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Abstract. This paper deals with a one–dimensional model for granular materials, which

boils down to an inelastic version of the Kac kinetic equation, with inelasticity parameter

p > 0. In particular, the paper provides bounds for certain distances – such as specific

weighted χ–distances and the Kolmogorov distance – between the solution of that equation

and the limit. It is assumed that the even part of the initial datum (which determines

the asymptotic properties of the solution) belongs to the domain of normal attraction of a

symmetric stable distribution with characteristic exponent α = 2/(1+p). With such initial

data, it turns out that the limit exists and is just the aforementioned stable distribution.

A necessary condition for the relaxation to equilibrium is also proved. Some bounds are

obtained without introducing any extra–condition. Sharper bounds, of an exponential type,

are exhibited in the presence of additional assumptions concerning either the behaviour,

near to the origin, of the initial characteristic function, or the behaviour, at infinity, of the

initial probability distribution function.

1. Introduction

This work deals with a one–dimensional inelastic kinetic model, introduced in Pul-

virenti and Toscani (2004), that can be thought of as a generalization of the Boltzmann-like

equation due to Kac (Kac (1956)). Motivations for research into equations for inelastic in-

teractions can be found in many papers, generally devoted to Maxwellian molecules. Among

them, in addition to the already mentioned Pulvirenti and Toscani’s paper, it is worth quot-

ing: Bobylev et al. (2000), Carrillo et al. (2000), Bobylev and Cercignani (2002a,b,c, 2003),

Ernst and Brito (2002), Bobylev et al. (2003), Bolley and Carrillo (2007). See, in particular,
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the short but useful review in Villani (2006). Returning to the main subject of this paper, the

one-dimensional inelastic model we want to study reduces to the equation

(1)



























∂

∂t
f(v, t) =

1

2π

∫

R×[0,2π)

{f(vc(θ) − ws(θ), t)f(vs(θ) + wc(θ), t)−

− f(v, t)f(w, t)}dwdθ

f(v, 0) := f0(v) (t > 0, v ∈ R)

where f(·, t) stands for the probability density function of the velocity of a molecule at time

t and

c(θ) := cos θ| cos θ|p, s(θ) := sin θ| sin θ|p

p being a nonnegative parameter. When p = 0, (1) becomes the Kac equation. It is easy to

check that the Fourier transform φ(·, t) of f(·, t) satisfies equation

(2)















∂

∂t
φ(ξ, t) =

1

2π

∫ 2π

0

φ(ξs(θ), t)φ(ξc(θ), t)dθ − φ(ξ, t)

φ(ξ, 0) := φ0(ξ) (t > 0, ξ ∈ R)

where φ0 stands for the Fourier transform of f0.

Equation (2) can be considered independently of (1), thinking of φ(·, t), for t ≥ 0, as

Fourier–Stieltjes transform of a probability measure µ(·, t), with µ(·, 0) := µ0(·). In this case,

differently from (1), µ needn’t be absolutely continuous, i.e. it needn’t have a density function

with respect to the Lebesgue measure.

Following Wild (1951), φ can be expressed as

(3) φ(ξ, t) =
∑

n≥1

e−t(1 − e−t)n−1q̂n(ξ; φ0) (t ≥ 0, ξ ∈ R)

where

(4)







q̂1(ξ, φ0) := φ0(ξ)

q̂n(ξ; φ0) := 1
n−1

∑n−1
j=1 q̂n−j(ξ; φ0) ◦ q̂j(ξ; φ0) (n = 2, 3, . . . )

and

g1 ◦ g2(ξ) =
1

2π

∫ 2π

0

g1(ξc(θ))g2(ξs(θ))dθ (ξ ∈ R)

is the so–called Wild product. The Wild representation (3) can be used to prove that the Kac

equations (1) and (2) have a unique solution in the class of all absolutely continuous probability

measures and, respectively, in the class of the Fourier–Stieltjes transforms of all probability

measures on (R,B(R)). Moreover, this very same representation, as pointed out by McKean
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(1966), can be reformulated in such a way to show that φ(·, t) is the characteristic function of a

completely specified sum of real–valued random variables. This represents an important point

for the methodological side of the present work, consisting in studying significant asymptotic

properties of φ(·, t), as t → +∞. Indeed, thanks to the McKean interpretation, our study will

take advantage of methods and results pertaining to the central limit theorem of probability

theory.

As to the organization of the paper, in the second part of the present section we provide

the reader with preliminary information – mainly of a probabilistic nature – that is necessary

to understand the rest of the paper. In Section 2 we present the new results, together with

a few hints to the strategies used to prove them. The most significant steps of the proofs

are contained in Section 3, devoted to asymptotics for weighted sums of independent random

variables. The methods used in this section are essentially inspired to previous work of Harald

Cramér and to its developments due to Peter Hall. See Cramér (1962, 1963), Hall (1981).

Completion of the proofs is deferred to the Appendix.

1.1. Probabilistic interpretation of solutions of (1)–(2). It is worth lingering over the

McKean reformulation of (4), following Gabetta and Regazzini (2006b). Consider the product

spaces

Ωt := N × G × [0, 2π)N × R
N

with G =
⋃

n G(n), G(n) being a set of certain binary trees with n leaves. These trees are

defined so that each node has either zero or two “children”, a “left child” and a “right child”.

See Figure 1.
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Now, equip Ωt with the σ–algebra

Ft := P(N × G) ⊗ B([0, 2π)N) ⊗ B(RN)

where, given any set S, P(S) denotes the power set of S and, if S is a topological space,

B(S) indicates the Borel σ–algebra on S. Define (νt, γt, θt, Xt), with θt := (θt,n)n≥1 and

Xt := (Xt,n)n≥1, to be the coordinate random variables of Ωt. At this stage, for each tree in

G(n) fix an order on the set of all the (n − 1) nodes and, accordingly, associate the random

variable θt,k with the k–th node. See (a) in Figure 1. Moreover, call 1, 2, . . . , n the n leaves

following a left to right order. See (b) in Figure 1. Define the depth of leaf j – in symbols, δj

– to be the number of generations which separate j from the “root” node, and for each leaf j

of a tree, form the product

βj,t :=

δj
∏

i=1

α
(j)
i

where: α
(j)
δj

equals c(θt,k) if j is a “left child” or s(θt,k) if j is a “right child”, and θt,k is the

element of θt associated to the parent node of j; α
(j)
δj−1 equals c(θt,m) or s(θt,m) depending on

the parent of j is, in its turn, a “left child” or a “right child”, θt,m being the element of θt

associated with the grandparent of j; and so on. For the unique tree in G(1) it is assumed

that β1,t = 1. For instance, as to leaf 1 in (a) of Figure 1, β1,t = cos θt,4 · cos θt,2 · cos θt,1 and,

for leaf 6, β6,t = sin θt,5 · cos θt,3 · sin θt,1.

¿From the definition of the random variables βj,t it is plain to deduce that

νt
∑

j=1

|βj,t|α = 1,

holds true for any tree in G(νt), with

α :=
2

1 + p
,

For further information on this construction, see McKean (1967); Carlen et al. (2000);

Gabetta and Regazzini (2006b).

It is easy to verify that there is one and only one probability measure Pt on (Ωt,Ft)

such that

Pt{νt = n, γt = g, θt ∈ A, Xt ∈ B}

=







e−t(1 − e−t)n−1pn(g)u⊗N(A)µ⊗N

0 (B) if g ∈ G(n)

0 if g 6∈ G(n)
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where, for each t,

• pn is a well–specified probability on G(n), for every n.

• u⊗N is the probability distribution that makes the θt,n independent and identically

distributed with continuous uniform law on [0, 2π).

• µ⊗N

0 is the probability distribution according to which the random variables Xt,n turn

out to be independent and identically distributed with common law µ0.

Expectation with respect to Pt will be denoted by Et and integrals over a measurable

set A ⊂ Ω will be often indicated by Et(·; A).

In this framework one gets the following proposition, a proof of which can be obtained

from obvious modifications of the proofs of Theorem 3 and Lemma 1 in Gabetta and Regazzini

(2006b).

(F1) The solution f(·, t) [φ(·, t), respectively ] of (1) [(2), respectively ] can be viewed

as a probability density function [the characteristic function, respectively ] of

Vt :=

νt
∑

j=1

βj,tXt,j

for any t > 0. Moreover, β(νt) := max{|β1,t|, . . . , |βνt,t|} converges in distribution to zero as

t → +∞.

As a first application of this proposition, one easily gets

φ(ξ, t) = Et[Et(e
iξVt |νt)]

= e−tφ0(ξ) + e−t
∑

n≥2

(1 − e−t)n−1q̂n(ξ; φ0).

