
DIPARTIMENTO DI MATEMATICA

POLITECNICO DI MILANO

Radon type transforms for holomorphic functions
in the Lie ball

Sabadini, I; Sommen, F.

Collezione dei Quaderni di Dipartimento, numero QDD 230
Inserito negli Archivi Digitali di Dipartimento in data 10-04-2018

Piazza Leonardo da Vinci, 32 - 20133 Milano (Italy)



Radon type transforms for holomorphic functions in

the Lie ball

Irene Sabadini
Politecnico di Milano

Dipartimento di Matematica
Via Bonardi, 9

20133 Milano, Italy
irene.sabadini@polimi.it

Franciscus Sommen
Clifford Research Group

Faculty of Sciences
Ghent University

Galglaan 2, 9000 Gent, Belgium
Franciscus.Sommen@UGent.be

Abstract

In this paper we consider holomorphic functions on the m-dimensional Lie ball LB(0, 1)
which admit a square integrable extension on the Lie sphere. We then define orthogonal
projections of this set onto suitable subsets of functions defined in lower dimensional spaces
to obtain several Radon-type transforms. For all these transforms we provide the kernel and
an integral representation, besides other properties. In particular, we introduce and study
a generalization to the case of the Lie ball of the Szegő-Radon transform introduced in [2],
and various types of Hua-Radon transforms.
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1 Introduction

In this paper we consider some transforms defined as orthogonal projections from modules of
holomorphic functions in several variables onto suitable modules defined in lower dimensional
spaces. For this reason we refer to these transforms as Radon-type transforms. We addressed
this type of problem in our papers [2, 3]. In [2] we abstractly defined the Szegő-Radon transform
as the orthogonal projection of a Hilbert module of left monogenic functions (i.e. nullsolutions
of the Dirac operator) in the unit ball onto a suitable closed submodule of monogenic functions
depending only on two variables. In [3] we define the Bargmann-Radon transform as the pro-
jection of a real Bargmann module (see [7]) on the closed submodule of monogenic functions
spanned by the monogenic plane waves. In both cases, we prove that these projections can
be written in integral form in terms of suitable kernels. Moreover, we have a characterization
formula which gives the transform of a function in terms of its complex extension followed by
its restriction to the nullcone in Cm.
Monogenic functions in the unit ball are harmonic thus they admit holomorphic extension to
the Lie ball LB(0, 1). Thus it is a natural question to ask if it possible to define Radon-type
transforms in the Lie ball setting.
In this work, we consider the module OL2(LB(0, 1)) of holomorphic functions on the unit
Lie ball LB(0, 1) which admit a square integrable extension on the Lie sphere. Functions in
OL2(LB(0, 1)) possess useful properties, like the fact that they admit a Fischer decomposition.
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The reproducing kernel for the module OL2(LB(0, 1)) is the Cauchy-Hua kernel which is also
considered in [5, 6, 10]. These two papers contain other useful results among which the study
of spherical monogenics on the unit Lie sphere, see [10], that is a refinement of some results in
[6] on spherical harmonics on the unit Lie sphere.
The Radon-type transforms considered in this paper are projections of OL2(LB(0, 1)) onto suit-
able submodules of holomorphic functions defined on lower dimensional sets. Specifically, in
Section 2 and 3 we provide some basic material on monogenic functions in general and on the
Fischer decomposition of holomorphic functions on the Lie ball. In particular, we introduce the
Cauchy-Hua kernel and study the link with the Szegő kernel which is the reproducing kernel for
submodules of monogenic functions. The core of the paper is contained in the section 4 to 7
where we introduce the Radon-type transforms via suitable projections. For all these transforms
we provide the kernel and an integral representation, besides other properties. In Section 4, we
study generalizations to the Lie ball of the Szegő-Radon transform that we introduced in [2].
A transform that can be defined for a subclass of functions of several complex variables is the
Hua-Radon transform introduced in Section 5. In this section we in fact consider orthogonal
projection from a module of holomorphic functions on the m-dimensional Lie ball to holomor-
phic functions in the two-dimensional Lie ball. This transformation is completely geometrical
and does not use any theory of monogenic functions. In Section 6 we consider the so-called po-
larized Hua-Radon transform whose definition is based on the decomposition of the Hua-Radon
transform into two complementary and orthogonal pieces defined using monogenic functions. In
this section, the techniques of hypercomplex analysis are crucial to obtain the kernel. Finally, in
Section 7 we introduce the monogenic Hua-Radon transform which may be seen as an extension
of both the extended Szegő-Radon and the polarized Hua-Radon transforms. Some extra work
is needed to compute an orthogonal system of plane waves which includes both the orthogonal
bases used to construct the modules associated with the extended Szegő-Radon and the polar-
ized Hua-Radon transforms. Using this orthogonal system one can provide an expression for the
reproducing kernel as a series. A closed form for this kernel seems hard to obtain and may be
the object of future research.

2 Preliminary results

In this section we introduce the necessary notation and the preliminary results that will useful
in the sequel. Some classical sources to have more information are the books [1], [4].
Let us consider m imaginary units e1, . . . , emwhich satisfy the relations eiej + ejei = −2δij .
We denote by Rm and by Cm the real and complex Clifford algebra, respectively, generated
by e1, . . . , em. An element x in the Clifford algebra Rm (or Cm) is of the form x =

∑
A eAxA

where xA ∈ R (or xA ∈ C) A = i1 . . . ir, iℓ ∈ {1, 2, . . . , n}, i1 < . . . < ir is a multi–index,
eA = ei1ei2 . . . eir and e∅ = 1.

The complex Clifford algebra Cm can be seen as the complexification of the real Clifford
algebra Rm, i.e. Cm = Rm ⊕ iRm. Any complex Clifford number c ∈ Cm may be written as
c = a+ ib, where a, b ∈ Rm

The so called 1-vectors are elements in Rm which are linear combinations with real coefficients
of the elements ei, i = 1, . . . ,m. The map given by (x1, x2, . . . , xm) 7→ x = x1e1 + . . . + xmem
allows to identify a 1-vector with an element in the Euclidean space. The norm of a 1-vector is
defined as |x| = (x21 + · · ·+ x2n)

1/2 and the scalar product of x and y = y1e1 + · · ·+ ymem is

⟨x, y⟩ = x1y1 + · · ·+ xmym.
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In the sequel, we will denote by B(0, 1) the unit ball with center at the origin in Rm while the
symbol Sm−1 will denote its boundary, that is the sphere of unit 1-vectors in Rm:

Sm−1 = {x = e1x1 + . . .+ emxm : x21 + . . .+ x2m = 1},

whose area, denoted by Am is given by

Am =
2πm/2

Γ(m2 )
.

Similarly to what has been done in the real setting, we can identify an element in Cm with a 1-
vector with complex coefficients. The scalar product of two complex vectors z = z1e1+· · ·+zmem,
zℓ ∈ C and w = w1e1 + · · ·+ wmem, wℓ ∈ C is

⟨z, w⟩ = z̄1w1 + · · ·+ z̄mwm.

Definition 2.1. The Lie ball can be defined as

LB(0, 1) = {z = x+ iy ∈ Cm | Sx,y ⊂ B(0, 1)}

where Sx,y is the codimension 2 sphere

Sx,y = {u ∈ Rm | |u− x| = |y|, ⟨u− x, y⟩ = 0}.

Remark 2.2. Another way to introduce the Lie ball is to consider the Lie norm

L(z)2 = L(x+ iy)2 = sup
u∈Sx,y

|u|2 = |x|2 + |y|2 + 2|x ∧ y|

where z = x+ iy ∈ Cm so that

LB(0, 1) = {z ∈ Cm | L(z) < 1}.

The boundary ∂LB(0, 1) corresponds to the set of spheres Sx,y ⊂ B(0, 1) for which Sx,y ∩
Sm−1 ̸= ∅, see e.g. [10]. The Lie sphere LSm−1 is the set of points z ∈ Cm for which Sx,y ⊂ Sm−1,
which allows to write it as

LSm−1 = {ωeiθ | ω ∈ Sm−1, θ ∈ [0, π)} = (Sm−1 × S1)/Z2,

where the equivalence relation is given by (ω, eiθ) ∼ (−ω,−eiθ). The Lie sphere LSm−1 is the
Shilov boundary of the Lie ball, moreover, it is a minimal set for which

|f(z)| ≤ sup
eiθω∈LSm−1

|f(eiθω)|, f holomorphic in LB(0, 1).

