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ABSTRACT

Stochastic differential equations of jump type are used in the theory of measure-
ments continuous in time in quantum mechanics and have a concrete application in
describing direct detection in quantum optics (counting of photons). In the paper
the connections are explained among various types of stochastic equations: linear
for Hilbert–space unnormalized vectors, non–linear for Hilbert space normalized
vectors, linear for trace–class operators, non–linear for density matrices. These
equations allow to construct “a posteriori” states and probabilities for the counting
process describing the direct detection. Relations with master equations and “a
priori” states are also explained. Two concrete applications related to a two–level
atom are presented.

1. Counting Processes

Stochastic differential equations (SDE’s) for trace–class operators or for vec-
tors in Hilbert spaces appeared in the literature related to quantum mechanics in
contexts such as measurements continuous in time, detection theory in quantum
optics, dynamical reduction theories, simulations of master equations. Many au-
thors contributed to this subject: a long and incomplete list of references is given in
the article 1. In this paper I want to discuss significant examples of SDE’s of jump
type related to measurements continuous in time and detection theory in quantum
optics. All the statements given here will be based on heuristic arguments, while
the mathematical theory of this class of SDE’s is developed in the paper 2.

Photon detection theory, when both the emitting system and the electromag-
netic field are included in the description, can be developed by using quantum
stochastic calculus 3−5. At this level of description standard quantum mechanics
applies: evolutions are given by unitary operators and the observables representing
the continuously measured quantities (such as “number of photons up to time t” in
the case of direct detection) are associated to selfadjoint operators commuting, in
the Heisenberg description, even for different times 6,7; this fact implies that there
is no need of the projection postulate nor of its generalizations in obtaining joint
probabilities at different times.

By partial trace over the Hilbert space of the electromagnetic field, a description
involving only the degrees of freedom of the emitting system is obtained 3. It is at
this lower level that classical SDE’s appear 8−10, which are the subject of the present



paper, and unusual concepts, as effects, operations and instruments 11,12 and as a
priori and a posteriori states 8, are introduced. SDE’s of jump type arise in the case
of direct detection (counting of photons).

Let us consider some quantum system emitting photons. The reduced dynamics
of the system is given by a master equation of the type

d%t

dt
= L[ %t ] , (1.1)

where L is the generic generator of a quantum dynamical semigroup 13,14, which we
write in the following way:

L = L̃+ J , J [%] =
∑
α

Rα%R
†
α , L̃[%] = L0[%]−

1
2

∑
α

(
R †αRα%+ %R †αRα

)
,

(1.2)

L0[%] = −i[H, %] +
1
2

∑
j

([
Lj%, L

†
j

]
+
[
Lj , %L

†
j

])
, (1.3)

where H, Rα and Lj are system operators and H = H†. To avoid mathematical
difficulties we assume that our system is an n-level atom, so that the Hilbert space
is finite–dimensional.

Now we want to discuss the direct detection (counting) of the emitted photons.
In order to have a complete description of the counting process and of the dynamics
of the atom, we have to construct the probability law P̂ for the counting process
(distribution of the counts, of the arrival times, ...), which we shall refer to as
the physical probability, and the state %̂t of the system at time t given a certain
sequence of counts (the statistical operator conditioned by the data up to time t),
which can be called the a posteriori state. Let us denote by E

P̂
[·] the statistical

mean with respect to the physical probability P̂ (the expectation with respect to
the probability measure P̂ ). By the meaning of %t, %̂t and P̂ we must have

%t = E
P̂

[%̂t] , (1.4)

i.e. the average of the a posteriori states with respect to all possible data must give
the reduced state of the system.

The statistical operator %t is the state we attribute to the system when we do
not know the results of the measurement; in this sense, we can call %t the a priori
state. We can read Eq. (1.4) as: the a posteriori states are a demixture of the a
priori state and the coefficients of this demixture are the physical probabilities.