Then, since q̂n(ξ; φ0) = q̂n(ξ; Re(φ0)) for any n ≥ 2 — with Re(z) =real part of z — the

conditional characteristic function of Vt, given {νt = n}, coincides with the characteristic

function of Vt when φ0 is replaced by its real part. Whence,

(5) φ(ξ, t) = e−t
∑

n≥1

(1 − e−t)n−1q̂n(ξ; Re(φ0)) + iIm(φ0(ξ))e
−t

with Im(z) :=imaginary part of z. The distribution corresponding to Re(φ0) is symmetric

and is called even part of µ0. In fact, Re(φ0) turns out to be an even real–valued characteristic

function, and this fact generally makes easier certain computations. It should be pointed out

that if the initial datum µ0 is a symmetric probability distribution, then the distribution of

Vt is the same as the distribution of
∑νt

j=1 |βj,t|Xt,j .
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1.2. Topics on stable distributions. It can be proved that the possible limits (in distribu-

tion) of Vt, as t → +∞, have characteristic functions φ which are solutions of

(6)
1

2π

∫ 2π

0

φ(ξs(θ))φ(ξc(θ))dθ = φ(ξ) (ξ ∈ R).

This result has been communicated to us by Filippo Riccardi, who proved it by resorting to

a suitable modification of the Skorokhod representation used in the Appendix of the present

paper. It is interesting to note that also the stationary solutions of (2) must satisfy (6). We

didn’t succeed in finding all the solutions of (6), but it is easy to check that

(7) ĝα(ξ) = exp{−a0|ξ|α} (ξ ∈ R)

is a solution of (6), for any a0 ≥ 0.

It is well–known that (7) is strictly connected with certain sums of random variables.

Indeed, it is a stable real–valued characteristic function with characteristic exponent α and,

in view of a classical Lévy’s theorem,

(F2) If X1, X2, . . . are independent and identically distributed real–valued random vari-

ables, with symmetric common distribution function F0, then in order that the random variable

X be the limit in distribution of the normed sum
∑n

i=1 Xi/n1/α it is necessary and sufficient

that X has characteristic function (7) for some a0 ≥ 0.

One could guess that (F2) may be used to get a direct proof of the fact that Vt

converges in distribution to a stable random variable with characteristic function (7). This

way, one would obtain that these characteristic functions are all possible pointwise limits, as

t → +∞, of solutions φ(·, t) of (2). In point of fact, direct application of results like (F2) is

inadmissible since Vt is a weighted sum of a random number of summands, affected by random

weights which are not stochastically independent. In spite of this, by resorting to suitable

forms of conditioning for Vt, one can take advantage of classical propositions pertaining to the

central limit theorem.

In addition to the problem of determining the class of all possible limit distributions for

Vt, an obvious question which arises is that of singling out necessary and sufficient conditions

on µ0, in order that Vt converges in distribution to some specific random variable. As to the

classical setting mentioned in (F2), it is worth recalling

(F3) If X1, X2, . . . are independent and identically distributed real–valued random vari-

ables, with (not necessarily symmetric) common distribution function F0, then in order that

(
∑n

i=1 Xi/n1/α − mn) converge in law to a random variable with characteristic function (7)
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with some specific value for a0 — or, in other words, that F0 belong to the domain of normal

attraction of (7) — it is necessary and sufficient that F0 satisfies |x|αF0(x) → c1 as x → −∞
and xα(1 − F0(x)) → c2 as x → +∞, i.e.

F0(−x) =
c1

|x|α + S1(−x) and 1 − F0(x) =
c2

xα
+ S2(x) (x > 0)

Si(x) = o(|x|−α) as |x| → +∞ (i = 1, 2).

(8)

For more information on stable laws and central limit theorem see, for example, Chap-

ter 2 of Ibragimov and Linnik (1971) and Chapter 6 of Galambos (1995). To complete the

description of certain facts that will be mentioned throughout the paper, it is worth enunci-

ating

(F4) If φ0 stands for the Fourier–Stieltjes transform of a probability distribution func-

tion F0 satisfying (8), then

1 − φ0(ξ) = (a0 + v0(ξ))|ξ|α (ξ ∈ R)

where v0 is bounded and |v0(ξ)| = o(1) as |ξ| → 0.

(F4), which is a paraphrase of Théorème 1.3 of Ibragimov (1985), can be proved by

mimicking the argument used for Theorem 2.6.5 of Ibragimov and Linnik (1971).

2. Presentation of the new results

In the present paper our aims are: Firstly, to find initial distribution functions F0

(or initial characteristic functions φ0) so that the respective solutions of (2) may converge

pointwise to (7). Secondly, to determine the rate of convergence of the probability distri-

bution function F (·, t), corresponding to φ(·, t), to a stable distribution function Gα with

characteristic exponent α = 2/(1 + p), with respect both to specific weighted χ–metrics and

to Kolmogorov’s distance.

It is well–known — from the Lévy continuity theorem — that pointwise convergence

of sequences of characteristic functions is equivalent to weak convergence of the corresponding

distribution functions. In particular, in our present case, since the limiting distribution func-

tion Gα is (absolutely) continuous, weak convergence is equivalent to uniform convergence,

i.e.

(9) sup
x∈R

|F (x, t) − Gα(x)| → 0 as t → +∞.
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Left–hand side of (9) is just the Kolmogorov distance (K, in symbols) between F (·, t)
and Gα. As to the above–mentioned first aim, besides sufficient conditions for convergence —

reducing to the fact that F0 belongs to the domain of normal attraction of (7) — a necessary

condition for convergence is given. As far as rates of convergence are concerned, results can

be found in the paper of Pulvirenti and Toscani, with respect to a specific weighted χ–metric,

used to study convergence to equilibrium of Boltzmann–like equations starting from Gabetta

et al. (1995). See also Rachev (1991). Denoting this distance by χs, s being some positive

number, one has

χs(F (·, t), Gα) := sup
ξ∈R

|φ(ξ, t) − exp(−ao|ξ|α)|
|ξ|s .

With reference to (1), after writing gα for a density of Gα, Theorem 6.2 in Pulvirenti and

Toscani (2004) reads:

(F5) Let p > 1 with f0 such that
∫

R
|v|α+δ |f0(v) − gα(v)|dv is finite for some δ in

(0, (1 − α) ∧ α). Then

(10) χα+δ(F (·, t), Gα) ≤ χα+δ(F0, Gα) exp{−t(1− 2A2(1+δ/α))}

holds true for every t ≥ 0, with

(11) Am :=
1

2π

∫ 2π

0

| sin θ|mdθ =
Γ(m

2 + 1
2 )√

π Γ(m
2 + 1)

(m ≥ 0).

Moreover, (10) is still valid if 0 < p ≤ 1 and
∫

R
|v|α+δ |f0(v) − gα(v)|dv if finite for some δ in

(0, αp].

It should be pointed out that the proof of (F5) provided in Pulvirenti and Toscani

(2004) rests on a hypothesis that is weaker than the one evoked in (F5), i.e.

(12) |v0(ξ)| = O(|ξ|δ) as ξ → 0

for some δ > 0.

In the present paper we prove weak convergence of F (·, t) to Gα under much more

general hypotheses than those adopted in (F5). For reader’s convenience, it is worth noticing

that the probability distribution function F ∗
0 corresponding to Re(φ0) (see the final part of

Subsection 1.2) coincides with

1

2
{F0(x) + 1 − F0(−x)}
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at each point x of continuity for F0. In view of (F3)–(F4), if F0 belongs to the domain of

normal attraction of (7), then there is a nonnegative c0 for which

(13) lim
x→−∞

|x|αF ∗
0 (x) = lim

x→+∞
xα(1 − F ∗

0 (x)) = c0

and the characteristic function associated to F ∗
0 , i.e. Re(φ0), satisfies

(14) 1 − Re(φ0(ξ)) = (a0 + v∗0(ξ))|ξ|α

for some bounded, real-valued v∗
0 such that |v∗

0(ξ)| = o(1) as ξ → 0. Moreover, c0 is related

to a0 by

a0 = 2c0

∫ +∞

0

sin(x)

xα
dx.

The precise statement of the aforementioned convergence reads

Theorem 2.1. Given p > 0, let the initial data for problems (1)–(2) satisfy

lim
x→+∞

(1 − F ∗
0 (x))xα = c0.

Then

lim
t→+∞

K(F (·, t), Gα) = 0.

In particular, if c0 = 0, then for every ε > 0 one has

lim
t→+∞

F (−ε, t) = lim
t→+∞

(1 − F (ε, t)) = 0,

i.e. the weak limit of µ(·, t) is the point mass δ0. On the other hand, if p > 0 and there is

a strictly positive and increasing sequence (tn)n≥1, divergent to +∞, such that (F (·, tn))n≥1

converges weakly to any probability distribution function, then

0 ≤ lim
ξ→+∞

inf
x≥ξ

xα(1 − F ∗
0 (x)) < +∞.

Proof of Theorem 2.1 is deferred to the Appendix.

After presenting the most general statement we achieved about the weak convergence

of F (·, t), let us proceed to investigate how convergence is fast. Pulvirenti and Toscani’s

argument to prove (F5) lies in studying equation (4) directly via suitable inequalities and

from an analytical viewpoint. Differently, in our approach one starts from inequality

(15) |φ(ξ, t) − ĝα(ξ)| ≤ Et(|φ̃νt (ξ) − ĝα(ξ)|)

where ĝα is defined by (7) and, according to (F1), φ̃νt represents the conditional characteristic

function of Vt given (νt, γt, θt). Hence, from the beginning, we try to obtain bounds for
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|φ̃νt (ξ) − ĝα(ξ)|. This is tantamount to investigating bounds for |φ̃n(ξ) − ĝα(ξ)| when φ̃n is

the characteristic function of

(16) Sn :=

n
∑

l=1

q
(n)
l Xl

with X1, X2, . . . independent and identically distributed random numbers, with common dis-

tribution function F0, and

(17) q
(n)
l ≥ 0 for l = 1, . . . , n, n = 1, 2, . . . such that

n
∑

l=1

(q
(n)
l )α = 1.

