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Abstract. We focus the minimization of 1D free discontinuity problem with
second order energy dependent on jump integrals but not on the cardinality
of the discontinuity set, in the framework of L∞ load. The related energies
are not lower semi continuous in BH. Nevertheless we show that if a safe
load condition is fulfilled then minimizers exist and they belong actually to
SBH, say their second derivative has no Cantor part. If in addition a stronger
condition on load is fulfilled then minimizer is unique and belongs to H2.
Moreover we can always select one minimizer whose number of plastic hinges
does not exceed 2 and is the limit of minimizers of penalized problems.
When the load stays in the gap between safe load and regularity condition
then minimizers with hinges are allowed; if in addition the load is symmetric
and strictly positive then there is uniqueness of minimizer, the hinges of such
minimizer are exactly two and they are located at the endpoints.

1. Introduction

Given f in L∞(R), γ > 0, L > 0, we study the functional

F (w) =
∫

R

(
E J

2
|ẅ|2 − fw

)
dx + γ

∑

Sẇ

|[ẇ]| (1.1)

dependent on real-valued functions w with spt w ⊂ [0, L] and w in SBH(R) (e.g. w is an
L1(R) function whose second derivative w′′ is a Radon measure in R without Cantor part).
For any w in SBH(R), ẅ denotes the absolutely continuous part of w′′, Sẇ the singular set
of ẇ = w′ and [ẇ] = ẇ+ − ẇ−.
Functional (1.1) describes the total energy associated to deformation of an elastic-plastic
beam which is clamped at both endpoints and whose reference configuration is the horizontal
interval [0, L]; w is the vertical displacement of the beam under the action of the vertical
load f.
The crease points set Sẇ of a minimizer w may be interpreted as location of plastic hinges
in the beam at equilibrium: functional (1.1) takes into account that the energy released in
the deformation of a clamped elastic plastic beam is the sum of elastic bending energy and
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of energy concentrated at plastic hinges. Jump points are not allowed (say Sw = ∅) for
admissible displacements w which must be continuous.
The flexural rigidity EJ of the beam is given by the product of Young modulus E times
the beam cross section polar momentum of inertia J. The constant γ takes into account the
resistance of the material to rotation at plastic hinges.
Unfortunately sequential w∗BH lower semicontinuity of functional (1.1) fails in SBH since
absolutely continuous and jump part of w′′ can merge in the limit (see Remark 2.3).
We notice that (1.1) is convex, nevertheless compactness of minimizing sequences “a priori”
may fail since the jump set Sẇ may be an infinite set even if F (w) < ∞.
We extend F to the whole BH with value +∞ if w 6∈ SBH or spt w 6⊂ [0, L], by defining
F(w) : BH(R) → R ∪ {+∞}

F(w) =





∫

R

(
EJ

2
|ẅ|2− fw

)
dx + γ

∑

Sẇ

|[ẇ]|, w∈SBH(R), sptw ⊂ [0, L]

+∞ else .

(1.2)

and we find a completely equivalent minimization problem (also F fails to be lower semi-
continuous with respect to the w∗BH topology).
The relaxed seq. w∗BH l.s.c. envelope of F is difficult to handle, since it has an extra term
containing the Cantor part of second derivative and it takes into account of the interplay
between absolutely continuous and concentrated part of energy.
The strategy to overcome this difficulty consists in three steps: first we introduce a sequence
of penalized functionals Fε, which depends on parameter ε > 0 and are defined for every
w ∈ BH :

Fε(w) =
{ F(w) + ε ](Sẇ) if w∈SBH(R), sptw ⊂ [0, L]

+∞ else ; (1.3)

then we study nonconvex functionals Fε which are coercive and l.s.c. on BH but finite in
SBH; eventually we jettison the parameter ε by showing that, provided the following safe
load assumption on f holds true

‖f‖L∞ < 16
γ

L2
, (1.4)

the minimizing sequences for F are relatively compact in the w∗BH topology.
Theorem 2.1 shows that F, F , its l.s.c envelope sc−F and F∗ (the Γ limit of Fε) all achieve
their minimum among w having support contained in [0, L] and all their minima coincide;
moreover all minimizers w of F fulfil the following estimate for (absolutely continuous part
of) bending moment EJ ẅ

‖ẅ‖L∞ ≤ γ / (EJ) ,

and are balanced at creased points:

ẅ± = γ sign[ẇ] / (EJ) .

The uniqueness of minimizer for F (or equivalently for F) seems hard to tackle in general.
Nevertheless we can always select minimizers of F which have no more than two hinges
(Theorem 2.1). Strict sign of load without symmetry entails that all minimizers exhibit no
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more than 2 hinges (Theorem 3.7). Under additional sign assumption (e.g. symmetry and
strict sign of load) also uniqueness for minimizer of F holds true (Theorem 3.8, and Remark
3.13) together with an explicit representation formula of minimizer (see (3.34) and (3.66)).
The penalized functional (1.3) takes into account the total energy related to deformation of
an elastic plastic beam: the four terms correspond (in their order, referring to (1.2)) to the
elastic bending energy, potential energy and concentrated plastic yielding together with a
minimal threshold cost ε for the formation of any plastic hinge: functional (1.3) was deduced
as a Gamma limit by 2D or 3D thick approximation of the beam (see [12],[13],[14],[11])
starting from classic models of damage ([3],[9]) .

In a different framework, allowing for L1 (or even Radon measure) load f , we showed a
safe load condition ( ‖f‖L1 < 8γ/L ) and a regularity load condition ( ‖f‖L1 ≤ 27γ/(4L) )
respectively entailing existence and H2 regularity for minimizers of Fε (see [15],[16]): such
gap between the safe and regularity load condition is very narrow and makes difficult to
check wether creased minimizers exist (actually they do exist: for an explicit construction
of a load in this gap, exhibiting creased minimizers, see Section 4.1 of [15]).

Here we deal with L∞ load and in this framework we prove a sharp L∞ safe load condition
(i.e. ‖f‖L∞ < 16γ/L2, Theorem 2.1) and also a sharp L∞ regularity load condition (i.e.
‖f‖L∞ ≤ 12γ/L2, Theorem 3.5), entailing respectively existence and regularity for minimiz-
ers of both Fε and F : in this context we can prove that for any symmetric load f which
stays in the gap and has a strict sign, then the minimizer is unique and has exactly two
hinges located at the endpoints of the beam. The result is obtained by sharp estimates on
the Green function and careful comparison between candidate minimizers.

Our analysis proves that the structure do not develop plastic hinges if the resistance γ fulfils

γ ≥ L2

12
‖f‖L∞ ,

say a condition which entails (by Theorem 3.5) that maximum bending moment of the purely
elastic solution ([18]) does not exceed γ (see (3.10).

For generic data f in L∞, we show Euler equations (Theorem 3.1) and a Compliance Identity
(Theorem 3.2) fulfilled by extremals of F : they provide the essential tools in the comparison
between competing functions with the aim of selecting minimizers with relevant qualitative
properties, without quantitative knowledge about their derivative jumps.
We show an explicit formula (Theorem 2.8) for the Gamma limit F∗ of Fε and show that
the same L∞ safe and regularity condition above (valid for F, F , Fε) apply also to F∗ :

F∗(w) := Γ (w∗BH) limε→0 Fε(w) =

=





∫

R

(
ϕ∗∗(ẅ) − fw

)
dx + γ

(∑

Sẇ

|[ẇ]| + ‖(w′′)c‖T

)

∀w ∈ BH : spt w ⊂ [0, L] ,

+∞ else.

(1.5)
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where (w′′)c is the Cantor part of w′′, ‖ · ‖T denotes the total variation in R and

ϕ∗∗(s) =
{

(EJ/2) s2 if |s| ≤ γ/(EJ)
γ |s| − γ2/(2EJ) if |s| > γ/(EJ) .

(1.6)

We emphasize that the estimate |ẅ| ≤ γ/(EJ) a.e. in (0, L) (proven for any minimizer w of
F) entails:

ϕ∗∗(ẅ) = ϕ(ẅ) and F∗(w) = F(w) = F (w) ∀w ∈ argminF . (1.7)

All functionals F, F , Fε, F∗ refer to relaxed homogeneous Dirichlet boundary conditions
(the beam is clamped at both endpoints); nevertheless minimizers with hinges located at
the boundary are not excluded: if this phenomenon takes place then also boundary creases
add a positive cost in the energy.

The structure of minimizers under symmetric load with a strict sign is described by main
results (Theorem 3.8, Remarks 3.13, 4.9). In the simple case of constant load f ≡ −λ, λ > 0,
this analysis provides the following complete picture as long as λ increases:
• for 0 ≤ λ ≤ 12 γ /L2 , F has exactly one minimizer which turns out to be C3(R) , say we
are in the elastic regime;
• for 12 γ /L2 < λ < 16 γ /L2 , F still has exactly one minimizer but there is the develop-
ment of 2 plastic hinges at the boundary;
• for λ > 16 γ /L2 there is collapse: the infimum of F is −∞;
• in all the range 0 ≤ λ < 16 γ /L2 the minimizer is given (see (3.66)) by

zλ(x) = −λx2 (x− L)2/(24EJ) − 1
(2EJ)

(λ L2/12− γ)+ x(L− x) ,

the bending moment EJ z̈λ never exceeds γ, say |z̈λ(x)| ≤ γ/(EJ) , and

min F = F (zλ) = −EJ

2

∫ L

0

|z̈λ|2 = − 1
1440 EJ

λ2 L5−L
(
(λL2/12− γ)+

)2
/(2EJ) ;

• for 12 γ /L2 < λ < 16 γ /L2 the (unique and creased) equilibrium fulfils also

EJ z̈λ(0) = γ sign[żλ](0) = EJ z̈λ(L) = γ sign[żλ](L) = −γ

which are generic properties of minimizers with hinges at endpoints.

As far as it concerns penalized functionals Fε we remark that non uniqueness phenomena
may occur even for constant load (see Theorem 3.15 and related Example 3.16): both smooth
and creased minimizers may appear for suitable choice of constant load and parameter ε.

In the fourth section we apply our techniques to an hinged-hinged elastic-plastic beam
with cost-free hinges at both endpoints: say hinges at the endpoints are assumed “a priori”
existing. The related energy functional

Λ(w) =





∫ L

0

(
EJ

2
|ẅ|2 − fw

)
dx + γ

∑

Sw′

|[w′]|

if w ∈ SBH(0, L) : w(0) = w(L) = 0 ,

+∞ otherwise for w in BH(0, L) ,

(1.8)
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takes into account only “internal” hinges while rotations at the boundary of the beam don’t
pay additional energy. About hinged-hinged elastic-plastic beam we prove in Theorem 4.1
that any minimizer of (1.8) belongs to H2(0, L) and coincides with the solution ω of the
hinged-hinged purely elastic beam:

ω ∈ H2(0, L) ∩H1
0 (0, L) , s.t. ω′′′′ = f (0, L) .