The construction of P̂ and %̂t can be achieved via two auxiliary objects: a refer-
ence probability measure P and some unnormalized positive trace–class operators
%t, such that

%̂t = %t

/
Tr{%t} , (1.5)



EP
[Tr{%t}X] = E

P̂
[X] , (1.6)

for any random variable X adapted to the time interval (0, t]. In words Eq. (1.6)
says that Tr{%t} is the (local) probability density of the physical probability P̂ , with
respect to the reference measure P . By Eq. (1.5), we can call %t the unnormalized
a posteriori (UNAP) states. By combining Eqs. (1.4)–(1.6), we have in particular

EP
[%t] = E

P̂
[%̂t] = %t . (1.7)

In the case of a counting process the reference measure P is the probability law
of a Poisson process N(t) of intensity µ > 0 and the UNAP states are the solution
of the Itô’s type linear SDE

d%t = L[%t−]dt+
(

1
µ
J [%t−]− %t−

)(
dN(t)− µdt

)
, (1.8)

with initial condition %0 = %̂0 = %0 = % (the initial state of the system).
In order to understand the meaning of equations like (1.8) we recall that, roughly

speaking, the probability of one count in an interval of amplitude dt is of order dt,
while the probability of more than one count is of higher order. We can translate
this into the rules

dN(t) =
{

1, if there is a count in the time interval (t, t+ dt],
0, otherwise,

(1.9)

(
dN(t)

)2 = dN(t) , dN(t)dt = 0 . (1.10)

In Eq. (1.8), the minus sign in %t− means “just before the jump, if any”. By the
fact that we have a process with independent increments and mean value

EP
[N(t)] = µt (1.11)

the P -expectation of Eq. (1.8) gives the master equation (1.1) and, thus, the validity
of Eq. (1.7) is guaranteed.

In order to show that Tr{%t} is indeed the probability density of the physi-
cal probability P̂ , we show that our description is equivalent to the Davies 15 and
Srinivas–Davies 16 theory of quantum counting processes.

A typical trajectory of a Poisson process, or of any other (regular) counting
process, is completely determined by giving the instants of the counts (the arrival
times). Thus, we can specify a trajectory ωt up to time t by ωt = {t1, t2, . . . , tr},
0 < t1 < t2 < · · · < tr ≤ t, r = 0, 1, . . .. By Eq. (1.9), the solution of Eq. (1.8),
given the trajectory ωt, is

%t ≡ %(ωt) = µ−r eµt eL̃(t−tr) ◦ J ◦ · · · ◦ J ◦ eL̃(t2−t1) ◦ J ◦ eL̃t1 [%] . (1.12)



First let us consider the trajectories with no count up to time t. The probability
of no count for the Poisson process is e−µt and, for these trajectories, the density
Tr{%t} is eµt Tr

{
eL̃t[%]

}
. By multiplying these two contributions we get the physical

probability of no count up to time t

P̂ [N(t) = 0] = Tr
{
eL̃t[%]

}
. (1.13)

Let us consider now trajectories with r ≥ 1 counts up to time t. For a Poisson
process the probability of a count in the time interval (t1, t1 + dt1], a count in
(t2, t2 +dt2], . . ., and no other count in between is µr e−µt dt1 · · ·dtr (0 < t1 < · · · <
tr ≤ t). By multiplying by the trace of (1.12) we get

p̂t(t1, . . . , tr) dt1 · · ·dtr =

= Tr
{

eL̃(t−tr) ◦ J ◦ · · · ◦ J ◦ eL̃(t2−t1) ◦ J ◦ eL̃t1 [%]
}

dt1 · · ·dtr . (1.14)

The quantities p̂t(t1, . . . , tr) are known as exclusive probability densities (EPD).
The expressions (1.13) and (1.14) were essentially introduced in the paper 16 by
Srinivas and Davies, where it is shown that they describe consistently the counting
process.