Think of n and (q
(n)
1 , . . . , q

(n)
n ) as realizations of νt and (|β1,t|, . . . , |βνt,t|), respectively. Ac-

cording to (F1) one can assume

(18) q(n) := max{q(n)
1 , . . . , q(n)

n } → 0 as n → +∞.

We study this problem – preliminary to the investigation of rates of convergence for Vt –

under the additional conditions that F0 is symmetric (and, consequently, the corresponding

characteristic function φ0 is even) and that it belongs to the domain of normal attraction

of ĝα. See (F3)–(F4) and (13)–(14). This way we also get bounds for convergence in law

of weighted sums Sn to stable random variables, which are of interest in themselves and, as

far as we know, seem to be new. They are explained and precisely formulated in Section 3.

Resuming now the main issue of the speed of convergence of Vt to equilibrium, some further

notation is needed. We set

‖v∗0‖ := sup
ξ≥0

|v∗0(ξ)|, M := a0 + ‖v∗0‖, v̄∗0(ξ) := sup
0≤x≤ξ

|v∗0(x)|

and, given η ∈ (0, a0), define d to be some element of (0, 1) such that

4

5
M2|x|α + v̄∗0(x) ≤ η

comes true whenever |x| ≤ (3d/(8M))1/α. Next, we put Mr := maxx≥0 xrαe−(a0−η)xα

, d1 :=

(3/(8M))1/α, k∗ = v̄∗0(d1d
1/α)(1 + 2dα

1 d1−αv̄∗0(d1d
1/α)) + (4/5)M2dα

1 d + (32/25)M4d3α
1 d3−α.

2.1. Speed of approach to equilibrium with respect to weighted χ–metrics. Now we

are in a position to present our first results which concern convergence of F (·, t) to Gα with

respect to χ–metrics.
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Theorem 2.2. Let F0 belong to the domain of normal attraction of Gα with α = 2/(1 + p),

for some p > 0. Define v0 and v∗0 to be the same as in (F4) and (14), respectively. Set

β(νt) := max{|β1,t|, . . . , |βνt,t|}. Then

χα(F (·, t), Gα) ≤ Et(v̄
∗
0(d1β

c
(νt)

)) + 2M1Et(v̄
∗
0(d1β

c
(νt)

)2) +
4

5
M2M1Et(β

α
(νt)

)

+
32

25
M3M

4Et(β
2α
(νt)

) +
(

k∗ +
2

ddα
1

)

Pt{β(νt) > d ∧ d1/cα}

+
2

dα
1

Et(β
α(1−c)
(νt)

) + e−t sup
ξ∈R

|Im(v0(ξ))|

is valid for any c in (0, 1).

The upper bound provided in Theorem 2.2 goes to zero as t → +∞ thanks to (F1),

(F4) and the definition of v̄∗
0 . Then, it can be used to yield further bounds, either via the

statement of specific upper bounds for the expectations which appear in the right–hand side,

or through the adoption of suitable extra–conditions on v0. As to the former way of arguing,

it is worth recalling that Proposition 8 in Gabetta and Regazzini (2006a) gives

Et(

νt
∑

j=1

|βj,t|m) = Et(

νt
∑

j=1

A
δj

m(1+p)) (δj = depth of leaf j)

= exp{−t(1− 2Am(1+p))} (m ≥ 0)

(19)

with Am defined as in (11). Moreover, from Lemma 1 in Gabetta and Regazzini (2006b),

(20) Pt{β(νt) > x} ≤ x− q
1+p e−t(1−2Aq) (0 < x < 1, q > 0)

which, in turn, yields

(21) Et(β
m
(νt)

) ≤ e−σmt + e−t(1−qσα/2−2Aq)

for any positive σ and q. Now, define U1,t as

U1,t : = v̄∗0(d1β
c
(νt)

) + 2M1(v̄
∗
0(d1β

c
(νt)

))2 +
4

5
M2M1β

α
(νt)

+
32

25
M3M

4β2α
(νt)

+ (k∗ +
2

ddα
1

)I{β(νt) > d ∧ d1/cα} +
2

dα
1

β
α(1−c)
(νt)

+ e−t sup
ξ∈R

|Im(v0(ξ))|

and set

M1,t := v̄∗0(d1β
c
(νt)

) + 2M1(v̄
∗
0(d1β

c
(νt)

))2

R1,t := U1,t −M1,t.
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Next, observe that the upper bound provided by Theorem 2.2 can be written as

Et(M1,t) + Et(R1,t) ≤ Et(M1,t; β(νt) ≤ xt) + M(1 + 2M1M)Pt{β(νt) > xt} + Et(R1,t)

with xt := exp{−σt} and σ satisfying 1 − 2Aq − σq/(1 + p) > 0 to obtain

χα(F (·, t), Gα) ≤v̄∗0(d1e
−cσt) + 2M1v̄

∗
0(d1e

−cσt)2

+ M(1 + 2M1M)e−t(1−2Aq−σq/(1+p)) + Et(R1,t).
(22)

Then, since Et(R1,t) can be re-written — thanks to (20)–(21) — as a sum of exponential func-

tions, (22) provides a bound entirely expressed, through v̄∗
0 , in terms of exponential functions

of t.

Exponential rates of relaxation to equilibrium hold true under some extra–condition

concerning the local behavior of v0 near the origin.

Theorem 2.3. Assume that, in addition to the assumptions made in Theorem 2.2, (12)

holds for some δ > 0. Moreover, let d be chosen in such a way that |x| ≤ d1d
1/α entails

|v0(x)| ≤ ρ|x|δ for some ρ > 0. Then,

χα+δ

(

F (·, t), Gα

)

≤
(

ρ +
2

dα+δ
1 d(α+δ)/α

)

e−t(1−2A2(1+δ/α))

+
4

5
M2Mα−δ

α
e−t(1−2A4) + 2ρ2Mα+δ

α
e−t(1−2A2(1+2δ/α))

+
32

25
M4M 3α−δ

α
e−t(1−2A6) + e−t sup

ξ∈R

1

|ξ|δ |Im(v0(ξ))|

holds true for δ in (0, α], while

χ2α

(

F (·, t), Gα

)

≤
(4

5
M2 +

2

d2α
1 d2

)

e−t(1−2A4)

+ρM δ−α
α

e−t(1−2A2(1+δ/α)) +
32

25
M4M2e

−t(1−2A6)

+2ρ2M 2δ
α

e−t(1−2A2(1+2δ/α)) + e−t sup
ξ∈R

1

|ξ|α |Im(v0(ξ))|

is verified for δ in (α, 2α].

In short, this proposition can be condensed into the following statement: Under the

hypotheses of Theorem 2.3, there are constants a1 and a2 such that:

χα+δ(F (·, t), Gα) ≤a1e
−t(1−2A2(1+δ/α)) if δ ∈ (0, α],

χ2α(F (·, t), Gα) ≤a2e
−t(1−2A4) if δ ∈ (α, 2α].
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Statements of the same type as Theorems 2.2 and 2.3 are proved in Section 5 in

Gabetta and Regazzini (2006c) for α = 2 (p = 0), i.e. when Gα is a Gaussian distribution

function with zero mean. Notice that the rate of convergence given in the former part of the

last theorem coincides with that of Toscani and Pulvirenti previously quoted in (F5). The

latter part of Theorem 2.3 and, mainly, Theorem 2.2 seem to be new. See Subsection 2.4 for

further comments.

2.2. Rates of relaxation to equilibrium in Kolmogorov’s metric (Conditions ex-

pressed on the characteristic function φ0). Rates of convergence of F (·, t) to Gα, in

Kolmogorov’s metric, can be deduced from the representation of Vt as weighted sum, via

the well-known Berry-Esseen inequality in its form given, for example, in Theorem 3.18 of

Galambos (1995). It is worth recalling that application of this inequality is allowed thanks to

the fact that Gα has derivatives of all orders at every point. Henceforth, given any strictly

positive l and q, we put

Nl =

∫ +∞

0

exp{−(a0 − η)ξα}ξl−1dξ

and

H(ξ, q) := |v∗
0(ξq)|(1 + 2|ξ|α|v∗0(ξq)|), H̄(ξ, q) := sup

u≤q
H(ξ, u)

with v∗0 as in (14).

Theorem 2.4. If F0 belongs to the domain of normal attraction of Gα with α = 2/(1 + p)

for some p > 0, then

K(F (·, t), Gα) ≤ 2

π
Et

[

νt
∑

j=1

|βj,t|α
∫ +∞

0

H(ξ, |βj,t|)ξα−1e−(a0−η)ξα

dξ
]

+
c||hα||

d̃
Et(β(νt)) +

8

5π
M2N2αe−t(1−2A4) +

64

25π
M4N4αe−t(1−2A6)

+
e−t

2
sup
x∈R

|F0(x) + F0(−x − 0) − 1|

c being the constant which appears in the above-mentioned version of the Berry-Esseen in-

equality and d̃ :=
(

3d/8M
)1/α

.

