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Feedback control of the fluorescence light squeezing
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We consider a two-level atom stimulated by a coherent monochromatic laser and we study how to
enhance the squeezing of the fluorescence light and of the atom itself in the presence of a Wiseman-
Milburn feedback mechanism, based on the homodyne detection of a fraction of the emitted light.
Besides analyzing the effect of the control parameters on the squeezing properties of the light and of
the atom, we also discuss the relations among these. The problem is tackled inside the framework
of quantum trajectory theory.

PACS numbers: 42.50.Dv, 42.50.Ct, 42.50.Lc, 03.65.Ta

Photo-detection theory in continuous time has been
widely developed [1, 2, 3, 4] and applied, in particular, to
the fluorescence light emitted by a two-level atom stimu-
lated by a coherent monochromatic laser [4, 5]. As well as
various feedback schemes on the atom evolution, based on
the outcoming photocurrent, have been proposed [6, 7].
However the introduction and the analysis of feedback
have been mainly focused on the control of the atom [7].

Here, we are interested not only in the atom, but also,
and mainly, in the emitted light and in employing control
and feedback processes to enhance the squeezing proper-
ties of both systems. The squeezing of the fluorescence
light can be checked by homodyne detection and spectral
analysis of the output current [8, 9]. For these reasons we
consider the mathematical description of photo-detection
based on quantum trajectories, as it is suitable both to
consistently compute the homodyne spectrum of fluores-
cence light, and to introduce feedback and control in the
mathematical formulation. We study how the squeezing
depends on the various control parameters, how feedback
mechanisms can be successfully introduced and which is
the relationship among the squeezing properties of the
quantum systems involved. We consider only Markovian
feedback schemes à la Wiseman-Milburn [6], as they leave
the homodyne spectrum explicitly computable.

Two-level atom and atomic squeezing. Consider a
two-level atom with Hilbert space C2 and lowering and
rising operators σ− and σ+. Let us denote by ~σ the vector
(σx, σy, σz) of the Pauli matrices. Let the eigenprojectors
of σz be denoted by P+ and P− and, for every angle φ,
let us introduce the unitary selfadjoint operator

σφ = eiφ σ− + e−iφ σ+ = cosφσx + sinφσy .

A state ρ of the atom is represented by a point ~x in the
Bloch sphere, ρ = (1 + ~x · ~σ) /2, with ~x ∈ R3, |~x| ≤ 1.

Walls and Zoller [10] suggested to define the squeezing
of a two-level atom from the Heisenberg-Robertson un-
certainty relations for σx and σy. By using the equatorial
component σ⊥ of ~σ with minimum variance ∆σ2

⊥
, we say

that the atomic state ρ is squeezed if

∆σ2
⊥ = 1 − (x2 + y2) < |〈σz〉| = |z| .

We call atomic squeezing parameter of ρ the quantity

ASρ = 1 − (x2 + y2) − |z| ,
so that ρ is squeezed if ASρ < 0. Thus minρ ASρ = −1/4,
attained by pure states with x2 +y2 = 3/4 and z2 = 1/4.

Detection and feedback scheme. We admit an open
Markovian evolution for the atom, subjected to ‘dephas-
ing’ effects and to interactions both with a thermal bath
and with the electromagnetic field, via absorption and
emission of photons. The atom is stimulated by a coher-
ent monochromatic laser and the emitted light is partially
lost in the forward channel and partially gathered in two
side channels for homodyne detection.

Let the free Hamiltonian of the atom be ω0σz/2, with
ω0 > 0. Let the natural line-width of the atom be γ > 0,
let the intensities of the dephasing and thermal effects be
kd ≥ 0 and n ≥ 0, let the stimulating laser have frequency
ω > 0. Finally, let the Rabi frequency be Ω ≥ 0 and let
∆ω = ω0 − ω denote the detuning.

