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ON THE GEOMETRY OF GRADIENT EINSTEIN-TYPE MANIFOLDS

Giovanni Catino1, Paolo Mastrolia2, Dario D. Monticelli3 and Marco Rigoli4,

Abstract. In this paper we introduce the notion of Einstein-type structure on a Riemannian manifold

(M, g), unifying various particular cases recently studied in the literature, like gradient Ricci solitons

or Yamabe solitons. We show that these generale structures can be locally classified when the Bach

tensor is null. In particular, we extend a recent result of Cao and Chen [8].

1. Introduction and main results

In the last years there has been an increasing interest in the study of Riemannian manifolds endowed

with metrics satisfying some structural equations, possibly involving curvature and some globally defined

vector fields. These objects naturally arise in several different frameworks; two of the most important

and well studied examples are Einstein metrics (see e.g. [29], [2], [46], [47], [32]) and Ricci solitons (see

e.g. [25], [28], [39], [22], [38], [48], [37], [40], [10], [7], [14], [42], [11], [13], [8], [6], [33], [5] and references

therein). Other examples are, for instance, Ricci almost solitons ([41]), Yamabe solitons ([19], [31],[21],

[9]), Yamabe quasi-solitons ([27], [45]), conformal gradient solitons ([43], [15]), quasi-Einstein manifolds

([30], [12], [16], [26], [35]), ρ-Einstein solitons ([17], [18]).

In this paper we study Riemannian manifolds satisfying a general structural condition that includes

all the aforementioned examples as particular cases.

Towards this aim we consider a smooth, connected Riemannian manifold (M, g) of dimension m ≥ 3,

and we denote with Ric and S the corresponding Ricci tensor and scalar curvature, respectively (see the

next section for the details). We denote with Hess(f) the Hessian of a function f ∈ C∞(M) and with

LXg the Lie derivative of the metric g in the direction of the vector field X. We introduce the following

DE_GETM Definition 1.1. We say that (M, g) is an Einstein-type manifold if there exist X ∈ X(M) and λ ∈
C∞(M) such that

Eq_ETS_generic_globalEq_ETS_generic_global (1.1) αRic +
β

2
LXg + µX[ ⊗X[ = (ρS + λ)g,

for some constants α, β, µ, ρ ∈ R, with (α, β, µ) 6= (0, 0, 0). If X = ∇f for some f ∈ C∞(M), we say

that (M, g) is a gradient Einstein-type manifold. Accordingly equation (1.1) becomes

Eq_ETS_globalEq_ETS_global (1.2) αRic +βHess(f) + µdf ⊗ df = (ρS + λ)g,

for some α, β, µ, ρ ∈ R.

Here X[ denotes the 1-form metrically dual to X.

In the present paper we focus our analysis on the gradient case, postponing the general case to a

subsequent work.
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2 EINSTEIN-TYPE MANIFOLDS

Leaving aside the case β = 0 that will be addressed separately, see Proposition 7.7 below, we say that

the gradient Einstein-type manifold (M, g) is nondegenerate if β 6= 0 and β2 6= (m−2)αµ; otherwise, that

is if β 6= 0 and β2 = (m− 2)αµ we have a degenerate gradient Einstein-type manifold. Note that, in this

last case, necessarily α and µ are not null. The above terminology is justified by the next observation:

121121 (1.3)
(M, g) is conformally Einstein if and only if

for some α, β, µ 6= 0, (M, g) is a degenerate, gradient Einstein-type manifold.

For the notion of conformally Einstein manifold see Section 2 below. In case f is constant then we

say that the Einstein-type structure is trivial. Note that, since m ≥ 3, in this case (M, g) is Einstein.

However, the converse is generally false; indeed, if (M, g) is Einstein, then for some constant Λ ∈ R,

Ric = Λg and inserting into (1.2) we obtain

βHess(f) + µdf ⊗ df = (ρS + λ− Λα)g.

Thus, if ρ 6= 0, (M, g) is a Yamabe quasi-soliton and f is not necessarily constant.

We will also deal with the case α = 0 separately, see Theorem 1.4 below.

As we have already noted, the class of manifolds satisfying Definition 1.1 gives rise to the previously

quoted examples by specifying, in general not in a unique way, the values of the parameters and possibly

the function λ. In particular we have:

(1) Einstein metrics: (α, β, µ, ρ) =
(
1, 0, 0, 1

m

)
, λ = 0 (or,equivalently for m ≥ 3, ρ = 0 and λ = S

m );

(2) Ricci solitons: (α, β, µ, ρ) = (1, 1, 0, 0), λ ∈ R;

(3) Ricci almost solitons: (α, β, µ, ρ) = (1, 1, 0, 0), λ ∈ C∞(M);

(4) Yamabe solitons: (α, β, µ, ρ) = (0, 1, 0, 1), λ ∈ R;

(5) Yamabe quasi-solitons: (α, β, µ, ρ) =
(
0, 1,− 1

k , 1
)
, k ∈ R \ {0}, λ ∈ R;

(6) conformal gradient solitons: (α, β, µ, ρ) = (0, 1, 0, 0), λ ∈ C∞(M);

(7) quasi-Einstein metrics: (α, β, µ, ρ) =
(
1, 1,− 1

k , 0
)
, λ ∈ R, k 6= 0;

(8) ρ-Einstein solitons: (α, β, µ, ρ) = (1, 1, 0, ρ), ρ 6= 0, λ ∈ R.

Of course one may wonder about the existence of Einstein-type structures. We know from the literature

positive answers to the various examples the we mentioned earlier. For the general case we will consider

three different necessary conditions; the first two are the general integrability conditions (6.5) and (6.6)

contained in Theorem 6.4 below. The third comes from the simple observation that, tracing equation

(1.2) and defining u = e
µ
β f , the existence of a gradient Einstein-type structure on (M, g) yields the

existence of a positive solution of

Lu = ∆u− µ

β
[mλ+ (mρ− α)S]u = 0,

so that, by a well-known spectral result (see for instance Fischer-Colbrie-Schoen [23], or Moss-Piepenbrink

[36]), the operator L is stable, or, in other words, the spectral radius of L, λL1 (M), is nonnegative.

In Section 3 below we shall give some simple conditions on the function µ
β [mλ+ (mρ− α)S] that

prevent this possibility, so that the corresponding Einstein-type structure cannot exist.

As it appears from Definition 1.1, the fact that (M, g) is an Einstein-type manifold can be interpreted

as a prescribed condition on the Ricci tensor of g (see for instance the nice survey [4]), that is, on the

“trace part” of the Riemann tensor. Thus, it is reasonable to expect classification and rigidity results for

these structures only assuming further conditions on the traceless part of the Riemann tensor, i.e. on the

Weyl tensor. Indeed, most of the aforementioned papers pursue this direction, for instance, assuming

that (M, g) is locally conformally flat or has harmonic Weyl tensor. In the spirit of the recent work of

H.-D. Cao and Q. Chen [8], we study the class of gradient Einstein-type manifolds with vanishing Bach

tensor along the integral curves of f . We note that this condition is weaker than local conformal flatness

(see Section 2).

It turns out that, as in the case of gradient Ricci solitons (see [7], [8] and [6]), the leading actor is a

three tensor, D, that plays a fundamental role in relating the Einstein-type structure to the geometry of
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the underlying manifold. D naturally appears when writing the first two integrability conditions for the

structure defining the differential system (1.2). Quite unexpectedly, the constant ρ and the function λ

have no influence on this relation.

Our main purpose is to give local characterizations of complete, noncompact, nondegenerate gradient

Einstein-type manifolds. Denoting with B the Bach tensor of (M, g) (see Section 2), our first result is

TH_Main Theorem 1.2. Let (M, g) be a complete, noncompact, nondegenerate gradient Einstein-type manifold of

dimension m ≥ 3. If B(∇f, ·) = 0 and f is a proper function, then, in a neighbourhood of every regular

level set of f , the manifold (M, g) is locally a warped product with (m− 1)-dimensional Einstein fibers.

In dimension four we improve this result, obtaining

COR_Main Corollary 1.3. Let (M4, g) be a complete, noncompact nondegenerate gradient Einstein-type manifold

of dimension four. If B(∇f, ·) = 0 and f is a proper function, then, in a neighbourhood of every regular

level set of f , the manifold (M, g) is locally a warped product with three-dimensional fibers of constant

curvature. In particular, (M4, g) is locally conformally flat.

As we will show in Section 9, the properness assumption is satisfied by some important subclasses

of Einstein-type manifolds, under some natural geometric assumptions. As a consequence, in the case

of gradient Ricci solitons, we recover a local version of the results in [8] and [6], while, in the cases of

ρ-Einstein solitons and Ricci almost solitons, we prove two new classification theorems (see Theorem 9.1

and 9.2).

In the special case α = 0 (which includes Yamabe solitons, Yamabe quasi-solitons and conformal

gradient solitons) we give a version of Theorem 1.2 in the following local result that provides a very

precise description of the metric in this situation. Note that Theorem 1.4 and Corollary 1.5 also apply

in the compact case.

TH_alfa0_quasiYamabe Theorem 1.4. Let (M, g) be a complete gradient Einstein-type manifold of dimension m ≥ 3 with α = 0.

Then, in a neighbourhood of every regular level set of f , the manifold (M, g) is locally a warped product

with (m − 1)-dimensional fibers. More precisely, every regular level set Σ of f admits a maximal open

neighborhood U ⊂ Mm on which f only depends on the signed distance r to the hypersurface Σ. In

addiction, the potential function f can be chosen in such a way that the metric g takes the form

warped metricwarped metric (1.4) g = dr ⊗ dr +

(
f ′(r)

f ′(0)
eµf(r)

)2

gΣ on U,

where gΣ is the metric induced by g on Σ. As a consequence, f has at most two critical points on Mm

and we have the following cases:

(1) If f has no critical points, then (M, g) is globally conformally equivalent to a direct product

I × Nm−1 of some interval I = (t∗, t
∗) ⊆ R with a (m − 1)-dimensional complete Riemannian

manifold (Nm−1, gN ). More precisely, the metric takes the form

g = u2(t)
(
dt2 + gN

)
,

where u : (t∗, t
∗)→ R is some positive smooth function.