We now introduce an automorphism in Cm called Hermitian conjugation and defined for λ, µ ∈
Cm by

(λµ)† = µ†λ†, (µAeA)
† = µcAe

†
A, e†j = −ej , j = 1, . . . ,m,

where µcA stands for the complex conjugate of the complex number µA.
The following result is proved in [2]:

Proposition 2.3. Let t, s ∈ Rn be such that |t| = |s| = 1 and ⟨t, s⟩ = 0 and let τ = t+ is ∈ Cm.
Then τ † = −t+ is and
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1. τ τ †τ = 4τ ,

2. τ2 = 0,

3. τ † τ + τ τ † = 4.

Remark 2.4. Let z ∈ Cm and consider τ = t+ is =
∑m

ℓ=1(tℓ + isℓ)ei as above. Then

⟨z, τ⟩† = (
m∑
ℓ=1

zℓ(tℓ + isℓ))
† =

m∑
ℓ=1

zℓ(tℓ − isℓ).

In particular, when x ∈ Rm we have

⟨x, τ⟩† =
m∑
ℓ=1

xℓ(tℓ − isℓ)

⟨x, τ †⟩ =
m∑
ℓ=1

−xℓ(tℓ − isℓ)

so that
⟨x, τ⟩† = −⟨x, τ †⟩. (1)

To conclude the part on the preliminaries we recall the definition of monogenic functions.

Definition 2.5. A function f : Ω ⊆ Rm → Cm defined and continuously differentiable in the
open set Ω is said to be (left) monogenic if it satisfies

∂xf(x) =

m∑
j=1

ei∂xjf(x) = 0.

If f : Ω ⊆ Cm → Cm is as above, we say that f is (left) monogenic in Ω if it is holomorphic
and in the kernel of the complexified Dirac operator

∑m
j=1 ei∂zj . We denote by M(Ω) the right

Cm-module of (left) monogenic functions in Ω.

3 Spherical monogenics on the Lie sphere

In this section we recall some results on the module ML2(B(0, 1)) from [2]. We then gener-
alize this module of monogenic functions to the case of the Lie ball and we study the Fischer
decomposition of its elements as well as a reproducing kernel, namely the Cauchy-Hua kernel.

Definition 3.1. We will denote by ML2(B(0, 1)) the right Cm-module of monogenic functions
f : B(0, 1) → Cm which extend to L2(Sm−1) and such that[∫

Sm−1

f †(ω)f(ω)dS(ω)

]
0

<∞.

We note that ML2(B(0, 1)) is a closed submodule of L2(B(0, 1)). It is also clear that
ML2(B(0, 1)) is a right submodule of the right Cm-module of monogenic functions. It can be
equipped with the inner product

⟨f, g⟩ML2(B(0,1)) :=

∫
Sm−1

f †(ω)g(ω)dS(ω).
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For the sake of simplicity, in the sequel we will denote this inner product by ⟨·, ·⟩ML2 . Note that
the norm of f is given by

∥f∥2L2(Sm−1) :=

[∫
Sm−1

f †(ω)f(ω)dS(ω)

]
0

<∞.

The following result is in [3], Section 4:

Proposition 3.2. The reproducing kernel for ML2(B(0, 1)) is the Szegő kernel

S(x, u) =
1 + xu

(1 + |x|2 |u|2 − 2⟨x, u⟩)m/2

so that

f(x) =
1

Am

∫
Sm−1

1 + xu

(1 + |x|2 |u|2 − 2⟨x, u⟩)m/2
f(u) du.

A monogenic function f(x) admits a holomorphic extension f(z) to the Lie ball LB(0, 1).

Definition 3.3. By OL2(LB(0, 1)) we denote the right Cm-module of holomorphic functions
f : LB(0, 1) → Cm whose boundary value f(eiθω) belongs to L2(LSm−1) and such that[∫

Sm−1

∫ π

0
f †(eiθω)f(eiθω) dS(ω) dθ

]
0

<∞.

The Cm-module OL2(LB(0, 1)) can be equipped with the inner product

⟨f, g⟩OL2(LB(0,1)) =

∫
Sm−1

∫ π

0
f †(eiθω)g(eiθω) dS(ω) dθ.

For the sake of simplicity, this inner product will be denoted by ⟨·, ·⟩OL2 .

Remark 3.4. We recall that a monogenic function f (over Rm) admits an expansion of the
form

f(x) =

∞∑
k=0

Pk[f ](x),

where Pk[f ] are spherical monogenics of degree k, i.e.

Pk[f ](λx) = λkPk(x), ∂xPk[f ](x) = 0.

We have that

Pk[f ](x) =
1

Am

∫
Sm−1

Ck(x, u) f(u) du

where Am = 2πm/2

Γ(m
2
) and Ck(x, u) are zonal spherical monogenics (see [?]) of the form

Ck(x, u) : =
(|x||y|)k

(m− 2)

(
(k +m− 2)C

m/2−1
k (t) + (m− 2)

x ∧ u
|x| |u|

C
m/2
k−1 (t)

)
= (|x||y|)k

(
C
m/2
k (t) +

xu

|x| |u|
C
m/2
k−1 (t)

)
,

(2)

C
m/2
k (t) are the Gegenbauer polynomials and t = ⟨x, u⟩/|x||u|.

Note that the Szegő kernel can be written as S(x, u) =
∑∞

k=0Ck(x, u).
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Remark 3.5. Every function f ∈ OL2(LB(0, 1)) can be decomposed into homogeneous poly-
nomials

f(z) =

∞∑
k=0

Rk(z), Rk ∈ Pk, (3)

where Pk denotes the set of polynomials in the variable z homogeneous of degree k, see [9] and
[10]. The decomposition (3) converges in the set of holomorphic functions O(LB(0, 1)) moreover
it is orthogonal, i.e., Pk ⊥ Pℓ for k ̸= ℓ.
Conversely, given a series

∑∞
k=0Rk(x) of homogeneous polynomials in x which converges in

B(0, 1), its complex extension converges in LB(0, 1). This is due to the estimate

|Rk(z)| ≤ ckL(z)
k sup
|x|=1

|Rk(x)|,

where ck is a slowly increasing constant, see [10, Section 2].
This fact also implies that the complex extension f(z) of the function f(x) solution in B(0, 1)
of ∂sxf(x) = 0 is generally holomorphic in the Lie ball and not beyond.

Remark 3.6. Every Rz ∈ Pk admits a monogenic decomposition, the so-called Fischer decom-
position:

Rk(z) =
k∑
ℓ=0

zℓPk−ℓ(z), (4)

where ∂zPk−ℓ(z) = 0 and Pk−ℓ ∈ Pk−ℓ and, in general, for any (ℓ, k) ∈ N2, (ℓ′, k′) ∈ N2

⟨zℓ′Pk′(z), zℓPk(z)⟩ =
∫
Sm−1

∫ π

0
P †
k′(ω)e

−i(k′+ℓ′)θ(−ω)ℓ′ωℓei(k+ℓ)θPk(ω) dS(ω) dθ

= δk,k′δℓ,ℓ′π

∫
Sm−1

P †
k′(ω)Pk(ω) dS(ω),

so the monogenic decomposition is orthogonal.

Taking into account these remarks we can prove the following:

Theorem 3.7 (Monogenic Fischer decomposition). Every function f ∈ OL2(LB(0, 1)) admits
an orthogonal Fischer decomposition of the form

f(z) =

∞∑
k,ℓ=0

zℓPk,ℓ[f ](z)

where

Pk,ℓ[f ](z) =
1

πAm

∫
Sm−1

∫ π

0
Ck(z, e

−iθω)(eiθω)−ℓf(eiθω) dθ dS(ω) (5)

is an inner spherical monogenic of degree k and Ck is as in (2).

Proof. The decomposition (4) is orthogonal and leads to the identity in OL2(LB(0, 1)), see
Remark 3.5. To show the assertion, we rewrite the integral on the right hand side of (5) using
the orthogonality:

1

πAm

∫
Sm−1

∫ π

0
Ck(z, e

−iθω)(eiθω)−ℓPk,ℓ[f ](e
iθω) dθ dS(ω)

=
1

πAm

∫
Sm−1

∫ π

0
Ck(z, ω)e

−ikθeikθPk,ℓ[f ](ω) dθ dS(ω)

=
1

Am

∫
Sm−1

Ck(z, ω)Pk,ℓ[f ](ω) dS(ω)

= Pk,ℓ[f ](z),
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as stated.