We emphasize that SBH functions may have creases (i.e. plastic hinges) but cannot have
jumps: all internal creases pay in both functionals (1.1) and (1.8) while boundary creases
pay only in functionals (1.1) and they are cost free in functional (1.8).

About coupling of elastic and plastic energies for plates and partial regularity of related
minimizers we refer to [13],[4],[5],[6],[7],[10].

In the following we assume EJ = 1 without loss of generality, possibly by re-scaling γ and
f : anyway we emphasize that the main results of the paper (Theorems 2.1, 3.5, 4.1) hold
true unchanged even if EJ 6= 1 (see Remark 4.9) while Theorem 3.8 about structure of
minimizers hold true up to suitable back-scaling of constant (shown in Remark 4.9).

Outline of the paper
1. Introduction
2. Clamped elastic-plastic beam: existence of minimizer
3. Clamped elastic-plastic beam: structure of minimizer
4. Hinged-hinged elastic-plastic beam

2. Clamped-clamped elastic-plastic beam: existence of minimizer

We denote by M(R) the space of Radon measures on R.
We denote by ‖µ‖T the total variation in R of µ and by ‖µ‖T (E) the total variation in E for
any µ ∈M(R) and any Borel set E ⊂ R.
Any µ ∈M(R) can be split into three parts, say µ = µa +µj +µc where µa is the absolutely
continuous part, µj is the purely atomic part and µc is the diffuse singular one (the Cantor
part of µ): the decomposition is unique. Analogously, if I is an interval, then any w ∈ BV (I)
can be represented by w = wa+wj+wc where wa has an absolutely continuous distributional
derivative (wa)′ = (w′)a ∈ L1(I), wj is a piece-wise constant function and (wj)′ = (w′)j

is purely atomic), wc is a Cantor-type function (i.e. (wc)′ = (w′)c : for any w ∈ BV (I)
these three functions are uniquely defined up to additive constants ([1], Corollary 3.33), the
constants are 0 when the support of w is a compact subset of I.
We label ẇ = (wa)′ the absolutely continuous part of distributional derivative w′, hence we
write as follows the unique decomposition of the derivative for a BV function with compact
support: w′ = ẇ + (wj)′ + (wc)′.
The set of approximate discontinuity of ẇ (see [1]) is labelled by Sẇ and will be shortly
referred to as the singular set of ẇ .

We fix the beam length L and the load f

L > 0 , f ∈ L∞ , (2.1)



6 D. Percivale and F. Tomarelli

introduce two function spaces

BH(I) = {w ∈ L1(I) : w′′ ∈M(I)}
SBH(I) = {w ∈ L1(I) : w′′ ∈M(I), (w′′)c ≡ 0}

and formalize homogeneous Dirichlet boundary condition by introducing the admissible sets

K = {w ∈ SBH(R) : spt w ⊂ [0, L]} (2.2)

K∗ = {w ∈ BH(R) : sptw ⊂ [0, L]}. (2.3)

In this section we study the existence of minimizers for functional F : BH(R) → R∪{+∞}
defined by

F(w) =





∫

R

(
1
2
|ẅ|2 − fw

)
dx + γ

∑

Sẇ

|[ẇ]| if w ∈ K

+∞ otherwise in BH(R).
(2.4)

The interval [0, L] represents the reference configuration of an elastic plastic beam, f is the
vertical dead load acting on the beam, w is the vertical displacement while points in the
singular set Sẇ are the plastic hinges of the beam. Here γ > 0 is a constant depending on
the material and the functional F describes the total energy related to deformation of a
clamped elastic-plastic beam with unitary flexural rigidity EJ.
We emphasize that there are sequences {wn} ⊂ K such that F(wn) is bounded but {wn}
is not compact in K with respect to any topology which renders F lower semicontinuous;
therefore existence of minimizers for (2.4) cannot be proven by standard direct methods in
the Calculus of Variations.
From now on if w is a minimum point of F we shall briefly write w ∈ argminF . The main
result of this section is the following statement showing that argminF is not the empty set.

Theorem 2.1. (L∞ safe load condition for clamped beam)
Assume that f ∈ L∞(R) satisfies

‖f‖L∞(0,L) <
16 γ

L2
(2.5)

Then F achieves a finite minimum and

‖ẅ‖L∞ ≤ γ ∀w ∈ argminF . (2.6)

Moreover there is at least one minimizer w of F such that ](Sẇ) ≤ 2.

The proof of Theorem 2.1 will be achieved at the end of this section through several steps,
the first of which is the following Poincaré-type inequality. In the next section we show that
in many relevant cases there is also uniqueness for minimizers of F .

Lemma 2.2. (L1−BH Poincaré Inequality) Let v ∈ BH(R), s.t. spt v ⊂ [0, L] then

‖v‖L1 ≤ L2

16
‖v′′‖T (R) . (2.7)
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The equality in (2.7) holds true iff v = rs

rs(x) = s

(
L

2
−

∣∣∣∣ x− L

2

∣∣∣∣
)+

∀s ∈ R (2.8)

Proof -
Fix v ∈ K∗ = {v ∈ BH(R) s.t. spt v ⊂ [0, L]}. Without loss of generality we assume v 6≡ 0.
Then define

ṽ(x) =





convex envelope of − |v| evaluated at x if x ∈ [0, L]

0 if x 6∈ [0, L] .

We claim that ṽ fulfils



ṽ ∈ BH(R) , spt ṽ ⊂ [0, L] , v ≤ 0 , ṽ convex in [0, L] ,

∫ L

0

|ṽ| dx =
∫ L

0

−ṽ dx ≥
∫ L

0

|v| dx , ‖ṽ ′′‖T ≤ ‖v′′‖T .

(2.9)

The only non trivial point in (2.9) is the estimate of total variation: ‖ṽ ′′‖T ≤ ‖v′′‖T ,

which we prove below.
Set ψ(s) = −|s|, ϕ(x) = −|v(x)| = ψ ◦ v, so that v ∈ BH(R), ψ ∈ BH(R), ψ is Lipschitz
and ψ(0) = 0. Hence, by Theorems 1 and 4 and Lemma 3.1 of [17], −|v| = ψ ◦ v belongs to
BH(R), and we can evaluate its second derivative by suitable chain-rule for superposition
of BH functions (here sign(0) = 0, sign(s) = s/|s|, s 6= 0):

(−|v|)¨ = − sign(v) v̈ (2.10)

((−|v|)′′)j = − sign(v) (v′′)j −
∑

t : v(t)=0

( |v̇+(t)|+ |v̇−(t)| ) δt (2.11)

((−|v|)′′)c = − sign(v) (v′′)c (2.12)
The three measures in (2.10)-(2.12) are mutually singular.
Moreover the absolutely continuous (2.10) and Cantor part (2.12) obviously do not increase
their total variation with respect to the corresponding part of v′′, and the respective in-
equalities still hold true after taking the convex envelope:

‖(ṽ ′′)¨‖T ≤ ‖v̈‖T ,

‖(ṽ ′′)c‖T ≤ ‖(v)c‖T .

On the other hand, total variation of (2.11) could be bigger than total variation of (v′′)j

due to sign changes of v. Nevertheless, since ṽ is strictly negative in (0, L), the terms
( |v̇+(t)|+ |v̇−(t)| ) δt disappear in the convex envelope for any t 6= 0, L. So

‖(ṽ ′′)j‖T ≤ ‖(v′′)j‖T + |v̇+(0)| + |v̇−(L)| ,
‖ṽ ′′‖T (J) ≤ ‖v′′‖T (J) ∀ open interval J ⊂⊂ (0, L) .

To tame the total variation at the boundary of the interval we set z(x) = −|v(x)| and we
observe that, either
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• ˙̃v+(0) = ż+(0) , hence ‖ṽ′′‖T ({0}) = ‖v′′‖T ({0}) , ‖ṽ′′‖T ([0,L]) < ‖v′′‖T ([0,L]) ;
or
• ˙̃v+(0) 6= ż+(0) , hence ˙̃v+(0) < ż+(0) , ṽ is strictly less than z in an open interval (0, x̄)
(where x̄ is chosen such that the interval is the maximal one fulfilling this property), so
ṽ(x̄) = z(x̄); then by convexity ż−(x̄) ≤ ˙̃v−(x̄) ≤ ˙̃v+(x̄) ≤ ż+(x̄), 0 ≤ [ ˙̃v](x̄) ≤ [ż](x̄) so that

‖ṽ ′′‖T ({x̄}) ≤ ‖v′′‖T ({x̄}) ,

moreover, by taking into account that ż±(x̄) = − sign(v(x̄)) v̇± , spt v′′ ⊂ [0, L] and [ ˙̃v](0) is
the slope of ṽ in the interval (0, x̄) we deduce

0 > −|ṽ ′′|T ({0}) = [ ˙̃v](0) = ˙̃v+(0) = ˙̃v−(x̄) ≥ ż−(x̄) = − sign(v(x̄)) v̇−(x̄) =

= − sign(v(x̄)) (v′′)
(
[0, x̄)

) ≥ −|v′′|([0, x̄)
)
,

and since ṽ is affine linear in (0, x̄)

‖ṽ ′′‖T ([0,x̄)) < ‖v′′‖T ([0,x̄)) ;

the behavior around L can be dealt exactly as the one around 0, so we achieve the inequality
‖ṽ′′‖T ([0,L]) < ‖v′′‖T ([0,L]) involving total variations in second case too.
Then claim (2.9) is proven in any case. By (2.9) we get

inf
{‖v′′‖T

‖v‖L1
: v ∈ K∗

}
= inf

{‖v′′‖T

‖v‖L1
: v ∈ K∗, v convex in [0, L]

}
. (2.13)

If we take v ∈ K∗, v convex in [0, L] and v 6≡ 0 , then

−∞ < v′+(0) ≤ 0 , 0 ≤ v′−(L) < +∞
and we can define

v̌(x) = (v′+(0)x) ∨ (
(v′−(L)(x− L)

)
if x ∈ [0, L] and v̌(x) ≡ 0 otherwise .

