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1 Introduction

The relaxed Dirichlet problem was introduced in [17] in relation with the
Γ-limits of problems relative to a coercive elliptic operator (with bounded
measurable coefficients) in open sets with holes and homogeneous Dirichlet
condition on the boundaries of the holes. In [17] a notion of regular points is
defined; a point is called regular if any local solution of the relaxed Dirichlet
problem in a neighborhood of the point takes the value 0 at the point with
continuity. In the same paper a Wiener criterion for the regularity of the point
is proved using a suitable notion of capacity connected with the positive Borel
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measure appearing in the problem. The result was extended to the framework
of Riemannian bilinear Dirichlet forms in [1].
Concerning the nonlinear case we recall that a notion of Kato measure is given
in [9] in relation with the subelliptic p-Laplacian and a Wiener criterion for
regular points of the corresponding relaxed Dirichlet problem (with a source
term, which is Kato measure) was obtained in [10] using for the proof of the
necessity part of the result a generalization to the subelliptic framework of an
estimate proved by Malỳ in the Euclidean setting, [21], see [9]; for the proof
of the sufficient part of the result in the case of a zero source term an adapta-
tion to the subelliptic framework of a method given in [19] in the Euclidean
setting is used and for the general case the fundamental tool in the proof is a
comparison method founded on local uniform monotonicity properties.
In [11] the notions of p-homogeneous strongly local Dirichlet functionals and
forms are introduced and, in [13], the Hölder continuity of harmonic function
is proved in the Riemannian case as a consequence of an Harnack inequal-
ity for the metric related to the form. Particular p-homogeneous Riemannian
Dirichlet forms are related to the subelliptic p-Laplacian (eventually weighted)
and to the p-Laplacian in a metric measurable structure, [14][20].
In the present paper we are interested in the Wiener criterion for regular points
of a relaxed Dirichlet problem relative to a p-homogeneous Riemannian Dirich-
let form (with a source term, which is Kato measure, see [6] for the definition).
The interest of relaxed Dirichlet problems is twofold:
(1) From the Wiener criterion for relaxed Dirichlet problems a Wiener crite-
rion for regular point of the boundary follows, see [7] for the direct proof of
Wiener criterion for regular point of the boundary. The proof is immediate in
the case where the boundary data can have an extension to a function in the
domain of the form on all the space; the proof in the general case requires also
some approximation methods.
(2) The class of relaxed Dirichlet problems is closed for Γ-convergence and in
particular the Γ-limits of Dirichlet problems in open sets with holes and zero
Dirichlet condition on the boundary of holes are relaxed Dirichlet problems,
see [5] where the result is proved by methods of Γ-convergence, which are a
refinement of the methods used in the linear Euclidean case in [18].
In section 2 we introduce the notion of p-homogeneous Riemannian Dirichlet
form and the definition of the Kato class of measures relative to the form.
In section 3 we give the main result in the paper, i.e. a Wiener criterion for
regular points for the relaxed Dirichlet problem. In section 4 we prove some
preliminaries results, in section 5 we prove our criterion. We observe that the
methods used in section 5 in the proof of the sufficient part of the criterion
are essentially different from the ones used in [10] due to the absence of lo-
cal uniform monotonicity properties for our form; the methods used here are
founded on the extension to our general framework of an estimate of [21] (see
[6]) and on a finite iteration method of Nash- Moser type (see [19] for the
Euclidean framework). For the proof of the necessary part of the criterion we
use an adaptation of the proof in [10] for the subelliptic framework.
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2 Notations and main result.

2.1 Riemannian p-homogeneous Dirichlet forms

We consider a locally compact separable Hausdorff space X with a metrizable
topology and a positive Radon measure m on X such that supp[m]= X.
We assume that Φ(v) =

∫
X α(u)(dx) is a strongly local, strictly convex p-

homogeneous Dirichlet functional, p > 1, with domain D0 and that Ψ(u, v) =∫
X µ(u, v)(dx) is the related strongly local p-homogeneous Dirichlet form (with

domain D0 ×D0) as defined in [11]. We refer to [11] for the properties of the
Radon measures α and µ (in particular the chain rule, the truncation rule,
the Leibnitz rule for µ(u, v) with respect to v, and the Schwartz inequality
for µ(u, v)), and to [2] for a Leibnitz type inequality for α. The above notions
allow us to define a capacity relative to the functional Φ (and to the measure
space(X, m)). The capacity of an open set O is defined as

p− cap(O) = inf{Φ1(v); v ∈ D0, v ≥ 1 a.e. on O}

if the set {v ∈ D0 , v ≥ 1 a.e. on O} is not empty and

p− cap(O) = +∞

otherwise. Let E be a subset of X, we define

p− cap(E) = inf{p− cap(O); O open set with E ⊂ O}.