Proposition 3.8. The reproducing kernel for OL2(LB(0, 1)) is the Cauchy-Hua kernel

1

πAm
H(z, e−iθω) =

1

πAm
(−(ω − e−iθz)2)−m/2.

The Cauchy-Hua kernel can also be written in the following three forms:

1

πAm
H(z, e−iθω) =

∞∑
k,ℓ=0

zℓCk(z, e
−iθω)(e−iθω)−ℓ

=
1

πAm
(1− e−2iθz2 + 2e−iθ⟨ω, z⟩)−m/2

=
1

πAm

∞∑
ℓ=0

zℓS(z, e−iθω)(eiθω)−ℓ

where S(z, e−iθω) is the Szegő kernel.

Proof. The Cauchy-Hua kernel is the reproducing kernel for OL2(LB(0, 1)), see [5], [6]. From
Theorem 3.7 we deduce the monogenic decomposition of the kernel. This in turn leads to the
expression in terms of the Szegő kernel. One may also proceed by direct computations from the
equality

∞∑
ℓ=0

zℓ(1 + ze−iθω)e−iℓθ(−ω)ℓ = 1

which can be easily verified.

Remark 3.9. (1) The Cauchy-Hua kernel has an anti-holomorphic extension obtained by ex-
tending −e−iθω to u† = −

∑m
j=1 ūjej :

1

(1 + z2(u†)2 + 2⟨u†, z⟩)m/2
=

∞∑
ℓ=0

zℓS(z,−u†)(u†)ℓ =
∞∑

k,ℓ=0

zℓCk(z,−u†)(u†)ℓ.

This is in fact a reproducing kernel for z, u ∈ LB(0, 1), however with an abuse of terminology
we call it reproducing kernel also its version in Proposition 3.8, where the variable in the second
component is −e−iθω and belongs to LSm−1.
(2) Note that the monogenic Szegő kernel S(z, u†) is the monogenic part of the Cauchy-Hua
kernel H(z,−u†) = (1 + z2(u†)2 + 2⟨z, u†⟩)−m/2.

4 The extended Szegő-Radon transform

The Szegő-Radon transform was originally defined in [2]. In this section we recall its definition
and we then introduce and study the so-called extended Szegő-Radon transform.

Definition 4.1. Let t, s ∈ Rm be such that |t| = |s| = 1 and ⟨t, s⟩ = 0 and let τ = t+ is ∈ Cm.
By ML2(τ) we denote the completion of the right Cm-Hilbert module consisting of all finite
linear combinations of the form ∑

ℓ

⟨x, τ⟩ℓτaℓ, aℓ ∈ Cm.
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Note that ML2(τ) is a closed submodule of ML2(B(0, 1)). In the sequel, we will denote by
fτ ,ℓ(x) the plane wave monogenics

fτ ,ℓ(x) = ⟨x, τ⟩ℓτ .

Definition 4.2. The (polarized) Szegő–Radon transform is the orthogonal projection operator

Rτ : ML2(B(0, 1)) → ML2(τ).

Remark 4.3. The kernel of the Szegő-Radon transform is given by

Kτ (x, u) =
1

Am

τ τ †

4
(1 + ⟨x, τ⟩⟨u, τ †⟩)−m/2

=
τ τ †

4

∞∑
ℓ=0

(−1)ℓ
Γ(m2 + ℓ)

2πm/2Γ(ℓ+ 1)
⟨x, τ⟩ℓ⟨u, τ †⟩ℓ

because fτ ,k is orthogonal to fτ ,ℓ for k ̸= ℓ and

⟨fτ ,ℓ, fτ ,ℓ⟩ =
2πm/2Γ(ℓ+ 1)

Γ(m2 + ℓ)
τ †τ ,

see Proposition 2.9 in [2] and Remark 3.7 in [3].

Next result corresponds to Theorem 2.19 in [2] (the first equality) and Theorem 4.5 in [3]
(the second equality):

Theorem 4.4. The Szegő-Radon transform of f ∈ ML2(B(0, 1)) can be expressed as

Rτ [f ](x) :=

∫
Sm−1

Kτ (x, ω)f(ω)dS(ω) =
τ τ †

4
f(−1

2
τ †⟨x, τ⟩).

Our next goal is to extend this transform to OL2(LB(0, 1)) and to this end, we consider the
modified plane waves

f sτ,ℓ(z) = zs⟨z, τ⟩ℓτ .

Note that, from now on, the superscript s is a natural number which does not have to be confused
with the 1-vector s.

Definition 4.5. For any given τ and s ∈ N, by Ms(τ) we denote the completion of the right
Cm-Hilbert module consisting of all finite linear combinations of the form∑

s,ℓ

zs⟨z, τ⟩ℓτaℓ =
∑
s,ℓ

fsτ,ℓ(z)aℓ, aℓ ∈ Cm.

Note that Ms(τ) is a submodule of OL2(LB(0, 1)).

Definition 4.6. For any s ∈ N, the extended Szegő-Radon transform is the orthogonal projection
operator

Rs
τ : OL2(LB(0, 1)) → Ms(τ).

To compute the kernel for this transform, we first prove the following result whose proof
follows the one of Proposition 2.9 in [2]:
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Lemma 4.7. Let t, s ∈ Rm be such that |t| = |s| = 1 and ⟨t, s⟩ = 0, let τ = t + is ∈ Cm and
ω ∈ Sm−1. Then for k ̸= ℓ ∫

Sm−1

⟨ω, τ †⟩k⟨ω, τ⟩ℓdS(ω) = 0

and ∫
Sm−1

⟨ω, τ †⟩k⟨ω, τ⟩kdS(ω) = (−1)k2π
m
2

Γ(k + 1)

Γ(m/2 + k)
.

Proof. Up to a change of the basis, we may set t = e1 and s = e2. We consider for n > 3 the
decomposition Rm = R2 ⊕ Rm−2. Let θ be the angle between ω and the projection of ω on R2.
Then the element dS(ω) can be written as

dS(ω) = cosφdφdS(ω1,2) sin
m−3 φdS(ωm−3)

where ω = cosφ(cosψ e1 + sinψ e2) + sinφη, with φ ∈ [0, π/2) and ψ ∈ [0, 2π), so that in fact
dS(ω1,2) := dψ, and η := ωm−3. Thus we can write where η is a suitable element in Sm−3,

m > 3. We also have τ = e1 + ie2 and τ † = −e1 + ie2 and so the scalar product in Cn of ω and
τ is

⟨ω, τ⟩ = cosφ(cosψ + i sinψ) = cosφeiψ

⟨ω, τ †⟩ = cosφ(− cosψ + i sinψ) = − cosφe−iψ.

Then we have:

=

∫
Sm−1

⟨ω, τ †⟩k⟨ω, τ⟩ℓdS(ω)

=

∫ π/2

0

∫ 2π

0

∫
Sm−3

(−1)k(cosφ)k+ℓ+1ei(ℓ−k)ψ(sinφ)m−3dφdψ dS(η).

The last integral vanishes for k ̸= ℓ. When k = ℓ with standard computations we have:∫ π/2

0

∫ 2π

0

∫
Sm−3

(−1)k(cosφ)2k+1(sinφ)m−3dφ dψ dS(η) = (−1)k2π
m
2

Γ(k + 1)

Γ(m/2 + k)
.

Proposition 4.8. Let t, s ∈ Rm be such that |t| = |s| = 1 and ⟨t, s⟩ = 0 and let τ = t+ is ∈ Cm.
Let s, s′ ∈ N be fixed. The functions fsτ,ℓ(z) are such that

⟨f sτ,ℓ, f s
′
τ ,ℓ′⟩OL2 = 0, for (ℓ, s) ̸= (ℓ′, s′)

⟨fsτ,ℓ, f sτ,ℓ⟩OL2 = 2π
m
2
+1τ †τ

Γ(ℓ+ 1)

Γ(m2 + ℓ)
.