By Eqs. (1.5), (1.8), (1.10) we get the non–linear SDE for a posteriori states

d%̂t = L[%̂t−]dt+
(
J [%̂t−]
I(t)

− %̂t−

)(
dN(t)− I(t)dt

)
, (1.15)

where
I(t) := Tr{J [%̂t−]} ≡

∑
α

Tr{R †αRα %̂t−} . (1.16)

Moreover, under the physical law P̂ , N(t) is a counting process of stochastic inten-
sity I(t), or

E
P̂

[dN(t)|ωt] = I(t)dt , (1.17)

where E
P̂

[·|ωt] is the conditional expectation “given the data” up to time t. This

equation guarantees, in particular, the fact that the P̂ -expectation of Eq. (1.15)
gives the master equation (1.1) and, therefore, the fact that Eq. (1.4) holds. By
taking the expectation of both sides of Eq. (1.17), we have, by the properties of
conditional expectations,

d
dt E

P̂
[N(t)] = E

P̂
[I(t)] . (1.18)

Note that no physical result depend on the intensity µ of the reference Poisson
process.



In order to prove Eq. (1.17) and to compute moments of the counting process,
we give here two useful formulae. First, by Eqs. (1.8), (1.10) and (1.2), we get

%t+dt dN(t) ≡
(
%t− + d%t

)
dN(t) =

1
µ
J [%t−]dN(t) . (1.19)

Second, by Eqs. (1.8), (1.11) and the fact that a Poisson process has independent
increments, we have

EP
[%t|ωs] = eL(t−s)[%s] , s < t . (1.20)

Let now X be a generic random variable adapted to (0, t] (i.e. it depends on
N(s) only for times s ≤ t). By using (1) properties of conditional expectations, (2)
the fact that XdN(t) is adapted to (0, t+ dt] and Eq. (1.6), (3) Eq. (1.19), (4) the
independence of increments of the Poisson process and Eq. (1.11), (5) Eqs. (1.16)
and (1.5), (6) the fact that a jump exactly at time t has zero probability, (7)
Eq. (1.6), we can write

E
P̂

[
X E

P̂
[dN(t)|ωt]

]
= E

P̂
[XdN(t)] = EP

[X Tr{%t+dt}dN(t)] =

=
1
µ

EP

[
X Tr{J [%t−]}dN(t)

]
= EP

[
X Tr{J [%t−]}

]
dt =

= EP
[XI(t) Tr{%t−}]dt = EP

[XI(t) Tr{%t}]dt = E
P̂

[XI(t)]dt .

This is statement (1.17).
Moments of the counting process can be computed by differentiation of the

Fourier transform (characteristic functional) of the probability law P̂ , as done in
reference 3, or by arguments similar to those used just now. By using (a) point (1),
(b) Eqs. (1.16) and (1.17), (c) point (6) and Eq. (1.4), we obtain

E
P̂

[dN(t)] = E
P̂

[
E

P̂
[dN(t)|ωt]

]
= E

P̂
[Tr{J [%̂t−]}]dt = Tr{J [%t]}dt ,

which gives

E
P̂

[N(t0 + t)−N(t0)] =
∫ t0+t

t0

ds Tr{J [%s]} ≡
∫ t

0

ds Tr{J ◦ eLs[ %t0 ]} . (1.21)

Let us now take s < t. By using (i) point (1), (ii) Eq. (1.17), (iii) Eq. (1.6) and
point (6), (iv) point (1), (v) Eq. (1.20), (vi) Eq. (1.19), (vii) points (4) and (6) and
Eq. (1.7), we obtain

E
P̂

[dN(s)dN(t)] = E
P̂

[
dN(s) E

P̂
[dN(t)|ωt]

]
= E

P̂
[dN(s)I(t)]dt =



= EP

[
dN(s)Tr{J [%t]}

]
dt = Tr

{
J
[
EP

[
dN(s) EP

[%t|ωs+ds]
]]}

dt =

= Tr
{
J ◦ eL(t−s)

[
EP

[dN(s)%s+ds]
]}

dt =

=
1
µ

Tr
{
J ◦ eL(t−s) ◦ J

[
EP

[dN(s)%s−]
]}

dt = Tr{J ◦ eL(t−s) ◦ J [ %s ]}dsdt .