We recall that the above defined capacity is a Choquet capacity [11]. Moreover
we can prove that every function in D0 is defined quasi-everywhere (i.e. up to
sets of zero capacity), [11].
We recall that the Radon measures α and µ are assumed to charge no sets of
zero capacity.
The strong locality property allows us to define the domain of the form with
respect to an open set O, denoted by D0[O] and the local domain of the form
with respect to an open set O, denoted by Dloc[O]. We recall that, given an
open set O in X we can define a Choquet capacity p − cap(E; O) for a set
E ⊂ E ⊂ O with respect to the open set O. Moreover the sets in O of zero
capacity are the same for the p-capacities with respect to O and to X. We also
observe that using the truncation rule we can prove that µ(u, v) = µ(w, v) on
the set where u = w (the set is defined up to sets of zero capacity) for every
v ∈ D0.
Assume that the following hold
(i) A distance d could be defined on X, such that α(d) ≤ m in the sense of the
measures and the metric topology induced by d is equivalent to the original
topology of X.
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(ii) Denoting by B(x, r) the ball of center x and radius r (for the distance d),
for every fixed compact set K there exist positive constants ν ≥ 1, c0 and R0

such that

m(B(x, r)) ≤ c0m(B(x, s))
(

r

s

)ν

(2.1)

∀x ∈ K and for 0 < s < r < r0.
We can assume without loss of generality p < ν.
From the properties of d it follows that for any x ∈ X there exists a function
φ(.) = φ(d(x, .)) such that φ ∈ D0[B(x, 2r)], 0 ≤ φ ≤ 1, φ = 1 on B(x, r) and

α(φ) ≤ 2

rp
m

.
(iii) We assume also that the following scaled Poincaré inequality holds: For
every fixed compact set K there exist positive constants c2, R1 and k ≥ 1 such
that for every x ∈ K and every 0 < r < R1

∫

B(x,r)

|u− av(u,B(x, r))|pm(dx) ≤ c2r
p

∫

B(x,kr)

α(u)(dx) (2.2)

for every u ∈ Dloc[B(x, kr)], where av(u,B(x, r)) = 1
m(B(x,r))

∫
B(x,r) u m(dx)

(scaled Poincaré inequality).
A strongly local p-homogeneous Dirichlet form, such that the above assump-
tions hold, is called a Riemannian Dirichlet form.
As proved in [22] the Poincaré inequality implies the following Sobolev inequality:
for every fixed compact set K there exist positive constants c3, r2 and k ≥ 1
such that for every x ∈ K and every 0 < r < R2

(av(up∗ , B(x, r)))
1

p∗ ≤ (2.3)

≤ c3(
rp

m(B(x, r))

∫

B(x,kr)

α(u)(dx) + av(|u|p, B(x, r)))
1
p

with p∗ = pν
ν−p

and c3, R2 depending only on c0, c2, R0, R1. We observe that
we can assume without loss of generality R0 = R1 = R2.

Remark 2.1 From (2.3) we can easily deduce by standard methods that for
every fixed compact set K, such that the neighborhood of K of radius R0 is
strictly contained in X, for every x ∈ K and 0 < 2r < R0

∫

B(x,r)

|u|pm(dx) ≤ c?
2r

p
∫

B(x,kr)

α(u)(dx)

for every u ∈ D0[B(x0, r)], where c?
2 depends only on c2 and c0.

As a consequence of the assumptions on X and d and of the Poincaré inequality
we have the following estimate on the capacity of a ball, [13]:
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Proposition 2.1 For every fixed compact set K there exists positive constants
c4 and c5 such that

c4
m(B(x, r))

rp
≤ p− cap(B(x, r), B(x, 2r)) ≤ c5

m(B(x, r))

rp

where x ∈ K and 0 < 2r < R0.