Then v̌ ≤ v and ‖v̌ ′′‖T (R) = 2(v−(L)− v′+(0)) = ‖v′′‖T ([0,L]) . So

inf { ‖v′′‖T / ‖v‖L1 : v ∈ K∗, v convex in [0, L] } ≥

≥ inf { ‖v′′‖T / ‖v‖L1 : v(x) = (−ax) ∨ (b(x− L)), a > 0, b > 0 } =

inf
{
4(a + b)2/(abL2) : a > 0, b > 0

}
= 16/L2.

(2.14)

Actually the infimum in (2.14) is a minimum and is achieved iff a = b say only when v
is a roof function. By summarizing (2.13),(2.14) prove (2.7). About the fact that only roof
functions (2.8) achieve the equality in (2.7) we emphasize that also the transformation v → ṽ
strictly reduces the relevant quotient |v′′|T / ‖v‖L1 whenever |v| 6≡ |ṽ|, since in such case
inequality for

∫ |v| in (2.9) is strict.
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Remark 2.3. There are sequences vk in SBH(R) s.t. F(vk) ≤ A < +∞, for all k but

vk
w∗BH

⇀ v ∈ BH \ SBH. Hence F is not seq. w∗BH l.s.c.
On the other hand choosing alternative extension G =

∫
R

(
EJ
2 |ẅ|2− fw

)
dx + γ

∑
Sẇ
|[ẇ]|

instead of F given by (1.2) would be inappropriate since inf G = −∞ even for constant load.
More presisely we can exhibit v, vk as claimed above and in addition such that

v′′ = (v′′)c, v′′k = (v′′k )j and, if f ≡ 1, G(−tv) = −t

∫ 1

0

v → −∞, as t →∞ :

let C = C(x), Ck = Ck(x), x ∈ [0, 1], be respectively the Cantor-Vitali function and its
monotone, piece-wise constant approximation (related to subintervals of length 3−k). Set

v(x) =





∫ x

0

C(4t/L) dt 0 ≤ x ≤ L/4

2
∫ L/4

0

C(4t/L) dt −
∫ L/2−x

0

C(4t/L) dt L/4 ≤ x ≤ L/2

v(L− x) L/2 ≤ x ≤ L

vk(x) =





∫ x

0

Ck(4t/L) dt 0 ≤ x ≤ L/4

2
∫ L/4

0

Ck(4t/L) dt −
∫ L/2−x

0

Ck(4t/L) dt L/4 ≤ x ≤ L/2

vk(L− x) L/2 ≤ x ≤ L ;

since there is no crease at points L/4, L/2, 3L/4, then we deduce:
v′′ = (v′′)c 6≡ 0 , v′′k = (v′′k )j , ‖v′′‖T = 4 = ‖v′′k‖T , v > 0 in (0, 1),

∫ 1

0
v > 0,∣∣∫ fvk

∣∣ ≤ ‖vk‖L1‖f‖L∞ ≤ 2 L
∫ L/4

0
Ck(4t/L) dt ‖f‖L∞ ≤ (L2/2)

∫ 1

0
Cdt .

Motivated by the previous Remark, we introduce the following family of penalized functionals
Fε dependent on parameter ε > 0 : these functionals are seq.w∗BH l.s.c. but non convex.

Fε(w) =





∫

R

(
1
2
|ẅ|2 − fw

)
dx + ε ](Sẇ) + γ

∑

Sẇ

|[ẇ]| if w ∈ K

+∞ otherwise in BH(R)
(2.15)

where ] denotes the counting measure.

Theorem 2.4. Assume that f ∈ L∞(R) satisfies (2.5) then Fε achieves a finite minimum.

Proof - By Lemma 2.2 we get, for any w ∈ SBH such that sptw ⊂ [0, L],

γ ‖v′′‖T −
∫

fvdx ≥ γ‖v′′‖T −‖f‖L∞‖v‖L1 >

(
γ − ‖f‖L∞

L2

16

)
‖v′′‖T . (2.16)

Then we apply the direct method as like as in [16] (Lemma 3.2) and we get the thesis.
The only difference with respect to [16] is the use of L1−BH Poincaré inequality instead of
L1−BH Poincaré inequality to get inequality (2.16).
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Remark 2.5. The safe load constant 16γ/L2 in (2.5) is sharp for load in L∞.
In fact, for any δ > 0, there are examples with ‖f‖L∞ = 16γ/L2 + δ and inf F = inf Fε =
−∞ : e.g. the choices

f ≡ 16
γ

L2
+ δ , zt(x) = t

(
L

2
−

∣∣∣∣ x − L

2

∣∣∣∣
)+

entail

Sżt = { 0 , L/2 , L } , z̈t ≡ 0, γ
∑

Sżt

|[żt]| = 4γt

∫ L

0

f zt dx = t
(
4γ + L2δ/4

)

Fε(zt) = 3 ε − δ
L2

4
t → −∞ as t → +∞, ∀ε ≥ 0 .

Remark 2.6. The L∞ safe load condition (2.5) in Theorem 2.1 is weaker (for bounded load)
than the safe load for measure load (3.3) of [16] or (3.2) of [15]: say |f |T < 8γ/L.

The following result has been proven in Theorem 4.1 of [15] and provides a bound on hinges
number for minimizers of Fε which is independent of ε.

Theorem 2.7. Assume (2.5) and let v ∈ argminFε. Then ](Sv′) ≤ 2 .

We define F∗ : BH(R) → R ∪ {+∞}

F∗(w) =





∫

R
(ϕ∗∗(ẅ)− fw) dx + γ

∑

Sẇ

|[ẇ]| + γ‖(w′′)c‖T if w ∈ K∗

+∞ otherwise in BH(R)
(2.17)

where ϕ∗∗ is the convex envelope of

ϕ(s) = min
{

s2

2
, γ|s|

}
(2.18)

that is

ϕ∗∗(s) =





s2

2
if |s| ≤ γ

γ|s| − γ2

2
otherwise.

(2.19)

Theorem 2.8.

Γ (w∗BH) lim
ε→0

Fε(w) = F∗(w) . (2.20)

Proof - (Lower bound) We claim that for any εn → 0, w ∈ K∗, wn ∈ K, wn
w∗ BH−→ w

lim inf
n

Fεn(wn) ≥ F∗(w) . (2.21)

It is not restrictive assuming Fεn(wn) < +∞, hence wεn , w belong to SBH and have support
in [0, L].
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Since ε > 0 and ϕ ≥ ϕ∗∗, we get

Fεn(wn) ≥ F(wn) ≥
∫ L

0

ϕ∗∗(ẅn) dx + γ
∑

Sẇn

|[ẇn]|−
∫ L

0

fwn dx = F∗(wn). (2.22)

Since γ is the recession value at infinity for ϕ∗∗ then F∗ is seq. l.s.c. ([1], Th.5.2). By taking
the liminf in (2.22) we obtain (2.21).

(Recovery sequence) Select w ∈ K∗ such that (ẇ)a is a continuous piecewise affine function.
Recall that ẅ = (ẇ)′a(x); so that |(ẇ)′a(x)| > γ if and only if x belongs to ∈ ∪p

i=1(ai, bi)
where (ai, bi) ⊂ [0, L]. Set li = bi − ai, I = [0, L] \ ∪p

i=1(ai, bi).
If the intervals (ai, bi) are empty then the following approximation procedure is not nec-
essary; otherwise choose hε → +∞ such that εhε → 0 as ε → 0+, fix an arbitrary choice
of sij ∈ (ai + h−1

ε jli, ai + h−1
ε (j + 1)li) and tj ∈ [h−1

ε j L, h−1
ε (j + 1) L). Then, by labelling

1E(x) = 1 if x ∈ E and 1E(x) = 0 else (for any E ⊂ R), we define, for a.e. x ∈ [0, L],

θε(x) = (ẇ)a(x)1I(x)+

+
p∑

i=1




hε−1∑

j=0

(w′)a(sij)1(ai+lih
−1
ε j,ai+lih

−1
ε (j+1))(x)


1(ai,bi)(x)+

+(ẇ)j(x) +
hε−1∑

j=0

(w′)c(tj)1[Lh−1
ε j,Lh−1

ε (j+1))(x)

so that |(ϑε)′a| ≤ γ a.e. Moreover define wε ∈ K by wε(0) = 0 and

w′ε(x) = θε(x)− 1
L

∫ L

0

θε(x) dx if x ∈ [0, L] , w′ε(x) = 0 if x 6∈ [0, L].

Then |ẅε| ≤ γ a.e. and

ε](Sẇε) ≤ ε](Sẇ) + ε(hε + 1)(1 + p) → 0 (2.23)
∑

Sẇε

|[ẇε]| =

=
∑

Sẇ

|[ẇ]| +
hε−1∑

j=0

|(w′)c(tj)− (w′)c(tj−1)|+

+
p∑

i=1

hε−1∑

j=0

|(w′)a(sij)− (w′)a(si,j−1)| ≤

≤
∑

Sẇ

|[ẇ]|+ ‖(w′′)c‖T +
∫

∪p
i=1(ai,bi)

|(ẇa)′(x)| dx ≤

≤
∑

Sẇ

|[ẇ]| +‖(w′′)c‖T +
∫

∪p
i=1(ai,bi)

|ẅ(x)| dx ≤ ‖w′′‖T .

(2.24)

Then
wε ⇀ w in w∗BH . (2.25)
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Moreover, since ẅε = ẅ a.e. in I and ẅε = 0 in ∪i(ai, bi), we obtain

Fε(wε) ≤
∫

I

1
2
|ẅ|2 dx +

∫

∪p
i=1(ai,bi)

γ|ẅ| dx −
∫ L

0

fw dx +

+ γ
∑

Sẇ

|[ẇ]| + γ ‖(w′′)c‖T + ε ](Sẇε) −
∫ L

0

f(wε −w) dx

=
∫ L

0

(ϕ(ẅ)− fw) dx +

+ γ
∑

Sẇ

|[ẇ]| + γ ‖(w′′)c‖T + ε ](Sẇε
) −

∫ L

0

f(wε −w) dx

and by taking the lim sup of both sides, by (2.23) and (2.25) we get

lim supFε(wε) ≤
∫ L

0

ϕ(ẅ) dx−
∫ L

0

fw dx + γ‖(w′′)c‖T + γ
∑

Sẇ

|[ẇ]| . (2.26)

So, by referring to notion of sequential Γ lim sup of the family Fε

F∗+(w) = inf{ lim supFε(wε) : wε ⇀ w w∗BH} ∀w ∈ K∗ ,

we have proven that for every w ∈ K∗ with continuous piecewise affine (ẇ)a

F∗+(w) ≤
∫ L

0

ϕ(ẅ) dx−
∫ L

0

fw dx + γ‖(w′′)c‖T + γ
∑

Sẇ

|[ẇ]|. (2.27)

Choose w ∈ K∗. Then there exists a sequence of continuous piecewise affine functions σh →
(ẇ)a in W 1,1(0, L). We set

zh(x) = σh(x) + (ẇ)j(x) + (ẇ)c(x)

and we define wh ∈ K∗ by setting wh(0) = 0, wh ≡ 0 in R \ (0, L) and

ẇh(x) = zh(x)− 1
L

∫ L

0

zh a.e. x ∈ [0, L] .