Proof. Using Lemma 4.7 and the fact that ⟨eiθω, τ⟩† = ⟨e−iθω,−τ †⟩, we have

⟨fsτ,ℓ, f sτ,ℓ⟩ =
∫
Sm−1

∫ π

0
⟨e−iθω,−τ †⟩ℓ(eiθω)−s(eiθω)s⟨eiθω, τ⟩ℓτ †τdS(ω) dθ

= τ †τπ

∫
Sm−1

⟨ω,−τ †⟩ℓ⟨ω, τ⟩ℓdS(ω)

= 2πm/2+1τ †τ
Γ(ℓ+ 1)

Γ(m2 + ℓ)
.

(6)

Moreover, Lemma 4.7 also yields orthogonality for (ℓ, s) ̸= (ℓ′, s′), i.e.

⟨f sτ,ℓ, f s
′
τ ,ℓ′⟩ = 0.
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As a consequence we have:

Theorem 4.9. The extended Szegő-Radon transform can be expressed as

Rs
τ [f ](z) =

∫
Sm−1

∫ π

0
Ks
τ (z, e

−iθω)f(eiθω) dS(ω)dθ

where

Ks
τ (z, e

−iθω) =
zsτ τ †

4π

∞∑
ℓ=0

(−1)ℓ
Γ(m2 + ℓ)

2πm/2Γ(ℓ+ 1)
⟨z, τ⟩ℓ⟨e−iθω, τ †⟩ℓ(eiθω)−s.

Proof. To prove the statement, it is enough to show that the kernel Ks
τ (z, e

−iθω) reproduces the
generators of Ms(τ). In fact, we have:∫

Sm−1

∫ π

0
Ks
τ (z, e

−iθω)fsτ,ℓ(e
iθω)

=
zs⟨z, τ⟩ℓτ

4π

Γ(m2 + ℓ)

2πm/2Γ(ℓ+ 1)

∫
Sm−1

∫ π

0

∞∑
ℓ=0

(−1)ℓ⟨e−iθω, τ †⟩ℓ(eiθω)−sτ †f sτ,ℓ(eiθω) dS(ω)dθ

= zs⟨z, τ⟩ℓ τ
4π

Γ(m2 + ℓ)

2πm/2Γ(ℓ+ 1)
⟨f sτ,ℓ, f sτ,ℓ⟩

= zs⟨z, τ⟩ℓ τ τ
†τ

4
= zs⟨z, τ⟩ℓτ = fsτ,ℓ(z),

where we used (6). The statement follows.

Remark 4.10. It is immediate to rewrite the above kernel in closed form:

Ks
τ (z, e

−iθω) =
1

πAm
zs
τ τ †

4
(1 + ⟨z, τ⟩ ⟨e−iθω, τ †⟩)−m/2(eiθω)−s.

We now prove the following result which shows that the extended Szegő-Radon transform
Rs
τ is in fact the Szegő-Radon transform Rτ of the monogenic part fs multiplied by zs:

Proposition 4.11. Let f ∈ OL2(LB(0, 1)) admit the monogenic decomposition

f(u) =

∞∑
ℓ=0

uℓfℓ(u)

with ∂ufℓ(u) = 0. Then:
Rs
τ [f ] = zsRτ [fs].

Proof. We have the following equalities:

Rs
τ [f ](z) =

∫
Sm−1

∫ π

0
Ks
τ (z, e

−iθω)f(eiθω) dS(ω) dθ

=

∫
Sm−1

∫ π

0
Ks
τ (z, e

−iθω)(eiθ)sfs(e
iθω) dS(ω) dθ

=
1

πAm
zs
τ τ †

4

∫
Sm−1

∫ π

0
(1 + ⟨z, τ⟩ ⟨e−iθω, τ †⟩)−m/2fs(eiθω) dS(ω) dθ

=
1

Am
zs
τ τ †

4

∫
Sm−1

(1 + ⟨z, τ⟩⟨ω, τ †⟩)−m/2fs(ω) dS(ω)

= zsRτ [fs](z),

and the statement follows.
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Let us set M(τ) = ⊕s∈NMs(τ). Then M(τ) is the closure of the span of all polynomials of
the form

zs⟨z, τ⟩kτ .

Note that these are not plane waves as they are defined on a two-dimensional complex subspace.
We now introduce the following:

Definition 4.12. The complete Szegő-Radon transform Rτ : OL2(LB(0, 1)) → M(τ) is defined
by

Rτ [f ] =

∞∑
s=0

Rs
τ [f ],

for any f ∈ OL2(LB(0, 1)).

Remark 4.13. It follows from the definition that the kernel of the complete Szegő-Radon
transform on the whole OL2(LB(0, 1)) is given by

Kτ (z, e
−iθω) =

∞∑
s=0

Ks
τ (z, e

−iθω)

=
1

4πAm
(τ τ † − z τ τ †e−iθω)

(1 + z2e−2iθ)−1

1 + ⟨z, τ⟩⟨e−iθω, τ †⟩)m/2

where, as usual, z2 = −
∑m

j=1 z
2
j .

5 The Hua-Radon transform

In this section we discuss another transform that can be defined for functions in several complex
variables, the so-called Hua-Radon transform, and to this end we need to define a suitable
submodule of OL2(LB(0, 1)):

Definition 5.1. Let t, s ∈ Rm, τ = t + is, with |t| = |s| = 1, t ⊥ s, be fixed. By OL2(τ) we
denote the closed submodule of OL2(LB(0, 1)) consisting of holomorphic functions defined in
the 2-dimensional Lie ball in the variables ⟨z, s⟩, ⟨z, t⟩ and with boundary values in L2(LSm−1).

We note that a function defined in the 2-dimensional Lie ball may be seen as a function of
the variables ⟨z, τ⟩, ⟨z, τ †⟩:

f(⟨z, τ⟩, ⟨z, τ †⟩), τ = t+ is,

that is holomorphic for
|⟨z, τ⟩| < 1, |⟨z, τ †⟩| < 1;

in other words, the 2-dimensional Lie ball is a 2-dimensional polydisc. A natural basis for
OL2(τ) is given by the functions

fτ ,k,ℓ(z) = ⟨z, τ⟩k⟨z, τ †⟩ℓ, (7)

whose orthogonality properties are studied in the next result.
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Proposition 5.2. Let t, s ∈ Rm be such that |t| = |s| = 1 and ⟨t, s⟩ = 0 and let τ = t+is ∈ Cm.
The functions fτ ,k,ℓ(z) are such that

⟨fτ,k,ℓ(z), fτ ,k′,ℓ′(z)⟩OL2 = 0, (k, ℓ) ̸= (k′, ℓ′),

and

⟨fτ ,k,ℓ(z), fτ ,k,ℓ(z)⟩OL2 = 2πm/2+1 Γ(k + ℓ+ 1)

Γ(k + ℓ+m/2)
.

Proof. It is easy to verify that for (k, ℓ) ̸= (k′, ℓ′) the functions fτ ,k,ℓ(z), fτ,k′,ℓ′ are orthogonal
with respect to the inner product in OL2(LB(0, 1)), namely∫

Sm−1

∫ π

0
f †τ ,k,ℓ(e

iθω)fτ ,k′,ℓ′(e
iθω) dS(ω) dθ = 0. (8)

To prove the second equality, we set

I : =

∫
Sm−1

∫ π

0
f †τ ,k,ℓ(e

iθω)fτ ,k,ℓ(e
iθω)dS(ω) dθ

= (−1)k+ℓ
∫
Sm−1

∫ π

0
⟨ω, τ †⟩k⟨ω, τ⟩ℓe−i(k+ℓ)θei(k+ℓ)θ⟨ω, τ⟩k⟨ω, τ †⟩ℓ dS(ω) dθ

= (−1)k+ℓπ

∫
Sm−1

⟨ω, τ †⟩k+ℓ⟨ω, τ⟩k+ℓdS(ω).

If we take τ = e1 + ie2 we obtain that the previous integral equals

I = π

∫
Sm−1

(ω2
1 + ω2

2)
k+ℓ dS(ω).

Using the polar decomposition and assuming m ≥ 3, we set

ω = cosφ(cosψe1 + sinψe2) + sinφν, φ ∈ [0, π/2), ψ ∈ [0, 2π), ν ∈ Sm−3.

The surface element dS(ω) rewrites as

dS(ω) = cosφ (sinφ)m−3 dφdψ dν.