2.2 The σ-p-capacity

Let
∫
X µ(u, v)(dx) be the p-homogeneous Riemannian Dirichlet form relative

to the Dirichlet functional
∫
X α(u)dx and let Ω be a relatively compact open

set in X. We denote by Mp
0 (Ω) the set of the nonnegative Borel measures

on Ω, which does not charge sets of zero capacity (with respect to the given
form).
Let σ ∈ Mp

0 (Ω). We say that a Borel subset E of Ω is σ-admissible if there
exists a function w ∈ Lp(Ω, σE) such that (w− 1) ∈ D0[Ω], where σE = σ|E is
the restriction of σ to E.
If E is not σ-admissible, then we define p− capσ(E, Ω) = +∞.
If E is σ-admissible, then we define

p− capσ(E, Ω) = (2.4)

= min





∫

Ω

α(v)(dx) +
∫

Ω

|v|pσE(dx) | (v − 1) ∈ D0[Ω]





The function wE which realizes the minimum in (2.4) is called the σ-potential
of E relative to Ω.
We observe that the σ-potential of E relative to Ω is the solution of the
problem ∫

Ω

µ(wE, v)(dx) +
∫

Ω

|wE|p−2wEv σE(dx) = 0 (2.5)

wE ∈ D0[Ω] ∩ Lp(Ω, σE), wE − 1 ∈ D0[Ω], for every v ∈ D0[Ω] ∩ Lp(Ω, σE).

2.3 The Kato class

The definition of Kato class of measures was initially given by T. Kato in 1972
in the case of Laplacian and extended in [15] to the case of elliptic operators
with bounded measurable coefficients. The Kato class relative to the subelliptic
Laplacian was defined in [16], and the case of (bilinear) Riemannian Dirichlet
forms was considered in [8] and [3].
In [2] the Kato class was defined in the case of the subelliptic p-Laplacian
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and in [6] the following definition of Kato class relative to a Riemannian p-
homogeneous Dirichlet form has been given:

Definition 2.1 Let λ be a Radon measure. We say that λ is in the p-Kato
space Kp(X) (p > 1) if

limr→0Λ(r) = 0

where

Λ(r) = supx∈X

2r∫

0

( |λ|(B(x, ρ))

m(B(x, ρ))
ρp

)1/(p−1)
dρ

ρ

Let Ω ⊂ X be an open set; Kp(Ω) is defined as the space of Radon measures
λ on Ω such that the extension of λ by 0 out of Ω is in Kp(X).

In [6] the properties of the space Kp(Ω) are investigated. In particular it is
proved that if Ω is a relatively compact open set of diameter R̄, then

||λ||Kp(Ω) = Λ(
R̄

2
)p−1

is a norm on Kp(Ω) and that Kp(Ω) endowed with this norm is a Banach
space, [6]. Moreover, [6], Kp(Ω) is contained in D′[Ω], where D′[Ω] denotes the
dual of D0[Ω], and

||λ||D′[Ω] ≤ c4(λ(Ω)Λ(
R̄

2
))

p−1
p

2.4 The relaxed Dirichlet problem and the related regular points

Let Ω be a relatively compact subset of X, σ a nonnegative measure in Mp
0 (Ω),

g ∈ C(Ω) ∩Dloc[Ω] and λ ∈ Kp(Ω) .

Definition 2.2 The function u ∈ Dloc[Ω]∩Lp
loc(Ω, σ) is a local solution of the

relaxed Dirichlet problem relative to µ, Ω, σ, g, λ if u− g ∈ Lp
loc(Ω, σ) and

∫

Ω

µ(u, v)(dx) +
∫

Ω

|u− g|p−2(u− g)v σ(dx) =
∫

Ω

v λ(dx) (2.6)

for any v ∈ D0[Ω] ∩ Lp(Ω, σ) with compact support in Ω. We observe that the
condition u−g ∈ Lp

loc(Ω, σ) can be imposed due to the fact that u is q.e defined
on every compact subset of Ω, [11].