(2) If f has only one critical point O ∈ Mm, then (M, g) is globally conformally equivalent to the

interior of a Euclidean ball of radius t∗ ∈ (0,+∞]. More precisely, on Mm \ {O}, the metric

takes the form

g = v2(t)
(
dt2 + t2gS

m−1)
,

where v : (0, t∗) → R is some positive smooth function. In particular (M, g) is complete, non-

compact and rotationally symmetric.
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(3) If the function f has two critical points N,S ∈Mm, then (M, g) is globally conformally equivalent

to Sm. More precisely, on Mm \ {N,S}, the metric takes the form

g = w2(t)
(
dt2 + sin2(t) gS

m−1)
,

where w : (0, π) → R is some smooth positive function. In particular (M, g) is compact and

rotationally symmetric.

In this case, we can obtain a stronger global result, just assuming nonnegativity of the Ricci curvature;

namely we have the following

COR_alfa0_quasiYamabe Corollary 1.5. Any nontrivial, complete, gradient Einstein type manifold with α = 0 and nonnegative

Ricci curvature is either rotationally symmetric or it is isometric to a Riemannian product R×Nm−1,

where Nm−1 is an (m− 1)-dimensional Riemannian manifold with nonnegative Ricci curvature.

This result covers the cases of Yamabe solitons [9] and conformal gradient solitons [15]. Concerning

Yamabe quasi-solitons, Corollary 1.5 improves the results in [27]. In particular, this shows that most of

the assumptions in [27, Theorem 1.1] are not necessary.

The paper is organized as follows. In Section 2 we recall some useful definitions and properties

of various geometric tensors and fix our conventions and notation. Next, in Section 3 we deal with

nonexistence of gradient Einstein-type structures, both in the degenerate and in the nondegenerate case,

and we give some sufficient conditions for λL1 (M) < 0. In Section 4 we collect some useful commutations

relations for covariant derivatives of functions and tensors. In Section 5 we treat the special case of

gradient Einstein-type manifolds with α = 0 proving Theorem 1.4 and Corollary 1.5. In Section 6

we prove the two aforementioned integrability conditions that follow directly from the Einstein-type

structures. In Section 7 we compute the squared norm of the tensor D in terms of D itself, the Bach

tensor B and the potential function f . In Section 8 we relate the tensor D to the geometry of the regular

level sets of the potential function f . Finally, in Section 9 we prove Theorem 1.2 and Corollary 1.3, and

we give some geometric applications in the special cases of gradient Ricci solitons, ρ-Einstein solitons

and Ricci almost solitons.

2. Definitions and notation
sec_2

In this section we recall some useful definitions and properties of various geometric tensors and fix

our conventions and notation (see also [34]).

To perform computations, we freely use the method of the moving frame referring to a local orthonor-

mal coframe of the m-dimensional Riemannian manifold (M, g). We fix the index range 1 ≤ i, j, . . . ≤ m
and recall that the Einstein summation convention will be in force throughout.

We denote with R the Riemann curvature tensor (of type (1, 3)) associated to the metric g, and with

Ric and S the corresponding Ricci tensor and scalar curvature, respectively. The components of the

(0, 4)-versions of the Riemann tensor and of the Weyl tensor W are related by the formula:

Riemann_WeylRiemann_Weyl (2.1) Rijkt = Wijkt +
1

m− 2
(Rikδjt −Ritδjk +Rjtδik −Rjkδit)−

S

(m− 1)(m− 2)
(δikδjt − δitδjk)

and they satisfy the following symmetry relations

Rijkt = −Rjikt = −Rijtk = Rktij ,(2.2)

Wijkt = −Wjikt = −Wijtk = Wktij .(2.3)

A computation shows that the Weyl tensor is also totally trace-free. According to this convention the

(components of the) Ricci tensor and the scalar curvature are respectively given by Rij = Ritjt = Rtitj
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and S = Rtt. The Schouten tensor A is defined by

def_Schoutendef_Schouten (2.4) A = Ric− S

2(m− 1)
g.

Tracing we have tr(A) = Att = (m−2)
2(m−1)S.

Remark 2.1. Some authors adopt a different convention and define the Schouten tensor as 1
m−2A.

We note that, in terms of the Schouten tensor and of the Weyl tensor, the Riemann curvature tensor

can be expressed in the form

decompRiemSchoutendecompRiemSchouten (2.5) R = W +
1

m− 2
A ? g,

where ? is the Kulkarni-Nomizu product; in components,

Riemann_Weyl_SchoutenRiemann_Weyl_Schouten (2.6) Rijkt = Wijkt +
1

m− 2
(Aikδjt −Aitδjk +Ajtδik −Ajkδit).

Next we introduce the Cotton tensor C as the obstruction to the commutativity of the covariant

derivative of the Schouten tensor, that is

def_Cotton_compdef_Cotton_comp (2.7) Cijk = Aij,k −Aik,j = Rij,k −Rik,j −
1

2(m− 1)
(Skδij − Sjδik).

We also recall that the Cotton tensor, for m ≥ 4, can be defined as one of the possible divergences of the

Weyl tensor; precisely

def_Cotton_comp_Weyldef_Cotton_comp_Weyl (2.8) Cijk =

(
m− 2

m− 3

)
Wtikj,t = −

(
m− 2

m− 3

)
Wtijk,t.

A computation shows that the two definitions (for m ≥ 4) coincide (see again [34]).

Remark 2.2. It is worth to recall that the Cotton tensor is skew-symmetric in the second and third

indices (i.e. Cijk = −Cikj) and totally trace-free (i.e. Ciik = Ciki = Ckii = 0).

We are now ready to define the Bach tensor B, originally introduced by Bach in [1] in the study of

conformal relativity. Its components are

def_Bach_compdef_Bach_comp (2.9) Bij =
1

m− 2
(Cjik,k +RktWikjt),

that, in case m ≥ 4, by (2.8) can be alternatively written as

(2.10) Bij =
1

m− 3
Wikjt,tk +

1

m− 2
RktWikjt.

Note that if (M, g) is either locally conformally flat (i.e. C = 0 if m = 3 or W = 0 if m ≥ 4) or Einstein,

then B = 0. A computation shows that the Bach tensor is symmetric (i.e. Bij = Bji) and evidently

trace-free (i.e. Bii = 0). As a consequence we observe that we can write

Bij =
1

m− 2
(Cijk,k +RklWikjl).

We recall that

Definition 2.3. The manifold (M, g) is conformally Einstein if its metric g can be pointwise conformally

deformed to an Einstein metric g̃.

We observe that, if g̃ = e2aϕg, for some ϕ ∈ C∞(M) and some constant a ∈ R, then its Ricci tensor

R̃ic is related to that of g by the well-known formula (see for instance [34])

2.112.11 (2.11) R̃ic = Ric−(m− 2)aHess(ϕ) + (m− 2)a2dϕ⊗ ϕ−
[
(m− 2)a2|∇ϕ|2 + a∆ϕ

]
g.

Here the various operators (and for their precise definitions see Section 4) are defined with respect to

the metric g.
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We can easily prove statement (1.3); indeed, suppose that β 6= 0 and β2 = (m − 2)αµ, that is, the

Einstein-type structure is degenerate. Tracing (1.2) we obtain

2.122.12 (2.12)
1

α
(ρS + λ) =

1

m

(
S +

β

α
∆f +

µ

α
|∇f |2

)
.

Choose ϕ = f and a = − β
(m−2)α in (2.11) to obtain

2.132.13 (2.13) R̃ic =
1

α

[
β2

(m− 2)α
− µ

]
df ⊗ df +

1

α
(ρS + λ) +

β

(m− 2)α

(
∆f − β

α
|∇|2

)
g.

Inserting (2.12) into (2.13) yields

R̃ic =
1

α

[
β2

(m− 2)α
− µ

]
df ⊗ df +

1

m

[
S + 2

β

α

m− 1

m− 2
∆f +

1

α
(µ−mβ)|∇f |2

]
g.

Hence, since β2 = (m− 2)αµ,

2.13.12.13.1 (2.14) R̃ic =
1

m

[
S + 2

β

α

m− 1

m− 2
∆f +

1

α
(µ−mβ)|∇f |2

]
g,

that is, g̃ = e−
2β

(m−2)α
fg is an Einstein metric (this was also obtained in Theorem 1.159 of [2]).

Viceversa, suppose that g̃ = e2afg, a 6= 0, is an Einstein metric, so that, for some Λ ∈ R, R̃ic = Λg̃.

From (2.11)

2.142.14 (2.15) Ric−(m− 2)aHess(f) + (m− 2)a2df ⊗ df =
[
Λe2af + (m− 2)a2|∇f |2 + a∆f

]
g.

Tracing we get
S

m− 1
=
[
(m− 2)a2|∇f |2 + a∆f

]
+ a∆f +

m

m− 1
Λe2af .

Thus, inserting into (2.15),

Ric−(m− 2)aHess(f) + (m− 2)a2df ⊗ df =

(
S

m− 1
− a∆f − Λ

m− 1
e2af

)
g.

We choose α = 1, β = −(m− 2)a, µ = (m− 2)a2, ρ = 1
m−1 and λ(x) = −a∆f − Λ

m−1e
2af . We note that

β 6= 0 and

β2 = (m− 2)2a2 = (m− 2)αµ,

so that the above choice of α, β, µ, ρ and λ yields a degenerate Einstein-type structure.