We have wh → w strongly in BH. By recalling that F∗+ is sequentially l.s.c. in the w∗BH
convergence ([8]), definition (2.16) together with (w′′h)c = (w′′)c and (ẇh)j = (ẇ)j yield

F∗+(w) ≤ lim inf F∗+(wh) ≤

≤ lim inf
∫ L

0

ϕ(ẅh) dx−
∫ L

0

f wh dx + γ‖(w′′h)‖T + γ
∑

Sẇh

|[ẇh]| =

= lim inf
∫ L

0

ϕ(ẅh) dx−
∫ L

0

f wh dx + γ‖(w′′)‖T + γ
∑

Sẇh

|[ẇ]| =

=
∫ L

0

ϕ(ẅ) dx−
∫ L

0

fw dx + γ‖(w′′)c‖T + γ
∑

Sẇ

|[ẇ]|.

(2.28)
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By a classic relaxation result ([2] Th. 2.6.4, p.74) for every w ∈ K∗ there exists a sequence
ζh ∈ W 1,1(0, L) such that ζh ⇀ ẇa weakly in W 1,1 and ,by (ẇa)′ = ẅ a.e.,

∫ L

0

ϕ(ζ̇h) dx →
∫ L

0

ϕ∗∗((ẇa)′) dx =
∫ L

0

ϕ∗∗(ẅ) dx =
∫

R
ϕ∗∗(ẅ) dx.

Now set vh(0) = 0, vh ≡ 0 in R \ (0, L) and for a.e. x ∈ (0, L)

v′h(x) = ζh(x) + (ẇ)j(x) + (ẇ)c(x)− 1
L

∫ L

0

(ζh + ẇj + ẇc) dx .

Then vh ∈ K∗, vh ⇀ w in w∗BH. We exploit sequential lower semicontinuity of F∗+ once
more by evaluating (2.28) at vh, we get

F∗+(vh) ≤
∫ L

0

ϕ(ẅ) dx−
∫ L

0

fw dx + γ‖(w′′)c‖T + γ
∑

Sẇ

|[ẇ]|

F∗+(w) ≤ lim inf F∗+(vh) =

=
∫ L

0

ϕ∗∗(ẅ) dx −
∫ L

0

fw dx + γ‖(w′′)c‖T + γ
∑

Sẇ

|[ẇ]| = F∗(w).

The above inequality and (2.21) together entail (2.20).

Theorem 2.9. (Relaxed functional)

sc−F (w) = Γ (w∗BH) lim
ε→0

Fε(w) = F∗(w) (2.29)

Proof - The same proof of (2.8) apply to this case without any restriction in the choice of
the sequence hεn → +∞.

We define

F̃(w) =





F(w) if ](Sẇ) ≤ 2

+∞ otherwise .
(2.30)

F̃ε(w) =





Fε(w) if ](Sẇ) ≤ 2

+∞ otherwise
(2.31)

and show the following statement.

Theorem 2.10.

Γ(w∗BH) lim F̃ε(w) = F̃(w)

Proof - (Lower bound) Let wε ∈ BH(R), wε ⇀ w in w∗ − BH and assume without
restriction that F̃ε(wε) ≤ C. Since wε ∈ SBH and ](Sẇε) ≤ 2, we get ](Sẇ) ≤ 2 . Then by
applying semicontinuity Theorem 4.7 in [1] to the functional w → F̃(w) + ε](Sẇ), we get

lim inf F̃ε(wε) ≥ lim inf F̃(wε) ≥ F̃(w) = F(w) .
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(Upper bound) For every w ∈ BH

lim F̃ε(w) = F̃(w) .

Then the proof is achieved.

Now we can prove the main result of this section.

Proof of Theorem 2.1 Let vε ∈ argminFε, then Fε(vε) ≤ Fε(0) = 0, hence by Lemma 2.2

1
2

∫

R
|v̈ε|2 dx +ε](Sv̇ε

)+γ
∑

Sv̇ε

|[v̇ε]| ≤
∫

R
fvε dx ≤

≤ ‖f‖L∞‖vε‖L1 ≤ L2

16
‖f‖L∞





∫

R
|v̈ε| dx +

∑

Sv̇ε

|[v̇ε]|


 ≤

≤ L5

256
‖f‖2L∞ +

1
4

∫

R
|v̈ε|2 dx +

L2

16
‖f‖L∞

∑

Sv̇ε

|[v̇ε]|.

(2.32)

By (2.32) and (2.5) we get
∫

R
|v̈ε|2 dx ≤ C;

∑

Sv̇ε

|[v̇ε]| ≤ C (2.33)

where C > 0 is independent of ε and, by Theorem 2.7, ](Sv̇ε) ≤ 2.
Then by applying compactness Theorem 4.8 in [1] to the sequence v̇ε in SBV (R) we get,
up to subsequences, that vε → v ∈ SBH(R) in w∗BH, v ∈ K and ](Sv̇) ≤ 2 . Moreover
v ∈ argminF∗ and inf F = F∗(v) due to Theorems 2.8, 2.9
Theorem 2.10, ](Sv̇) ≤ 2 and minFε = min F̃ε entail inf F = min F̃ = F(v) = minF .
Hence F achieves a finite minimum and at least one among its minimizers fulfils ](Sẇ) ≤ 2 .

By relaxation (Theorem 2.9)

minF = minF∗ , argminF ⊂ argminF∗ . (2.34)

Then (w′′)c ≡ 0 for any w ∈ argminF .
From ϕ∗∗(ẅ) = (ẅ)2/2 in the set{|ẅ| ≤ γ} and F∗(w) = F(w) for any w∈ argminF , we get

∫

[0,L]∩{|ẅ|>γ}
ϕ∗∗(ẅ) dx =

∫

[0,L]∩{|ẅ|>γ}

1
2
|ẅ|2 dx (2.35)

by substitution of (2.19)

0 =
∫

[0,L]∩{|ẅ|>γ}

(
−1

2
|ẅ|2 + γ|ẅ| − γ2

2

)
= −

∫

[0,L]∩{|ẅ|>γ}

1
2

(|ẅ|2 − γ
)2

(2.36)
say

| {x : |ẅ(x)| > γ} | = 0 . (2.37)
Then (2.6) is proven.
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Remark 2.11. About Theorem 2.1 we notice that in order to achieve only the existence of a
minimizer for F (without additional information) a shorter proof is the following one.

Let vε ∈ argminFε, then ](Sv̇ε) ≤ 2 by Theorem 2.6. By reasoning as in the deduction of
(2.32),(2.33) and exploiting Theorems 4.7 and 4.8 of [1] we find a subsequence s.t. (without
relabelling) vε → v in w∗BH, with v ∈ SBH(R) and ](Sv̇ε

) ≤ 2 ; moreover

lim inf
ε→0

∫ L

0

|v̈ε|2 dx ≥
∫ L

0

|v̈|2 dx

lim inf
ε→0

∑

Sv̇ε

|[v̇ε]| ≥
∑

Sv̇

|[v̇]|

and by ε ](Sv̇ε
) → 0 we get

lim inf
ε→0

Fε(vε) ≥ F(v) .

If w is any other admissible function in K we get

F(w) = lim inf
ε→0

Fε(w) ≥ lim inf
ε→0

Fε(vε)

hence F(v) ≤ F(w) ∀w ∈ K.

3. Clamped elastic-plastic beam: structure of minimizer

In this section we deduce sharp regularity conditions and structure properties for regular
and non regular minimizers of F by suitable estimates based on Green function.
We start by deducing a complete set of Euler equations: a differential relationship in (0, L)
and Weierstrass-Erdmann type corner conditions at singular set, as shown by the following
statement.

Theorem 3.1. (F Euler-Lagrange equations) Assume (2.5) and w ∈ argminF . Then

(ẅ)′′ = f in (0, L) (3.1)
ẅ−(x) = γ sign([ẇ])(x) in Sẇ ∩ (0, L] (3.2)
ẅ+(x) = γ sign([ẇ])(x) in Sẇ ∩ [0, L) (3.3)

In particular ẅ ∈ H2(0, L), hence ẅ and
...
w = (ẅ)′ are continuous in [0, L] .

Proof - Let ϕ ∈ C2
0 (R), spt ϕ ⊂ [0, L]: the first variation of F yields

∫ L

0

{ẅϕ′′ − fϕ} dx = 0

thus proving (3.1) after integrating by parts twice; hence ẅ belongs to H2(0, L).
For any point x ∈ Sẇ and any ϕ ∈ BH(R) ∩ C2(R \ {x}), spt ϕ ⊂ [0, L], by recalling that
w ∈ SBH, the first variation of F yields

0 =
∫ x

0

{ẅϕ′′ − fϕ} dx +
∫ L

x

{ẅϕ′′ − fϕ} dx + γ sign([ẇ])(x) [ϕ̇](x) =
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= −
∫ L

0

{...wϕ̇ + fϕ} dx− ẅ(x)[ϕ̇](x) + γ sign([ẇ])(x) [ϕ̇](x) =

= +
∫ L

0

{(ẅ)′′ϕ− fϕ} dx + [
...
w](x) ϕ(x)− ẅ(x) [ϕ̇](x) + γ sign([ẇ])(x) [ϕ̇](x)

and (3.2), (3.3) follow by (3.1).

Theorem 3.2. (F Compliance identity) Assume (2.5). Then the following identity holds true
for any w in SBH(R) satisfying Euler-Lagrange equations (3.1)-(3.3) and sptw ⊂ [0, L] :

F(w) = − 1
2

∫ L

0

|ẅ|2 dx . (3.4)

In particular any w ∈ argminF fulfills (3.4).