A further bound for K(F (·, t), Gα) can be obtained by replacing the summand

2

π
Et[

νt
∑

j=1

|βj,t|α
∫ +∞

0

H(ξ, |βj,t|)ξα−1e−(a0−η)ξα

dξ]
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with
2

π
Et[

∫ +∞

0

H̄(ξ, β(νt))ξ
α−1e−(a0−η)ξα

dξ].

Finally, it is worth presenting a bound of the same style as (22), entirely depending

on exponential functions:

K(F (·, t), Gα) ≤ 8

5π
M2N2αe−t(1−2A4) +

64

25π
M4N4αe−t(1−2A6)

+
e−t

2
sup
x∈R

|F0(x) + F0(−x − 0) − 1|

+
( 2

π
‖v∗0‖(Nα + 2N2α‖v∗0‖) +

c||hα||
d̃

)

e−t(1−qσα/2−2Aq)

+e−ρt c||hα||
d̃

+
2

π

∫ +∞

0

H̄(ξ, e−tσ)ξα−1e−(a0−η)ξα

dξ.

Notice that the above two bounds go to zero as t → +∞. Indeed, the latter goes to

zero since, on the one hand, limt→+∞

∫ +∞

0
H̄(ξ, e−tσ)ξα−1e−(a0−η)ξα

dξ = 0 and, on the other

hand, σ and q can be chosen in such a way that 1 − qσα/2 − 2Aq turns out to be strictly

positive. Exponential bounds can be given under the usual condition on the behavior of v0

near the origin.

Theorem 2.5. If, besides the assumptions considered in Theorem 2.4, v∗
0 is such that |v∗

0(ξ)| =

O(|ξ|δ) as ξ → 0 for some δ > 0, and d is chosen to assure that |ξ| ≤ d̃ = (3d/8m)1/α entails

|v∗0(ξ)| ≤ ρ|ξ|δ, then

K(F (·, t), Gα) ≤ 8

5π
M2N2αe−t(1−2A4) +

64

25π
M4N4αe−t(1−2A6)

+
2

π
ρNα+δe

−t(1−2A2+2δ/α) + 2ρ2N2α+2δe
−t(1−2A2+4δ/α)

+
c||hα||

d̃
Et(β(νt)) +

e−t

2
sup
x∈R

|F0(x) + F0(−x − 0) − 1|.

In view of (21), the thesis of Theorem 2.5 can be formulated as: There are positive

constants a3 and b such that K(F (·, t), Gα) ≤ a3e
−bt for every t ≥ 0.

2.3. Convergence in Kolmogorov’s metric (Conditions expressed on the initial

probability distribution F0). A characteristic feature of the results presented until now

is that all the assumptions adopted to obtain bounds — in particular, extra-conditions to

achieve exponentially fast convergence — are formulated in terms of conditions on the initial

characteristic function. In general, with respect to actual choice of initial data, it is easier

and more natural to assign conditions on F0 than on φ0. Apropos of this remark, see the role
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played by Lemma 6.1 in Pulvirenti and Toscani (2004) and Section 2.4 below. With reference

to the classical case of independent and identically distributed summands, see, for example,

Cramér (1962, 1963), Hall (1981). Accordingly, the main objective of the rest of the section is

to determine bounds for K(F (·, t), Gα), expressed in terms of quantities whose computation is

generally easier than the computation of characteristic functions, once either F0 or some ap-

proximate form of F0 has been assigned. To pave the way for presentation, let us complement

previous notation given, in particular, in Subsection 1.2:

h∗(x) :=xαS∗(x) = xα{1− F ∗
0 (x)} − c∗0 = xαF ∗

0 (−x) − c∗0 (x > 0)

b∗1(x) :=2x

∫ +∞

D

sin(xu)S∗(u)du

where D is some strictly positive number and the integral has to be meant as improper

Riemann integral. Moreover,

B1 :=2k1N2 + 8k1k2N2+α, B2 := 8k2
1N4, B3 := 4k2N1+α + 2N1

B4 :=4k2N2+α + 2N2, B5 :=
4

5
M2N2α, B6 :=

32

25
M4N4α

with

k1 :=

∫ D

0

x|S∗(x)|dx, k2 := sup
x>0

|b∗1(x)|
xα

≤ max{||v∗
0 || + 2k1, 2

∫ +∞

D

|S∗(x)|dx}

and

H∗
1 (q) :=

∫ 1

0

y1−α|h∗(y/q)|dy, H∗
2 (q) :=

∫ +∞

1

y−α|h∗(y/q)|dy

k3 := sup
q∈(0,1)

H∗
1 (q), k4 := sup

q∈(0,1)

H∗
2 (q).

Theorem 2.6. If F0 belongs to the domain of normal attraction of Gα with α = 2/(1 + p) in

[1, 2), and
∫

R
|S∗(x)|dx < +∞ if α = 1, then

K(F (·, t), Gα) ≤ 2

π
Et

[

νt
∑

j=1

|βj,t|α{B3H
∗
1 (|βj,t|) + B4H

∗
2 (|βj,t|)}

]

+
c||hα||

d̃
Et(β(νt)) +

2

π

{

B1e
−t(1−2A4/α) + B2e

−t(1−2A(8−2α)/α)

B5e
−t(1−2A4) + B6e

−t(1−2A6)
}

+
e−t

2
sup
x∈R

|F0(x) + F0(−x − 0) − 1|.
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Then, setting H̄∗
i (x) := supy≤x H∗

i (y) for i = 1, 2, and recalling (21), we obtain a

bound completely expressed in terms of exponential functions, that is

K(F (·, t), Gα) ≤ 2

π

{

B1e
−t(1−2A4/α) + B2e

−t(1−2A(8−2α)/α)

+
(

k3B3 + k4B4 +
π

2

c||hα||
d̃

)

e−t(1−qσα/2−2Aq)

+ B5e
−t(1−2A4) + B6e

−t(1−2A6) +
π

2

c||hα||
d̃

e−σt

+ B3H̄
∗
1 (e−σt) + B4H̄

∗
2 (e−σt)

}

+
e−t

2
sup
x∈R

|F0(x) + F0(−x − 0) − 1|.

In order to obtain exponential bounds, we reinforce the assumptions made in Theo-

rem 2.6, in the sense that

(23) |h∗(x)| ≤ ρ′

|x|δ for some positive constant ρ′ and δ in (0, 2− α).

Theorem 2.7. Besides the assumptions made in Theorem 2.6, suppose (23) holds true. Then,

K(F (·, t), Gα) ≤ 2

π

{

B1e
−t(1−2A4/α) + B2e

−t(1−2A(8−2α)/α) + B5e
−t(1−2A4)

+ B6e
−t(1−2A6) +

( ρ′B3

2 − α − δ
+

ρ′B4

α + δ − 1

)

e−t(1−2A2+2δ/α)
}

+
c||hα||

d̃
(e−σt + e−t(1−qσα/2−2Aq)) +

e−t

2
sup
x∈R

|F0(x) + F0(−x − 0) − 1|

which is tantamount to saying that there are positive constants a4 and b4 such that K(F (·, t), Gα) ≤
a4e

−b4t holds for every t ≥ 0.

It remains to consider the case with α in (0, 1). In point of fact, the next theorem

is valid for any α in (0, 2), but it requires further notation. Firstly, S∗ is assumed to be

monotonic on [D, +∞). Then, one sets

b∗2(x) := −2

∫ +∞

D

(1 − cos(xy))dS∗(y);

H∗
3 (q) :=

∫ +∞

1

y−(1+α)|h∗(y/q)|dy, H̄∗
3 (q) := sup

y≤q
H∗

3 (y), k5 := sup
q∈(0,1)

H∗
3 (q);

B̄1 := 2k̄1N2 + 8k̄1k̄2N2+α + |S∗(D)|D2N2 + 2k̄2|S∗(D)|D2N2+α,

B̄2 := 8k̄2
1N4, B̄3 := 2z0 + 4zαk̄2
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with

k̄1 := k1 +
D2|S∗(D)|

2
,

k̄2 := sup
x>0

|b∗2(x)|
xα

≤ k2 + 2D|S∗(D)|max
(D2

2
, 2

)

,

zr := max
{

∫ +∞

0

∣

∣

∣

d

dx
nr(x)

∣

∣

∣
dx,

1

2

∫ +∞

0

x2
∣

∣

∣

d

dx
nr(x)

∣

∣

∣
dx

}

where

nr(x) := e−(a0−η)xα

xr x > 0.

Theorem 2.8. Let α belong to (0, 2) and let S∗ be monotonic on [D, +∞). Then,

K(F (·, t), Gα) ≤ 2

π
B̄3Et

[

νt
∑

j=1

|βj,t|α{H∗
1 (|βj,t|) + H∗

3 (|βj,t|)}
]

+
c||hα||

d̃
Et(β(νt)) +

2

π

{

B̄1e
−t(1−2A4/α) + B̄2e

−t(1−2A(8−2α)/α)

B5e
−t(1−2A4) + B6e

−t(1−2A6)
}

+
e−t

2
sup
x∈R

|F0(x) + F0(−x − 0) − 1|.