We obtain

I = π

∫ π/2

0

∫ 2π

0

∫
Sm−3

(cosφ)2k+2ℓ (sinφ)m−3 cosφdψ dφdν

= 2π2Am−2

∫ 2π

0
(cos2 φ)k+ℓ(sinφ)m−3 d(sinφ)

= 2π2Am−2

∫ 1

0
(1− t2)k+ℓtm−3 dt

= π2Am−2

∫ 1

0
(1− s)k+ℓsm/2−2 ds

=
2πm/2+1

Γ(m/2− 1)
B(k + ℓ,

m

2
− 1)

= 2πm/2+1 Γ(k + ℓ+ 1)

Γ(k + ℓ+m/2)
,

where we have set t = sinφ and then s = t2 and this concludes the proof.
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Definition 5.3. The Hua-Radon transform is the projection

OL2(LB(0, 1)) → OL2(τ).

As a consequence of Proposition 5.2, we obtain that the kernel for the Hua-Radon transform
is given by

Kτ (z, e
−iθω) =

1

2πm/2+1

∞∑
k,ℓ=0

Γ(k + ℓ+m/2)

Γ(k + ℓ+ 1)
(−1)k+ℓakbℓ

where
a = ⟨z, τ⟩⟨e−iθω, τ †⟩, b = ⟨z, τ †⟩⟨e−iθω, τ⟩.

Remark 5.4. We can rewrite the kernel of the Hua-Radon transform as:

Kτ (z, e
−iθω) =

1

πAm

∞∑
s=0

(−1)s
Γ(s+m/2)

Γ(s+ 1)Γ(m/2)

as+1 − bs+1

a− b

=
1

πAm(a− b)
[a(1 + a)−m/2 − b(1 + b)−m/2]

which, for m = 2 reduces to

Kτ (z, e
−iθω) =

1

2π2
1

(1 + a)(1 + b)

=
1

2π2
1

(1 + ⟨z, τ⟩⟨e−iθω, τ †⟩)(1 + ⟨z, τ †⟩⟨e−iθω, τ⟩)
,

i.e. to the Cauchy-Hua kernel in C2.

6 The polarized Hua-Radon

The Hua-Radon transform deals with copies of C2 embedded in Cm. We will show that using
techniques typical from Clifford analysis we are able to construct a subspace M(τ) of OL2(τ)
such that

OL2(τ) = M(τ)⊕M(τ †), M(τ) ⊥ M(τ †).

In order to define M(τ), we introduce the functions

ψτ ,2s,k(z) = τ⟨z, τ⟩s+k⟨z, τ †⟩s = τfτ ,k+s,s(z)

ψτ ,2s+1,k(z) = τ †τ⟨z, τ⟩s+k+1⟨z, τ †⟩s = τ †τfτ ,k+s+1,s(z).

where fτ,r,s is as in (7). We have:

Proposition 6.1. The function ψτ ,0,k(z) = τ⟨z, τ⟩k is monogenic, i.e. ∂zψτ ,0,k(z) = 0. More-
over:

∂zψτ ,2s+1,k(z) = 4(s+ k + 1)ψτ ,2s,k(z)

∂zψτ ,2s+2,k(z) = (s+ 1)ψτ ,2s+1,k(z).
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Proof. We proceed by direct computations. The first assertion is immediate. The other formulas
follow from:

∂zψτ ,2s+1,k(z) = (s+ k + 1)τ τ †τ⟨z, τ⟩s+k⟨z, τ †⟩s

= 4(s+ k + 1)ψτ ,2s,k(z)

∂zψτ ,2s+2,k(z) = (s+ 1)τ †τ⟨z, τ⟩s+k+1⟨z, τ †⟩s

= (s+ 1)ψτ ,2s+1,k(z).

Definition 6.2. Let s ∈ N0. We denote by Ms(τ) the completion of the right Cm-module
spanned by the set {ψτ,s,k, k ∈ N}.
We denote by RH,s

τ the projection from OL2(LB(0, 1)) to Ms(τ).

Proposition 6.3. Let s ∈ N. The following properties hold:

1. The map
∂z : Ms(τ) → Ms−1(τ)

is an isomorphism.

2. Every f ∈ Ms(τ) satisfies ∂s+1
z f = 0.

3. For all s, ℓ ∈ N we have

M2s(τ) ⊥ M2ℓ+1(τ),

M2s(τ) ⊥ M2ℓ(τ), s ̸= ℓ

M2s+1(τ) ⊥ M2ℓ+1(τ), s ̸= ℓ.

Proof. To show the first assertion we use Proposition 6.1 which shows that indeed ∂z : Ms(τ) →
Ms−1(τ). It is also clear that the kernel of ∂z is trivial and that, given any ψτ ,s−1,k it can be
obtained as ∂z(Cψτ ,s,k) where C is a suitable constant depending on s, k.
To show the second assertion, we show that it holds for the generators. To this end, we compute:

∂s+1
z (ψτ ,s,k) = ∂sz(C1ψτ ,s−1,k) = ∂s−1

z (C2ψτ,s−2,k) = . . . = ∂z(Cs−1ψτ ,0,k) = 0

by virtue of Proposition 6.1.
To prove the third assertion, we observe that ψ†

τ,2s,kψτ ,2s′+1,k′ = 0 since (τ †)2 = 0 so the

orthogonality of M2s(τ) and M2s′+1(τ) follows immediately. Moreover, see Proposition 5.2, for
s ̸= s′ we have ∫

Sm−1

∫ π

0
ψ†
τ ,2s,k(e

iθω)ψ†
τ ,2s′,k′(e

iθω) dS(ω)dθ = 0,

so that M2s(τ) ⊥ M2s′(τ) and similarly M2s+1(τ) ⊥ M2s′+1(τ).

In view of this result, the direct sum ⊕∞
s=0M

s(τ) is also orthogonal, and this is the ground
for the next definition:

Definition 6.4. The orthogonal and direct sum

M(τ) = ⊕∞
s=0M

s(τ)

is called the polarized Hua-Radon module.
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We have the following result:

Theorem 6.5. The following equality holds

OL2(τ) = M(τ)⊕M(τ †),

where the direct sum is also orthogonal.

Proof. The fact that τ2 = (τ †)2 = 0 immediately gives

ψ†
τ ,2s,kψτ†,2s′,k′ = 0,

ψ†
τ ,2s+1,kψτ†,2s′+1,k′ = 0.

Moreover ∫
Sm−1

∫ π

0
ψ†
τ ,2s,k(e

iθω)ψτ†,2s′+1,k′(e
iθω) dS(ω)dθ = 0, ∀k, k′, s, s′.

In fact the integral equals∫
Sm−1

∫ π

0
ψ†
τ ,2s,k(e

iθω)ψτ†,2s′+1,k′(e
iθω)

= 4τ †
∫
Sm−1

∫ π

0
eiθ(k+k

′+1)⟨ω, τ †⟩s+k+s′+k+1⟨ω, τ⟩s+s′ dS(ω)dθ

and we can use Lemma 4.7. Now we note that M(τ) ⊕ M(τ †) is the closure of the span of
elements of the form

τ τ †⟨z, τ⟩s+k+1⟨z, τ †⟩s, τ τ †⟨z, τ⟩s⟨z, τ †⟩s τ †τ⟨z, τ⟩s+k+1⟨z, τ †⟩s

τ †τ⟨z, τ⟩s⟨z, τ †⟩k+s+1, τ †τ⟨z, τ⟩s⟨z, τ †⟩s τ τ †⟨z, τ⟩s⟨z, τ †⟩k+s+1

which covers the whole set {fτ ,k,s}, k, s ∈ N hence the statement follows.

Definition 6.6. The projection

RH
τ : OL2(LB(0, 1)) → M(τ)

is called polarized Hua-Radon transform.

Theorem 6.7. The kernel of the polarized Hua-Radon transform is

Kτ (z, e
−iθω) =

1

πAm(a− b)

[
a(1 + a)−m/2 − b(1 + b)−m/2

]
+

1

πAm

∞∑
ℓ=0

Γ(2ℓ+m/2)

Γ(2ℓ+ 1)Γ(m/2)
aℓbℓ,

where a = ⟨z, τ⟩⟨e−iθω, τ †⟩, b = ⟨z, τ †⟩⟨e−iθω, τ⟩.