Let the fractions of light emitted in the forward and in
the two side channels be |α0|2, |α1|2, |α2|2, respectively
(|α0|2 + |α1|2 + |α2|2 = 1); for k = 1, 2, we can say
that |αk|2 is the efficiency of the detector k. Let the
initial phase of the local oscillator in each detector be ϑk,
included in the parameter αk ∈ C by setting ϑk = argαk.
To change ϑk means to change the measuring apparatus.
Let the two homodyne photocurrents be I1 and I2.

We introduce a feedback scheme à la Wiseman-Milburn
based on I1. Assuming instantaneous feedback, we mod-
ify the amplitude of the stimulating laser by adding a
term g e−iωt I1(t)/

√
γ proportional to I1, with the same

frequency ω and with initial phase possibly different from
that of the original laser. Let this phase difference be ϕ.
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Then the atom has a Markovian evolution, whether we
condition its state on continuous monitoring of the pho-
tocurrents, or we do not. Let us call a priori state ηt the
unconditioned one and let us call a posteriori state ρt

the conditioned one. Of course ηt is the mean of ρt. Let
us write the evolution equations in the rotating frame,
where they result to be time-homogeneous. Let us in-
troduce first the parameters c = |g| |α0|/

√
γ ≥ 0, and

∆ωc = ∆ω + c γ |α1| cos(ϑ1 − ϕ) ∈ R. The a priori state
ηt is governed by the master equation dηt = Lηt dt, where

Lρ = −i

[

∆ωc

2
σz +

Ω

2
σx , ρ

]

+ γkd (σz ρ σz − ρ)

+ γn

(

σ+ ρ σ− − 1

2
{P− , ρ}

)

+ γ(n + 1 − |α1|2)
(

σ− ρ σ+ − 1

2
{P+ , ρ}

)

+ γ(α1 σ− − ic σϕ) ρ (α1 σ+ + ic σϕ)

− γ

2

{(

|α1|2 − 2c|α1| sin(ϑ1 − ϕ)
)

P+ + c2 , ρ
}

.

The a posteriori state ρt is governed by the non-linear
stochastic master equation

dρt = Lρt dt +
√

γD[α1 σ− − ic σϕ]ρt dW1(t)

+
√

γD[α2 σ−]ρt dW2(t), (1)

where D[a]ρ = a ρ+ρ a∗−ρ Tr [(a + a∗)ρ] for every matrix
a, and where W1 and W2 are two independent standard
Wiener processes. The two homodyne photocurrents are
given by the generalized stochastic processes

Ik(t) =
√

γ|αk|Tr [σϑk
ρt] + Ẇk(t). (2)

We suppose that |α0| is assigned by experimental con-
straints and that the control parameters are Ω, ∆ω, ϑ1,
ϑ2, c, ϕ and, eventually, |α1| and |α2|. Of course, if c = 0
there is no feedback action on the atom, so that its a pri-
ori dynamics is independent of the measurement process,
that is of α1, α2 and ϕ. On the contrary, if c > 0, then
the a priori dynamics is modified by the feedback loop
and it depends also on α1, ϕ and c.

In the Bloch sphere language L is an affine map. Let
its linear part be given by the matrix −A, where

A =





a11 a12 0
a21 a22 Ω
0 −Ω a33



 ,

a11 = γ
(1

2
+ n + 2kd + 2c|α1| cosϑ1 sin ϕ + 2c2 sin2 ϕ

)

,

a12 = ∆ωc − γ
(

c|α1| cos(ϑ1 + ϕ) + c2 sin 2ϕ
)

,

a21 = −∆ωc − γ
(

c|α1| cos(ϑ1 + ϕ) + c2 sin 2ϕ
)

,

a22 = γ
(1

2
+ n + 2kd − 2c|α1| sinϑ1 cosϕ + 2c2 cos2 ϕ

)

,

a33 = γ
(

1 + 2n− 2c|α1| sin(ϑ1 − ϕ) + 2c2
)

.