By writing

(
N(t0 + t1)−N(t0)

)(
N(t0 + t2)−N(t0)

)
=
∫

t0<t≤t0+t2

∫
t0<s≤t0+t1

dN(s)dN(t)

and decomposing the double integral into the regions s < t, s = t, s > t, the
previous result and Eq. (1.10) give

E
P̂

[(
N(t0 + t1)−N(t0)

)(
N(t0 + t2)−N(t0)

)]
=
∫ t1∧t2

0

dt Tr{J ◦ eLt[ %t0 ]}+

+
(∫ t2

0

dt
∫ t∧t1

0

ds+
∫ t1

0

dt
∫ t∧t2

0

ds
)

Tr{J ◦ eL(t−s) ◦ J ◦ eLs[ %t0 ]} , (1.22)

where h ∧ k := min{h, k}.
From first and second moments one can obtain the so called MandelQ-parameter

Qt0(t) :=
var

P̂
[N(t0 + t)−N(t0)]− E

P̂
[N(t0 + t)−N(t0)]

E
P̂

[N(t0 + t)−N(t0)]
, (1.23)

which measures the deviation from the Poisson variance; obviously, var[X] =
E[X2]− E[X]2.

A particularly interesting case is when the master equation (1.1) has a unique
equilibrium solution %eq such that

lim
t→+∞

eLt[%] = %eq , L[%eq] = 0 , (1.24)

for any initial state %. In this case one can introduce the equilibrium Q-parameter

Q(t) := lim
t0→+∞

Qt0(t) =
2
∫ t

0
ds
(
1− s

t

)
Tr
{
J ◦ eLs ◦ J [%eq]

}
− t
(
Tr{J [%eq]}

)2
Tr{J [%eq]}

.

(1.25)
Another interesting special case is when

J [%] = %̃ Tr{J [%]} , (1.26)



for any state %; here %̃ is a fixed statistical operator, independent of %. In this case
the EPD’s take the product structure

p̂t(t1, . . . , tr) = Tr
{

eL̃(t−tr)[%̃]
}(r−1∏

l=1

Tr
{
J ◦ eL̃(tl+1−tl)[%̃]

})
Tr
{
J ◦ eL̃t1 [%]

}
.

(1.27)
If also Eq. (1.24) holds, the equilibrium Q-parameter (1.25) takes the form

Q(t) = 2
∫ t

0

ds
(
1− s

t

)
Tr
{
J
[
eLs[%̃]− %eq

]}
. (1.28)

2. A Two–level Atom

As an example we consider a two–level atom stimulated by a monocromatic
laser in resonance with the atomic transition. By eliminating the explicit time
dependence due to the laser wave by means of a unitary transformation, we obtain
a Liouvillian L with

Rα → R =
√

Γ|0〉〈1| , Lj = 0 , H =
Ω
2
(
|0〉〈1|+ |1〉〈0|

)
, (2.1)

where |0〉 is the ground state, |1〉 is the excited one, the parameter Ω > 0 is pro-
portional to the laser intensity and it is called the Rabi frequency, the parameter
Γ > 0 is the electromagnetic transition rate. Moreover, Eqs. (1.2), (1.3) and (1.14)
give

L̃[%] = −iH̃%+ i%H̃† , H̃ := H − i
2
|1〉Γ〈1| , (2.2)

J [%] = Γ|0〉〈1|%|1〉〈0| , I(t) = Γ〈1|%̂t−|1〉 . (2.3)

Now Eqs. (1.8) and (1.15) for UNAP and a posteriori states become

d%t =
(

Γ
µ
|0〉〈1|%t−|1〉〈0| − %t−

)
dN(t) + L̃[%t−]dt+ µ%t−dt , (2.4)

d%̂t = (|0〉〈0| − %̂t−) dN(t) + L̃[ %̂t− ]dt+ I(t)%̂t−dt . (2.5)

Essentially, these equations say that in between the jumps the system evolution is
governed by a non–selfadjoint Hamiltonian H̃ and at any jump the atom goes into
the ground state. Note that we have not considered the time–delay from emission to
detection, the efficiency of the counter and any other characteristic of the detector;
thus, more than the detection process we are describing the emission process. The
passage from emission process to detection process could be treated in principle by
classical filtering theory.