Proof - By (3.1) we have (ẅ)′′ = f in D′(0, L).
Then by taking into account w(0) = w(L) = 0 and

w′′ = ẅ +
∑

Sẇ∩(0,L)

[ẇ] d ] Sẇ in D′(0, L)

we get
∫

R
fw dx =

∫ L

0

fw dx =
∫ L

0

(ẅ)′′w dx = −
∫ L

0

(ẅ)′w′ dx =

=
∫ L

0

ẅ d(w′′)− ẅ−(L) ẇ−(L) + ẅ+(0) ẇ+(0) =

=
∫ L

0

|ẅ|2 dx +
∑

Sẇ∩(0,L)

ẅ[ẇ] + ẅ−(L) [ẇ](L) + ẅ+(0) [ẇ](0) .

By substitution of (3.2),(3.3):
∫ L

0

fw dx =
∫ L

0

|ẅ|2 + γ
∑

Sẇ

|[ẇ]|

and thesis follows by the definition of F .

A straightforward consequence of compliance identity is the following remark about the
relevant structure of minimizers.

Lemma 3.3. Any w ∈ argminF can be uniquely decomposed (thank to (3.1)) as follows

w = u + v , (3.5)

where u is the solution of (3.9) and

v ∈ SBH(R) , spt v ⊂ [0, L] , (v̈)′′ = 0 in (0, L) . (3.6)

Hence, for suitable a, b ∈ R,

v̈(x) = (ax + b)1(0,L)(x) (3.7)
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and, by
∫ L

0
u′′ v̈ =

∫ L

0
u (v̈)′′ = 0 and the compliance identity,

F(w) = −1
2

∫ L

0

|ẅ|2 = −1
2

∫ L

0

|u′′|2 −
∫ L

0

u′′ v̈ − 1
2

∫ L

0

|v̈|2 =

=−1
2

∫ L

0

|u′′|2 − 1
2

∫ L

0

|v̈|2 = −1
2

∫ L

0

|u′′|2 −
(

a2

6
L3 +

ab

2
L2 +

b2

2
L

)
.

(3.8)

We proceed by recalling some regularity results concerning minimizers of F which are in the
same spirit of those proven in ([15]) and ([16]).

Theorem 3.4. (L∞ bending moment regularity condition for clamped beam)
Let u be the unique solution of




u ∈ H2(R)
u′′′′ = f in (0, L)
spt u ⊂ [0, L] .

(3.9)

If
‖u′′‖L∞(0,L) ≤ γ (3.10)

then u is a minimizer of F .
If the inequality in (3.10) is strict then the minimizer is unique.

Proof - The proof could be deduced by the same argument (here β = 0) in the proofs
of Theorem 3.6 of [16] and related excess estimate (Lemma 3.5 of [16]), where β strictly
positive does not paly any role. For reader convenience we make it explicit in the present
simpler situation as follows.
Let u solves (3.9) and choose v ∈ K. Then

v̈ = v′′ − [v̇] d] Sv̇ , u′′′′ = f in (0, L)

and by exploiting convexity, u′′ ∈ C0([0, L]), u(0) = u(L) = v(0) = v(L) = 0, we get

F(v) ≥ F(u) +
∫ L

0

u′′(v̈ − u′′)dx−
∫ L

0

f(v − u)dx + γ
∑

Sv̇

|[v̇]| =

= F(u) +
∫ L

0

u′′(v′′ − u′′)dx−
∫ L

0

f(v − u)dx +
∑

Sv̇

(γ|[v̇]| − u′′[v̇]) =

= F(u) +
∑

Sv̇
(γ|[v]| − u′′[v])

.

(3.11)
Inequalities (3.10) and (3.11) entail

F(v) ≥ F(u) +
∑

Sv̇

(γ|[v̇]| − u′′[v̇]) (3.12)

so that ‖u′′‖L∞(R) ≤ γ entails u is a minimizer and if in addition ‖u′′‖L∞(R) < γ then no
minimizer can have creases.
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From now on u will always denote the function introduced by (3.9) in Theorem 3.4.
The following result provides a sharp condition on the external load f which in turn implies
(3.10) and hence regularity of minimizers.

Theorem 3.5. (L∞ load regularity condition for clamped beam) Assume

‖f‖L∞(0,L) ≤
12γ

L2
(3.13)

then F achieves its finite minimum when evaluated at the solution u of (3.9) (which has no
crease: Su̇ = ∅).
Moreover (3.13) entails that u is the unique minimizer of F .

Before proving Theorem 3.5 we state a useful representation formula and an estimate for u′′

in the following Lemma.

Lemma 3.6. Let u be the unique solution of problem (3.9). Then

u′′(x) =
∫ L

0

K(x, y) f(y) dy (3.14)

where for x, y ∈ [0, L]

K(x, y) =
1

2 L3
(2x− L) y2 (3L− 2y) − 1

2 L
y2 + (y − x)+ . (3.15)

Moreover

max
x∈[0,L]

∫ L

0

|K(x, y)| dy =
L2

12
, (3.16)

‖u′′‖L∞ ≤ L2

12
‖f‖L∞ . (3.17)

Proof - Let u be the unique solution of problem (3.9). Then by direct computation (see
[16] Lemma 3.10) via Green function G for the operator d4/dy4 in (0, L) with homogeneous
boundary conditions (Gyy(x, y) = δ(x− y), G(x, 0) = G(x, L) = Gy(x, 0) = Gy(x, L)) we get
(3.14),(3.15) hence, by substitution,

K(x, y) = K(L− x, L− y) ∀x, y ∈ [0, L] . (3.18)

Since K(x, L) = 0 and

Ky(x, y) = (L− y)
(

3y (2x− L)
L3

+ 1
)
≥ 0 for L/2 ≤ x ≤ y ≤ L

we get
K(x, y) ≤ 0 for L/2 ≤ x ≤ y ≤ L . (3.19)

Moreover, if x ≥ L/2, 0 ≤ y ≤ x, then

K(x, y) =
y2

2 L3

(
(2x− L)(3L− 2y)− L2

) ≤ y2

2 L3
2 (3Lx− 2L2)

hence
K(x, y) ≤ 0 for L/2 ≤ x ≤ 2L/3 , 0 ≤ y ≤ x . (3.20)



A variational principle for plastic hinges in a beam 19

Eventually

K(x, y) =
y2

2 L3

(
2 (3Lx− 2L2) − 2y (2x− L)

) ≤ 0

for x ≥ 2L/3 ,
3Lx− 2L2

2x− L
≤ y ≤ x ,

(3.21)

while

K(x, y) =
y2

2 L3

(
2 (3Lx− 2L2) − 2y (2x− L)

) ≥ 0

for x ≥ 2L/3 , 0 ≤ y ≤ 3Lx− 2L2

2x− L
≤ x .

(3.22)

Thanks to (3.18),(3.19),(3.20),(3.21),(3.22) we have
∫ L

0

|K(x, y)| dy =
∫ L

0

−K(x, y) dy =
1
12

(
6Lx− 6x2 − L2

)
if

L

2
≤ x ≤ 2L

3
,

∫ 3Lx−2L2
2x−L

0

K(x, y) dy +
∫ 1

3Lx−2L2
2x−L

−K(x, y) dy =
L (3x− 2L)4

6 (2x− L)3
+

1
12

(6Lx−6x2−L2)

if
2L

3
≤ x ≤ L.

By (3.18) we have

∫ L

0

|K(x, y)| dy =
∫ L

0

|K(L− x, L− y)| dy =
∫ L

0

|K(L− x, y)| dy

hence

max
x∈[0,L]

∫ L

0

|K(x, y)| dy = max
x∈[L/2,L]

∫ L

0

|K(x, y)| dy =
L2

12
say (3.16). Then (3.14),(3.16) together entail (3.17):

‖u′′‖L∞ ≤ ‖f‖L∞ max
x∈[0,L]

∫ L

0

|K(x, y)| dy =
L2

12
‖f‖L∞ . (3.23)

Proof of Theorem 3.5 - By (3.13),(3.17) and Theorem 3.4 we get the first part of thesis: that
is u is a minimizer.
Now assume w is any minimizer of F . Then, by referring to structural splitting (3.5) in
Lemma 3.3 (w = u + v), we exploit compliance identity for the minimizer u and (3.8) to get

−1
2

∫ L

0

|u′′|2 = F(u) = F(w) = −1
2

∫ L

0

|u′′|2 − L

6
(a2L2 + 3abL + 3b2) . (3.24)

The positive definiteness of quadratic form in aL and b entails a = b = 0.
Then v̈ ≡ 0, v′′ = [v̇]d] Sv̇ and

F(u) = F(w) = F(u) + γ
∑

Sv̇

|[v̇]| −
∫ L

0

fv dx , (3.25)
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hence by (3.25),(3.13) and Poincaré inequality (Lemma 2.2)

γ
∑

Sv̇

|[v̇]| =
∫ L

0

fv dx ≤ ‖f‖L∞‖v‖L1 ≤ 3γ

4
‖v′′‖T =

3γ

4

∑

Sv̇

|[v̇]| (3.26)

that is
∑

Sv̇
|[v̇]| = 0. Hence (by spt v ⊂ [0, L]) v ≡ 0 and u is the unique minimizer of F .

Euler equations (3.1)-(3.3) together with strict sign of load entail a severe bound on the
number of hinges allowed for a minimizer, as shown in the following statement.

Theorem 3.7. Assume (2.5) and f > 0 a.e. in [0, L] (or f < 0 a.e. in [0, L]).
Then ](Sẇ) ≤ 2 for any w ∈ argminF .
Moreover when ](Sẇ) = 2 then at least one endpoint of [0, L] belongs to Sẇ.

Proof - By (3.1), (3.2), (3.3) we get (ẅ)′′ = f in (0, L) and |ẅ(x)| = γ for every x ∈ Sẇ.
Inequality f > 0 entails that ẅ is strictly convex in (0, L), then there exists unique x̄ ∈ [0, L]
such that ẅ(x̄) = min{ẅ(x) : x ∈ [0, L]} and by estimate (2.6).