Apart from the exceptional case detA = 0, which occurs
if and only if kd = n = 0, |α1| = 1, 2c sin(ϑ1 − ϕ) = 1,
Ω sinϑ1 = 0, ∆ω = −γc cos(ϑ1 − ϕ), the a priori
dynamics has a unique stable stationary state ηeq =
(1 + ~xeq · ~σ) /2, which is asymptotically reached by ηt for
every initial preparation of the atom:

~xeq = −γ
(

1 − 2c|α1| sin(ϑ1 − ϕ)
)

A−1
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Homodyne incoherent spectrum and fluorescence light

squeezing. In a description of photo-detection based on
quantum trajectories (1), (2), the electromagnetic field
has been traced out. Nevertheless, this description is
fully consistent with a model which includes also a quan-
tum description of the electromagnetic field and of its
interaction with the atom and where I1 and I2 are the
outputs of measurements performed just on the emitted
light [3]. Therefore an analysis of the homodyne pho-
tocurrents can reveal properties of the light detected in
the corresponding channels. In order to study the squeez-
ing properties of the light in channel k, the fundamental
tool is the incoherent spectrum of Ik [12]

Sk(µ) = lim
T→+∞

1
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.

It is the limit of the normalized variance of the Fourier
transform of the photocurrent Ik; as usual, we call inco-
herent the part of the spectrum due to the fluctuations
of the output. The asymptotic behaviour of the atomic
a priori state ηt ensures that the limit exists. It is a pos-
itive even function of its real argument µ which can be
computed from equations (1) and (2) by Ito calculus and
by the full theory of quantum continual measurements,
which can provide the first and second moments of I1

[2, 4]. Thus, for every initial state of the atom, we get

Sk(µ) = 1 + 2γ|αk|2 ~sk ·
(

A

A2 + µ2
~tk

)

, (3)

where ~sk and ~tk are the vectors in R3 defined as

~sk =
(

cosϑk, sin ϑk, 0
)

,

~tk = Tr
[

(

eiϑk σ− ηeq + e−iϑk ηeq σ+ − Tr[σϑk
ηeq] ηeq

+ δk1
ic

|α1|
[ηeq, σϕ]

)

~σ
]

.

Each spectrum Sk depends on µ, kd, n, Ω, ∆ω, αk, c and
ϕ. Moreover, S2 depends on α1, too. In the case c = 0
(no feedback) each dependence on ϕ disappears and S2

becomes independent of α1; then, S1 = S2 if α1 = α2.
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When c = 0, for every µ and ϑk, the value of Sk(µ; ϑk)
is the variance of a quadrature of the light in channel k,
the value of Sk(µ; ϑk + π/2) is the variance of the con-
jugate quadrature and Heisenberg-type relations imply
that Sk(µ; ϑk)Sk(µ; ϑk + π/2) ≥ 1 [12]. The light in
channel k is in a squeezed state if the variance of one
quadrature is below the standard quantum limit, that is
if Sk(µ) < 1 for some µ and ϑk.

When c > 0, only the light in channel 2 is potentially
available for homodyne detection with arbitrary ϑ2, as
well as it could be employed for different uses. On the
contrary, the light in channel 1 is a part of the feedback
loop, it has to be detected, and a change of ϑ1 implies a
change of the atomic dynamics and, so, of the state of the
emitted light itself, not only a change of the quadrature
under consideration. Of course, the spectrum S1 can be
considered also in this case, but when S1(µ) < 1 one
can speak only of ‘in-loop squeezing’. Its meaning and
possible usefulness are discussed by Wiseman [11].

For each channel we can give a measure of the ‘mean
squeezing’ of the light by introducing the quantity

Πk(ϑk) =
1

2πγ

∫ +∞

−∞

[

Sinel
k (µ; ϑk) − 1

]

dµ = |αk|2 ~tk · ~sk.