Our next task is to compute the reproducing kernel Lτ (z, e
−iθω) of the polarized Hua-Radon

transform RH
τ . To that end, we compute the kernel Lsτ (z, e

−iθω) of the projection RH,s
τ . Then,

by construction, the kernel for the polarized Hua-Radon transform equals

Lτ (z, e
−iθω) =

∞∑
s=0

Lsτ (z, e
−iθω)
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while the kernel of the Hua-Radon transform is decomposed as

Kτ (z, e
−iθω) = Lτ (z, e

−iθω) + Lτ†(z, e
−iθω).

This decomposition will be verified explicitly as a double check for the calculations. First we
have:

Theorem 6.8. The kernel for the polarized Hua-Radon transform is given by

Lτ (z, e
−iθω) =

1

πAm

∞∑
s=0

∞∑
k=0

(−1)k
Γ(k + 2s+ m

2 )

Γ(k + 2s+ 1)Γ(m2 )
ak+sbs

− 1

πAm

τ †τ

4

∞∑
s=0

Γ(2s+ m
2 )

Γ(2s+ 1)Γ(m2 )
asbs,

(9)

where, as before, a = ⟨z, τ⟩⟨e−iθω, τ †⟩, b = ⟨z, τ †⟩⟨e−iθω, τ⟩.

Proof. To perform the computations, we consider two cases: in the even case we have

L2s
τ (z, e−iθω) =

∞∑
k=0

τ τ †

4
λ2sk fτ ,k+s,s(z)fτ†,k+s,s(e

−iθω)

where, according to Proposition 5.2:

λ2sk = (−1)k
1

2πm/2+1

Γ(k + 2s+ m
2 )

Γ(k + 2s+ 1)
.

Thus, in terms of the variables a = ⟨z, τ⟩⟨e−iθω, τ †⟩, b = ⟨z, τ †⟩⟨e−iθω, τ⟩ we have

L2s
τ (z, e−iθω) =

1

πAm

τ τ †

4

∞∑
k=0

(−1)k
Γ(k + 2s+ m

2 )

Γ(k + 2s+ 1)Γ(m2 )
ak+sbs.

Similarly, in the odd case, we have

L2s+1
τ (z, e−iθω) =

∞∑
k=0

τ τ †

4
λ2s+1
k fτ ,k+s+1,s(z)fτ†,k+s+1,s(e

−iθω)

where

λ2s+1
k = (−1)k+1 1

2πm/2+1

Γ(k + 2s+ 1 + m
2 )

Γ(k + 2s+ 2)

which yields, in terms of the variables a and b,

L2s+1
τ (z, e−iθω) =

1

πAm

τ †τ

4

∞∑
k=1

(−1)k
Γ(k + 2s+ m

2 )

Γ(k + 2s+ 1)Γ(m2 )
ak+sbs.

Using 1
4(ττ

† + τ †τ) = 1 and

∞∑
k=1

(−1)k
Γ(k + 2s+ m

2 )

Γ(k + 2s+ 1)Γ(m2 )
ak+sbs =

∞∑
k=0

(−1)k
Γ(k + 2s+ m

2 )

Γ(k + 2s+ 1)Γ(m2 )
ak+sbs −

Γ(2s+ m
2 )

Γ(2s+ 1)Γ(m2 )
asbs

we obtain the result by adding the kernels for RH,s
τ .
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For the sequel, it is useful to introduce the functions

ϕ(t) =

∞∑
s=0

Γ(2s+ m
2 )

Γ(2s+ 1)Γ(m2 )
ts =2F1(

m

4
,
m+ 2

4
,
1

2
; t),

where 2F1 is the hypergeometric function, and

ψ(t) = t

∞∑
s=0

Γ(2s+ 1 + m
2 )

Γ(2s+ 2)Γ(m2 )
ts.

We have:

Lemma 6.9. We have the identity:

ϕ(a2)− 1

a
ψ(a2) = (1 + a)−m/2. (10)

Proof. The identity follows from the following computations:

ϕ(a2)− 1

a
ψ(a2) =

∞∑
ℓ=0

Γ(2ℓ+m/2)

Γ(2ℓ+ 1)Γ(m/2)
a2ℓ −

∞∑
ℓ=0

Γ(2ℓ+ 1 +m/2)

Γ(2ℓ+ 2)Γ(m/2)
a2ℓ+1

=

∞∑
j=0

Γ(j +m/2)

Γ(j + 1)Γ(m/2)
(−a)j .

= (1 + a)−m/2.

Remark 6.10. By some computations, not relevant for the present work, one may show that
also the function ψ can be written in terms of the hypergeometric function 2F1. Formula (10)
is a functional equation satisfied by the hypergeometric function which is proved within the
framework of hypercomplex analysis.

We now have to study the term (which is scalar):

Ľτ (z, e
−iθω) =

1

πAm

∞∑
s=0

∞∑
k=0

(−1)k
Γ(k + 2s+ m

2 )

Γ(k + 2s+ 1)Γ(m2 )
ak+sbs.

Lemma 6.11. In terms of the functions ϕ, ψ the function Ľτ (z, e
−iθω) can be written as

Ľτ (z, e
−iθω) =

1

πAm(a− b)

[
aϕ(a2)− bϕ(ab)− ψ(a2) + ψ(ab)

]
=

1

πAm(a− b)

[
a

(
ϕ(a2)− 1

a
ψ(a2)

)
− (bϕ(ab)− ψ(ab))

]
.

Proof. We decompose Ľτ (z, e
−iθω) into its even and odd parts as

Ľτ (z, e
−iθω) = Ľeven(z, e

−iθω) + Ľodd(z, e
−iθω)
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by taking k even and k odd respectively. We obtain, for k = 2j:

Ľeven(z, e
−iθω) =

1

πAm

∞∑
s=0

∞∑
j=0

Γ(2(j + s) + m
2 )

Γ(2(j + s) + 1)Γ(m2 )
a2(j+s)

(
b

a

)s
=

1

πAm

∞∑
s=0

∞∑
ℓ=s

Γ(2ℓ+ m
2 )

Γ(2ℓ+ 1)Γ(m2 )
a2ℓ
(
b

a

)s

=
1

πAm

∞∑
ℓ=0

Γ(2ℓ+ m
2 )

Γ(2ℓ+ 1)Γ(m2 )
a2ℓ

ℓ∑
s=0

(
b

a

)s
=

1

πAm

∞∑
ℓ=0

Γ(2ℓ+ m
2 )

Γ(2ℓ+ 1)Γ(m2 )
aℓ
aℓ+1 − bℓ+1

a− b

=
1

πAm

[
a

a− b

∞∑
ℓ=0

Γ(2ℓ+ m
2 )

Γ(2ℓ+ 1)Γ(m2 )
a2ℓ − b

a− b

∞∑
ℓ=0

Γ(2ℓ+ m
2 )

Γ(2ℓ+ 1)Γ(m2 )
(ab)ℓ

]

=
1

πAm

[
a
ϕ(a2)

a− b
− b

ϕ(ab)

a− b

]
.

Moreover, for k = 2j + 1 with similar computations we have

Ľodd(z, e
−iθω) = − 1

πAm

∞∑
s=0

∞∑
j=0

Γ(2(j + s) + 1 + m
2 )

Γ(2(j + s) + 2)Γ(m2 )
a2(j+s)+1

(
b

a

)s
= − 1

πAm

∞∑
s=0

∞∑
ℓ=s

Γ(2ℓ+ 1 + m
2 )

Γ(2ℓ+ 2)Γ(m2 )
a2ℓ+1

(
b

a

)s
= − 1

πAm

∞∑
s=0

∞∑
ℓ=0

Γ(2ℓ+ 1 + m
2 )

Γ(2ℓ+ 2)Γ(m2 )
aℓ+1a

ℓ+1 − bℓ+1

a− b

= − 1

πAm

[
ψ(a2)

a− b
− ψ(ab)

a− b

]
,

and the assertion follows.

Remark 6.12. The term bϕ(b)− ψ(ab) can only be rewritten as

bϕ(ab)− ψ(ab) = b

(
ϕ(ab)− 1

b
ψ(ab)

)
= b

( ∞∑
ℓ=0

Γ(2ℓ+m/2)

Γ(2ℓ+ 1)Γ(m/2)
aℓbℓ − a

∞∑
ℓ=0

Γ(2ℓ+ 1 +m/2)

Γ(2ℓ+ 2)Γ(m/2)
aℓbℓ

)
.