Definition 2.3 A point x0 ∈ Ω is a regular point for (2.6) if, for arbitrary g
and λ satisfying the conditions in Definition 2.2, every local solution u of (2.6)
relative to a neighborhood of x0 in Ω is continuous at x0 and u(x0) = g(x0).

Remark 2.2 The regularity of a point x0 for (2.6) does not depend on Ω, g,
λ.
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2.5 The main result

We are now in position to state the main result of this paper.

Definition 2.4 A point x0 in Ω is called a Wiener point (for the relaxed
Dirichlet problem (2.6)) if and only if

R∫

0

δ(ρ)
1

p−1
dρ

ρ
= +∞ (2.7)

where δ(ρ) = p−capσ(B(x0,ρ),B(x0,2ρ))
p−cap(B(x0,ρ),B(x0,2ρ))

(≤ 1)and B(x0, R) ⊂ Ω.

Theorem 2.1 Let x0 ∈ Ω. The point x0 is regular (for the relaxed Dirichlet
problem (2.6)) if and only if it is a Wiener point.

3 Preliminaries results.

Proposition 3.1 Let λ be a Radon measure in Ω such that λ ∈ D′[Ω], and
let u be a local solution of (2.6). Then

∫

Ω

µ((u∓ k)±, v)(dx) ≤
∫

Ω

v|λ|(dx)

∀v ∈ D0[Ω], v ≥ 0 a.e. in Ω, where g± ≤ k in Ω.

The proof is similar to the one of Proposition 2.1 in [10] (where the subelliptic
case is considered) using the truncation rule for the form, [11].

Definition 3.1 Let u, v ∈ Dloc[Ω]. We say that u ≤ v on ∂Ω if (u − v)+ ∈
D0[Ω].

Definition 3.2 Let f , g ∈ D′[Ω]. We say that f ≤ g iff < f − g, v >≤ 0
∀v ∈ D0[Ω], v ≥ 0 a.e. in Ω.

Proposition 3.2 Let u be a local weak solution of (2.6) with g = 0. If λ ≥ 0
and u ≥ 0 on ∂Ω, then u ≥ 0 a.e. in Ω.

The proof is similar to the one of Proposition 2.2 in [10] (where the subelliptic
case is considered) using the truncation rule for the form, [11].

Proposition 3.3 Let u1 and u2 be local weak solutions of (2.6) with g = 0
relative to the Borel measures σ1 and σ2 in Mp

0 (Ω) with σ1 ≤ σ2 (in Borel
measure sense) and to the Radon measures λ1, λ2 ∈ D′[Ω] with 0 ≤ λ2 ≤ λ1.
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Assume that 0 ≤ u2 ≤ u1 on ∂Ω and that u1 has an extension to a function
in D0 . Then 0 ≤ u2 ≤ u1 a.e. in Ω.

Proof. By Proposition 3.2 we have u1, u2 ≥ 0 a.e. in Ω. Let v = (u2−u1)∨ 0.
Since u2 ≤ u1 on ∂Ω we have v ∈ D0[Ω]. Since u2, u1 ≥ 0 q.e. in Ω we have
0 ≤ v ≤ u2 q.e. in Ω, therefore v ∈ Lp

loc(Ω, σ2) ⊂ Lp
loc(Ω, σ1). There exists a

sequence of functions vh ∈ D0[Ω] with compact support in Ω which converges
strongly in D0[Ω] to v and such that 0 ≤ vh ≤ v q.e. in Ω. We can take vh as
test function in the problems (2.6) relative to λ1 and λ2. Since u2vh ≥ 0 a.e.
in Ω and σ1 ≤ σ2 we obtain

∫

Ω

[µ(u2, vh)− µ(u1, vh)] (dx)

+
∫

Ω

[
|u2|p−2u2vh − |u1|p−2u1

]
vhσ1(dx) ≤

∫

Ω

vh [λ2 − λ1] (dx)

Since [|u2|p−2u2vh − |u1|p−2u1] vh ≥ 0 and vh [λ2 − λ1] ≤ 0 a.e. in Ω, we obtain

∫

Ω

[µ(u2, vh)− µ(u1, vh)] (dx) ≤ 0

and the limit h →∞ gives
∫

Ω∩{u2−u1>0}
[µ(u2, v)− µ(u1, v)] (dx) =

∫
[µ(u1 + v, v)− µ(u1, v)] (dx) ≤ 0

Taking into account the assumption on Φ of strict convexity, and then that Ψ
is strictly monotone, we obtain v = 0, so u2 ≤ u1 a.e. in Ω.