When Πk(ϑk) < 0 for some ϑk, the light in channel k is
surely squeezed, but the spectrum can go below 1 even if
Πk(ϑk) is positive. Moreover, we introduce the squeezing

parameter of the state of the light in channel 2

Σ2 = inf
ϑ2

Π2(ϑ2) = |α2|2
[

ASηeq
+ zeq + |zeq|

]

. (4)

Control of squeezing. We are interested in the squeez-
ing properties of the fluorescence light and of the atom.
Regarding the fluorescence light, we can consider the
squeezing of the light in the channels 1 and 2. Regarding
the atom, we can consider the squeezing of the a posteri-
ori state ρt and of the a priori state ηt, and in particular
of its limit ηeq. Let us stress that the definition of atomic
squeezing does not depend on the fact that we are work-
ing in the rotating frame. Let us start by investigating
the effect of the control parameters.

Independently of the presence of the feedback loop,
every time a parameter |αk| vanishes, the corresponding
photocurrent Ik reduces to a pure white noise (shot noise
due to the local oscillator) with spectrum Sk = 1.

The case c = 0. In this case the dependence of each
spectrum Sk on the corresponding |αk| reduces to the
explicit multiplication coefficient in (3). Therefore, when
the control parameters Ω and ∆ω give squeezed light in
channel k, the lowering of Sk under the shot noise level is
anyhow directly proportional to the fraction of emitted
light gathered in that channel.

For Ω = 0 and n = 0 there is no fluorescence light in
the long run, so that each photocurrent Ik asymptotically
reduces to a pure white noise and Sk = 1.
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FIG. 1: Channel 1
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FIG. 2: Channel 2

For Ω = 0 and n > 0 there is no dependence on ϑk

and Sk > 1. In this case there is only thermal light
with carrier frequency ω0, while the local oscillator is at
frequency ω. The result are two temperature dependent
Lorentzian peaks at µ = ±∆ω.

When Ω > 0, Sk becomes ϑk-dependent and it can go
below the shot noise level. This fact means that some
negative correlation between the terms of the photocur-
rent (2) has been developed. Some examples are plotted
for both channels. All the figures are always in the case
γ = 1, kd = n = 0 and |α1|2 = |α2|2 = 0.45, with the
control parameters used first to fix the position of the
minima of Sk and, then, to have the lowest minima. Fig-
ures 1 and 2 show S1 and S2 (which are equal in this case)
for minima in µ = 0 (line 1, with ∆ω = 0, Ω = 0.2976,
ϑk = −π/2) and in µ = ±2.5 (line 2, with ∆ω = 1.8195,
Ω = 1.7988, ϑk = −0.1438).

One could also compare the homodyne spectrum with
and without kd and n, thus verifying that the squeezing
is very sensitive to any small perturbation.

Regarding the atom, ASηeq
depends only on kd, n, Ω,

∆ω. In the case kd = n = 0, the condition ASηeq
< 0

becomes 0 < 2Ω2 < 4∆ω2 + γ2 and the minimum value
of ASηeq

is −1/8, reached for 6Ω2 = 4∆ω2 + γ2.

The case c ≥ 0. The optimal squeezing in channel
1 is always found for Ω = 0 and the feedback loop is
very helpful, giving good visible minima of S1 also when



4

|α1| is not close to 1. For example, FIG. 1 shows S1

for minima in µ = 0 (line 3, with ∆ω = 0, Ω = 0,
c = 0.2936, ϕ − ϑ1 = π/2) and in µ = ±2.5 (line 4,
with ∆ω = 2.5499, Ω = 0, c = 0.3772, ϑ1 = −1.3354,
ϕ = −0.0646). The utility of the feedback scheme can
be appreciated by comparing line 1 with line 3 and line
2 with line 4.

If we are interested in the light emitted in channel 2
and if |α1| and |α2| are assigned by some constraints,
then the squeezing in channel 2 can be enhanced by a
feedback scheme based on the photocurrent coming from
channel 1, but the feedback performance is not as good
as it can be for the squeezing in channel 1 itself. FIG. 2
shows S2 for minima in µ = 0 (line 3, with ∆ω = 0,
Ω = 0.2698, ϑ1 = π/2, c = 0.0896, ϕ = 0, ϑ2 = −π/2)
and in µ = ±2.5 (line 4, with ∆ω = 1.6920, Ω = 1.9276,
ϑ1 = 2.8168, c = 0.1326, ϕ = 1.2460, ϑ2 = −0.0851).

