditions for w = ¢(wy,ws, . . ., ws) to be 2-collapsing. To
this end we need to consider systems I, (P,T1) and I, (P,{B;, B>}) described
in Section 3. First, we observe that (due to properties of w) for the systems of
the second type have only trivial solutions.

Indeed, if say P = {a}, By = {#}, B2 = {7}, then since faf and yay are
factors of w, the conditions la € {1,2} and 2a € {1,2} are in I}, (P, {B, B2}),
which means that « fixes the set {1,2}. The same argument works for other
cases here.

We consider systems of the first type. I P = {a} and, say, 8 € B, then since
Baf and Ba’f are factors of w, the conditions la € {1,2} and 1a? € {1,2} are
in I,(P,T), which means that « fixes either {1} or {1,2}. In case when Bs is
the unique block in 7", we are done. Otherwise, v € B3, and since yary is a factor
of w, la € {1, 3}, which yields that « has to fix 1, as required. If P = {3}, then
similar reasoning shows that since y3v and /3%~y are factors of w, 3 fixes either
{1} or {1,2}, and since afa is a factor of w, 3 fixes 1, as required. In view of
symmetry between § and «y this exhausts all the possibilities for |P| = 1.



If P = {a,} then the factors of w, yay and ya?7y yield that « fixes either
{1} or {1,2}, and factors 3y and 3%y yield that also 3 fixes either {1} or
{1,2}. To make sure that either both fix {1} or both fix {1,2} we use the fact
that yBay and yaf~y are factors of w. It follows that 18a,1laf € {1,2} which
makes impossible that one of them fixes 1, but not 2, while another one fixes
{1,2}, but not 1 alone. (For example, if la = 1 and 18 = 2, then 1fa = 2a).
The same argument works for P = {a, v}.

It follows that the only nontrivial case is that of P = {3,~}. Consequently,
¢(wy,ws, ..., ws) is 2-collapsing if and only if I'(w;,ws,...,ws) has a nontriv-
ial solution, which holds if and ounly if T = T(C4,...,Cy,x1,...,x,) has an
nc-coloring, which holds if and only if there is a truth assignment for the corre-
sponding 3SAT instance. Thus we have

Theorem 5. The general problem of recognizing n-collapsing words defined above
is co-NP-complete.

Our proof gives also the result for the variant of the problem with a fixed
alphabet on 3 letters. It can be easily modified to get the following

Theorem 6. The problem of recognizing 2-collapsing words over a fized alphabet
X with more than 2 letters is co-NP-complete.

Proof. The modification of the previous proof is the following. We wish to define
the word w' = 9(w1,wa,...,ws) over alphabet ¥ = {a, 8,7,0,...} with more
than 3 letters in such a way that it satisfies the following two conditions:

(i) ava is a factor of w' if and only if v = w; for some i (for any word v with
no occurrence of letter «);

(ii) w contains all factors of the form xyz, zy?, and ryzx, for x,y, 2z € X pairwise
distinct, except for ay?a, af?a, afya, and ayBa (unless they are among
w;);

To this end we put w = vi1vov3v4v5, Where vy = ujusug is the word over
{a, 8,7} for Uy, us and uy defined before; v, consists of all the words of the form
zax and zo’z separated by letter o, and finishing with a, for all z # «a; vs
consists of all the words of the form zayz and zyazr separated by letter o for
all z # a, z # y, and {z,y} # {B,7}; vs consists of all the words of the form
azya for all z # y, and {z,y} # {B,7}; and vs is the least word containing all
the possible words on four letters other than .

An essential property of w defined in this way is that, if ava is a factor of
w and v has no occurrence of «, then either v = w; or there is at most one
occurrence of 8 or v in v. Now, consider the conditions for w being 2-collapsing.
As before we prove that all the systems I,,(P, 1) and I} (P,{B;, B2}), but one,
have only trivial solutions.

For the systems of the second type the argument is the same as before. For
the first type we assume first that there is a letter z # a not in P. Without loss
of generality we may assume that z € Bs. Then for any letter y € P we have
factors zyxr and zy’r in w, which as before means that y fixes either 1 or {1, 2}.



Moreover, if there are at least two blocks in 1", and z € B, then zyz is a factor
of w (also if z = a), and it follows, as before, that all y € P fix 1, as required.
If there is the unique block By in T°, then we need to show that either all y € P
fix 1 or all y € P fix {1,2}. To this end we use the fact that zyzz is a factor of
w for all z # a. If y, 2z € P, then from the facts that each of them fixes either 1
or {1,2}, and lyz,1zy € {1,2}, we infer easily that either both fix 1 or both fix
{1,2}. This extends obviously to all the elements of P, proving that there are
only trivial solutions in this case.

It remains the case when the only letter not in P is «. Then, for all z €
P\ {B,7}, aza and az?« are factors of w, and it follows that x fixes either 1 or
{1,2}. If the system I'(wq,ws,...,ws) has only trivial solutions, then (because
of the factor u; of w) the same holds also for # and . In such a case factors azya
of w with {z,y} # {8,7} guarantee, as in the previous case, that I,,(P,7) has
only trivial solutions. If there is a nontrivial solution (3,v) for I'(wy, wa, - .., ws),
then taking all x # (3,7 such that they fix both 1 and 2, we obtain a nontrivial
solution of I, (P,T). Indeed, by properties of u;, 15 = 1y = 2, and by the
essential property of w mentioned earlier, all the permutation conditions not
corresponding to the factor u; involve at most one occurrence of # or . Hence,
in view of our assumption on other permutations, all these conditions are trivially
satisfied. Consequently, w is 2-collapsing if and only if I'(wq,ws, ..., ws) has a
nontrivial solution, which as before completes the proof.
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