3. Nonexistence of gradient Einstein-type structures
sec_2.5

In this section we comment on the nonexistence of gradient Einstein-type structures on (M, g). From

now on we fix an origin o ∈M and let r(x) = dist (x, o). We set Br and ∂Br to denote, respectively, the

geodesic ball of radius r centered at o and its boundary.

We begin with considering the degenerate case. In this situation β 6= 0 and β2 = (m − 2)αµ; in

particular α, µ 6= 0. Multiplying equation (1.2) by 1
m−2

µ
α and setting h = µ

β f , using the relation

β2 = (m− 2)αµ we immediately obtain

µ

m− 2
Ric +µHess(h) + µdh⊗ dh =

(
µ

β

)2

(ρS + λ)g,

that is, another degenerate gradient Einstein-type structure. Using (2.14) with our new constants and

with h replacing f we deduce the existence of a constant Λ ∈ R such that

Λe−2h = S + 2(m− 1)∆h− (m− 1)(m− 2)|∇h|2.

We set u = e−
m−2

2 h so that, using the above, u becomes a positive solution of the Yamabe equation

2.5.22.5.2 (3.1) 4
m− 1

m− 2
∆u− S(x)u+ Λu

m+2
m−2 = 0.
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Hence, every time (3.1) has no positive solution, we can conclude that (M, g) has no degenerate gradient

Einstein-type structure. Nonexistence for (3.1) heavily depends on the sign of Λ; indeed, let us consider

the case Λ ≥ 0. Thus u satisfies

4
m− 1

m− 2
∆u− S(x)u ≤ 0, u > 0 on M.

By [23], if L = ∆− S(x) m−2
4(m−1) , then λL1 (M) ≥ 0. Hence, in this case, every time we can guarantee that

λL1 (M) < 0, there do not exist positive solutions of (3.1) on M . We will give some sufficient conditions

for this at the end of the section.

For the case Λ < 0 the situation is more involved; in what follows we will always make this assumption.

We recall that with our choices

u = e−
m−2

2 h = e−
m−2

2
µ
β f ,

so that u ∈ L2(M) if and only if e−(m−2)µβ f ∈ L1(M). Applying Proposition 3.1 of [34] we have that,

for Λ < 0 there are no gradient, degerate, Einstein-type structures with e−(m−2)µβ f ∈ L1(M), provided

that λL1 (M) ≥ 0, L as above. The request on the integrability of e−(m−2)µβ f can be replaced by

f(x)→ +∞ as r(x)→ +∞,

provided λL1 (suppS−) > 0, see Theorem 3.12 of [34]. Since suppS− is a closed set we need to extend the

definition of λL1 to this case. For a generic bounded subset D of M we set

λL1 (D) = supλL1 (Ω),

where the supremum is taken over all open, bounded sets with smooth boundary Ω such that D ⊂ Ω.

Note that, by definition, if D = ∅ then λL1 (D) = +∞. Finally, if D is an unbounded subset of M , we

define

λL1 (D) = inf λL1 (D ∩ Σ),

where the infimum is taken over all bounded open sets Σ with smooth boundary. Note that, since

λL1 (Br) ∼ C
r2 for some constant C > 0 as r ↘ +∞ (see e.g. [20]) and Br is a geodesic ball centered at

P ∈M , the condition λL1 (suppS−) > 0 means that the set suppS− is small in a suitable spectral sense.

Again, using Theorem 5.12 of [34], there are no gradient degenerate Einstein-type structures on (M, g)

with

f(x)→ −∞ as r(x)→ +∞,

for which

sup
M

S−(x) < +∞

and

lim inf
r→+∞

log vol (Br)

r2
< +∞,

where vol (Br) denotes the volume of the geodesic ball Br. The above discussion also shows the important

role played by the sign of the first eigenvalue of the Dirichlet problem for the operator L.

We now analyze the existence for a nondegenerate gradient Einstein structure. As remarked in the

introduction, letting L = ∆ − µ
β [mλ(x)− (mρ− α)S(x)] every time λL1 (M) < 0 we have nonexistence.

We let
µ

β

[
mλ̄(r) + (mρ− α)S̄(r)

]
=
µ

β

1

vol (∂Br)

[
m

∫
∂Br

λ(x) + (mρ− α)

∫
∂Br

S(x)

]
,

i.e. the radialization of the linear term. Note that, given any sufficiently regular function q(x), by the

co-area formula ∫ R

0

q̄(s) vol (∂Bs) ds =

∫
BR

q(x).

This fact and the Rayleigh characterization of the first eigenvalue of the Dirichlet problem on the ball

BR justify assumptions on the radialization of the linear term rather then on the term itself. To simplify
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the writing we let v(r) = vol (∂Br) and let v̂(r) satisfy v̂ ∈ L∞loc([0,+∞)), 1
v̂ ∈ L

∞
loc((0,+∞)), 0 ≤ v ≤ v̂

on [0,+∞). We suppose
1

v̂
∈ L1(+∞)

and we define the critical curve associated to v̂, χv̂, by setting

χv̂(r) =

{
2v̂(r)

∫ +∞

r

ds

v̂(s)

}−2

.

By using Theorem 6.15 in [3] we give the following sufficient condition for the instability of L. Assume

that

2.5.32.5.3 (3.2) q̄(r) =
µ

β

(
mλ̄(r) + (mρ− α)S̄(r)

)
≤ 0, q̄ 6≡ 0,

that v(r) and v̂(r) are as above and that

2.5.42.5.4 (3.3) lim sup
r→+∞

∫ r

R

(√
|q̄(s)| −

√
χv̂(s)

)
ds = +∞

for some R� 1. Then L is unstable (in fact, L has infinite index).

We can even prove that λL1 (M) < 0 under a less restrictive condition, but in order to avoid technical-

ities we use (3.3). Indeed, it is not difficult to simplify (3.3) in case we give an explicit upper bound for

the volume growth v(r). For instance, if v̂(r) = ζrσ, that is

vol (∂Br) ≤ ζrσ

for r � 1, some constants ζ > 0, σ > 1, (3.3) becomes

2.5.52.5.5 (3.4) lim sup
r→+∞

{∫ r

R

√
|q̄(s)| ds− σ − 1

2
log r

}
= +∞,

while for an exponential bound

vol (∂Br) ≤ ζrθear
σ logτ r

for r � 1, some constants ζ, a, σ > 0, τ ≥ 0, θ ∈ R, (3.3) is equivalent to

2.5.62.5.6 (3.5) lim sup
r→+∞

{∫ r

R

√
|q̄(s)| ds− a

2
rσ logτ r − σ + θ − 1

2
log r − τ

2
log log r

}
= +∞.

As a final remark we observe that condition (3.2) can be relaxed. We refer the interested reader to

sections 6.6 and 6.7 in Chapter 6 of [3].

4. Some basics on moving frames and commutation rules
sec_3

In this section we collect some useful commutations relations for covariant derivatives of functions and

tensors that will be used in the rest of the paper.

Let (M, g) be a Riemannian manifold of dimension m ≥ 3. For the sake of completeness (see [34] for

details) we recall that, having fixed a (local) orthonormal coframe
{
θi
}

, with dual frame {ei}, then the

corresponding Levi-Civita connection forms
{
θij
}

, are the 1-forms uniquely defined by the requirements

dθi = −θij ∧ θj (first structure equations),1_firstStructureEq1_firstStructureEq (4.1)

θij + θji = 0.1_skewsymmConnForm1_skewsymmConnForm (4.2)

The curvature forms
{

Θi
j

}
associated to the connection are the 2-forms defined via the second structure

equations

1_secondStructureEq1_secondStructureEq (4.3) dθij = −θik ∧ θkj + Θi
j .

They are skew-symmetric (i.e. Θi
j + Θj

i = 0) and they can be written as

1_def_forme_curvatura1_def_forme_curvatura (4.4) Θi
j =

1

2
Rijktθ

k ∧ θt =
∑
k<t

Rijktθ
k ∧ θt,
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where Rijkt are precisely the coefficients of the ((1, 3)-version of the) Riemann curvature tensor.

The covariant derivative of a vector field X ∈ X(M) is defined by

∇X = (dXi +Xjθij)⊗ ei = Xi
kθ
k ⊗ ei,

while the covariant derivative of a 1-form ω is defined by

∇ω = (dωi − wjθji )⊗ θ
i = ωikθ

k ⊗ θi.

The divergence of the vector field X ∈ X(M) is the trace of the endomorphism (∇X)] : TM → TM ,

that is,

1_divergence1_divergence (4.5) divX = tr (∇X)
]

= g(∇eiX, ei) = Xi
i .

For a smooth function f we can write

DifferentialComponentsDifferentialComponents (4.6) df = fiθ
i,

for some smooth coefficients fi ∈ C∞(M). The Hessian of f , Hess(f), is the (0, 2)-tensor defined as

(4.7) Hess(f) = ∇df = fijθ
j ⊗ θi,

with

HessianComponentsHessianComponents (4.8) fijθ
j = dfi − ftθti .

Note that

fij = fji.

The Laplacian of f , ∆f , is the trace of the Hessian, in other words

∆f = tr(Hess(f)) = fii.

The moving frame formalism reveals extremely useful in determining the commutation rules of geo-

metric tensors (see [34] for details). Some of them will be essential in our computations.