Combining the foregoing results we arrive at

Theorem 6.13. The kernel Lτ for the polarized Hua-Radon transform is given by:

Lτ (z, e
−iθω) =

1

πAm(a− b)

[
a(1 + a)−m/2 − b

∞∑
ℓ=0

Γ(2ℓ+m/2)

Γ(2ℓ+ 1)Γ(m/2)
aℓbℓ

+ab

∞∑
ℓ=0

Γ(2ℓ+ 1 +m/2)

Γ(2ℓ+ 2)Γ(m/2)
aℓbℓ

]
− 1

πAm

τ †τ

4

∞∑
ℓ=0

Γ(2ℓ+ m
2 )

Γ(2ℓ+ 1)Γ
(
m
2

)aℓbℓ.
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Proof. Substitution of the previous Lemmas in Theorem 6.8.

As a verification of all the results so far we now prove

Theorem 6.14. The kernel for the Hua-Radon transform is given by

Kτ (z, e
−iθω) = Lτ (z, e

−iθω) + Lτ†(z, e
−iθω).

Proof. It is similar to the proof of Theorem 6.13. The kernel Lτ†(z, e
−iθω) is obtained from

Lτ (z, e
−iθω) by intertwining τ , τ † and a, b. This leads to

Lτ†(z, e
−iθω) =

1

πAm(a− b)

[
−b(1 + b)−m/2 + a

∞∑
ℓ=0

Γ(2ℓ+m/2)

Γ(2ℓ+ 1)Γ(m/2)
aℓbℓ

−ab
∞∑
ℓ=0

Γ(2ℓ+ 1 +m/2)

Γ(2ℓ+ 2)Γ(m/2)
aℓbℓ

]
− 1

πAm

τ †τ

4

∞∑
ℓ=0

Γ(2ℓ+ m
2 )

Γ(2ℓ+ 1)Γ
(
m
2

)aℓbℓ.
Hence we obtain

Lτ (z, e
−iθω) + Lτ†(z, e

−iθω) =

=
1

πAm(a− b)

[
a(1 + a)−m/2 − b

∞∑
ℓ=0

Γ(2ℓ+m/2)

Γ(2ℓ+ 1)Γ(m/2)
aℓbℓ

+ab
∞∑
ℓ=0

Γ(2ℓ+ 1 +m/2)

Γ(2ℓ+ 2)Γ(m/2)
aℓbℓ

]
− 1

πAm

τ †τ

4

∞∑
ℓ=0

Γ(2ℓ+ m
2 )

Γ(2ℓ+ 1)Γ
(
m
2

)aℓbℓ
+

1

πAm(a− b)

[
−b(1 + b)−m/2 + a

∞∑
ℓ=0

Γ(2ℓ+m/2)

Γ(2ℓ+ 1)Γ(m/2)
aℓbℓ

−ab
∞∑
ℓ=0

Γ(2ℓ+ 1 +m/2)

Γ(2ℓ+ 2)Γ(m/2)
aℓbℓ

]
− 1

πAm

τ †τ

4

∞∑
ℓ=0

Γ(2ℓ+ m
2 )

Γ(2ℓ+ 1)Γ
(
m
2

)aℓbℓ
=

1

πAm(a− b)

[
a(1 + a)−m/2 − b(1 + b)−m/2

]
− 1

πAm(a− b)
(b− a)

∞∑
ℓ=0

Γ(2ℓ+m/2)

Γ(2ℓ+ 1)Γ(m/2)
aℓbℓ

− 1

πAm
(
τ †τ + ττ †

4
)

∞∑
ℓ=0

Γ(2ℓ+m/2)

Γ(2ℓ+ 1)Γ(m/2)
aℓbℓ

= Kτ (z, e
−iθω).

7 The monogenic Hua-Radon transform

It is not immediate to see if there is a link between the extended Szegő-Radon transform and
the polarized Hua-Radon transform. However, they admit a common extension that is obtained
from the functions zjψτ ,2s,k(z) and z

jψτ ,2s+1,k(z) which clearly include the basis of the modules
Ms(τ) and Ms(τ) used to define the extended Szegő-Radon transform and the polarized Hua-
Radon transform, respectively. Unfortunately, the functions above do not form an orthogonal
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system. Thus we consider a suitable modification of these functions. To this end, let M denote
the projection onto the monogenic part and define

ψjτ ,2s,k(z) = zjM [ψτ ,2s,k](z)

ψjτ ,2s+1,k(z) = zjM [ψτ ,2s+1,k](z).

It is immediate that the degrees of homogeneity of ψjτ ,2s,k, ψ
j
τ ,2s+1,k are j+k+2s and j+k+2s+1

respectively. Moreover with respect to the scalar product in OL2(LB(0, 1)) we have:

Proposition 7.1. Consider the family of functions {ψjτ ,α,k, α, k ∈ N}. Then elements with

different degrees of homogeneity are orthogonal and any two elements ψjτ ,α,k, ψ
j′

τ ,α′,k′ with j ̸= j′

are orthogonal. Furthermore

⟨ψjτ ,α,k, ψ
j
τ ,α′,k′⟩ = ⟨M [ψτ ,α,k],M [ψτ ,α′,k′ ]⟩ = ⟨M [ψτ ,α,k], ψτ,α′,k′⟩.

Lemma 7.2. For suitable constants µℓ = µℓ,α,k, ℓ = 1, . . . , µα we have

M [ψτ ,α,k] = ψτ ,α,k + µ1zψτ ,α−1,k + · · ·+ µαz
αψτ,0,k.

Proof. The result directly follows from the formulas in Proposition 6.1.

By virtue of this result, to compute ⟨ψjτ ,α,k, ψ
j
τ ,α′,k′⟩ it is enough to compute ⟨M [ψτ ,α,k], ψτ ,α′,k′⟩.

The following technical lemma will be useful in the sequel:

Lemma 7.3. For ℓ ≥ 0, s > 0 and k′ = k − 2s∫
Sm−1

(ψτ ,α−2ℓ,k(ω))
†ψτ ,α+2s,k′(ω) = 0,

Proof. Let α be even, then the statement follows from

ψτ ,α−2ℓ,k(ω) = τ⟨ω, τ⟩k|⟨ω, τ⟩|α−2ℓ

ψτ ,α+2s,k−2s(ω) = τ⟨ω, τ⟩k−2s|⟨ω, τ⟩|α+2s.
(11)

The case α odd is based on similar computations.

we can now prove the following result:

Proposition 7.4. For α′ > α the following equality holds

⟨zjψτ ,α−j,k, ψτ ,α′,k′⟩ = 0.

Proof. To prove the statement we consider two cases: j even and j odd.
(i) Case j even, i.e. j = 2ℓ. Then, it can be easily verified that the inner product

⟨zjψτ ,α−j,k, ψτ,α′,k′⟩

equals, up to a constant, ∫
Sm−1

(ψτ ,α−j,k(ω))
†ψτ ,α′,k′(ω) dS(ω).
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When α′ − α is odd the integrand is identically zero since τ2 = (τ †)2 = 0, so we consider the
case α′ − α = 2s. We note that for s > 0, ℓ ≥ 0 and k′ = k − 2s we have∫

Sm−1

(ψτ ,α−2ℓ,k(ω))
†ψτ,α+2s,k′(ω) dS(ω) = 0

by Lemma 7.3.
(ii) Case j odd, i.e. j = 2ℓ+ 1. Then we have to compute the integral∫

Sm−1

(ψτ ,α−2ℓ−1,k(ω))
†ωψτ ,α′,k′(ω) dS(ω)

for α′ > α and α + k = α′ + k′. By selecting suitable the basis, it suffices to take τ = e1 + ie2
and to write ω = ω1e1+ω2e2+ω⊥, so that ω⊥ can be neglected in the previous integral and we
are led to compute ∫

Sm−1

(ψτ ,α−2ℓ−1,k(ω))
†(ω1e1 + ω2e2)ψτ ,α′,k′(ω) dS(ω).

The above integral vanishes when α′ > α. To prove this assertion we note that

(e1 ± ie2)(ω1e1 + ω2e2) = (ω1e1 − ω2e2)(e1 ∓ ie2).