As done elsewhere in this section, it should be noted that the inequality

c||hα||
d̃

Et(β(νt)) +
2

π
B̄3Et

[

νt
∑

j=1

|βj,t|α{H∗
1 (|βj,t|) + H∗

3 (|βj,t|)}
]

≤
(

c||hα||
d̃

+
2

π
B̄3(k3 + k5)

)

e−t(1−qσα/2−2Aq)

+
c||hα||

d̃
e−σt +

2

π
B̄3{H̄∗

1 (e−σt) + H̄∗
3 (e−σt)}

is useful to yield a bound for K(F (·, t), Gα) depending only on exponential functions, while

an exponential bound can be derived from the next theorem.

Theorem 2.9. Besides the assumptions made in Theorem 2.8, suppose (23) holds true. Then,

K(F (·, t), Gα) ≤ 2

π

{

B̄1e
−t(1−2A4/α) + B̄2e

−t(1−2A(8−2α)/α) + B5e
−t(1−2A4)

+ B6e
−t(1−2A6) +

( ρ′B̄3

2 − α − δ
+

ρ′B̄3

α + δ

)

e−t(1−2A2+2δ/α)
}

+
c||hα||

d̃
(e−σt + e−t(1−qσα/2−2Aq)) +

e−t

2
sup
x∈R

|F0(x) + F0(−x − 0) − 1|.
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2.4. Brief comparative study of extra–condition on φ0 and on F0. In view of the

greater expressiveness of assumptions given for F0, if compared to conditions on φ0, already

stressed at the beginning of Subsection 2.3, we conclude the section with a brief comparative

analysis. This analysis deals, on the one hand, with the two kinds of conditions actually used

in the present paper and, on the other hand, with our conditions on F0 compared with those

introduced in Pulvirenti and Toscani (2004).

Recall that in Subsections 2.1 and 2.2 we have used an extra–condition which, in the

symmetric case, reduces to

(24) |v∗0(ξ)| = O(|ξ|δ) as ξ → 0, for some δ > 0

while, in Subsection 2.3, we have stated a few results under the extra–condition

(25)
∣

∣

∣
(1 − F ∗

0 (x)) − c∗0
xα

∣

∣

∣
≤ ρ′

xα+δ
(x > 0)

for some δ in (0, 2− α) when α belongs to [1, 2), and for some δ in (0, 2− α) when α belongs

to (0, 1) provided that S∗(x) = (1 − F ∗
0 (x)) − c∗0x

−α is monotonic for x > D ≥ 0.

As to the former point under discussion, notice that for α in [1, 2) one can resort to

easy inequalities, to be explained and used in the proof of Proposition 3.6, to obtain

|v∗0(ξ)| ≤ |b∗1(ξ)|
|ξ|α + 2k1|ξ|2−α

where, in view of (25), |b∗1(ξ)| = O(|ξ|α+δ). An analogous conclusion holds true when 0 < α < 1

with b∗2 and k̄1 in the place of b∗1 and k1, respectively. See formal developments in the proof

of Proposition 3.7. Hence: If δ belongs to (0, 2 − α) with 0 < α < 2, and S∗ is monotonic on

(D, +∞) for some D ≥ 0 when 0 < α < 1, then (25) entails (24).

Moving on to the latter kind of comparisons, it should be recalled that Pulvirenti and

Toscani (2004), in order that initial data can satisfy (25), assume

(26) mα+δ :=

∫

R

|x|α+δ |f0(x) − gα(x)|dx < +∞ for some δ > 0 .

In Section 4 of Goudon et al. (2002) it is proved that (26) entails (24) and now we prove that

(26) yields (25) when δ ≤ α. Indeed, from the Markov inequality,

|F ∗(x) − Gα(x)| ≤ mα+δ

2xα+δ
.
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This, combined with a well–known asymptotic expression for Gα (see, for example, Sections

2.4 and 2.5 of Zolotarev (1986)), gives

|F ∗(x) − c∗0
xα

| ≤ mα+δ

2xα+δ
+ O(

1

x2α
) (x → +∞).

Then, (25) follows form (26) when δ ≤ α. This last restriction is consistent with Theorem 6.2

in Pulvirenti and Toscani (2004), mentioned in (F5), and with the first part of Theorem 2.3.

Moreover, it should be noted that classical asymptotic formulae for gα (see, e.g., Ibragimov

and Linnik (1971)) can be applied to exhibit simple examples of initial data which meet (25)

but do not meet (26). In other words, the criterion evoked by Pulvirenti and Toscani (2004) –

to get (24) together with exponential bounds for χα+δ with δ ≤ α – could be usefully replaced

by the weaker condition (25), as we have done for convergence with respect to the Kolmogorov

metric.

3. Limit theorems for weighted sums of independent random numbers

As mentioned in the introductory paragraph of Section 2 — see, in particular, expla-

nation for (16), (17) and (18) — the present section focuses on the study of the convergence

in distribution of weighted sums of independent random variables. This study, besides the

interest it could hold in itself, is essential for proving the theorems already stated in Section

2. In point of fact, the main steps of the arguments used to prove these theorems are set

out in the propositions we get ready to enunciate and prove in the present section. Specific

indications of how they are used will be given in the Appendix.

For the present, it should be recalled that we are interested in convergence in distri-

bution of sums

(27) Sn :=

n
∑

j=1

q
(n)
j Xj

with X1, X2, . . . independent and identically distributed real–valued random variables with

common distribution function F0. Moreover, the numbers q
(n)
j are assumed to satisfy (17) -

(18), and F0 is supposed to be a symmetric element of the domain of normal attraction of (7).

Then according to (F3) and (F4), there is c0 ≥ 0 satisfying

(28) a0 = 2c0

∫ +∞

0

sin(x)

xα
dx

for which

lim
x→−∞

|x|αF0(x) = lim
x→+∞

xα{1− F0(x)} = c0
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and

1 − φ0(ξ) = (a0 + v0(ξ))|ξ|α (ξ ∈ R)

where v0 is a bounded real-valued function satisfying |v0(ξ)| = o(1) as ξ → 0. See (13) - (14).

The above conditions, printed in italic type, are assumed to be in force throughout

the present section, and will be not repeated in the following statements. It is worth recalling

that these statements are inspired by previous work published in Cramér (1962, 1963) and

Hall (1981). Accordingly, the present line of reasoning is based on certain inequalities con-

tained in the following lemma where, as in the rest of the section, for the sake of typographic

convenience, qj is used instead of q
(n)
j .

Lemma 3.1. Let φ̃n be the characteristic function of (27). Then,

|φ̃n(ξ) − ĝα(ξ)| ≤ e−(a0−η)|ξ|α |ξ|α
{

n
∑

j=1

qα
j |v0(ξqj)|(1 + 2|ξ|α|v0(ξqj)|)

+|ξ|αM2
n

∑

j=1

qα
j

(4

5
qα
j +

32

25
M2|ξ|2αq2α

j

)}

I{|ξ| ≤ Dn}

+2I{|ξ| > Dn}
( |ξ|

d1

)s[ qs
(n)

ds/α
I{c = 0} +

qs
(n)

ds/α
I{q(n) > d1/cα, 0 < c < 1}

+ q
s(1−c)
(n) I{q(n) ≤ d1/cα, 0 < c < 1}

]

(29)

holds for any ξ in R, s > 0, c in [0, 1), d, d1, k∗ and M being the same as in Theorem 2.2 with

v0 in the place of v∗
0 , q(n) = max{q1, . . . qn} and Dn = Dn(c, d) := ( 3

8M (d∧ qcα
(n)))

1/αq−1
(n)I{0 <

c < 1}+ ( 3
8M d)1/αq−1

(n)I{c = 0}. Moreover, for s = α, c in (0, 1) and ξ in R,

|φ̃n(ξ) − ĝα(ξ)| ≤|ξ|α
[

e−(a0−η)|ξ|α
(

k∗
I

{

q(n) > d, |ξ| ≤ d1d
1/α

q(n)

}

+σ̄(ξ)qα
(n)I

{

q(n) ≤ d1/cα, |ξ| ≤ d1q
c−1
(n)

})

+
2

dα
1

(qα
(n)

d
I{q(n) > d1/cα} + q

α(c−1)
(n)

)]

(30)

with

σ̄(ξ) =

n
∑

j=1

qα
j |v0(ξqj)| + |ξ|α

(4

5
M2

n
∑

j=1

q2α
j + 2

n
∑

j=1

qα
j |v0(ξqj)|2 +

32

25
|ξ|3αM4

n
∑

j=1

q3α
j

)

.