LemmaCommRulesFunctions Lemma 4.1. If f ∈ C3(M) then:

fij = fji;SecondDerivFunctionSecondDerivFunction (4.9)

fijk = fjik;CovDerivSecondDerivFctCovDerivSecondDerivFct (4.10)

fijk = fikj + ftRtijk;ThirdDerivFunctionRiemThirdDerivFunctionRiem (4.11)

fijk = fikj + ftWtijk +
1

m− 2
(ftRtjδik − ftRtkδij + fjRik − fkRij)ThirdDerivFunctionWeylThirdDerivFunctionWeyl (4.12)

− S

(m− 1)(m− 2)
(fjδik − fkδij);

fijk = fikj + ftWtijk +
1

m− 2
(ftAtjδik − ftAtkδij + fjAik − fkAij);commutatioThirdDerFunctWeilSchoutencommutatioThirdDerFunctWeilSchouten (4.13)

In particular, tracing (4.11) we deduce

fitt = ftti + ftRti.TracedThirdDerivFunctionRicciTracedThirdDerivFunctionRicci (4.14)

Proof. Let df = fiθ
i. Differentiating and using the structure equations we get

0 = dfi ∧ θi + fidθ
i = (fijθ

j + fkθ
k
i ) ∧ θi − fiθik ∧ θk

= fijθ
j ∧ θi

=
1

2
(fij − fji)θj ∧ θi,

thus

0 =
∑

1≤j<i≤m

(fij − fji)θj ∧ θi;
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since
{
θj ∧ θi

}
(1 ≤ j < i ≤ m) is a basis for the 2-forms we get equation (4.9). Equation (4.10) follows

taking the covariant derivative of (4.9). As for (4.11) by definition of covariant derivative we have

1_derivate_terze1_derivate_terze (4.15) fijkθ
k = dfij − fkjθki − fikθkj .

Differentiating equation (4.8) and using the structure equations we get

dfik ∧ θk − fijθjk ∧ θ
k = −dft ∧ θti + fkθ

k
t ∧ θti − fkΘk

i =

= −(ftkθ
k + fkθ

k
t ) ∧ θti + fkθ

k
t ∧ θti −

1

2
fkR

k
ijtθ

j ∧ θt,

thus

(dfik − ftkθti − fitθtk) ∧ θk = −1

2
ftR

t
ijkθ

j ∧ θk,

and, by (4.15),

fikjθ
j ∧ θk = −1

2
ftR

t
ijkθ

j ∧ θk.

Skew-symmetrizing we get
1

2
(fikj − fijk)θj ∧ θk = −1

2
ftR

t
ijkθ

j ∧ θk,

that is, (4.11). Equations (4.12) and (4.13) follow easily from (4.11), using the definitions of the Weyl

tensor and of the Schouten tensor (see Section 2). �

For the Riemann curvature tensor we recall the classical Bianchi identities, that in our formalism

become

Rijkt +Ritjk +Riktj = 0 (First Bianchi Identities);FirstBianchiRiemFirstBianchiRiem (4.16)

Rijkt,l +Rijlk,t +Rijtl,k = 0 (Second Bianchi Identities).SecondBianchiRiemSecondBianchiRiem (4.17)

For the second derivatives of R we have

LemmaSTRiemann Lemma 4.2.

Rijkt,lr −Rijkt,rl = RsjktRsilr +RisktRsjlr +RijstRsklr +RijksRstlr.SecondDerivRiemSecondDerivRiem (4.18)

Proof. By definition of covariant derivative we have

firstCovDerivRiemCompfirstCovDerivRiemComp (4.19) Rijkt,lθ
l = dRijkt −Rljktθli −Rilktθlj −Rijltθlk −Rijklθlt

and

secondCovDerivRiemCompsecondCovDerivRiemComp (4.20) Rijkt,lrθ
r = dRijkt,l −Rljkt,lθri −Rirkt,lθrj −Rijrt,lθrk −Rijkr,lθrt −Rijkt,rθrl .

Differentiating equation (4.19) and using the first structure equations we get

dRijkt,s ∧ θs −Rijkt,lθls ∧ θs = −dRljkt ∧ θli +Rljkt
(
θls ∧ θsi −Θl

i

)
− dRilkt ∧ θlj +Rilkt

(
θls ∧ θsj −Θl

j

)(4.21)

− dRijlt ∧ θli +Rijlt
(
θls ∧ θsk −Θl

k

)
− dRijkl ∧ θli +Rijkl

(
θls ∧ θst −Θl

t

)
.

Now we repeatedly use (4.20) and (4.4) into the previous relation; after some manipulations we arrive at(
dRijkt,s −Rljkt,sθli −Rilkt,sθlj −Rijlt,sθlk −Rijkl,sθlt −Rijkt,lθls

)
∧ θs = −1

2
(RljktRlirs +RilktRljrs

+RijltRlkrs +RijklRltrs) θ
r ∧ θs.

Renaming indexes and skew-symmetrizing the left hand side, which is precisely Rijkt,srθ
r∧θs, we obtain

(4.18). �

As a consequence for the Ricci tensor we have
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LemmaFSTDerivRicci Lemma 4.3.

Rij,k −Rik,j = −Rtijk,t = Rtikj,t;(4.22)

Rij,kt −Rij,tk = RliktRlj +RljktRli.(4.23)

Proof. The previous relations follow tracing equations (4.17) and (4.18), respectively. �

The First Bianchi Identities implies that

PermutCiclCottonPermutCiclCotton (4.24) Cijk + Cjki + Ckij = 0.

From the definition of the Cotton tensor we also deduce that

(4.25) Cijk,t = Aij,kt −Aik,jt = Rij,kt −Rik,jt −
1

2(m− 1)
(Sktδij − Sjtδik).

On the other hand, by Lemma 4.3 and Schur’s identity Si = 1
2Rik,k,

(4.26) Rik,jk = Rik,kj +RtijkRtk +RtkjkRti =
1

2
Sij −RtkRitjk +RitRtj .

This enables us obtain the following expression for the divergence of the Cotton tensor:

DiverCottonDiverCotton (4.27) Cijk,k = Rij,kk −
m− 2

2(m− 1)
Sij +RtkRitjk −RitRtj −

1

2(m− 1)
∆Sδij .

The previous relation also shows that

SymmDivCottonSymmDivCotton (4.28) Cijk,k = Cjik,k,

thus confirming the symmetry of the Bach tensor, see (2.9).

Taking the covariant derivative of (4.24) and using (4.28) we also deduce

NullDiverCottonNullDiverCotton (4.29) Ckij,k = 0.

5. Gradient Einstein-type manifolds with α = 0
sec_4

In this section we will prove Theorem 1.4 and Corollary 1.5 focusing our attention on gradient Einstein-

type manifolds with α = 0. Without loss of generality, we can write the equation in the form

aa (5.1) Hess (f) + µdf ⊗ df = ϕg ,

for some µ ∈ R and some function ϕ ∈ C∞(M). Tracing this equation with the metric g, we see

immediately that the function ϕ coincides with (∆f + µ|∇f |2)/m. We prove the following result, which

immediately implies Theorem 1.4 and Corollary 1.5.

teo1 Theorem 5.1. Let (M, g) be a complete gradient Einstein-type manifold of dimension m ≥ 3 and of the

form (5.1). Then, any regular level set Σ of f admits a maximal open neighborhood U ⊂Mm on which

f only depends on the signed distance r to the hypersurface Σ. In addiction, the potential function f can

be chosen in such a way that the metric g takes the form

warped metricwarped metric (5.2) g = dr ⊗ dr +

(
f ′(r)

f ′(0)
eµf(r)

)2

gΣ on U,

where gΣ is the metric induced by g on Σ. As a consequence, f has at most two critical points on Mm

and we have the following cases:

(1) If f has no critical points, then (M, g) is globally conformally equivalent to a direct product

I × Nm−1 of some interval I = (t∗, t
∗) ⊆ R with a (m − 1)-dimensional complete Riemannian

manifold (Nm−1, gN ). More precisely, the metric takes the form

g = u2(t)
(
dt2 + gN

)
,
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where u : (t∗, t
∗)→ R is some positive smooth function.

(1’) If, in addition, the Ricci tensor of (M, g) is nonnegative, then (M, g) is isometric to a direct

product R×Nm−1, where (Nm−1, gN ) has nonnegative Ricci tensor.

(2) If f has only one critical point O ∈ Mm, then (M, g) is globally conformally equivalent to the

interior of a Euclidean ball of radius t∗ ∈ (0,+∞]. More precisely, on Mm \ {O}, the metric

takes the form

g = v2(t)
(
dt2 + t2gS

m−1)
,

where v : (0, t∗) → R is some positive smooth function. In particular (M, g) is complete, non-

compact and rotationally symmetric.

(2’) If, in addition, the Ricci tensor of (M, g) is nonnegative, then (M, g) is globally conformally

equivalent to Rm.

(3) If the function f has two critical points N,S ∈Mm, then (M, g) is globally conformally equivalent

to Sm. More precisely, on Mm \ {N,S}, the metric takes the form

g = w2(t)
(
dt2 + sin2(t) gS

m−1)
,

where w : (0, π) → R is some smooth positive function. In particular (M, g) is compact and

rotationally symmetric.

Proof. We will follow the proof in [15], using the Koszul formalism. Let Σ be a regular level set of

the function f : Mm → R, i.e. |∇f | 6= 0 on Σ, which exists by Sard’s Theorem and the fact that f

is nonconstant in our definition. First we observe that |∇f | has to be constant on Σ. Indeed, for all

Y ∈ TpΣ

∇Y |∇f |2 = 2 Hess(f)(∇f, Y ) =
2 ∆f + 2µ|∇f |2

m
g(∇f, Y )− 2µ |∇f |2 g(∇f, Y ) = 0 .

From this we deduce that, in a neighborhood U of Σ which does not contain any critical point of f ,

the potential function f only depends on the signed distance r to the hypersurface Σ. In particular

df = f ′dr. Moreover, if θ = (θ1 . . . , θm−1) are coordinates adapted to the hypersurface Σ, we get

Hess(f) = ∇df = f ′′dr ⊗ dr + f ′Hess(r) = f ′′dr ⊗ dr +
f ′

2
∂rgij dθ

i ⊗ dθj ,

since

Γrrr = Γkrr = Γrir = 0 , Γrij = −1

2
∂rgij , Γkir =

1

2
gks∂rgis .