Now Eq. (1.26) holds with %̃ given by the ground state; moreover, we choose the
origin of the time axis coinciding with an emission, so that the initial state is again
the ground state. Summarizing, we have

%̃ = |0〉〈0| , % = |0〉〈0| . (2.6)

The probabilities (1.13) and (1.27) become

P̂ [N(t) = 0] =
1∑

i=0

∣∣∣〈i|e−iH̃t|0〉
∣∣∣2 , (2.7)

p̂t(t1, . . . , tr) = P̂ [N(t− tr) = 0]w(tr − tr−1) · · ·w(t2 − t1)w(t1) , (2.8)

w(t) := Γ
∣∣∣〈1|e−iH̃t|0〉

∣∣∣2 . (2.9)

The quantity w(t) turns out to be the probability density of the waiting time be-
tween two photon emissions. Indeed, let us denote by T such a waiting time; for
any t > 0, we have P̂ [T ≤ t] = 1 − P̂ [N(t) = 0], which, together with Eqs. (2.7)
and (2.9), gives

d
dt
P̂ [T ≤ t] = − d

dt
P̂ [N(t) = 0] = w(t) . (2.10)

In principle w(t) determines completely the whole statistics of the counting process.
The probability density w(t) can be easily computed by solving a Schrödinger

equation with the non–selfadjoint Hamiltonian H̃. We consider only the case

Ω > Γ/2 . (2.11)

Then, we obtain

w(t) =
Γ
2

(
1 +

Γ2

4Ω̃2

)
e−Γt/2

(
1− cos Ω̃t

)
, Ω̃ := Ω

√
1− Γ2

4Ω2
. (2.12)

The mean time between emissions is given by

E
P̂

[T ] ≡
∫ +∞

0

tw(t) dt =
2
Γ

+
Γ
Ω2

, (2.13)

which, under condition (2.11), is bounded by 2/Γ < E
P̂

[T ] < 6/Γ.

The stochastic intensity (1.16), (2.3) takes the expression

I(t) = Γ
〈1|%t−|1〉
Tr{%t−}

=
w(s)

P̂ [N(s) = 0]
=

=
Γ
2
− ΓΩ̃

2Ω̃ cos Ω̃s+ Γ sin Ω̃s

4Ω2 − Γ2 cos Ω̃s+ 2Ω̃Γ sin Ω̃s
,

(2.14)



where s := t− tr is the time elapsed from the last emission before time t (recall that
I(t) depends on the trajectory). Note how Rabi oscillations appear in the waiting
time density (2.12) and in the stochastic intensity (2.14).

In our case, the master equation (1.1) has a unique equilibrium solution %eq,
which can be easily computed from the second of Eqs. (1.24). In particular, we
obtain

〈1|%eq|1〉 =
Ω2

2Ω2 + Γ2
. (2.15)

Let us stress that Eq. (2.13) can be written also as

E
P̂

[T ] =
(
Γ〈1|%eq|1〉

)−1
. (2.16)

Equation (1.21) gives now

lim
t0→+∞

E
P̂

[N(t0 + t)−N(t0)] = tΓ〈1|%eq|1〉 , (2.17)

while Eq. (1.28) becomes

Q(t) = 2Γ
∫ t

0

ds
(
1− s

t

)
〈1|eLs[|0〉〈0|]− %eq|1〉 . (2.18)

Note that Q(0) = 0 and Q̇(0) = −Γ〈1|%eq|1〉 < 0, so that we have surely sub–
Poissonian statistics (Q(t) < 0, at least for small times). In order to compute
Q(t) for all times we have to solve the master equation (1.1) with initial condition
% = |0〉〈0|. An explicit calculation gives

Q(t) = α

(
1 +

1− eλt

tλ

)
+ c.c. , (2.19)

λ := − 3
4

Γ + i

√
Ω2 − Γ2

16
,

α :=
2ΓΩ2

2Ω2 + Γ2

λ∗

λ(λ∗ − λ)
.