Proof. According to previous notation, set ‖v0‖ := sup{x>0} |v0(x)| and v̄0(ξ) :=

sup{0<x≤ξ} |v0(x)|. Now, in view of (F4),

|1 − φ0(ξqj)| = |a0 + v0(ξqj)||ξqj |α ≤ M |ξ|αqα
j
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and the last term turns out to be bounded from above by 3d/8 ≤ 3/8 when |ξ|q(n) ≤
(3d/8M)1/α. Since log(1+z) = z+(4/5)θz|z|2 for |z| ≤ 3/8 and some θz satisfying |θz| ≤ 1 (see,

for example, Lemma 3 in Section 9.1 of Chow and Teicher (1997)), then |ξ|q(n) ≤ (3d/8M)1/α

yields

φ̃n(ξ) = exp{
n

∑

j=1

log(φ0(ξqj))} = exp{
n

∑

j=1

log(1 − (1 − φ0(ξqj)))}

= exp{−
n

∑

j=1

(1 − φ0(ξqj)) +

n
∑

j=1

r(1 − φ0(ξqj))}

with r(x) := (4θx/5)|x|2. Moreover, if |ξ| ≤ (3d/8M)1/α/q(n) and 0 < d < 1,

|r(1 − φ0(ξqj))| ≤
4

5
M2|ξ|2αq2α

j (j = 1, . . . , n)

and, via (F4),

φ̃n(ξ) = exp
(

−
n

∑

j=1

{a0 + v0(ξqj)}|ξqj |α −
n

∑

j=1

r(1 − φ0(ξqj))
)

= exp(−a0|ξ|α) exp(−Bn(ξ) + R1,n(ξ))

(31)

with

Bn(ξ) = |ξ|α
n

∑

j=1

qα
j v0(ξqj)

and

|R1,n(ξ)| = |
n

∑

j=1

r(1 − φ0(ξqj))| ≤
4

5
M2|ξ|2α

n
∑

j=1

q2α
j .

Writing

exp(−Bn(ξ) + R1,n(ξ)) = 1 − Bn(ξ) + R1,n(ξ)

+ (R1,n(ξ) − Bn(ξ))2
∑

l≥0

(R1,n(ξ) − Bn(ξ))l

l!

l!

(l + 2)!

= 1 − Bn(ξ) + R1,n(ξ) + R2,n(ξ),

with

|R2,n(ξ)| = (R1,n(ξ) − Bn(ξ))2
∣

∣

∣

∑

l≥0

(R1,n(ξ) − Bn(ξ))l

l!

l!

(l + 2)!

∣

∣

∣

≤ 2{Bn(ξ)2 + R1,n(ξ)2} exp(|Bn(ξ)| + |R1,n(ξ)|),
(32)

equalities (31) give

(33) φ̃n(ξ) = exp(−a0|ξ|α){1 − Bn(ξ) + R1,n(ξ) + R2,n(ξ)}.



22 FEDERICO BASSETTI †, LUCIA LADELLI∗, AND EUGENIO REGAZZINI∗ †

As to R2,n(ξ), for |ξ|α ≤ (3d/8M)q−α
(n) and any sufficiently small d, one gets

|Bn(ξ)| + |R1,n(ξ)| ≤ |ξ|α
n

∑

j=1

v̄0(ξq(n))q
α
j +

4

5
M2|ξ|2αqα

(n)

n
∑

j=1

qα
j

≤ |ξ|α{v̄0(ξq(n)) +
4

5
M2|ξ|αqα

(n)} ≤ η|ξ|α

by the definition of d given immediately before the beginning of Subsection 2.1. This entails

exp(|Bn(ξ)| + |R1,n(ξ)|) ≤ eη|ξ|α

for any η in (0, a0) and |ξ| ≤ (3d/8M)1/αq−1
(n). Next, an application of Jensen’s inequality

yields

|Bn(ξ)|2 + |R1,n(ξ)|2 ≤ |ξ|2α
n

∑

j=1

qα
j v0(ξqj)

2 +
16

25
M4|ξ|4α

n
∑

j=1

q3α
j

which, in turn, combined with (32), gives

|R2,n(ξ)| ≤
{

2|ξ|2α
n

∑

j=1

qα
j v0(ξqj)

2 +
32

25
M4|ξ|4α

n
∑

j=1

q3α
j

}

eη|ξ|α .

Now, from (33) with |ξ| ≤ Dn,

|φ̃n(ξ)− exp(−a0|ξ|α)| ≤ e−a0|ξ|
α |ξ|α

{

n
∑

j=1

|v0(ξq(n))|qα
j

+
4

5
M2|ξ|α

n
∑

j=1

q2α
j +

(

2|ξ|α
n

∑

j=1

qα
j v0(ξqj)

2 +
32

25
M4|ξ|3α

n
∑

j=1

q3α
j

)

eη|ξ|α
}

≤ e−(a0−η)|ξ|α |ξ|α
{

n
∑

j=1

qα
j |v0(ξqj)|

(

1 + 2|ξ|α|v0(ξqj)|
)

+ |ξ|αM2
n

∑

j=1

q2α
j

(4

5
+

32

25
M2|ξ|2αqα

j

)}

.

At this stage it remains to consider |ξ| > Dn. In this case, one gets

|ξ|s
ds
1

{

qs
(n)

ds/α
I(c = 0) +

qs
(n)

ds/α
I(q(n) > d1/cα, 0 < c < 1) + q

s(1−c)
(n) I(q(n) ≤ d1/cα, 0 < c < 1)

}

≥ 1

and, to complete the proof for (29), it is enough to take account of the obvious inequality

|φ̃n(ξ) − exp(−a0|ξ|α)| ≤ 2.

Now, as far as (30) is concerned, take s = α and c in (0, 1). Then, (29) becomes

|φ̃n(ξ) − exp(−a0|ξ|α)| ≤ e−(a0−η)|ξ|α |ξ|ασ̄(ξ)I{|ξ| ≤ Dn}

+ 2
|ξ|α
dα
1

{qα
(n)

d
I(q(n) > d1/cα) + q

α(1−c)
(n) I(q(n) ≤ d1/cα)

}

I{|ξ| > Dn}.
(34)
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Now, for q(n) > d and |ξ| ≤ Dn(≤ d1d
1/αq−1

(n)),

σ̄(ξ) ≤ v̄0(d1d
1/α)(1 + 2dα

1 d1−αv̄0(d1d
1/α)) + (4/5)M2dα

1 d + (32/25)M4d3α
1 d3−α = k∗

and (30) follows from (34) with σ̄(ξ) replaced by k∗ on {q(n) > d, |ξ| ≤ Dn}. ♦
Lemma 3.1 can be used to obtain bounds for the χα–distance between Gα and the

probability distribution function Fn of Sn.

Proposition 3.2. The χα–distance between Fn and Gα satisfies

χα(Fn, Gα) ≤ k∗
I(q(n) > d) +

n
∑

j=1

qα
j v̄0

(

d1qjq
c−1
(n)

)

{1 + 2M1v̄0

(

d1qjq
c−1
(n)

)

}

+ qα
(n)

{4

5
M1M

2 +
32

25
M3M

4qα
(n)

}

+
2

dα
1

{qα
(n)

d
I(q(n) > d1/cα) + q

α(1−c)
(n)

}

for any c in (0, 1), with Mr := maxx≥0 e−(a0−η)xα

xrα (r being any positive number).

Proof. Consider (30) and observe that

σ̄(ξ) ≤
n

∑

j=1

qα
j v̄0(d1qjq

c−1
(n) )

(

1 + 2M1v̄0(d1qjq
c−1
(n) )

)

+
4

5
M2M1q

α
(n) +

32

25
M4M3q

2α
(n)

holds true on the set {q(n) ≤ d, |ξ| ≤ Dn} since Dn ≤ d1q
c−1
(n) on this set. ♦

It is easy to check that the upper bound stated in Proposition 3.2 is o(1) for n → +∞.

Lemma 3.1 can also be exploited to determine analogous bounds for χα+δ and χ2α,

under the extra–condition (12).

Proposition 3.3. Suppose (12) is valid for some δ > 0 and take d in such a way that

|ξ|q(n) ≤ d1d
1/α (= q(n)Dn if c = 0) entails v̄0(ξqj) ≤ ρ|ξqj |δ for some ρ > 0. Then,

χα+δ(Fn, Gα) ≤ ρ

n
∑

j=1

qα+δ
j + 2ρ2M1+ δ

α

n
∑

j=1

qα+2δ
j

+
4

5
M2M1− δ

α

n
∑

j=1

q2α
j +

32

25
M4M3− δ

α

n
∑

j=1

q3α
j +

2qα+δ
(n)

dα+δ
1 d1+δ/α

for any δ ≤ α, and

χ2α(Fn, Gα) ≤ ρM δ
α−1

n
∑

j=1

qα+δ
j +2ρ2M 2δ

α

n
∑

j=1

qα+2δ
j +

4M2

5

n
∑

j=1

q2α
j +

32M4M2

25

n
∑

j=1

q3α
j +

2q2α
(n)

d2α
1 d2

for any δ in (α, 2α].
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Proof. ¿From (29) with c = 0 and s = α + δ,

|φ̃n(ξ)−e−a0|ξ|
α | ≤ e−(a0−η)|ξ|α |ξ|α

{

ρ

n
∑

j=1

qα+δ
j |ξ|δ(1 + 2ρqδ

j |ξ|α+δ)

+ |ξ|αM2
n

∑

j=1

q2α
j (

4

5
+

32

25
M2qα

j |ξ|2α)
}

I(|ξ| ≤ d1d
1/αq−1

(n))

+
2qα+δ

(n)

dα+δ
1 d1+δ/α

|ξ|α+δ
I(|ξ| > d1d

1/αq−1
(n)).