Anyway, if the only constraint is |α1|2+|α2|2 = 1−|α0|2
and we are free in the choice of |α1| and |α2|, then the
best observable squeezing in channel 2 is obtained in the
case |α1| = 0, c = 0. That is, when the whole non-lost
light is gathered just in channel 2 and the white noise I1

revealed in channel 1 is ignored.
The feedback loop can be really efficient also to en-

hance the atomic squeezing. For example, in the ideal
situation |α1| = 1, kd = n = 0, with γ = 1, ∆ω = 3,
Ω = 4, ϑ1 = π/2, c = 1.3372, ϕ = −π/40, we get
ASηeq

= −0.2414, which is very close to the bound −1/4.
In this case ηeq is almost pure so that also the a posteriori
state ρt is frozen in a neighbourhood of ηeq and ASρt

is
maximized, too.

Fluorescence light vs atomic squeezing. There are not
simple relations among the squeezing properties of fluo-
rescence light in channel 1, of fluorescence light in chan-
nel 2, of atomic a priori equilibrium state and of atomic a
posteriori state. Indeed, changing the parameters of our
model, we can observe a wide variety of behaviours.

The only clear link is the one mentioned above: if
ASηeq

≃ −1/4, then ηeq is almost pure and ρt is frozen
in a neighbourhood of ηeq, so that ASρt

is minimized,
too, and the fluorescence light squeezing disappears as
there is not incoherent scattering of light. One can check
that actually only the coherent scattering survives, giv-
ing a δ-contribution in µ = 0 to the complete spectrum.
If the freezing of the atom is only approximate, one can
check that all the spectra tend to become flatter and the
fluorescence light squeezing tends to disappear.

There is also the link (4) between ASηeq
and Σ2. This

gives a direct relation between atomic and fluorescence
light squeezing in absence of feedback. Indeed, in this
case we have zeq ≤ 0, so that Σ2 = |α2|2 ASηeq

, and we
can consider the case |α1| = 0, so that |α2|2 is the fraction
of the whole detected light. This relation is essentially
the same found by Walls and Zoller considering a single
mode for the emitted light [10]. However the relation is

not fundamental, as the feedback loop can give zeq > 0
and in this case we have always Σ2 ≥ 0 even if ASηeq

< 0.

There is no relation between fluorescence light squeez-
ing revealed in channel 1 and in channel 2, even if we
fix the constraint |α1| = |α2|. For example, the lowest
minima of S1 are found for c > 0 and Ω = 0, but, every
time Ω = 0, the light in channel 2 is not squeezed as it
can be proved that S2 ≥ 1 for every µ and every ϑ2.

It is worth mentioning also the case |α1| = 1, γ = 1,
kd = n = 0, with ∆ω = 0, Ω = 0, ϑ1 = π/2, c = 1.2818,
ϕ = 0. Then we have an extremely visible squeezing in
channel 1 (S1 reaches 0.3183), there is no squeezing of
the atomic a priori equilibrium state (ASηeq

= 0.0922),
while numerical simulations show that the a posteriori
state ρt tends to become pure (as |α1| = 1) with ASρt

stochastically moving between −1/4 and 0.

Finally let us remark that the idea of the papers [7] is to
choose the control parameters in such a way that, in the
rotating frame, the atom is frozen in a preassigned pure
state h0 ∈ C2, i.e. in such a way that, in the rotating
frame, both the a priori state ηt and the a posteriori
state ρt asymptotically reach ηeq = |h0〉〈h0|. This is
possible in an exact way only in a very ideal case, which
in our notations corresponds to |α1| = 1, kd = n = 0,
∆ω = 0, ϑ1 = ±π/2, ϕ = 0, which implies in particular
a12 = a21 = 0 and xeq = 0. Then, ρt is driven to a pure
given state if Ω and c are such that y 2

eq + z 2
eq = 1 and

2c sinϑ1 = 1 + zeq. But this implies ~t1 = 0 and the two
incoherent spectra reduce to pure shot noise.
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