(2.20)

Note that

lim
t→+∞

Q(t) = − 6Ω2Γ2(
2Ω2 + Γ2

)2 < 0 . (2.21)

All these results show that the emission process is a renewal counting process
with a sub–Poissonian statistics. Only in the limit Ω → +∞, a Poisson process of
intensity Γ/2 is obtained.

Let us compare the previous results with the case of a thermally excited two–
level atom. Equations (2.3), (2.4), (2.5), (2.6), (2.8), (2.10), (2.16), (2.17), (2.18)



hold true also in the new model. In particular, the operator J is the same as before,
while L̃ is given by

L̃[%] =
γ

2
(n+ 1)

(
2|0〉〈1|%|1〉〈0| − |1〉〈1|%− %|1〉〈1|

)
+

+
γ

2
n
(
2|1〉〈0|%|0〉〈1| − |0〉〈0|%− %|0〉〈0|

)
− Γ

2
(
|1〉〈1|%+ %|1〉〈1|

)
,

(2.22)

where γ > 0, n =
(
eβω − 1

)−1. This corresponds to set

Rα → R =
√

Γ|0〉〈1| , H = 0 ,

L1 = γ(n+ 1)|0〉〈1| , L2 = γn|1〉〈0|
(2.23)

in Eqs. (1.2) and (1.3).
The waiting time density has now the expression

w(t) = Γ〈1|eL̃t[|0〉〈0|]|1〉 =
nγΓ
δ

(
e−λ−t − e−λ+t

)
, (2.24)

where

δ :=
√

(Γ + γ)2 + 4n(n+ 1)γ2 , λ± :=
λ± δ

2
, λ := (2n+ 1)γ + Γ . (2.25)

Then, the mean of the waiting time between emissions becomes

E
P̂

[T ] =
(2n+ 1)γ + Γ

nγΓ
; (2.26)

now, we have

〈1|%eq|1〉 =
nγ

(2n+ 1)γ + Γ
. (2.27)

Again with s := t− tr, the stochastic intensity becomes

I(t) =
w(s)

P̂ [N(s) = 0]
=
nγΓ

(
1− e−δs

)
λ+ − λ−e−δs

(2.28)

(
cf. Eq. (2.14)

)
.

Finally, by solving the master equation, we obtain from Eq. (1.28)

Q(t) = − 2nγΓ
λ2

(
1− 1− e−λt

tλ

)
. (2.29)

We have again sub–Poissonian statistics, which becomes Poissonian with intensity
Γ/2 at infinite temperature or Poissonian with intensity nγ in the limit Γ → +∞;



note, however, that we are describing a single atom at inverse temperature β, not
a gas.

3. Stochastic Differential Equations for Vectors

A qualitative difference between the two models of Sect. 2 is that Eqs. (2.4),
(2.5) for the first model preserve pure states, while this does not hold in the case of
the second model. In general Eqs. (1.8) and (1.15) preserve pure states only if L0 is
of purely Hamiltonian form and J preserve pure states. In spite of this difference,
Eqs. (1.8) and (1.15) have always a pure state version.

Let us consider the linear SDE for unnormalized vectors in the Hilbert space,
with initial condition ψ0 = ψ, ‖ψ‖ = 1:

dψt =
∑
α

(
1

√
µα

Rα − 1
)
ψt−dNα(t) +

∑
j

(
1
√
νj
Lj − 1

)
ψt−dNj(t) +

+
[
1
2

(µ+ ν)1− iH̃
]
ψt−dt , (3.1)

where
µ =

∑
α

µα , ν =
∑

j

νj , (3.2)

H̃ = H − i
2

∑
α

R †αRα −
i
2

∑
j

L †j Lj , (3.3)

Nα(t) is a Poisson process of intensity µα, Nj(t) is a Poisson process of intensity
νj , all these Poisson processes are independent. Here and in the following all the
undefined quantities are as in Sect. 1.