‖ẅ‖L∞ = max{|ẅ(0)|, |ẅ(L)|, |ẅ(x̄)|} ≤ γ . (3.27)

Moreover by strict convexity |ẅ(x)| < γ for every x 6∈ {0, L, x̄}. Suppose now by contradic-
tion that ](Sẇ) > 2 : then x̄ ∈ (0, L), ](Sẇ) = 3, Sẇ = {0, L, x̄} and ẅ(0) = ẅ(L) = γ =
−ẅ(x̄).
Then η(x) = ẅ(x)− γ solves{

η′′ = f in (0, L)
η(0) = η(L) = 0 (3.28)

If G is the Green function of d2/dx2 in (0, L) with homogeneous boundary conditions
(Gxx(x, y) = δ(x, y), G(0, y) = G(L, y) = 0), we have

G(x, y) =
1
L

y (x− L)1{y<x} +
1
L

x (y − L)1{y>x} x, y ∈ (0, L) (3.29)

η(x̄) = ẅ(x̄)− γ =
∫ L

0

G(x̄, y)f(y) dy (3.30)

and therefore by using the safe load condition (2.5)

| ẅ(x̄) − γ | <
16 γ

L2

∫ L

0

|G(x̄, y)| dy =
16 γ

L2

L

2
x̄

L
(L− x̄) ≤ 2 γ (3.31)

which contradicts ẅ(x̄) = −γ , so statement ](Sẇ) ≤ 2 is proven.
If the equality ](Sẇ) = 2 holds true, then |ẅ(x)| = γ for every x ∈ Sẇ and |ẅ(x)| < γ for
every x 6∈ {0, L, x̄} together entail that either 0 or L belongs to Sẇ .

Theorem 3.8. Assume that f ∈ L∞(R) satisfies (2.5),

f > 0 a.e. in [0, L] , (3.32)
f(x) = f(L− x) a.e in [0, L] . (3.33)

Then the minimizer of F is unique and is given by

z(x) = u(x) +
1
2

(u′′(0)− γ)+ x (L− x) (3.34)
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where u is the unique solution of (3.9) and

F(z) = − 1
2

∫ L

0

|u′′|2 dx − L

2
(
(u′′(0)− γ)+

)2
. (3.35)

In any case u′′(0) = u′′(L) = ‖u′′‖L∞ > 0. In particular:
if 0 < u′′(0) ≤ γ then w = u (solution without hinges of problem (3.9));
if u′′(0) > γ (or equivalently ‖u′′‖L∞ > γ) then Sż = {0, L} (hinges at the boundary).

The proof of Theorem 3.8 will proceed in several steps: by Theorem 3.7 we know that any
minimizer w fulfils ](Sẇ) ≤ 2 ; we examine separately cases ](Sẇ) = 0, 1, 2, and conclude by
matching them together.

Lemma 3.9. Assume (2.5) and u ∈ argminF , where u solves (3.9). Then

F(u) = − 1
2

∫ L

0

|u′′|2 dx . (3.36)

Proof - Straightforward consequence of Theorems 3.1 and 3.2.

Lemma 3.10. Assume: f ∈ L∞(R) fulfils (2.5), (3.32) and (3.33), u solves (3.9).
Then −2γ/3 < u′′(L/2) = min u′′ ≤ max u′′ = u′′(0) = u′′(L).
If in addition u′′(0) ≤ γ then: u ∈ argminF and (3.36) holds true.

Proof - By (3.32),(3.33) and u′′′′ = f in (0, 1) we deduce the strict convexity and symmetry
for u′′, hence u′′(L/2) = min u′′ and u′′(0) = u′′(L) = maxu′′ .
By exploiting assumptions (3.32), (3.33) in the Green representation of u′′ (see [15], formulae
(3.12),(3.13)) we deduce

u′′
(

L

2

)
= − 1

2 L

∫ L
2

0

y2f(y)dy − 1
2 L

∫ L

L
2

(y − L)2f(y)dy = − 1
L

∫ L/2

0

y2 f(y) dy

(3.37)
hence (2.5) gives −2γ/3 < u′′(L/2) and first part of thesis follows.
Then u′′(0) ≤ γ gives ‖u′′‖L∞ ≤ γ and Theorem 3.4 entails u ∈ argminF .
Eventually we can apply Lemma 3.9 to get (3.36).

Lemma 3.11. Assume f ∈ L∞(R) fulfils (2.5), (3.32), (3.33) and there is w ∈ argminF
such that ](Sẇ) = 2.
Then u′′(0) = u′′(L) > γ , Sẇ = {0, L} , w = u + 1/2 (u′′(0)− γ)x(L− x) and

F(w) = − 1
2

∫ L

0

|u′′|2 dx − L

2
(u′′(0)− γ)2 (3.38)

Proof - Let w ∈ argminF such that ](Sẇ) = 2.
By Lemma 3.10 and (3.33) we deduce u′′(0) = u′′(L) > γ .
By using the decomposition w = u+ v given in (3.5),(3.6), by taking into account boundary
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conditions (spt w ⊂ [0, L]) and by setting Sẇ = {t1, t2} we get
a

2
L2 + b L + [ẇ](t1) + [ẇ](t2) = 0 (3.39)

a

6
L3 +

b

2
L2 + (L− t1) [ẇ](t1) + (L− t2) [ẇ](t2) = 0 (3.40)

Then Theorem 3.7 shows that either Sẇ = {0, L} or Sẇ = {0, x̄} or Sẇ = {x̄, L} for a
suitable x̄ ∈ (0, L).

If Sẇ = {0, x̄} then (2.6),(3.1)-(3.3), strict convexity of ẅ and
...
w+ =

...
w− = (ẅ)′ = 0 at x̄

(minimum point for ẅ) together yield (by the same argument in the proof of Theorem 3.7)

ẅ(0) = γ = u′′(0) + b , ẅ(x̄) = −γ = u′′(x̄) + ax̄ + b , u′′′(x̄) + a = 0 .

Hence
[ẇ](0) > 0 , [ẇ](x̄) < 0 . (3.41)

Then by (2.5), u′′′′ = f and Taylor formula

2γ = u′′(0)− u′′ (x̄) + x̄ u′′′ (x̄) =
∫ x̄

0

yf(y) dy < 8 γ x̄2 /L2 . (3.42)

hence x̄ > L
2 . By u′′′ strictly monotone and u′′ symmetric we get −a = u′′′(x̄) > u′′′(L

2 ) = 0
and by subtracting (3.40) from L times (3.39) with t1 = 0, t2 = x̄, we get the inequality
−bL2/2 = aL3/3 + x̄ [ẇ](x̄) < 0 thus contradicting b = γ − u′′(0) < 0 .

The case Sẇ = {x̄, L} can be discarded in the same way. Precisely, (2.6),(3.1)-(3.3), strict
convexity of ẅ and

...
w+ =

...
w− = (ẅ)′ = 0 at x̄ (minimum point for ẅ) together yield (by

the same argument in the proof of Theorem 3.7)

ẅ(x̄) = −γ = u′′(x̄) + ax̄ + b , ẅ(L) = γ = u′′(L) + aL + b , u′′′(x̄) + a = 0 ,

[ẇ](x̄) < 0 , [ẇ](L) > 0 . (3.43)

Then by (2.5), u′′′′ = f and Taylor formula

2γ = u′′(L)−u′′ (x̄)+(x̄−L)u′′′ (x̄) =
∫ L

x̄

(L−y)f(y) dy < 8 γ
(L− x̄)2

L2
, (3.44)

hence the inequality x̄ < L
2 . By u′′′ strictly monotone increasing and u′′ symmetric we

get −a = u′′′(x̄) < u′′′(L
2 ) = 0 and by subtracting (3.40) from L/2 times (3.39) with

t1 = x̄, t2 = L, we get the equality aL3 / 12 + (x̄− L/2) [ẇ](x̄) + L [ẇ](L) / 2 = 0 , thus
contradicting a > 0 .

Then we must have Sẇ = {0, L}. Now (3.39),(3.40) read

aL2/2 + bL + [ẇ](0) + [ẇ](L) = 0 (3.45)

aL3/6 + bL2/2 + L [ẇ](0) = 0 , (3.46)
by subtracting (3.46) from L times (3.45):

[ẇ](L) = − a
L3

3
− b

L2

2
. (3.47)
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By the same argument of Theorem 3.7 and strict convexity of ẅ we get |ẅ(0)| = |ẅ(L)| = γ.
So that only three subcases are allowed:

• (i) ẅ(0) = ẅ(L) = γ ,
• (ii) ẅ(0) = γ , ẅ(L) = −γ ,
• (iii) ẅ(0) = −γ , ẅ(L) = γ .

In subcase (ii) we deduce u′′(0) + b = ẅ(0) = γ = −ẅ(L) = −u′′(L)− aL− b . Hence

a = −L−1 (u′′(0) + u′′(L) + 2b) = − 2 L−1 (u′′(0) + b) = − 2 γ/L ; (3.48)

by substituting (3.48) and b = γ − u′′(0) in (3.47) and taking into account u′′(0) > γ > 0 :

[ẇ](L) =
(

γ

6
+

u′′(0)
2

)
L2 > 0 , (3.49)

say a contradiction with ẅ(L) < 0 and (3.2), (3.3).

In subcase (iii) we deduce u′′(0) + b = ẅ(0) = − γ = − ẅ(L) = −u′′(L)− aL− b . Hence

a = −L−1 (u′′(0) + u′′(L) + 2b) = − 2 L−1 (u′′(0) + b) = 2 γ/L ; (3.50)

by substituting (3.50) and b = −γ−u′′(0) in (3.46) and taking into account u′′(0) > γ > 0 :

[ẇ](0) =
(

γ

6
+

u′′(0)
2

)
L > 0 , (3.51)

say a contradiction with ẅ(0) < 0 and (3.2), (3.3).

Then the first subcase (i) is the only admissible one. In this case (2.6),(3.2),(3.3),(3.5)-
(3.7),(3.33) and strict convexity of ẅ yield

u′′(0) + b = ẅ(0) = γ = ẅ(L) = u′′(L) + aL + b = u′′(0) + a + b .

Hence a = 0, b = γ−u′′(0) = γ−u′′(L), ẅ(0) = ẅ(L) = γ and, by (3.2)(3.3), sign([ẇ(0)]) =
sign([ẇ(L)]) > 0.
By subtracting (3.40) from (3.39) times L and then evaluating at t1 = 0, t2 = L we get
0 < [ẇ](L) = bL2/2 = (γ − u′′(0)) L2/2 .
By (3.5)-(3.8) we get w = u + 1/2 (u′′(0)− γ)x(L− x) and

F(w) = −1
2

∫ 1

0

|u′′|2 − b2

2
= −1

2

∫ 1

0

|u′′|2 − L

2
(u′′(0)− γ)2 (3.52)

and the Lemma is proven.

