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Abstract

We consider a quantum stochastic evolution in continuous time defined by the quantum
stochastic differential equation of Hudson and Parthasarathy. On one side, such an evolution
can be defined also by a standard Schrödinger equation with a singular and unbounded
Hamiltonian operator K. On the other side, such an evolution can be obtained also as a
limit from Hamiltonian repeated interactions in discrete time. We study how the structure
of the Hamiltonian K emerges in the limit from repeated to continuous interactions. We
present results in the case of 1-dimensional multiplicity and system spaces, where calculations
can be explicitly performed, and the proper formulation of the problem can be discussed.

1 Introduction

Quantum Stochastic Calculus was founded in the ’80 by Hudson and Parthasarathy as a non-
commutative generalization of Itō calculus [12, 16]. Stochastic processes are generalized by
adapted families of operators acting on H⊗Γ, the tensor product between a complex separable
Hilbert space H, the initial space, and the symmetric Fock space Γ over L2(R;Z), Z being an-
other complex separable Hilbert space, the multiplicity space. One of the first achievements of
the new calculus was the introduction of Quantum Stochastic Differential Equations (Hudson-
Parthasarathy equation) defining Quantum Stochastic Evolutions Vt, t ≥ 0, strongly continuous
unitary adapted processes allowing to represent a uniformly continuous Quantum Dynamical
Semigroup on H by the conditional expectation of a Quantum Markov Process on H⊗ Γ, anal-
ogously to the representation of a Classical Markov Semigroup by the conditional expectation
of a Classical Markov Process.

Immediately Frigerio and Maassen realized [7,8,13,14] that a Quantum Stochastic Evolution
Vt enjoys the cocycle property, previously introduced by Accardi [1, 2], and thus it is naturally
associated to a strongly continuous unitary group Ut, t ∈ R, providing Vt with a quantum
mechanical interpretation: it describes a Hamiltonian coupling between a quantum system H
and a boson field Γ in interaction picture with respect to the left shift Θt on Γ, which models the

field free evolution. In other words, Ut =





Θt Vt, if t ≥ 0,

V ∗
|t| Θt, if t ≤ 0,

is a strongly continuous unitary

group on H ⊗ Γ and so there exists an Hamiltonian K generating Ut, that is Ut = e−iKt, the
evolution in Schrödinger picture. Roughly speaking, Ut describes a boson field Γ continuously
flowing on a system H and interacting in such a way that each boson of the field can have a unique
singular instantaneous interaction with H, exactly when the free evolution Θt brings it to hit H,
and then it will be brought away by Θt never hitting H again. Thus the boson field Γ plays the
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role of a quantum noise in the dynamics of H. Applications of Quantum Stochastic Evolutions
in Physics can be found in the theories of open quantum systems, continuous measurements,
quantum filtering, quantum optics, electronic transport or thermalization.

The characterization of the Hamiltonian K generating a Quantum Stochastic Evolution
started in [4–6] by Chebotarev and it was completed in [9–11] for the general case of a Hudson-
Parthasarathy equation with bounded coefficients (the coefficients are operators on H) and
arbitrary multiplicity. It is a singular perturbation of the unbounded Hamiltonian E0 generating
Θt, with the interaction partially encoded as boundary conditions defining the domain D(K).
The Hamiltonian K is important because it gives the total energy of the coupled system H⊗Γ,
it gives the solution of the Hudson-Parthasarathy equation Vt = exp{iE0t} exp{−iKt}, and it
summarizes all the model assumptions leading to a Quantum Stochastic Evolution. Indeed, the
singular features of a Quantum Stochastic Evolution often represent some ideal situation which
is reached by some suitable limit, such as flat-spectrum and broad-band approximation, weak
coupling limit, singular coupling limit, low density limit, stochastic limit, or a continuous limit
of repeated interactions.

In this paper we are interested in the last limit which was studied by Attal e Pautrat [3,17],
who showed how to obtain Quantum Noises and Quantum Stochastic Evolutions in continuous
time from Quantum Stochastic Calculus in discrete time and evolutions defined by repeated
interactions: the showed how to embed the discrete time model in the continuous time one and
how to perform the limit in the strong operator topology.

Of course, once the temporal step ∆t of the discrete time model has gone to 0 and the
cocycle Vt has been obtained, one implicitly has also the group Ut and, by differentiation, also
the Hamiltonian K. Anyway, following a suggestion by Attal, our aim is to show that K can
be obtained directly by a suitable unique limit when ∆t → 0. This is interesting in order to
understand how the structure of the singular and unbounded Hamiltonian K emerges in the
limit ∆t → 0. Moreover, it could even be an alternative tool to characterize the Hamiltonian
K, maybe working also in the case of unbounded coefficients.