Proposition 3.4 (Properties of the potential) Let E ⊆ Ē ⊆ Ω be σ-admissible
and wE be the σ-potential of E on Ω. Then there is a positive measure ζE ∈
D′[Ω] such that ∫

Ω

µ(wE, v)(dx) +
∫

Ω

vζE(dx) = 0

∀v ∈ D0[Ω]. The measure ζE has support in Ē and p− capσ(E, Ω) = ζE(Ω).

The proof is similar to the one of Proposition 2.4 in [11] (where the subelliptic
case is considered). We use also the fact that a positive functional in D′[Ω] is
a measure.

4 Proof of Theorem 2.1

Let x0 ∈ Ω, we may assume without loss of generality g(x0) = 0. Let u
be a local weak solution of (2.6) we may assume without loss of generality
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u ∈ Lp(Ω,m). Let r ≤ 3R
4

, B(x0, 2R) ⊆ Ω, R ≤ R0. From Proposition 3.1 the
function uk = (u− k)+, where k ≥ supB(x0,2R)g, is a local weak subsolution of
(2.6) in B(x0, 2r) with σ = 0, that is it satisfies

∫

B(x0,2R)

µ(uk, ϕ)(dx) ≤
∫

B(x0,2R)

ϕ|λ|(dx) (4.1)

∀ϕ ∈ D0[B(x0, 2R)], ϕ ≥ 0 a.e. in B(x0, 2r). Then uk is locally bounded in
B(x0, 2R) and its supremum on B(x0, R) depends on R, ||u||Lp(Ω,m). [6]. Let
us define M(r) = supB(x0,r)uk. Let ξ(r) ≤ 1 be a positive increasing function
such that ξ(r) → 0 when r → 0 and suppose ξ(r)−2Λ(r) bounded on (0, R).

For example, if Λ(r) ≤ Λ, we can choose ξ(r) = (Λ(r)
Λ

)
1
2 . Let us observe that

we will suppose r so small that ξ(r) ≤ 1. Let v = 1
M−uk+ξ(r)

.

Proposition 4.1 Let p ∈ (1, ν) and η ∈ D0[B(x0,
r
2
)] ∩ L∞(B(x0,

r
2
),m),

r ≤ 3
48k

R, with α(η) ≤ c
rp m a.e. in Ω, for a positive constant c. Then there

exists a constant C > 0 dependent on Ω, p, R, ||u||Lp(Ω,m), such that

rp

m(B(x0, r))




∫

Ω

α(ηv−1)(dx) +
∫

Ω

|v−1 − (M(r) + ξ(r))|pηpσ(dx)


 (4.2)

≤ CM(r)

{[
M(r)−M(

r

2
) + ξ(r)

]p−1

+ Σ(r)(p−1)

}

where Σ(r)p−1 := (ξ(r)−1Λ(r))(p−1)∧1

We assume now the Proposition 4.1 and we prove the sufficient part of Theo-
rem 2.1. Let k = supB(x0,2r)g and let η = 1 on B(x0,

r
4
). Multiplying (4.2) by

(M(r) + ξ(r))−1, we obtain

(M(r) + ξ(r))p−1 rp

m(B(x0, r))




∫

Ω

α(ηṽ−1)(dx) +
∫

Ω

|ṽ−1 − 1|pηpσ(dx)


 (4.3)

≤ C

[(
M(r)−M(

r

2
) + ξ(r)

)p−1

+ Σ(r)(p−1)

]

where ṽ = v
(M(r)+ξ(r))

. From the definition of p− capσ and we obtain

(M(r) + ξ(r))

[
p− capσ(B(x0,

r
4
, B(x0,

r
2
))

p− cap(B(x0,
r
4
), B(x0,

r
2
))

] 1
p−1

≤

≤ C
[
M(r)−M(

r

2
) + ξ(r) + Σ(r)