Then, if δ belongs to (0, α], one easily obtains the former of the inequalities to be proved. The

latter follows similarly from (29) with c = 0 and s = 2α. ♦
As mentioned at the beginning of Subsection 2.2, here we pass from weighted χ–metrics

to Kolmogorov’s metric via the classical Berry–Esseen inequality

K(Fn, Gα) ≤ 1

π

∫ d̃/q(n)

−d̃/q(n)

∣

∣

∣

φ̃n(ξ) − ĝα(ξ)

ξ

∣

∣

∣
dξ +

c

d̃
‖gα‖q(n)

c being the constant which appears in Theorem 3.18 in Galambos (1995).

Take (29), with c = 0 and d̃ = (3d/8M)1/α, and sobstitute it in the right–hand side

of the above Berry–Esseen inequality to obtain

Proposition 3.4. One has

K(Fn, Gα) ≤ 2

π

n
∑

j=1

qα
j

∫ d̃/q(n)

0

e−(a0−η)ξα

ξα−1H(ξ, qj)dξ +
8

5π
M2N2α

n
∑

j=1

q2α
j

+
64

25π
M4N4α

n
∑

j=1

q3α
j +

c

d̃
‖gα‖q(n)

(35)

with H(ξ, qj) := |v0(ξqj)|(1 + 2|ξ|α|v0(ξqj)|) and Nl =
∫ +∞

0
exp{−(a0 − η)ξα}ξl−1dξ. This

upper bound is o(1) as n → +∞.

More informative bounds can be obtained under extra–condition (12).

Proposition 3.5. If (12) is valid for some δ > 0 and d is fixed in such a way that |ξ|q(n) ≤
d1d

1/α (= q(n)Dn if c = 0) entails v0(ξqj) ≤ ρ|ξqj |δ for some ρ > 0, then

K(Fn, Gα) ≤ 2

π

[

ρNα+δ

n
∑

j=1

qα+δ
j + 2ρ2N2(α+δ)

n
∑

j=1

qα+2δ
j +

4

5
M2N2α

n
∑

j=1

q2α
j

+
32

25
M4N4α

n
∑

j=1

q3α
j

]

+
c

d̃
‖gα‖q(n) = o(1) as n → +∞.
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Proof. Under the present extra–condition, inequality in the previous proposition com-

bined with inequality H(ξ, qj) ≤ ρ|ξ|δqδ
j (1+2ρqδ

j |ξ|δ), valid for every j and |ξ| ≤ d̃/q(n), yields

the desired bound. ♦
Now, we proceed to present bounds for K(Fn, Gα) under restrictions on the initial

distribution function, rather than on φ0. Notation is the same as in Subsection 2.3 with the

proviso that F ∗
0 is replaced by (symmetric) F0 and, consequently, symbols with ∗, like S∗, h∗,

c∗0, etc. must be changed to symbols without ∗, i.e., S, h, c0, etc., respectively.

Proposition 3.6. Let α be in [1, 2) and let the additional restriction that
∫ +∞

0 |S(x)|dx < +∞
if α = 1 be valid. Then,

K(Fn, Gα) ≤ 2

π

n
∑

j=1

{

B1q
2
j + B2q

4−α
j + (B3H1(qj) + B4H2(qj))q

α
j

+ B5q
2α
j + B6q

3α
j

}

+
c‖gα‖

d̃
q(n) = o(1) as n → +∞.

In particular, if h is such that |h(x)| := xα|S(x)| ≤ ρ′/xδ for any x > 0, δ in (0, 2 − α) and

some constant ρ′ > 0, then

H1(q) ≤
ρ′qδ

2 − α − δ
, H2(q) ≤

ρ′qδ

α + δ − 1

are valid for any q in (0, 1].

Proof. We start from the definitions of S and φ0 to obtain, via (28),

1 − φ0(ξ) = a0|ξ|α + 2ξ

∫ +∞

0

S(x) sin(ξx)dx

which, in view of (F4), yields

|ξ|α|v0(ξqj)| =
1

qα
j

|b1(ξqj) + R1(ξqj)|

where

b1(y) := 2y

∫ +∞

D

sin(yx)S(x)dx and R1(y) := 2y

∫ D

0

sin(yx)S(x)dx.

For these quantities one can write

|R1(ξqj)| ≤ 2ξ2q2
j

∫ D

0

x|S(x)|dx = 2k1ξ
2q2

j

with k1 :=
∫ D

0
x|S(x)|dx, and

k2 := sup
x>0

|b1(x)|
xα

≤ max{‖v0‖ + 2k1, 2

∫ +∞

D

|S(x)|dx}.
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Combination of these inequalities with the definition of H (see Proposition 3.4) gives us

|ξ|α−1|H(ξ, qj)| = |ξ|α−1|v0(ξqj)|(1 + 2|ξ|α|v0(ξqj)|)

≤ 1

|ξ|qα
j

{

|b1(qjξ)| + |R1(qjξ)| +
2

qα
j

(

|b1(qjξ)| + |R1(qjξ)|
)2

}

≤ 1

|ξ|qα
j

{

|b1(qjξ)| + 2k2|b1(qjξ)||ξ|α + 2k1|ξqj |2 + 8k1k2q
2
j |ξ|2+α + 8k2

1q
4−α
j |ξ|4

}

.

Using this inequality, we obtain

2

π

n
∑

j=1

qα
j

∫ d̃/q(n)

0

e−(a0−η)ξα

ξα−1H(ξ, qj)dξ

≤ 2

π

n
∑

j=1

{

∫ +∞

0

e−(a0−η)ξα
(

|b1(qjξ)|ξ−1 + 2k2|b1(qjξ)|ξα−1
)

dξ

+ 2k1N2q
2
j + 8k1k2q

2
j N2+α + 8k2

1N4q
4−α
j

}

.

(36)

It remains to study integrals like Ir(q) :=
∫ +∞

0
|b1(ξq)|ξr−1e−(a0−η)ξα

dξ for r ≥ 0. Following

the argument used in Hall (1981) to prove Lemma 7, one can state the inequality

Ir(q) ≤ 2qNr+2

∫ +∞

1
q

|S(x)|dx + 2q2Nr+1

∫ 1
q

0

x|S(x)|dx

= 2Nr+2q
α

∫ +∞

1

|h(y/q)|y−αdy + 2Nr+1q
α

∫ 1

0

|h(y/q)|y1−αdy

= 2Nr+2q
αH2(q) + 2Nr+1q

αH1(q)

(37)

with h(x) = xαS(x). To complete the proof of the main part of the proposition it is enough

to use (37) to obtain a bound for the right-hand side of (36) and, then, to replace this

bound for the first sum in the right–hand side of (35). As to the latter claim, recall that

H1(q) =
∫ 1

0
y1−α|h(y/q)|dy, H2(q) =

∫ +∞

1
y−α|h(y/q)|dy and use the additional condition.

♦

Proposition 3.7. Let α be in (0, 2) and let the additional hypothesis that S is monotonic on

[D, +∞) be valid for some D ≥ 0. Then,

K(Fn, Gα) ≤ 2

π

n
∑

j=1

{

B̄1q
2
j + B̄2q

4−α
j + B̄3(H1(qj) + H3(qj))q

α
j

+ B5q
2α
j + B6q

3α
j

}

+
c‖gα‖

d̃
q(n) = o(1) as n → +∞.
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Moreover, if h is such that |h(x)| ≤ ρ′/xδ for any x > 0, δ in (0, 2 − α) and some constant

ρ′ > 0, one gets

H1(q) ≤
ρ′qδ

2 − α − δ
, H3(q) ≤

ρ′qδ

α + δ

for every q in (0, 1].

Proof. One starts from Proposition 3.4 once again, noticing that equality

|t|αv0(t) = b2(t) + R2(t)

holds with

b2(t) := −2

∫ +∞

D

(1 − cos(tx))dS(x) and R2(t) := R1(t) + 2S(D)(cos(tD) − 1).

Observe that

|R2(ξqj)| ≤ 2k̄1|ξqj |2

with k̄1 = k1 + D2|S(D)|/2. Moreover,

k̄2 = sup
x>0

|b2(x)|
xα

≤ k2 + 2D|S(D)|max
(D2

2
, 2

)

.

Then,

|ξ|α−1|H(ξ, qj)| ≤
1

|ξ|qα
j

{

|b2(ξqj)| + |R2(ξqj)| + 2
(|b2(ξqj)| + |R2(ξqj)|)2

qα
j

}

≤ 1

|ξ|qα
j

{|b2(ξqj)| + 2|ξ|αk̄2|b2(ξqj)| + 2k̄1|ξqj |2 + 8k̄2
1q

4−α
j |ξ|4 + 8k̄1k̄2q

2
j |ξ|α+2}.

Hence,

K(Fn, Gα) ≤ 2

π

n
∑

j=1

{

∫ d̃/q(n)

0

e−(a0−η)ξα

ξ
[1 + 2k̄2ξ

α]|b2(ξqj)|dξ

+ (2k̄1N2 + 8k̄1k̄2Nα+2)q
2
j + 8k̄2

1N4q
4−α
j +

4

5
M2N2αq2α

j +
32

25
M2N4αq3α

j

}

+
c‖gα‖

d̃
q(n).