On the other hand, using equation (5.1), we have

Hess(f) =
∆f + µ |∇f |2

m
g−µdf⊗df =

(
∆f + µ(f ′)2

m
− µ(f ′)2

)
dr⊗dr+

(
∆f + µ(f ′)2

m

)
gij dθ

i⊗dθj ,

thus,
∆f + µ(f ′)2

m
= f ′′ + µ(f ′)2 and

∆f + µ(f ′)2

m
gij =

1

2
f ′ ∂rgij .

These equations imply the family of ODE’s[
f ′′(r) + µ(f ′)2

]
gij(r, θ) =

f ′(r)

2
∂rgij(r, θ) .

Since f ′(0) 6= 0 (otherwise Σ is not a regular level set of f) we can integrate these equations obtaining

gij(r, θ) =

(
f ′(r)

f ′(0)
eµ[f(r)−f(0)]

)2

gij(0, θ) .

Therefore, in U the metric takes the form

g = dr ⊗ dr +

(
f ′(r)

f ′(0)
eµ[f(r)−f(0)]

)2

gΣ
ij(θ) dθ

i ⊗ dθj ,
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where gΣ
ij(θ) = gij(0, θ) is the metric induced by g on Σ. We notice that, since f = f(r), then the width of

the neighborhood U is uniform with respect to the points of Σ, namely we can assume U = {r∗ < r < r∗},
for some maximal r∗ ∈ [−∞, 0) and r∗ ∈ (0,∞]. Moreover, by translating the function f , we can assume

that f(0) = 0. Hence, in U , the metric can be written as

metricmetric (5.3) g = dr ⊗ dr +

(
f ′(r)

f ′(0)
eµf(r)

)2

gΣ ,

where gΣ denotes the induced metric on the level set Σ. Then, if we let

ω(r) :=
f ′(r)

f ′(0)
eµf(r) ,

we have that g = dr⊗ dr + ω(r)2gΣ. At this point, we can follow directly the computations in the proof

of [15, Theorem 1.1]. In fact, one observes that we have three possible cases, depending on the zeros of

the function ω, i.e. depending on the number of critical points of the function f . Now, to conclude the

proof of the theorem one can follow step by step the proof in [15]. �

6. The tensor D and the integrability conditions
sec_5

The main result of this section concerns two natural integrability conditions that follow directly from

the Einstein-type structure; as in the case of Ricci solitons and Yamabe (quasi)-solitons, there is a

natural tensor that turns out to play a fundamental role in relating the Einstein-type structure to the

geometry of the underlying manifold. Quite surprisingly, as it is shown in Theorem 6.4, the presence of

the constant ρ and of the function λ seems to be completely irrelevant.

Let (M, g) be gradient Einstein-type manifold of dimension m ≥ 3. Equation (1.2) in components

reads as

Eq_ETS_componentsEq_ETS_components (6.1) αRij + βfij + µfifj = (ρS + λ)δij .

Tracing the previous relation we immediately deduce that

Eq_ETS_global_tracedEq_ETS_global_traced (6.2) (α−mρ)S + β∆f + µ|∇f |2 = mλ.

Definition 6.1. We define the tensor D by its components

Dijk =
1

m− 2
(fkRij − fjRik) +

1

(m− 1)(m− 2)
ft(Rtkδij −Rtjδik)− S

(m− 1)(m− 2)
(fkδij − fjδik).

Definition_of_DDefinition_of_D (6.3)

Note that D is skew-symmetric in the second and third indices (i.e. Dijk = −Dikj) and totally

trace-free (i.e. Diik = Diki = Dkii = 0).

Remark 6.2. We explicitly note that our conventions for the Cotton tensor and for the tensor D differ

from those in [8].

Lemma 6.3. Let (M, g) be a gradient Einstein-type manifold of dimension m ≥ 3. The tensor D can

be written in the next three equivalent ways:

Dijk =
1

m− 2
(fkRij − fjRik) +

1

(m− 1)(m− 2)
ft(Rtkδij −Rtjδik)− S

(m− 1)(m− 2)
(fkδij − fjδik)

(6.4)

=
1

m− 2
(fkAij − fjAik) +

1

(m− 1)(m− 2)
ft(Etkδij − Etjδik)

=
β

α

[
1

m− 2
(fjfik − fkfij) +

1

(m− 1)(m− 2)
ft(ftjδik − ftkδij)−

∆f

(m− 1)(m− 2)
(fjδik − fkδij)

]
,
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where Eij are the components of the Einstein tensor (see [2]) defined as

Eij = Rij −
S

2
δij .

Note that the third expression makes sense only if α 6= 0. The proof is just a simple computation,

using the definitions of the tensors involved, equation (6.1) and equation (6.2).

The following theorem should be compared with Lemma 3.1 and equation (4.1) in [8], with Lemma

2.4 and equation (2.12) in [6] and with Proposition 2.2 in [27].

TH_integrabilityConditions Theorem 6.4. Let (M, g) be a gradient Einstein-type manifold of dimension m ≥ 3. Then the following

integrability conditions hold:

αCijk + βftWtijk =

[
β − (m− 2)αµ

β

]
Dijk,firstGeneralIntCondfirstGeneralIntCond (6.5)

αBij =
1

m− 2

{[
β − (m− 2)αµ

β

]
Dijk,k + β

(
m− 3

m− 2

)
ftCjit − µftfkWitjk

}
.secondGeneralIntCondsecondGeneralIntCond (6.6)

Proof. We begin with the covariant derivative of equation (6.1) to get

(6.7) αRij,k + βfij,k + µ(fikfj + fifjk) = (ρSk + λk)δij .

Skew-symmetrizing with respect to j and k and using (4.11) we obtain

EQ_FirstCondSkewSymmEQ_FirstCondSkewSymm (6.8) α(Rij,k −Rik,j) + βftRtijk + µ(fikfj − fijfk) = ρ(Skδij − Sjδik) + (λkδij − λjδik).

To get rid of the two terms on the right-hand side of equation (6.8) we proceed as follows: first we trace

the equation with respect to i and j and we use Schur’s identity Sk = 2Rtk,t to deduce

EQ_SkFirstEQ_SkFirst (6.9) [α− 2ρ(m− 1)]Sk = 2βftRtk + 2(m− 1)λk − 2µ(ftftk −∆ffk);

secondly, from equations (6.1) and (6.2) we respectively have

EQ_ftkEQ_ftk (6.10) ftk =
1

β
[(ρS + λ)δtk − αRtk − µftfk]

and

(6.11) ∆f =
1

β

[
(mρ− α)S +mλ− µ|∇f |2

]
.

Inserting the two previous relations in (6.9) and simplifying we deduce the following important equation

EQ_SkEQ_Sk (6.12) [α− 2ρ(m− 1)]Sk = 2

(
β +

αµ

β

)
ftRtk + 2(m− 1)λk −

2µ

β
[α− ρ(m− 1)]Sfk +

2µ

β
(m− 1)λfk.

From (2.1) we deduce that

EQ_RiemWeylDEQ_RiemWeylD (6.13) ftRtijk = ftWtijk −Dijk −
1

m− 1
(ftRtkδij − ftRtjδik).

Inserting now (6.13), (2.7) and (6.12) into (6.8) and simplifying we get (6.5).

Taking the divergence of equation (6.5) we obtain

(6.14) αCijk,k − βftkWitjk − β
(
m− 3

m− 2

)
ftCjit =

[
β − (m− 2)αµ

β

]
Dijk,k;

using the definition of the Bach tensor (2.9), equation (6.10) and the symmetries of W we immediately

deduce (6.6). �

Remark 6.5. Equation (6.12) is the analogue of the fundamental Sk = 2ftRtk, valid for every Ricci

soliton.
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RM_betanullo Remark 6.6. In case β = 0 (and thus α 6= 0), by direct calculations, using (2.7), (6.3) and (6.1), one

can show that D = 0 and equations (6.5) and (6.6) take the form

αCijk = −µ(fjfik − fkfij)−
µ

m− 1
ft(ftjδik − ftkδij) +

µ∆f

m− 1
(fjδik − fkδij),

αBij =
1

m− 2
{αCijk,k − µftfkWitjk}.

7. Vanishing of the tensor D
sec_6

In this section we compute the squared norm of the tensor D in terms of D itself, the Bach tensor B

and the potential function f . Moreover, under the assumption of Theorem 1.2, we prove the vanishing

of D. We begin with

LMasd Lemma 7.1. Let (M, g) be a nondegenerate gradient Einstein-type manifold of dimension m ≥ 3. If

α 6= 0,

EQ_Dsquared_generalEQ_Dsquared_general (7.1)

(
m− 2

2

)[
β − (m− 2)αµ

β

]
|D|2 = −β(m− 2)fifjBij +

β

α

[
β − (m− 2)αµ

β

]
(fifjDijk)k,

while if α = 0

EQ_Dsquared_alpha0EQ_Dsquared_alpha0 (7.2)

(
m− 2

2

)
|D|2 = −(m− 2)fifjBij + (fifjCijk)k.

Proof. We observe that, since Dijk = −Dikj ,

|D|2 = DijkDijk =
1

m− 2
Dijk(fkRij − fjRik) =

1

m− 2
(fkRijDijk + fjRikDikj),

so that

DSquaredNormDSquaredNorm (7.3) |D|2 =
2

m− 2
fkRijDijk.