]

where here and in the following C denotes a possibly different constants de-
pendent on Ω, p, R, ||u||Lp(Ω,m). Here we assume C ≥ 1. The above inequality
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gives

M(
r

2
) ≤

[
1− C−1δ

(
r

2

) 1
p−1

]
M(r) + 2ξ(r) + Σ(r)

where δ(r) =
p−capσ(B(x0, r

2
),B(x0,r))

p−cap(B(x0, r
2
),B(x0,r))

. It follows

supB(x0, r
2
)u

+ ≤
[
1− C−1δ

(
r

2

) 1
p−1

]
supB(x0,r)u

+ + Σ1(r)

where Σ1(r) = 2supB(x0,2R)g + 2ξ(r) + Σ(r). Taking into account that −u is a
local solution of (2.6) relative to −g, −λ, we obtain an analogous inequality
for u−. Then

supB(x0, r
2
)|u| ≤

[
1− C−1δ

(
r

2

) 1
p−1

]
supB(x0,r)|u|+ Σ1(r) (4.4)

where r ≤ 3R
48k

and B(x0, 2R) ⊆ Ω. From (4.4) by iteration, see [23], we obtain

supB(x0,s)|u| ≤

≤ C1exp


−C2

r∫

s

δ(ρ)
1

p−1
dρ

ρ


 supB(x0,r)|u|+ 2oscB(x0,2R)g + 2ξ(r) + Σ(r)

where 0 < s < r
2

< r < 3R
48k

and B(x0, 2R) ⊆ Ω. The result follows.

We prove now the sufficient part of Proposition 4.1.
The first step is to prove that suitable powers of v are in the A2 Muckenhoupt
(with respect to the form). Let η ∈ D0[B(x0, r)]∩L∞(B(x0, r),m) with η = 1
in B(x0,

3
4
r) and α(η) ≤ cr−pm for a positive constant c, where r ≤ R. If

w = v−1, we have that w is a supersolution of (2.6) relative to σ = 0 and −λ.
Then ∫

B(x0,r)

ηpα(lgw)(dx) =
∫

B(x0,r)

(
1

w

)p

ηpα(uk)(dx)

=
p

1− p

∫

B(x0,r)

µ(w, ηp
(

1

w

)p−1

)(dx)− p2

1− p

∫

B(x0,r)

(
η

w

)p−1

µ(w, η)(dx)

≤ p2

p− 1

∫

B(x0,r)

ηp
(

1

w

)p−1

|λ|(dx) +
1

2

∫

B(x0,r)

(
1

w

)p

ηpα(w)(dx)

+C1(p)
∫

B(x0,r)

α(η)(dx)

As ξ(r)−1Λ(r) is bounded, then it follows

∫

B(x0, 3
4
r)

α(lg(w))(dx) ≤ C2(p)

[ |λ|(B(x0, r))

ξ(r)(p−1)
+

m(B(x0, r))

rp

]
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≤ C3(p)
[(

ξ(r)−1Λ(r)
)p−1

+ 1
]

m(B(x0, r))

rp
≤ C4(p)

m(B(x0, r))

rp

Taking into account that α(lg(v)) = α(lg(w)) we have

∫

B(x0, 3r
4

)

α(lg(v))(dx) ≤ C4(p)
m(B(x0, r))

rp
(4.5)

From (4.5) we obtain as in [13] that there are constants C and σ0 such that
for |σ| ≤ σ0, and 0 < r < 3

48k
R

av(vσ, B(x0, r))av(v−σ, B(x0, r)) ≤ C5 (4.6)

As a second step we prove a weak Harnack inequality for v.
For any ϕ ∈ D0[B(x0, r)], ϕ ≥ 0 a.e. in B(x0, r) we have

∫

B(x0,r)

µ(v, ϕ)(dx) =
∫

B(x0,r)

v2(p−1)µ(uk, ϕ)(dx)

≤ 1

ξ(r)2(p−1)

∫

B(x0,2r)

ϕ|λ|(dx)

Then v is a subsolution of (2.6) with σ = 0 in B(x0, r) for the measure |λ|
ξ(r)2(p−1) .