Lemma 3.12. Assume f ∈ L∞(R) fulfils (2.5), (3.32), (3.33) and there is w ∈ argminF
such that ](Sẇ) = 1.
Then: u′′(0) = u′′(L) > γ ,

F(w) = − 1
2

∫ L

0

|u′′|2 dx − L

8
(u′′(0)− γ)2 . (3.53)

and either Sẇ = {0} or Sẇ = {L},
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Proof - Let w ∈ argminF such that ](Sẇ) = 1.
By Lemma 3.10 and (3.33) we deduce u′′(0) = u′′(L) > γ .
By the same procedure in the proof of Theorem 3.7 we have: either Sv′ = {0} or Sẇ = {L}
or Sẇ = {x̄}, x̄ ∈ (0, L).
Assume Sẇ = {x̄}, x̄ ∈ (0, L): then by taking into account spt w ⊂ [0, L] we get

a

2
L2 + bL + [ẇ](x̄) = 0 (3.54)

a

6
L3 +

b

2
L2 + x̄ [ẇ](x̄) = 0 (3.55)

and by Euler-Lagrange equations (3.1)-(3.3)

ẅ(x̄) = γ sign([ẇ](x̄)) = u′′(x̄) + x̄ a + b. (3.56)

Since by (3.32) and (3.33) ẅ is strictly convex, then by (2.6) and x̄ minimum point for
ẅ we get ẅ(x̄) = −γ , [ẇ](x̄) < 0 . By (3.5)-(3.7) and x̄ minimium point of ẅ, we get
(ẅ)′(x̄) = u′′′(x̄) + a = 0.
By subtracting (3.55) from (3.54) times L/2 we get −a = u′′′(x̄) = 6 L−3 (L− 2x̄) [ẇ](x̄)
which is a contradiction unless Sẇ = x̄ = L/2 since u′′′ is strictly increasing and u′′′(L/2) = 0
by (3.33).
So in the case we are facing we must have x̄ = L/2 = Sẇ and a = 0. Then (3.54)(3.55)(3.56)
become

bL + [ẇ](L/2) = 0 (3.57)

b

2
L2 +

L

2
[ẇ](L/2) = 0 (3.58)

ẅ(L/2) = γ sign ([ẇ](L/2)) = u′′(L/2) + b. (3.59)

By reading the previous analysis with x̄ = L/2 we find: ẅ(L/2) = −γ, [ẇ](L/2)/L < 0 .
Moreover, from (3.57), we obtain b = −[ẇ](L/2) /L > 0 and, by (3.59),

u′′
(

L

2

)
= − γ − b < −γ .

On the other hand by recalling (3.37) we have

u′′
(

L

2

)
= −L−1

∫ L
2

0

y2f(y) dy .

Then by estimating the above representation of u′′(L/2) with (2.5) we find the contradiction

− 2
3
γ < u′′

(
L

2

)
= − γ

Then the only possibilities are: either Sẇ = {0} or Sẇ = {L}.
Assume Sẇ = {0}. We set s = [ẇ](0) and evaluate (3.54),(3.55),(3.56) at x̄ = 0 :





aL2/2 + bL + s = 0
aL3/3 + bL2/2 = 0
u′′(0) + b− γ sign(s) = 0 ,

(3.60)
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hence a = 6s, b = −4s and

u′′(0) = γ sign(s) + 4s = sign(s) ( γ + 4|s| ).
By (3.14), (3.15)

0 < L−2

∫ L

0

y(y − L)2f(y) dy = u′′(0)

then s > 0, and

a = −3bL/2 = 6s = −3
2
(γ − u′′(0)) > 0 , b = −4sL = γ − u′′(0) < 0. (3.61)

By summarizing together with (3.5), if Sẇ = {0} then γ − u′′(0) < 0 and

F(w) = −1
2

∫ L

0

|u′′|2 dy − L

8
(u′′(0)− γ)2. (3.62)

The case Sẇ = {L} can be examined exactly in the same way obtaining (3.62) with u′′(L)
replacing u′′(0). Since u′′(0) = u′′(L), the energy is still given by (3.62).

By comparison of the possibilities analyzed in the previous Lemmas we can now prove the
main theorem of this section.

Proof of Theorem 3.8 - Let w ∈ argminF . Recall that the set argminF is not empty due
to Theorem 2.1, while Theorem 3.7 tells that ](Sẇ) ≤ 2 for any w ∈ argminF .
If u′′(0) = u′′(L) ≤ γ , then we get w ≡ u , ](Sẇ) = 0 and (3.36) (by Lemma 3.10).
If u′′(0) = u′′(L) > γ , then by comparison of (3.38) and (3.53) we see that case (](Sẇ) = 1)
studied in Lemma 3.12 never happens; while case ](Sẇ) = 0 (e.g. u ∈ argminF) cannot take
place since Lemma 3.9 and comparison of (3.36) and (3.38) lead to a contradiction; then
case ](Sẇ) = 2 is the only possibility: so Lemma 3.11 tells that w is the unique minimizer
and fulfils Sẇ = {0, L} , w = u + 1/2 (u′′(0)− γ)x(L− x) and (3.38).
Then we have uniqueness of minimizer in any case; moreover by taking into account the
explicit values (3.36) and (3.38) of energy in the two cases we get, for any case,

F(w) = − 1
2

∫ L

0

|u′′|2 dy − L

2

[
(u′′(0)− γ)+

]2

. (3.63)

Eventually by ẅ(0) = γ and decomposition w = u + v (introduced by Lemma 3.3) we get
v̈ = −(u′′(0)− γ)+. This relationship together with v(0) = v(L) = 0 yields

v(x) =
1
2

(u′′(0)− γ))+ x(1− x) .

This completes the proof of the representation formula (3.34).

The above analysis can be repeated for symmetric strictly negative f up to analogous con-
clusions, leading to the following statement.

Remark 3.13. Assume that f ∈ L∞(R) satisfies (2.5),

f > 0 a.e. in [0, L] or f < 0 a.e. in [0, L] , (3.64)
f(x) = f(L− x) a.e in [0, L] (3.65)
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then the minimizer of F is unique and is given explicitly by

z(x) = u(x) +
1
2

sign(f) (|u′′(0)| − γ)+ x (L− x) (3.66)

where u is the unique solution of (3.9) and sign(u′′(0)) = sign(f). In particular:
if |u′′(0)| ≤ γ then z ≡ u ∈ H2(R) and Sż = ∅ ;
if |u′′(0)| > γ then Sż = {0, L} .

We emphasize that a similar analysis holds true also for penalized functionals Fε (defined
by (2.15)) as it is sketched below.

Remark 3.14. When wε ∈ argminFε and (2.5) is satisfied, then analogous formulation of
statements 3.1, 3.7, 3.9, 3.10, 3.11, 3.12, 3.13 and the following modified compliance identity
(see also Lemma 3.8 [16]) hold true:

Fε(wε) = −1
2

∫ L

0

|ẅε|2 dx + ε ](Sẇε
) ∀wε ∈ argminFε . (3.67)

Moreover, if (3.64),(3.65) are satistfied and wε is the unique element in argminFε, then,
by comparison of (3.36),(3.38),(3.53), we get

w = wε ∀ε ∈
(

0 ,
L

4
(u′′(0)− γ)

)
(3.68)

where w ∈ argminF , hence without extracting subsequences, wε ⇀ w w∗BH .

Theorem 3.15. Assume (2.5),(3.64),(3.65). Then:
if u′′(0) ≤ γ then minimizer wε of Fε is unique and wε = u ∈ argminF ∀ε > 0.
if u′′(0) > γ and 0 < ε < L

4 (u′′(0)− γ)2 then wε = z where z is given by (3.66).
In any case, from (3.67) we get

Fε(wε) = − 1
2

∫ L

0

|u′′|2 dx − L

2

[
(u′′(0)− γ)+

]2

+ 2ε. (3.69)

If u′′(0) > γ and ε = L
4 (u′′(0) − γ)2, z given by (3.66) and u (solution of (3.9)) have the

same energy level.

Proof - With the same proof of Theorem 3.8 (and Remark 3.13) we can prove the thesis
up to (3.69).
The last statement follows by straightforward computations: we emphasize the fact that by
denoting z the 2-hinges displacement in (3.66) and z1 anyone among the 1-hinge displace-
ments faced in Lemma 3.12, we have Fε(z) = F(z)+2ε , Fε(z1) = F(z1)+ε , Fε(u) = F(u).
Then, due to (3.38)(3.53),

Fε(z1) > (Fε(u) ∧ Fε(z) ) ∀ε > 0 .

In case of constant load we can show the following explicit example of non uniqueness of
minimizer for functional Fε.

Example 3.16 - The constant load f ≡ 12(γ + 2
√

ε/L)/L2 satisfies the safe load condition
(2.5) iff ε < γ2

36 L and entails u′′(0) = L2

12 f = γ + 2
√

ε/L > γ and ε = L
4 (u′′(0) − γ)2. This
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means that for every γ > 0 and for every ε < γ2

36 L there exists a constant admissible load
f ≡ 12(γ + 2

√
ε/L)/L2 such that the corresponding energy functional Fε has two different

minimum points: one is regular and the other one has two hinges at the endpoints.

Remark 3.17 Assume (2.5). Then for any v ∈ argminF s.t. ](Sv̇) < ∞ it is possible to
define w ∈ argminF such that ](Sẇ) ≤ 2.
This w can be constructed explicitly by adding a suitable piece-wise affine continuous function
to v : the construction developed in the proof of Theorem 4.1 of [15] to reduce hinges number
and strictly decrease the value of Fε can be replayed in the present case with the effect to
reduce hinges number and keep unchanged the value of F .

Remark 3.18 A straightforward consequence of Theorem 3.7 and remark 3.12 is that in-
equality (3.13) is sharp as a regularity condition based on L∞ estimate of load (see Theorem
3.5). Indeed, if load is constant: f ≡ c, then by (3.14) and (3.15) we get u′′(0) = c L2/12, say
|u′′(0)| > γ iff ‖f‖L∞ = |c| > 12 γ/L2, hence u ∈ H2(R) (given by u(x) = c x2(x−L)2/24, if
x ∈ [0, L], u(x) = 0 else) is the unique minimizer of F if and only if ‖f‖L∞ = |c| ≤ 12 γ/L2.

4. The hinged-hinged elastic-plastic beam

In this section we study the functional

Λ(w) =





1
2

∫ L

0

|ẅ|2 −
∫ L

0

fw dx + γ
∑

Sẇ

|[ẇ]| if w ∈ S

+∞ otherwise in BH(0, L)
(4.1)

where γ > 0 is a given constant, f ∈ L∞(0, L) and

S = {w ∈ SBH(0, L) : w(0) = w(L) = 0} .