Thus if α is even and α′ − α is odd, we use the equality

τ †τ ω τ †τ = 0

while if α is odd we use τ †ωτ = 0. So we are reduced to the case α′ = α + 2s, s > 0 and
k′ = k − 2s.
For α even, we use again formulas of the form (11)

ψτ ,α−2ℓ−1,k(ω) = τ †τ⟨ω, τ⟩k+1|⟨ω, τ⟩|α−2ℓ−1

ψτ ,α+2s,k−2s(ω) = τ⟨ω, τ⟩k−2s|⟨ω, τ⟩|α+2s.

and the fact that (ω1e1 + ω2e2)τ⟨ω, τ⟩k−2s is spherical harmonic of degree k − 2s+ 1 for s > 0
we have orthogonality.
Let now α odd. Formulas of the form (11) give

ψτ ,α−2ℓ−1,k(ω) = τ⟨ω, τ⟩k|⟨ω, τ⟩|α−2ℓ+1

ψτ ,α+2s,k−2s(ω) = τ †τ⟨ω, τ⟩k+1−2s|⟨ω, τ⟩|α+2s−1

and we use them together with the fact that ψ†
τ ,α−2ℓ−1,k(ω)(ω1e1 + ω2e2) is spherical harmonic

of degree k + 1. The statement follows.

Corollary 7.5. For α′ > α the following equality holds

⟨M [ψτ ,α,k], ψτ ,α′,k′⟩ = 0.

Proof. To show the assertion, we use Lemma 7.2 to decompose M [ψτ ,α,k] in terms of ψτ ,α−j,k,
then the statement follows from Proposition 7.4.
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Definition 7.6. By Mj,α(τ) be the right Cm-module spanned by {ψjτ ,α,k, k ∈ N} and let

Rj,α
τ : OL2(LB(0, 1)) → Mj,α(τ).

The projection operator ∑
α∈N

Rj,α
τ : OL2(LB(0, 1)) → ⊕α∈NM

j,α(τ),

where ⊕α∈NM
j,α(τ) is a direct, orthogonal sum, is called monogenic Hua-Radon transform.

As in the case of the other transforms, our next task is to compute the kernel of this operator.

Theorem 7.7. The monogenic kernel of the Hua-Radon transform is given by

Kj(z, e−iθω) =
∑
α∈N

Kj,α(z, e−iθω)

where
Kj,α(z, e−iθω) = zjLα(z, e−iθω)(ωeiθ)−j

and, for suitable coefficients λαk

Lα(z, e−iθω) =

∞∑
k=0

λαkM [ψτ,α,k(z)]M [ψτ ,α,k(e
iθω)]†.

Proof. To prove the result, it is enough to show that Kj,α reproduces the elements of the basis,
namely

ψjτ ,α,k(z) =

∫
Sm−1

∫ π

0
Kj,α(z, e−iθω)ψjτ ,α,k(e

iθω) dS(ω) dθ (12)

and then the result follows using the orthogonality relations. Formula (12) is equivalent to∫
Sm−1

∫ π

0
Lα(z, e−iθω)M [ψτ ,α,k(e

iθω)] =M [ψτ ,α,k(z)],

or, using orthogonality, to

λαkM [ψτ ,α,k(z)] =

∫
Sm−1

∫ π

0
M [ψτ ,α,k(e

iθω)]†M [ψτ ,α,k(e
iθω)] dS(ω) dθ =M [ψτ ,α,k(z)].

We have

τ †τ

4
(λαk )

−1 =

∫
Sm−1

∫ π

0
M [ψτ ,α,k(e

iθω)]†M [ψτ ,α,k(e
iθω)] dS(ω) dθ

=

∫
Sm−1

∫ π

0
M [ψτ ,α,k(e

iθω)]†ψτ ,α,k(e
iθω) dS(ω) dθ

=
α∑
j=0

µj

∫
Sm−1

∫ π

0
(ψτ ,α−j,k(e

iθω))†(e−iθω)−jψτ ,α,k(e
iθω) dS(ω) dθ.

Let us now set

Φj =

∫
Sm−1

∫ π

0
(ψτ ,α−j,k(e

iθω))†(e−iθω)−jψτ,α,k(e
iθω) dS(ω) dθ.
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First, we consider the case α even.
For j = 2ℓ we have

Φ2ℓ = π

∫
Sm−1

(ψτ ,α−2ℓ,k(ω))
†(ω)−jψτ ,α,k(e

iθω) dS(ω),

and since α is even:

ψτ ,α−2ℓ,k(ω) = τ⟨ω, τ⟩k|⟨ω, τ⟩|α−2ℓ, ψτ,α,k(ω) = τ⟨ω, τ⟩k|⟨ω, τ⟩|α.

Thus we conclude that for α = 2s:

Φ2ℓ = πτ †τ

∫
Sm−1

|⟨ω, τ⟩|2(k−ℓ+2s) dS(ω).

Now let us set τ = e1 + ie2, ⟨ω, τ⟩ = ω1 + iω2 and ω = cosφ(cosψe1 + sinψe2) + sinϕν,
n = k − ℓ+ 2s, with computations similar to those done in Section 5 we get∫

Sm−1

|⟨ω, τ⟩|2n dS(ω) =
∫ π/2

0

∫ 2π

0

∫
Sm−3

(cosφ)2n(sinφ)m−3 cosφdψ dφdν

= 2πAm−2

∫ π/2

0
(cosφ)2n(sinφ)m−3d(sinφ)

= 2πAm−2

∫ 1

0
(1− t2)ntm−3 dt = πAm−2B(n,

m

2
− 1),

so that

Φ2ℓ = (−1)ℓπ2
2πm/2−1

Γ(m/2− 1)
τ †τB(k − ℓ+ 2s,

m

2
− 1).

Let us now reason as before to treat the case j = 2ℓ+ 1:

Φ2ℓ+1 = (−1)ℓ+1π

∫
Sm−1

(ψτ ,α−2ℓ−1,k(ω))
†ω

, ψτ ,α,k(ω) dS(ω)

= (−1)ℓ+1π

∫
Sm−1

(ψτ ,2s−2ℓ−1,k(ω))
†(ω1e1 + ω2e2)ψτ ,2s,k(ω) dS(ω)

where

ψτ ,2s−2ℓ−1,k(ω) = τ †τ⟨ω, τ⟩k+1|⟨ω, τ⟩|2s−2ℓ−2, ψτ ,2s,k(ω) = τ⟨ω, τ⟩k|⟨ω, τ⟩|2s.

Thus we have:

Φ2ℓ+1 = (−1)ℓ+1πτ †τ

∫
Sm−1

(ω1e1 + ω2e2)τ |⟨ω, τ⟩|2(2s+k−1−ℓ)(⟨ω, τ⟩)† dS(ω).

Since
τ †τ(ω1e1 + ω2e2)τ = −τ †τ(1− ie1e2)(ω1 + iω2) = 4τ †τ⟨ω, τ⟩,

we finally have

Φ2ℓ+1 = (−1)ℓ+14πτ †τ

∫
Sm−1

|⟨ω, τ⟩|2(k+2s−ℓ) dS(ω) = (−1)ℓ+1 8πm/2+1

Γ(m/2− 1)
τ †τB(n,

m

2
− 1).
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Summarizing, in the case α even we have∫
Sm−1

∫ π

0
M [ψτ,α,k(e

iθω)]†ψτ ,α,k(e
iθω) =

s∑
ℓ=0

µ2ℓΦ2ℓ +
s−1∑
ℓ=0

µ2ℓ+1Φ2ℓ+1

=
2πm/2+1

Γ
(
m
2 − 1

)τ †τ ( s∑
ℓ=0

(−1)ℓµ2ℓB(k − ℓ+ 2s,m/2− 1)

−4
s−1∑
ℓ=0

(−1)ℓµ2ℓ+1B(k − ℓ+ 2s,m/2− 1)

)
.

We conclude that

(λ2sk )−1 =
8πm/2+1

Γ(m/2− 1)

(
s∑
ℓ=0

(−1)ℓµ2ℓB(k − ℓ+ 2s,m/2− 1)

−4

s−1∑
ℓ=0

(−1)ℓµ2ℓ+1B(k − ℓ+ 2s,m/2− 1)

)
.

The case α odd can be treated in a similar way.
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