Since β − (m−2)αµ
β 6= 0, using (6.5) and the definition of the Bach tensor we can write

(
m− 2

2

)[
β − (m− 2)αµ

β

]
|D|2 = fkRij(αCijk + βftWtijk)

= αfkRijCijk − βfifjRtkWitjk

= αfkRijCijk − β(m− 2)fifjBij + βfifjCijk,k.

By the symmetries of the Cotton tensor we also have

fifjCijk,k = fi(fjCijk)k − fifjkCijk
= (fifjCijk)k − fikfjCijk
= (fifjCijk)k + fijfkCijk,

therefore we obtain(
m− 2

2

)[
β − (m− 2)αµ

β

]
|D|2 = αfkRijCijk − β(m− 2)fifjBij + β(fifjCijk)k + βfijfkCijk.NormDsquared_firstNormDsquared_first (7.4)

If α = 0, using equation (6.1) in (7.4) we immediately get(
m− 2

2

)
|D|2 = −(m− 2)fifjBij + (fifjCijk)k,

that is (7.2).

If α 6= 0, using equations (6.1) and (6.5) in (7.4) and simplifying we deduce

(7.5)

(
m− 2

2

)[
β − (m− 2)αµ

β

]
|D|2 = −β(m− 2)fifjBij +

β

α

[
β − (m− 2)αµ

β

]
(fifjDijk)k,
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that is, equation (7.1). �

Remark 7.2. In case α 6= 0 equation (7.1) can be obtained in a direct way: one takes the second

integrability condition (6.6), multiplies both members by fifj and simplifies, using the symmetries of

the tensors involved and equation (6.5).

TH_BZDZ Theorem 7.3. Let (M, g) be a complete nondegenerate gradient Einstein-type manifold of dimension

m ≥ 3. If B(∇f, ·) = 0 and f is proper, then D = 0.

Proof. We define the vector field Y = Y (α) of components

Def_YDef_Y (7.6) Yk =

β
αfifjDijk if α 6= 0;

fifjCijk if α = 0.

By the symmetries of D and C we immediately have

EQ_YorthogtoNablafEQ_YorthogtoNablaf (7.7) g(Y,∇f) = 0.

If B(∇f, ·) = 0 and α 6= 0, from equation (7.1) we obtain

(7.8)

(
m− 2

2

)
|D|2 =

β

α
(fifjDijk)k,

while if α = 0 from equation (7.2) we deduce

(7.9)

(
m− 2

2

)
|D|2 = (fifjCijk)k.

In both cases

EQ_NormDandDiverYEQ_NormDandDiverY (7.10)

(
m− 2

2

)
|D|2 = div Y.

Let now c be a regular value of f and Ωc and Σc be, respectively, the corresponding sublevel set and

level hypersurface, i.e. Ωc = {x ∈M : f(x) ≤ c}, Σc = {x ∈M : f(x) = c}. Integrating equation (7.10)

on Ωc and using the divergence theorem we get∫
Ωc

(
m− 2

2

)
|D|2 =

∫
Ωc

div Y =

∫
Σc

g(Y, ν),

where ν is the unit normal to Σc. Since ν is in the direction of ∇f , using (7.7) and letting c→ +∞ we

immediately deduce

(7.11)

∫
M

(
m− 2

2

)
|D|2 = 0,

which implies D = 0 on M . �

Remark 7.4. The validity of Theorem 7.3 is based on that of the divergence theorem in this situation.

Thus, instead of using properness of f , we can use Theorem A of [24] to obtain the above conclusion,

that is D ≡ 0, under the following assumptions: for some p > 1, M is p-parabolic and the vector field

Y ∈ Lq(M), where q is the conjugate exponent of p. We note that a sufficient condition for p-parabolicity

is
1

vol (∂Br)
1
p−1

6∈ L1(+∞)

(see e.g. [44]), and, according to (7.6), Y ∈ Lq(M) in case for some pair of conjugate exponents P, P ′

we have

|∇f | ∈ L2Pq(M) and |D| ∈ LP
′q(M) if α 6= 0

or

|∇f | ∈ L2Pq(M) and |C| ∈ LP
′q(M) if α = 0.
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Remark 7.5. A simple computation using the definition of the tensor D gives

f_iD_ijkf_iD_ijk (7.12) fiDijk =
1

m− 1
(ftfkRtj − ftfjRtk),

and then

(7.13) fifjDijk =
1

m− 1

(
Ric (∇f,∇f)fk − |∇f |2ftRtk

)
.

This shows that, in the case α 6= 0, the vector field Y defined in (7.6) can be expressed in the

remarkable form

(7.14) Y =
β

α(m− 1)

[
Ric (∇f,∇f)∇f − |∇f |2

(
Ric (∇f, ·)]

)]
,

where ] denotes the usual musical isomorphism.

Moreover, in the special case of a gradient Ricci soliton (M, g, f, λ), using the fundamental relation

Sk = 2ftRtk, the vector field Y can also be written in the equivalent form

Y =
1

2(m− 1)

[
g(∇S,∇f)∇f − |∇f |2∇S

]
.

We also observe that

g(Y,∇f) = 0, g(Y,∇S) =
1

2(m− 1)

[
g(∇S,∇f)

2 − |∇S|2|∇f |2
]
≤ 0

and that

|Y |2 =
1

4(m− 1)2
|∇f |2

[
|∇S|2|∇f |2 − g(∇S,∇f)

2
]

= − 1

2(m− 1)
|∇f |2g(Y,∇S) ≥ 0.

Remark 7.6. In case β = 0 and µ 6= 0, using Remark 6.6 and arguing as in Lemma 7.1, one can obtain

the following identity
α

2µ
|C|2 = (m− 2)fifjBij − (fifjCijk)k.

Then, following the proof of Theorem 7.3, we obtain

PR_betanullo Proposition 7.7. Let (M, g) be a complete nondegenerate gradient Einstein-type manifold of dimension

m ≥ 3 and with β = 0. If B(∇f, ·) = 0 and f is proper, then C = 0.

8. D and the geometry of the level sets of f
sec_7

In this section we relate the tensor D to the geometry of the regular level sets of the potential function

f . Our first result highlights, in the case α 6= 0, the link between the squared norm of the tensor D and

the second fundamental form of the level sets of f . This should be compared with [8, Proposition 3.1]

and [7, Lemma 4.1]. For the case α = 0 we refer to [27, Proposition 2.3].

From now on, we extend our index convention assuming 1 ≤ i, j, k, . . . ≤ m and 1 ≤ a, b, c, . . . ≤ m−1.

PR_Dsquared&H Proposition 8.1. Let (M, g) be a complete m-dimensional (m ≥ 3) gradient Einstein-type manifold

with α, β 6= 0. Let c be a regular value of f and let Σc = {x ∈M |f(x) = c} be the corresponding level

hypersurface. For p ∈ Σc choose an orthonormal frame such that {e1, . . . , em−1} are tangent to Σc and

em = ∇f
|∇f | (i.e., {e1, . . . , em−1, em} is a local first order frame along f). Then, in p, the squared norm

of the tensor D can be written as

EQ_d2madEQ_d2mad (8.1) |D|2 =

(
β

α

)2
2|∇f |4

(m− 2)
2 |hab − hδab|

2
+

2|∇f |2

(m− 1)(m− 2)
RamRam,

where hab are the coefficients of the second fundamental tensor and h is the mean curvature of Σc.

Remark 8.2. Note that |hab − hδab|2 is the squared norm of the traceless second fundamental tensor Φ

of components Φab = hab − hδab.
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Proof. First of all, we observe that, in the chosen frame, we have

EQ_compfSigmaEQ_compfSigma (8.2) df = faθ
a + fmθ

m = |∇f |θm,

since fa = 0, a = 1, . . . ,m− 1.

The second fundamental tensor II of the immersion Σc ↪→M is

II = habθ
b ⊗ θa ⊗ ν,

where the coefficients hab = hba are defined as

(8.3) ∇em = ∇ν = θam ⊗ ea = −θma ⊗ ea = −habθb ⊗ ea

(see also [34]), so that

(8.4) hab = g(II(ea, eb), ν) = −g(∇eaν, eb) = −(∇ν)
[
(ea, eb).

In the present setting we have

∇ν =
1

|∇f |
∇(∇f) +∇

(
1

|∇f |

)
⊗∇f

and

(∇ν)
[

=
1

|∇f |
Hess(f) + d

(
1

|∇f |

)
⊗ df,

thus, using equation (6.1), we deduce

EQ_habEQ_hab (8.5) hab = − 1

|∇f |
fab =

1

β|∇f |
[αRab − (ρS + λ)δab],

The mean curvature h is defined as h = 1
m−1haa; tracing equation (8.5) we get

EQ_MeanCurvatureEQ_MeanCurvature (8.6) h =
1

β|∇f |

[(
α

m− 1
− ρ
)
S − α

m− 1
Rmm − λ

]
.

Now we compute the squared norm of the traceless second fundamental tensor Φ:

|hab − hδab|2 = |hab|2 − 2hhaa + (m− 1)h2 = |hab|2 − (m− 1)h2

EQ_PHIEQ_PHI (8.7)

=
1

β2|∇f |2

{
[αRab − (ρS + λ)δab]

2 − (m− 1)

[(
α

m− 1
− ρ
)
S − α

m− 1
Rmm − λ

]2
}

=
α2

β2|∇f |2

{
|Ric|2 − 2RamRam − (Rmm)

2 − 1

m− 1

[
S2 − 2SRmm + (Rmm)

2
]}

=
α2

β2|∇f |2

[
|Ric|2 − 2RamRam −

m

m− 1
(Rmm)

2 − 1

m− 1
S2 +

2

m− 1
SRmm

]
.
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On the other hand, from the definition of D we have

|D|2 =
(fkRij − fjRik)

2

(m− 2)2
+

(ftRtkδij − ftRtjδik)
2

(m− 1)2(m− 2)2
+

S2

(m− 1)2(m− 2)2
(fkδij − fjδik)

2
EQ_DsqEQ_Dsq (8.8)

+
2

(m− 1)(m− 2)2
(fkRij − fjRik)(ftRtkδij − ftRtj)

− 2S

(m− 1)(m− 2)2
(fkRij − fjRik)(fkδij − fjδik)

− 2S

(m− 1)2(m− 2)2
(ftRtkδij − ftRtjδik)(fkδij − fjδik)

=
2|∇f |2

(m− 2)
2

(
|Ric|2 −RamRam −RmmRmm

)
+

2|∇f |2

(m− 1)(m− 2)2
(RamRam +RmmRmm)

+
2S2

(m− 1)(m− 2)2
|∇f |2 +

4|∇f |2

(m− 1)(m− 2)2

(
SRmm − (Rmm)

2 −RamRam
)

− 4S|∇f |2

(m− 1)(m− 2)2
(S −Rmm)− 4S|∇f |2

(m− 1)(m− 2)2
Rmm.