Applying the Fubini theorem and the formula for integration by parts, we can write

Mr(q) :=

∫ d̃/q(n)

0

nr(ξ)
|b2(ξq)|

ξ
dξ (with nr(ξ) := e−(a0−η)ξα

ξr)

≤ 2
∣

∣

∣
S(D)

∫ d̃/q(n)

0

(1 − cos(ξqD))
nr(ξ)

ξ
dξ

∣

∣

∣
+ 2q

∣

∣

∣

∫ +∞

D

S(x)dx

∫ d̃/q(n)

0

nr(ξ) sin(ξqx)dξ
∣

∣

∣

≤| S(D) | q2D2Nr+2 + M(1)
r (q)
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where

M(1)
r (q) := 2q

∣

∣

∣

∫ +∞

D

S(x)dx

∫ d̃/q(n)

0

nr(ξ) sin(ξqx)dξ
∣

∣

∣

≤ 2q

∫ +∞

D

|S(x)|
x

dx

∫ +∞

0

(1 − cos(ξqx)) | d

dξ
nr(ξ) | dξ (from integration by parts)

≤ 2

∫ +∞

D

|S(x)|
x

∫ +∞

0

(1 ∧ (ξqx)2

2
) | d

dξ
nr(ξ) | dξ

≤ 2zr

{

q2

∫ 1/q

0

x|S(x)|dx +

∫ +∞

1/q

|S(x)|
x

dx
}

(

with zr := max
{

∫ +∞

0

| d

dξ
nr(ξ) | dξ,

1

2

∫ +∞

0

ξ2 | d

dξ
nr(ξ) | dξ

})

= 2zr

{

qαH1(q) + qαH3(q)}.

Then,

Mr(q) ≤ q2 | S(D) | D2Nr+2 + 2qαzr{H1(q) + H3(q)}

and

K(Fn, Gα) ≤ 2

π

n
∑

j=1

{

M0(qj) + 2k̄2Mα(qj) + (2k̄1N2 + 8k̄1k̄2Nα+2)q
2
j

+ 8k̄2
1N4q

4−α
j +

4

5
M2N2αq2α

j +
32

25
M2N4αq3α

j

}

+
c‖gα‖

d̃
q(n).

To complete the proof it suffices to replace the quantities M with their upper bounds and,

next, to recall the definition of the constants B̄. ♦

4. Appendix

In this part of the paper we present the proofs of the theorems stated in Section 2.

For the sake of expository clarity, let us recall the common inspiring principles for all of these

proofs. First of all, we refer to representation (5) which, combined with (15), gives

(38) | φ(ξ, t) − ĝα(ξ) |≤ Et(| φ̃νt (ξ; Re(φ0)) − ĝα(ξ) |)+ | Im(φ0(ξ)) | e−t (ξ ∈ R)

where φ̃νt( · ; Re(φ0)) is equal to φ̃n(·) when n = νt, qj = |βj,t| (j = 1, . . . , νt) and, in the

definition of φ̃n, φ0 is replaced by Reφ0. Analogously,

(39) | F (x, t) − Gα(x) |≤ Et(| Fνt(x; F ∗
0 ) − Gα(x) |)+ | F0(x) − F ∗

0 (x) | e−t (x ∈ R)

where Fνt( · ; F ∗
0 ) is obtained from Fn(·) by replacing n, qj and F0 with νt, |βj,t| and F ∗

0 ,

respectively.
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Proof of Theorem 2.2. Apply (38) to write

χα(F (·, t), Gα) ≤ Et(χα(Fνt( · ; F ∗
0 ), Gα)) + e−t sup

ξ∈R

| Im(v0(ξ)) |

and, next, replace χα(Fνt ( · ; F ∗
0 ), Gα) with its upper bound stated in Proposition 3.2. ♦

Proof of Theorem 2.3. Argue as in the previous proof by using the upper bounds obtained

in Proposition 3.3, instead of the upper bound of Proposition 3.2. Moreover, to evaluate

expectations, make use of the obvious inequality Et(β
m
(νt)

) ≤ Et[
∑νt

j=1 |βj,t|m] and, then, of

(19) and (20). ♦

Proof of Theorem 2.4. In view of (39), write

K(F (·, t), Gα) ≤ Et(K(Fνt( · ; F ∗
0 ), Gα)) +

e−t

2
sup
x∈R

| F0(x) + F0(−x − 0) − 1 |

and replace K(Fνt( · ; F ∗
0 ), Gα) with its upper bound determined in Proposition 3.4. Finally

use (19) to evaluate expectation. ♦
The remaining theorems from 2.5 to 2.9 can be proved following the same line of

reasoning, according to the scheme: Resort to Proposition 3.5 and to (19) for Theorem 2.5.

Apply Proposition 3.6 and (19)-(20) to prove Theorems 2.6 and 2.7. Finally, use Proposition

3.7 and (19)-(20) to prove Theorems 2.8 and 2.9.

It remains to prove Theorem 2.1. Its former part is a straightforward consequence of

Theorem 2.4. As to the latter, we use the same argument as in the proof of Theorem 1 in

Gabetta and Regazzini (2006b), based on Fortini, Ladelli and Regazzini (1996). Accordingly,

for every t > 0 we define

Wt := (Λνt , λ1,t, . . . λνt,t, δ0, . . . , γt, θt, νt, Ut(1/2), Ut(1/3), . . . )

where: λj,t stands for a conditional distribution of |βj,t|X∗
j,t, given (γt, θt, νt); Λνt is the νt-

fold convolution of λ1,t, . . . λνt,t; δx indicates unit mass at x; Ut(ξ) := max1≤j≤νt λj,t([−ξ, ξ]c).

Moreover, the X∗
j,t are conditionally i.i.d. with common distribution F ∗

0 . To grasp the im-

portance of Wt, notice that its components represent the essential ingredients of central limit

problems. As to this fundamental theorem, we refer to Section 16.8 of Fristedt and Gray

(1997). The range of Wt can be seen as a subset of S := P(R̄)∞ × Ḡ× [0, 2π)∞ × R̄∞, where:

R̄ := [−∞, +∞]; P(M) indicates the set of all probability measures on the Borel class B(M)

on some metric space M ; Ḡ is a distinguished metrizable compactification of G. These spaces

are endowed with topologies specified in Subsection 3.2 of Gabetta and Regazzini (2006b),
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which make S a separable compact metric space. Now recall that, under the assumption of

the latter part of Theorem 2.1, (V ∗
tn

:=
∑νtn

j=1 |βj,tn |X∗
j,tn

)n≥1 must converge in distribution.

Next, from Lemma 3 in Gabetta and Regazzini (2006b), with slight changes, the sequence of

the laws of the vectors (Wtn)n≥1 contains a subsequence (Wtn′ )n′ which is weakly convergent

to a probability measure Q supported by P(R) × {δ0}∞ × Ḡ × [0, 2π)∞ × {+∞} × {0}∞.

At this stage, an application of the Skorokhod representation theorem (see, e.g., Billingsley

(1999), Dudley (2002)), combined both with the properties of the support of Q and with (F1),

entails the existence of random vectors Ŵtn′ := (Λ̂ν̂t
n′

, λ̂1,tn′ , . . . ) defined on a suitable space

(Ω̂, F̂ , P̂ ), in such a way that Wtn′ and Ŵtn′ have the same law (for every n′). Moreover,

Λ̂ν̂t
n′

⇒ Λ̂, λ̂j,tn′ ⇒ δ0 (j = 1, 2, . . . )

ν̂tn′ → +∞, Ûtn′ (1/k) → 0 (k = 1, 2, . . . ),

β̂(n′) := max{|β̂1,tn′ |, . . . |β̂ν̂t
n′ ,tn′ |} → 0

(40)

where the convergence must be understood as pointwise convergence on Ω̂ and ⇒ designates

weak convergence of probability measures. From (40) and Theorem 16.24 of Fristedt and Gray

(1997), there is a random Lévy measure µ, symmetric about zero, such that

(41) lim
n′→+∞

ν̂t
n′

∑

j=1

λ̂j,tn′ [x, +∞) = lim
n′→+∞

ν̂t
n′

∑

j=1

{1 − F ∗
0

( x

|β̂j,tn′ |

)

} = µ[x, +∞)

holds pointwise on Ω̂ for every x > 0. To complete the proof, we assume that limx→+∞ xα{1−
F ∗

0 (x)} = +∞ and show that this assumption contradicts (41). Indeed, the assumption implies

that for any k > 0 there is ε > 0 such that xα{1−F ∗
0 (x)} ≥ k for every x > 1/ε and, therefore,

νn,x :=

ν̂t
n′

∑

j=1

{1 − F ∗
0

( x

|β̂j,tn′ |

)

}

≥ k

xα
I{β̂(n′) < xε}

ν̂t
n′

∑

j=1

|β̂j,tn′ |α

=
k

xα
I{β̂(n′) < xε}.

Since (40) yields β̂(n′) → 0, then lim supn→+∞νn,x ≥ kx−α, which contradicts (41) in view of

the arbitrariness of k.
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