It can be proved 2 that ‖ψt‖2 is a (local) probability density with respect to the
probability measure of the Poisson processes. Under this new probability law the
Nα(t) and Nj(t) become counting processes with intensities

rα(t) = 〈ψ̂t−|R †αRα ψ̂t−〉 , lj(t) = 〈ψ̂t−|L †j Lj ψ̂t−〉 , (3.4)

respectively, with
ψ̂t = ψt/‖ψt‖. (3.5)

By normalization (3.5) and Itô’s stochastic calculus, we obtain from Eq. (3.1)
the non–linear SDE for normalized vectors

dψ̂t =
∑
α

(
1√
rα(t)

Rα − 1

)
ψ̂t−dNα(t) +

∑
j

(
1√
lj(t)

Lj − 1

)
ψ̂t−dNj(t) +



+
[
1
2
(
I(t) +K(t)

)
1− iH̃

]
ψ̂t−dt , (3.6)

where
I(t) =

∑
α

rα(t) , K(t) =
∑

j

lj(t) . (3.7)

In Eq. (3.6) the processes Nα(t), Nj(t) have to be considered under the new proba-
bility law, so that they have the intensities (3.4). In going from Eq. (3.1) to Eq. (3.6)
one has to use the rules

dNa(t)dNb(t) = δabdNa(t) , dNa(t)dt = 0 , (3.8)

which generalize Eq. (1.10).
Let us consider now the trace–class operator

σt := |ψt〉〈ψt| . (3.9)

By Eq. (3.8), we obtain from Eq. (3.1) the linear SDE for trace–class operators

dσt = L[σt−]dt+
∑
α

(
1
µα

Rασt−R
†
α − σt−

)(
dNα(t)− µαdt

)
+

+
∑

j

(
1
νj
Ljσt−L

†
j − σt−

)(
dNj(t)− νjdt

)
. (3.10)

On the other side, starting from Eq. (3.6) or from Eq. (3.10), one obtains for

σ̂t := |ψ̂t〉〈ψ̂t| ≡
σt

Tr{σt}
(3.11)

the non–linear SDE

dσ̂t = L[σ̂t−]dt+
∑
α

(
1

rα(t)
Rασ̂t−R

†
α − σ̂t−

)(
dNα(t)− rα(t)dt

)
+

+
∑

j

(
1

lj(t)
Lj σ̂t−L

†
j − σ̂t−

)(
dNj(t)− lj(t)dt

)
. (3.12)

In this equation the Nα(t), Nj(t) are again counting processes with intensities (3.4),
as in Eq. (3.6).

Let us consider now the case when only the process

N(t) :=
∑
α

Nα(t) (3.13)



is observed, so that the processes Nj(t) are completely unobserved and the processes
Nα(t) are only partially observed through their sum. Under the original probability
measure, N(t) is a Poisson process of intensity µ and under the new one a counting
process of intensity I(t). The mathematical object which “takes the mean over all
what is not observed” is the conditional expectation with respect to the σ-algebra
generated by the processN . By taking this conditional expectation with reference to
the original probability measure, one obtains immediately Eq. (1.8) from Eq. (3.10):
the practical rules are

σt → %t , dNj(t) → νjdt , dNα(t) → µα

µ
dN(t) . (3.14)

By working in the same way with conditional expectations related to the new prob-
ability measure, one obtains Eq. (1.15) from Eq. (3.12): the rules are

σ̂t → %̂t , dNj(t) → lj(t)dt , dNα(t) → rα(t)
I(t)

dN(t) . (3.15)

Equations (3.10) and (3.12) always preserve pure states (by construction); this
property is shared by Eqs. (1.8) and (1.15) only if the the conditional expectation
just discussed is trivial. This is the case of the first model of Sect. 2, but not of the
second one. We can say that one can reduce the second model to the pure–state
preserving situation only if one adds unphysical processes which count the quanta
exchanged with the thermal bath.

On Eqs. (3.1) and (3.6) they are based powerful numerical methods for solv-
ing master equations, known as quantum jump or Montecarlo wave simulation
techniques 17,18.
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