Symplifying, rearranging and comparing (8.7) and (8.8) we arrive at

(8.9)
(m− 2)2

2|∇f |2
|D|2 =

(
β

α

)2

|∇f |2|hab − hδab|2 +

(
m− 2

m− 1

)
RamRam,

which easily implies equation (8.1).

�

Remark 8.3. We explicitly note that RamRam is a globally defined quantity (since |D|2, |∇f |2 and

|hab − hδab|2 are globally defined), but Ram is only locally defined. This implies that, if Ram = 0 on the

open set where the local frame e1, . . . , em is defined, then dRam = 0 but Ram,k is not necessarily zero

(see the proof of Proposition 8.5 below).

Proposition 8.1 is one of the key ingredients in the proof of the following theorem, which generalizes

[8, Proposition 3.2 ] (compare also with in [27, Proposition 2.4]). Our proof is similar to those in [8] and

[27], but the presence of µ and the nonconstancy of λ require extra care, in particular in showing that S

is constant on Σc.

TH_PropertiesOnSigmac Theorem 8.4. Let (M, g) be a complete m-dimensional, m ≥ 3, gradient Einstein-type manifold with

α, β 6= 0 and tensor D ≡ 0. Let c be a regular value of f and let Σc = {x ∈M |f(x) = c} be the

corresponding level hypersurface. Choose any local orthonormal frame such that {e1, . . . , em−1, em} are

tangent to Σc and em = ∇f
|∇f | (i.e., {e1, . . . , em−1} is a first order frame along f). Then

(1) |∇f |2 is constant on Σc;

(2) Ram = Rma = 0 for every a = 1, . . . ,m− 1 and em is an eigenvector of Ric;

(3) Σc is totally umbilical;

(4) the mean curvature h is constant on Σc;

(5) the scalar curvature S and λ are constant on Σc;

(6) Σc is Einstein with respect to the induced metric;

(7) on Σc the (components of the) Ricci tensor of M can be written as Rab = S−Λ1

m−1 δab, where Λ1 ∈ R
is an eigenvalue of multiplicity 1 or m (and in this latter case S = mΛ1); in either case em is

an eigenvector associated to Λ1.

Proof. If D = 0, from Proposition 8.1 we immediately deduce that

EQ_umbilicityEQ_umbilicity (8.10) hab − hδab = 0,

that is, property (3), and

EQ_Ram=0EQ_Ram=0 (8.11) Ram = 0, a = 1, . . . ,m− 1.
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From (8.10) a simple computation using (8.5) and (8.6) shows that

EQ_RiccRestrictedEQ_RiccRestricted (8.12) Rab =
S −Rmm
m− 1

δab,

which also implies

(8.13) Ric (ν, ν) =
Rijfifj

|∇f |2
= Rmm = Rmm|ν|2;

this complete the proof of (2). To prove (1) we take the covariant derivative of β|∇f |2 and use (6.1):

β
(
|∇f |2

)
k

= 2βfifik

= 2
[(
ρS + λ− µ|∇f |2

)
fk − αftRtk

]
= 2
[(
ρS + λ− µ|∇f |2

)
fk − αfcRck − α|∇f |Rmk

]
;

evaluating the previous relation at k = a and using property (2) we immediately get(
|∇f |2

)
a

= 0,

that is (1). To prove (4) we start from Codazzi equations, that in our setting read

(8.14) −Rmabc = hab,c − hac,b;

tracing with respect to a and c we get

−Rmaba = −Rmkbk +Rmmbm = hab,a − haa,b,

that is, using (2),

EQ_habaEQ_haba (8.15) 0 = −Rmb = hab,a − haa,b.

On the other hand, from (3) we have

hab,a = hb

and

haa,b = (m− 1)hb,

so that (8.15) immediately implies

(8.16) 0 = (m− 2)hb, b = 1, . . . ,m− 1,

that is (4). To show the validity of (5) we first observe that, evaluating (6.12) at k = a and using (2),

we deduce

[α− 2ρ(m− 1)]Sa − 2(m− 1)λa = 0,

which implies

EQ_SLambdaConstEQ_SLambdaConst (8.17) [α− 2ρ(m− 1)]S − 2(m− 1)λ = const. on Σc.

From equation (8.6), the constancy of h and of |∇f | on Σc also give that

EQ_SLambdaRmmConstEQ_SLambdaRmmConst (8.18) [α− ρ(m− 1)]S − αRmm − (m− 1)λ = const. on Σc.

Combining (8.17) and (8.18) we arrive at

EQ_S2RmmEQ_S2Rmm (8.19) S − 2Rmm = const. on Σc.
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Now we evaluate (6.12) at k = m, we use (2) and rearrange to deduce

[α− 2ρ(m− 1)]Sm = 2

(
β +

αµ

β

)
|∇f |Rmm + 2(m− 1)λm −

2µ|∇f |
β
{[α− ρ(m− 1)]S − (m− 1)λ}

(8.20)

= 2β|∇f |Rmm + 2(m− 1)λm −
2µ|∇f |
β
{[α− ρ(m− 1)]S − αRmm − (m− 1)λ}.

Since by (1) and (8.18) the quantity 2µ|∇f |
β {[α− ρ(m− 1)]S − αRmm − (m− 1)λ} is constant on Σc we

infer

EQ_SmRmmLambdamEQ_SmRmmLambdam (8.21) [α− 2ρ(m− 1)]Sm − 2β|∇f |Rmm − 2(m− 1)λm = const. on Σc.

Now we take the covariant derivative of (8.21) and evaluate at k = a to obtain

EQ_SLambdaamEQ_SLambdaam (8.22) [α− 2ρ(m− 1)]Sma − 2β|∇f |Rmm,a − 2(m− 1)λma = 0 on Σc;

but Sma = Sam and λma = λam, thus (8.22) can be written as

(8.23) {[α− 2ρ(m− 1)]S − 2(m− 1)λ}am = 2β|∇f |Rmm,a on Σc,

which implies, by (8.17), that

(8.24) Rmm = const. on Σc.

The previous relation, (8.19) and (8.17) show that S and λ are constant on Σc, that is (5). To prove (6)

we start from the Gauss equations

ΣcRabcd = Rabcd + hachbd − hadhbc,

which by property (3) can be rewritten as

EQ_GaussSigmaEQ_GaussSigma (8.25) ΣcRabcd = Rabcd + h2(δacδbd − δadδbc).

Tracing equation (8.25) with respect to b and d gives

EQ_GaussSigmatracedEQ_GaussSigmatraced (8.26) ΣcRac = Rac −Ramcm + (m− 2)h2δac;

tracing again we deduce

EQ_GaussSigmatracedagainEQ_GaussSigmatracedagain (8.27) ΣcS = S − 2Rmm + (m− 1)(m− 2)h2 = const. on Σc.

Now a simple computation using decomposition (2.1) of the Riemann tensor, equation (8.12) and the

fact that Wamcm = 0 (see Proposition 8.5) shows that

EQ_RamcmEQ_Ramcm (8.28) Ramcm =
1

m− 1
Rmmδac.

Next, inserting (8.12) and (8.28) into (8.26), we get

EQ_EinsteinSigmacEQ_EinsteinSigmac (8.29) ΣcRac =

[
S − 2Rmm
m− 1

+ (m− 2)h2

]
δac,

which shows the validity of (6). Now (7) is an easy consequence of the other properties. �

The next two results are the analogue of [8, Lemma 4.2] and [8, Lemma 4.3], respectively.

PR_vanishingOfC Proposition 8.5. Let (M, g) be a complete noncompact m-dimensional (m ≥ 3) nondegenerate Einstein-

type manifold with α 6= 0. If D = 0 then C = 0 at all points where ∇f 6= 0.

Proof. We choose a local first order frame along f (so that fa = 0, a = 1, . . . ,m − 1 and fm = |∇f |).
The vanishing of D implies, by the first integrability condition (6.5), that

αCijk + βftWtijk = 0,
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which implies, since α 6= 0,

EQ_CottonWeylDeq0EQ_CottonWeylDeq0 (8.30) Cijk = −β
α
ftWtijk

and consequently

(8.31) fiCijk = fmCmjk = |∇f |Cmjk = 0, j, k = 1, . . . ,m;

thus

EQ_CottonmjkEQ_Cottonmjk (8.32) Cmjk = 0.

Using (3) and (4) of Theorem 8.4 we have

(8.33) hab,c = 0,

and from the Codazzi equations we get

(8.34) −Rmabc = hab,c − hac,b = 0;

since also Ram = 0 by (2) of Theorem 8.4, from the decomposition (2.1) we easily deduce

(8.35) Wambc = 0,

which implies by (8.30) that

EQ_CottonabcEQ_Cottonabc (8.36) Cabc = 0.