We emphasize that by definition Sẇ ⊂ (0, L) for any w ∈ S and hence wherever in this
section, while in the previous sections 0 and/or L could belong to Sẇ since any w ∈ K is
defined in whole R. The interval [0, L] represents the reference configuration of an elastic
plastic beam which is hinged at both the endpoints, f is the vertical dead load acting on
the beam, w is the vertical displacement, γ > 0 is a constant depending on the material
and the functional Λ describes the total energy related to deformation the hinged-hinged
elastic-plastic beam with unitary flexural rigidity.
We introduce the penalized functionals

Λε(w) =





1
2

∫ L

0

|ẅ|2 −
∫ L

0

fw dx + γ
∑

Sẇ

|[ẇ]|+ ε ](Sẇ) if w ∈ S ,

+∞ otherwise in BH(0, L) .

(4.2)

The main result of this section is the following Theorem which provides the sharp value
8γ/L2 for both safe load condition and regularity load condition of hinged-hinged elastic-
plastic beam.
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Theorem 4.1. Assume that f ∈ L∞(0, L) satisfies

‖f‖L∞(0,L) <
8 γ

L2
(4.3)

then all the functionals Λ, Λε achieve the same finite minimum, uniqueness holds true for
minimizer of Λ and of Λε for every ε > 0 and all these minimizers coincide with the unique
solution ω of hinged-hinged purely elastic beam:




ω ∈ H2(0, L) ∩H1
0 (0, L)

ω′′′′ = f in (0, L)
ω(0) = ω(L) = ω′′(0) = ω′′(L) = 0 .

(4.4)

The proof of Theorem 4.1 is postponed at the end of this section.

Lemma 4.2. (L1−BH Poincarè Inequality for hinged-hinged beam)
Let v ∈ BH(0, L), v(0) = v(L) = 0 then

‖v‖L1 ≤ L2

8
‖v′′‖T ((0,L)) . (4.5)

The equality in (4.5) holds true iff v = rs :

rs(x) = s

(
L

2
−

∣∣∣∣ x− L

2

∣∣∣∣
)+

s ∈ R (4.6)

Proof - The proof is identical to the one of Lemma 2.2 besides the fact that now the
relevant quotient is ‖v′′‖T ((0,L)) / ‖v‖L1 for every v ∈ S . So that, with the same choice for
v, ṽ and v̌ it is enough modifying only the deduction of (2.14) at the very end:
if v ∈ BH(0, L), v(0) = v(L) = 0, v convex in [0, L] and v 6≡ 0, then −∞ < v′+(0) < 0,
0 < v′−(L) < +∞ and we can define

v̌(x) = (v′+(0)x) ∨ (
(v′−(L)(x− L)

)
x ∈ [0, L] .

Then v̌ ≤ v and ‖v̌ ′′‖T ((0,L)) = (v−(L)− v′+(0)) = ‖v ′′‖T ((0,L)) (the difference with respect
to Lemma 2.2 is the lack of coefficient 2, since hinges at boundary have no cost). So

inf
{ ‖v′′‖T ((0,L)) / ‖v‖L1 : v ∈ S, v convex in [0, L]

} ≥

≥ inf
{ ‖v′′‖T ((0,L)) / ‖v‖L1 : v(x) = (−ax) ∨ (b(x− L)), a > 0, b > 0

}
=

inf
{
2(a + b)2/(abL2) : a > 0, b > 0

}
= 8/L2.

Actually the infimum is a minimum and is achieved iff a = b say iff v is a roof function.
The following existence statement follows by Lemma 4.2 by the same argument in the proof
of Theorem 2.4.

Theorem 4.3. (L∞ safe load condition for Λε) Assume

‖f‖L∞(0,L) <
8 γ

L2
(4.7)

then Λε achieves a finite minimum.
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Remark 4.4. The safe load constant 8 γ/L2 in (4.7) is sharp for load in L∞, as shown
(analogously to Remark 2.5) by the choices f ≡ 8 γ/L2 + δ, δ > 0, rs(x), s > 0, entailing
Sṙs(x) = {L/2} , γ

∑
Sṙs

|[ṙs]| = 2γs, Fε(rs(x)) = ε− δL2/4 s → −∞ as s → +∞.

Inequality (4.7) is a very stringent condition: actually we show that it prevents formation of
creases, leading to uniqueness and regularity of minimizers.
By using exactly the same proof of Theorems 3.1 and 3.2 we obtain Euler Lagrange equations
and a compliance identity for hinged-hinged beam as stated below.

Theorem 4.5. (Euler-Lagrange equations for functionals Λ, Λε)
If w belongs to argminΛε or to argminΛ then

(ẅ)′′ = f in (0, L) (4.8)
ẅ± = γ sign([ẇ]) in Sẇ (4.9)

ẅ+(0) = ẅ−(L) = 0 . (4.10)

In particular ẅ ∈ H2(0, L), hence ẅ and
...
w = (ẅ)′ are continuous in [0, L] .

Theorem 4.6. (Compliance identity)
Assume that w belongs to S and w fulfils conditions (4.8),(4.9),(4.10). Then

Λε(w) = −1
2

∫ L

0

|ẅ|2 dx + ε ] (Sẇ),

Λ(w) = −1
2

∫ L

0

|ẅ|2 dx .

Theorems 4.5, 4.6 entail that minimizers of Λε have a very simple structure, as stated
precisely by the following Theorem.

Theorem 4.7. If wε ∈ argminΛε then Sẇε = ∅, so that wε = ω (unique solution of (4.4))
and Λ(wε) = Λε(wε).

Proof - By contradiction assume that w ∈ argminΛε and x1 ∈ (0, L) belongs to Sẇ. Then
w fulfills Euler-Lagrange equations (4.8)-(4.10). We can modify w by eliminating the crease
at x1 and strictly reducing the energy at the same time.
We define a function w∗ ∈ SBH(0, L) such that w∗(0) = 0 and

ẇ∗ = ẇ + (1− x1/L) [ẇ](x1) χ[0,x1) − (x1/L) [ẇ](x1) χ[x1,L], (4.11)

hence
∫ L

0
ẇ∗ =

∫ L

0
ẇ = 0, w∗(0) = w∗(L) = 0 and Sẇ∗ = ∅.

Since ẅ∗ = ẅ we deduce that also w∗ satisfies Euler-Lagrange equations (4.8)-(4.10), then
compliance identity for Λε yield the contradiction since Λε(w∗) = Λ(w)− ε hence first part
of thesis. Obviously Λε(ω) = Λ(ω).

Theorem 4.8. (L∞ bending moment regularity condition for hinged-hinged beam)
Let ω be the unique solution of (4.4) If

‖ω′′‖L∞(0,L) ≤ γ (4.12)

then ω is a minimizer of Λ, which is unique if the inequality in(4.12) is strict.
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Proof - Identical to the one of Theorem 3.4.

Proof of Theorem 4.1 - Referring to solution ω of (4.4), we evaluate ω′′ by Green function
for d2/dx2 in (0, L) with homogeneous boundary conditions: ω′′(x) =

∫ L

0
G(x, y)f(y)dy (see

(3.29)), hence

|ω′′(x) | < ‖f‖L∞

∫ L

0

|G(x, y)| dy =
L2

8
‖f‖L∞ ∀x ∈ (0, L) . (4.13)

Then by (4.3),(4.13) we get ‖ω′′‖L∞ ≤ L2 ‖f‖L∞/8 < γ .
So Theorem 4.8 ensures that Λ achieves finite a minimum and that ω is the unique minimizer
of Λ.
Then, for every ε > 0, Theorem 4.7 entails that v ∈ argminΛε if and only if v is a minimizer
of Λ and if and only if v is the unique solution ω of (4.4), say the unique minimizer among
w ∈ H2(0, L) ∩H1

0 (0, L) of the hinged-hinged purely elastic beam functional

E(w) =
∫ L

0

1
2
|ẅ|2 dx−

∫ L

0

fw dx (4.14)

since Λε(ω) = Λ(ω) = E(ω), and the proof of Theorem 4.1 is achieved.

We conclude by clarifying the slight changes to be performed when the flexural rigidity EJ
is differen from 1.

Remark 4.9. If the flexural rigidity EJ is strictly positive but EJ 6= 1 (i.e. by considering
functional (1.1) instead of (2.4) or (1.8) instead of (4.1)) then Theorems 2.1, 3.5, 4.1 still
hold true.
In fact, by direct inspection of the proofs, there are differences only in technical intermediate
steps (Theorem 3.4, Euler equations and compliance identity) which are listed below in detail:

substitution of ϕ∗∗ by ϕ∗∗EJ in definition (2.17) of functional F∗ where ϕ∗∗EJ is the convex
envelope of ϕEJ (s) = min

{
EJs2/2, γ|s|} that is

ϕ∗∗EJ(s) =
{

EJ s2/2 if |s| ≤ γ/(EJ)
γ|s| − γ2/2EJ otherwise. (4.15)

substitution of (2.6) by

‖ẅ‖L∞ ≤ γ/(EJ) ∀w ∈ argminF . (4.16)

substitution of (3.9) by




uEJ ∈ H2(R)
u′′′′EJ = f/(EJ) in (0, L)
spt uEJ ⊂ [0, L] ,

(4.17)

substitution of (3.10) by analogous relationship for the solution uEJ of (4.17)

‖u′′EJ‖L∞(R) ≤ γ/(EJ) , (4.18)

substitution of kernel K by K/(EJ) in (3.14),(3.15) and hence the substitution of (3.17) by

‖u′′EJ‖L∞ ≤ L2 ‖f‖L∞ /(12E J) , (4.19)
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so that (4.17)(4.19) together produce cancellation of the term EJ in the load regularity
condition (3.13) which holds true without any change.
Euler equations and compliance identity read as follows:
if (2.5) holds true and w ∈ argminF then

EJ (ẅ)′′ = f in (0, L) (4.20)
EJ ẅ−(x) = γ sign([ẇ])(x) in Sẇ ∩ (0, L] (4.21)
EJ ẅ+(x) = γ sign([ẇ])(x) in Sẇ ∩ [0, L) , (4.22)

if (2.5) holds true, w in SBH(R) fulfils (4.20)-(4.22) and spt w ⊂ [0, L] then

F(w) = − EJ

2

∫ L

0

|ẅ|2 dx . (4.23)

Eventually Theorem 3.8 holds true provided (3.34),(3.35) are respectively substituted by

zEJ (x) = uEJ (x) +
1
2

(u′′EJ (0)− γ/(EJ))+ x (L− x) (4.24)

F(zEJ ) = − EJ

2

∫ L

0

|u′′EJ |2 dx − L
EJ

2
(
(u′′EJ (0)− γ/(EJ))+

)2 (4.25)

where uEJ is the unique solution of (4.17).
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