From [6] we obtain

supB(x0,r/2)v ≤ C6







1

m(B(x0,
3r
4
))

∫

B(x0, 3r
4

)

vqm(dx)




1
q

+ Cξ(r)−2Λ(r)




for any q > 0, and then using (4.6) we obtain for r ≤ R
12k

and we can

1

m(B(x0, 3r/4))

∫

B(x0,3r/4)

v−qm(dx) ≤ C7

[
M(r)−M(

r

2
) + ξ(r)

]q

(4.7)

where 0 < q ≤ σ0. We observe that the constant C7 depends on R, ||λ||Kp(Ω),
sup{0≤r≤R}ξ(r)−2Λ(r) and on ||u||Lp(Ω,m).
Now we want to extend (4.7) to an exponent q greater than σ0. Let τ < 0
such that p(τ + 1) > 1. Let β = τp + p− 1. Let us observe that β is positive.
Let ϕ = ηpψ ≥ 0 where η ∈ D0[B(x0, r)] ∩ L∞(B(x0, r),m), η ≥ 0, α(η) has

a bounded density with respect to m and ψ =
(
vβ −

(
1

(M(r)+ξ(r))

)β
)
. Let us

observe that ψ ≥ 0, since β is positive. Recalling that uk is a subsolution of
the problem (2.6) with σ = 0 and using ϕ as test function, we obtain

β
∫

B(x0,r)

ηpvβ+1α(uk)(dx) ≤ p2|
∫

B(x0,r)

ηp−1ψµ(uk, η)(dx)|+ p
∫

B(x0,r)

ϕ|λ|(dx)
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Since ψ ≤ vβ, using the Young’s inequality we have

|
∫

B(x0,r)

ηp−1ψµ(uk, η)(dx)| ≤ (4.8)

≤ θ
p

p−1
p− 1

p

∫

B(x0,r)

ηpvβ+1µ(uk, uk)(dx) + θ−p 1

p

∫

B(x0,r)

vβ−p+1α(η)(dx)

We have ξ(r)v ≤ 1 and then from (M. Biroli & S. Marchi , 2006, Theorem
3.1) we have ∫

B(x0,r)

ϕ|λ|(dx) ≤
∫

B(x0,r)

vβη|λ|(dx) ≤ (4.9)

≤ ξ(r)−β+τ
∫

B(x0,r)

vτη|λ|(dx) ≤ ξ(r)−β+τ ||ηvτ ||D0[B(x0,r)]||λ||D′[B(x0,r)] ≤

≤ ξ(r)−(p−1)(τ+1) [|λ|(B(x0, r))Λ(r)]
p−1

p ||ηvτ ||D0[B(x0,r)] ≤

≤ θ−p 1

p
Σ(r)

m(B(x0, r))

rp
+ θ

p
p−1

p− 1

p
||ηvτ ||pD0[B(x0,r)]

where Σ(r) = ξ(r)−pΛ(r)p. Choosing suitable values for θ in (4.8) and (4.9)
we have

rp

m(B(x0, r))

∫

B(x0,r)

α(ηvτ )(dx) ≤ (4.10)

≤ K(τ)




1

m(B(x0, r))

∫

B(x0,r)

vpτα(η)(dx) + Σ(r)




where K(τ) ' β−p is an decreasing function of τ .
Let us choose η ∈ D0[B(x0, tr)] ∩ L∞(B(x0, tr),m), 0 ≤ η ≤ 1, η = 1 in
B(x0, sr), α(η) ≤ C

rp(t−s)p m, where 0 < s < t ≤ 1. Using the Sobolev inequality

in (4.10) we obtain

(av(vγpτ , B(x0, sr)))
1
γ ≤ CK(τ)

[
1

(t− s)p
av(vpτ , B(x0, tr)) + Σ(r)

]
(4.11)

where 1−p
p

< τ < 0, γ = ν
ν−p

.

Our aim is now to iterate inequality (4.11) a finite number of times.
Let 0 < σ < (p − 1) and σ1 = σγ−n ≤ σ0 where n is a positive integer such
that (p− 1) < σ0γ

n . Let us observe that the choice of τ = −σ1γ
jp−1 satisfies

1−p
p

< τ < 0, 0 ≤ j ≤ n. Moreover K(−σ1γ
jp−1) ≤ K(−σp−1), 0 ≤ j ≤ n.