By the symmetries of C, to conclude it only remains to show that Cabm = 0 = Camb. First we observe

that Ram = 0 implies, by the definition of covariant derivative,

0 = dRam

= Rkmθ
k
a +Rakθ

k
m +Ram,kθ

k

= Rbmθ
b
a +Rmmθ

m
a +Rabθ

b
m +Ramθ

m
m +Ram,kθ

k

= Rmmθ
m
a +Rabθ

b
m +Ram,kθ

k,

so that, using (8.12),

Ram,kθ
k = Ram,bθ

b +Ram,mθ
m = Rabθ

m
b −RmmθmaEQ_Ramk1EQ_Ramk1 (8.37)

=

(
S −Rmm
m− 1

δab

)
θmb −Rmmθma

=

(
S −mRmm
m− 1

)
θma .

Now we want to show that Ram,m = 0. To see that we first evaluate equation (6.1) for i = a and j = m,

obtaining fam = 0; then we take the covariant derivative of the same equation:

(8.38) αRij,k + βfijk + µ(fikfj + fifjk) = (ρSk + λk)δij ,

which for i = k = m, j = a gives (using fam = 0)

(8.39) αRam,m = −βfmam;

but

fmam = fmma + fiRimam = fmma,

while (6.2) and Theorem 8.4 tell us that the (globally defined) quantity ∆f is constant on Σc, so that

(8.40) (∆f)a = 0.
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On the other hand, from (6.1) and (8.12) we deduce

EQ_fabdeltaEQ_fabdelta (8.41) βfab = − 1

m− 1
{[α− ρ(m− 1)]S − αRmm − (m− 1)λ}δab −

1

m− 1
fccδab

which implies, by tracing, that

(8.42) β(∆f − fmm) = const. on Σc;

in particular

(8.43) fmam = fmma = (∆f)a = 0,

and thus

(8.44) Ram,m = 0.

Getting back to equation (8.37) we now have

(8.45) Ram,bθ
b =

(
S −mRmm
m− 1

)
θma ,

and thus

Ram,b =

(
S −mRmm
m− 1

)
θma (eb)EQ_RambfabEQ_Rambfab (8.46)

=
1

|∇f |

(
mRmm − S
m− 1

)
fab.

Schur’s identity implies

EQ_SchurmEQ_Schurm (8.47) Sm = 2Rim,i = 2Ram,a + 2Rmm,m;

from the definition of C we have, using (8.12) and (8.46),

Cabm = Rab,m −Ram,b −
1

2(m− 1)
SmδabEQ_Cabm1EQ_Cabm1 (8.48)

=
Sm −Rmm,m

m− 1
δab +

1

|∇f |

(
s−mRmm
m− 1

)
fab −

1

2(m− 1)
Smδab

=
1

2(m− 1)
Smδab −

1

m− 1
Rmm,mδab +

1

|∇f |

(
S −mRmm
m− 1

)
fab.

Using (8.47), (8.46) and (8.41) into (8.48) we arrive at

Cabm =
1

m− 1
Rcm,cδab +

1

|∇f |

(
S −mRmm
m− 1

)
fab(8.49)

= − 1

m− 1

1

|∇f |
(S −mRmm,m)fab +

1

|∇f |

(
S −mRmm
m− 1

)
fab

= 0,

concluding the proof. �

In dimension four, we can prove the following

COR_vanishingOfW Corollary 8.6. Let (M4, g) be a complete noncompact nondegenerate Einstein-type manifold of dimen-

sion four with α 6= 0. If D = 0 then W = 0 at all points where ∇f 6= 0.

Proof. From Proposition 8.5, we know that Cijk = 0. Hence, from (6.5), we deduce ftWtijk = 0 fora any

i, j, k = 1, . . . , 4. For any p ∈ M4 such that ∇f(p) 6= 0, we choose an orthonormal frame {e1, . . . , e4}
such that e4 = ∇f

|∇f | , thus we have

W4ijk(p) = 0, for i, j, k = 1, . . . 4 .

It remains to show that Wabcd(p) = 0 for any a, b, c, d = 1, 2, 3. This follows from the symmetries and

the traceless property of the Weyl tensor (for instance, see [8, Lemma 4.3]). �
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9. Proof of the main theorems and some geometric applications
sec_8

In this last section we first prove Theorem 1.2 and Corollary 1.3. Then, we give some geometric

applications in the special cases of gradient Ricci solitons, ρ-Einstein solitons and Ricci almost solitons.

We begin with

Proof of Theorem 1.2. From Theorem 7.3 we know that the tensor D has to vanish on M . Let Σ be

a regular level set of the function f : Mm → R, i.e. |∇f | 6= 0 on Σ, which exists by Sard’s Theorem and

the fact that f is nontrivial. By Theorem 8.4 (1) We have that |∇f | has to be constant on Σ. Thus,

in a neighborhood U of Σ which does not contain any critical point of f , the potential function f only

depends on the signed distance r to the hypersurface Σ. Hence, by a suitable change of variable, we can

express the metric gij as

ds2 = dr2 + gab(r, θ)dθ
a ⊗ dθb , 0 < r <∞ ,

where (θ2, · · · , θm) is any local coordinates system on the level surface Σ. Moreover, by Theorem 8.4

(3)-(4), we have
∂

∂r
gab = −2hab = φ(r)gab ,

where φ(r) = −2h(r). Thus, it follows easily that

gab(r, θ) = eΦ(r)gab(1, θ),

where

Φ(r) =

∫ r

1

φ(r) dr.

This proves that on U the metric g takes the form of a warped product metric:

ds2 = dr2 + w(r)2gE , r ∈ (0,+∞) ,

where w is some positive smooth function on U , and gE = gΣ1 is the metric defined on the level surface

Σ1, which is Einstein, by Theorem 8.4 (6). This concludes the proof of Theorem 1.2.

Proof of Corollary 1.3. The proof of Corollary 1.3 follows from all the previous considerations combined

with Corollary 8.6.

�

Next we show that the properness assumption on the potential function f in Theorem 1.2 is automat-

ically satisfied by some classes of Einstein-type manifolds.

First of all, let (M, g) be a complete, noncompact, gradient Ricci soliton with potential function f .

Then, it is well known that f is always proper, provided that the soliton is either shrinking [10, Theorem

1.1], or steady with positive Ricci curvature and scalar curvature attaining its maximum at some point

[7, Proposition 2.3] or expanding with nonnegative Ricci curvature [6, Lemma 5.5]. Hence, in these cases,

Theorem 1.2 provides a local version of the classification results obtained in [8] and [6].

Secondly, if (M, g) is a complete, noncompact, gradient shrinking ρ-Einstein soliton with ρ > 0 and

bounded scalar curvature, then it follows by [18, Lemma 3.2] that the potential function f is proper.

Hence, Theorem 1.2 implies the following

TH_appl1 Theorem 9.1. Let (M, g) be a complete, noncompact gradient shrinking ρ-Einstein soliton of dimension

m ≥ 3 with bounded scalar curvature and ρ > 0. If B(∇f, ·) = 0, then around any regular point of f the

manifold (M, g) is locally a warped product with (m− 1)-dimensional Einstein fibers.

Finally, we want to show the following result concerning gradient Ricci almost solitons which are

“strongly” shrinking.
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TH_appl2 Theorem 9.2. Let (M, g) be a complete, noncompact gradient Ricci almost soliton of dimension m ≥ 3

with bounded Ricci curvature and with λ ≥ λ > 0, for some λ. If B(∇f, ·) = 0, then around any regular

point of f the manifold (M, g) is locally a warped product with (m− 1)-dimensional Einstein fibers.

Proof. By Theorem 1.2 it is sufficient to show that under these assumptions the potential function is

proper. To do this we will apply a second variation argument as in [10, Theorem 1.1]. Let r(x) =

distg(x, o), for some fixed origin o ∈M . We will show that

f(x) ≥ 1

2
λ
(
r(x)− c

)2
,

for some positive constant c > 0 depending only on m and on the geometry of g on the unit ball Bo(1).

Let γ(s), 0 ≤ s ≤ s0 for some s0 > 0, be any minimizing unit speed geodesic starting from o = γ(0) and

let γ̇(s) be the unit tangent vector of γ. Then by the second variation of the arc length, we have∫ s0

0

φ2(s) Ric(γ̇, γ̇) ds ≤ (m− 1)

∫ s0

0

|φ̇(s)|2 ds ,

for every nonnegative function φ : [0, s0] → R. We choose φ(s) = s on [0, 1], φ(s) = 1 on [1, s0 − 1] and

φ(s) = s0 − s on [s0 − 1, s0]. Then, since the solitons has bounded Ricci curvature, one has∫ s0

0

Ric(γ̇, γ̇) ds ≤ 2(m− 1) + max
B1(o)

|Ric |+ max
B1(γ(s0))

|Ric | ≤ C ,

for some positive constant C independent of s0. On the other hand, from the soliton equation, we have

∇γ̇∇γ̇f = λ− Ric(γ̇, γ̇) .

Integrating along γ, we get

ḟ
(
γ(s0)

)
− ḟ

(
γ(0)

)
=

∫ s0

0

λ ds−
∫ s0

0

Ric(γ̇, γ̇) ds ≥ λ s0 − C .

Integrating again, we obtain the desired estimate

f
(
γ(s0)

)
≥ 1

2
λ
(
s0 − c

)2
.

This concludes the proof of the theorem. �

Remark 9.3. As it is clear from the above proof, in case λ = λ(r) is such that 1
λ(r) = o

(
1
r2

)
as r → +∞

we have f(r)→ +∞ as r → +∞. This suffices to prove 9.2.

To conclude, we note that Ricci almost solitons which are warped product were constructed in [41,

Remark 2.6].

Acknowledgements. The second author would like to thank Francesca Savini for some useful
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