Let rj = r
4

[
3− j

n+1

]
for 0 ≤ j ≤ n + 1. Iterating (4.11)for n times with the

choices pτ = −σ1γ
j, 0 ≤ j ≤ n, we obtain

(av(v−σ1γn+1

, B(x0, r/2)))
1

γn+1 ≤ (4.12)
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≤ C8

[
K(−σp−1)

4(n + 1)p

3

] γ
γ−1 [

av(v−σ1 , B(x0,
3r

4
)) + (n + 1)Σ(r)

1
γn+1

]

Then, since 0 < σ1 = σγ−n ≤ σ0, by (4.7) we obtain

av(v−σγ, B(x0, r/2) ≤ C9(σ)

[(
M(r)−M(

r

2
) + ξ(r)

)σγ

+ Σ(r)

]
(4.13)

where C9(σ) is a finite valued increasing function of σ for any 0 < σ < p− 1.
Using (4.10) and (4.13) we are finally able to conclude the proof of Proposition
4.1. Let now τ satisfy 1−p

p
< τ < (γ

p
− 1) ∧ 0, then. Let η ∈ D0[B(x0,

r
2
)] ∩

L∞(B(x0,
r
2
),m) with α(η) ≤ c

rp for a positive constant c and choose as test
function in (2.6) the function ϕ = ηpuk. We have

∫

B(x0, r
2
)

ηpµ(uk, uk)(dx) + p
∫

B(x0, r
2
)

ukη
p−1µ(uk, η)(dx)+

+
∫

B(x0, r
2
)

ηpup
kσ(dx) ≤ M(r)

∫

B(x0, r
2
)

ηp|λ|(dx)

Let us observe that

1

m(B(x0,
r
2
))

∫

B(x0, r
2
)

ukη
p−1|µ(uk, η)| =

=
|τ |(p−1)

m(B(x0,
r
2
))

∫

B(x0, r
2
)

ukη
p−1v−(τ+1)(p−1)|µ(vτ , η)| ≤

≤ C10M(r)




1

m(B(x0,
r
2
))

∫

B(x0, r
2
)

ηpα(vτ )(dx)




p−1
p

×

×



1

m(B(x0,
r
2
))

∫

B(x0, r
2
)

v−(τ+1)(p−1)pα(η)(dx)




1
p

≤ C11M(r)r−p

[(
M(r)−M(

r

2
) + ξ(r)

)−τp

+ Σ(r)

] p−1
p

×

×
[(

M(r)−M(
r

2
) + ξ(r)

)(τ+1)(p−1)p

+ Σ(r)

] 1
p

Then we obtain
∫

B(x0, r
2
)

ηpα(uk)(dx) +
∫

B(x0, r
2
)

ηp|M(r) + ξ(r)− v−1|pσ(dx) ≤ (4.14)
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≤ C12M(r)

[(
M(r)−M(

r

2
) + ξ(r)

)−τp

+ Σ(r)

] p−1
p

×

×
[(

M(r)−M(
r

2
) + ξ(r)

)(τ+1)(p−1)p

+ Σ(r)

] 1
p

r−pm(B(x0, r))

+C12M(r)|λ|(B(x0, r))

We have taken into account that (τ+1)(p−1)p
γ

< p − 1. Hence from (4.14) we
obtain

∫

B(x0, r
2
)

α(ηv−1)(dx) +
∫

B(x0, r
2
)

ηp|M(r) + ξ(r)− v−1|pσ(dx)

≤ CM(r)

[(
M(r)−M(

r

2
) + ξ(r)

)p−1

+ (ξ(r)−1Λ(r))(p−1)∧1

]
r−pm(B(x0, r))

where the constant C depends on on Ω, p, R, ||u||Lp(Ω,m).

The necessary part of Theorem 2.1 can be proved by the same methods of
[10] using a proof by contradiction. We can prove that if x0 is a regular point,
which is not a Wiener point there exists a suitable ball B(x0, R) such that the
σ-potential of B(x0, R) in B(x0, 2R) has a value in x0 greater than 3

4
, then we

have a contradiction. We observe also that a result similar to Lemma 4.1 in
[10] can be proved by methods similar to the ones in Proposition 3.3.
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