We consider the case of 1-dimensional multiplicity space Z = C and of 1-dimensional system
space H = C. This last assumption is very strong. From a physical point of view, it reduces the
role of the system H to that of a singular potential acting on the boson field Γ producing scat-
tering, absorption and emission phenomena (e.g. a beam splitter acting on the electromagnetic
field). From a mathematical point of view, it implies several simplifications: operators on H = C

are just commuting numbers, the Hudson-Parthasarathy equation admits an explicit solution,
the exponential domain is invariant for the quantum stochastic evolution and its intersection
with D(K) is not only dense but even a domain of essential self-adjointness for K. Thus we can
study the right formulation of the problem and we can find the right limit giving K as ∆t→ 0.

The paper is organized as follows. Section 2 summarizes notations and results for Quan-
tum Stochastic Evolutions in continuous time, Section 3 summarizes notations and results for
Quantum Stochastic Evolutions in discrete time, Section 4 deals with the limit from discrete to
continuous time, first summarizing the results by Attal and Pautrat, then stating and proving
our new results.

2 Continuous Quantum Stochastic Evolutions

Given a measurable set I ⊆ R, let us consider the symmetric Fock space over L2(I)

Γ[I] =
∞⊕

n=0

L2
symm

(
In),
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the complex separable Hilbert space of sequences ξ = (ξn)∞n=0 with totally symmetric components
ξn ∈ L2

symm

(
In
)
, with

‖ξ‖2 =
∞∑

n=0

1

n!
‖ξn‖2

L2(Rn).

As usual L2
symm

(
R

0
)

= C. If L2(I) is the Hilbert space associated to some bosonic particle, then
Γ[I] is the Hilbert space associated to a field of such bosons.

For every f in L2(I), let ψ(f) be the corresponding exponential vector in Γ[I],

ψ(f) = (1, f, f⊗2, . . . , f⊗n, . . .), ‖ψ(f)‖2 = exp ‖f‖2.

Exponential vectors are linearly independent and their linear span is dense in Γ[I]. Even better:
for every subspace s of L2(I), the corresponding exponential domain E(s) of Γ[I],

E(s) = span
{
ψ(f)|f ∈ s

}
,

is dense in Γ[I] if s dense in L2(I). Thanks to the properties of the exponential vectors, we have
the factorization property of the symmetric Fock space

Γ[I] = Γ[B] ⊗ Γ[Bc], ∀ B ⊆ I, Bc = I\B

based on the identification ψ(f) = ψ(f |B) ⊗ ψ(f |Bc), and we have the natural immersion

Γ[B] = Γ[B] ⊗ ψ(0|Bc) ⊆ Γ[I], ∀ B ⊆ I,

based on the identification ψ(f |B) = ψ(fIB), where IB denotes the indicator function of a set
B.

For every vector g ∈ L2(I) and every unitary operator U on L2(I), let W (g, U) be the
corresponding Weyl operator, the unitary operator on Γ[I] defined by

W
(
g, U

)
ψ(f) = e−

1
2
‖g‖2−〈g|Uf〉 ψ(Uf + g), ∀ f ∈ L2(I).

Then
W
(
g, U

)
W
(
f, V

)
= e−i Im〈g|Uf〉W

(
g + Uf, UV

)
.

The second quantization of a strongly continuous unitary group Ut on L2(I) isW
(
0, Ut

)
, which is a

strongly continuous unitary group on Γ[I]. It describes the evolution of a field of non-interacting
bosons, each one with Hilbert space L2(I) and evolution Ut.

For every vector g ∈ L2(I), let A(g) and A†(g) be the corresponding annihilation and creation
operators defined by

A(g)ψ(f) = 〈g|f〉ψ(f), A†(g)ψ(f) =
d

dε
ψ(f + εg)

∣∣∣∣
ε=0

, ∀ f ∈ L2(I)

and, for every bounded operator N on L2(I), let Λ(N) be the corresponding conservation operator
defined by

Λ(N)ψ(f) =
d

dε
ψ(eεNf)

∣∣∣∣
ε=0

∀ f ∈ L2(I).

The operators A(g), A†(g) and Λ(N) are unbounded closed operators, respectively antilinear,
linear and linear in the arguments g, g and N. The operators A(g) and A†(g) are mutually
adjoint, as are Λ(N) and Λ(N∗).
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The differential second quantization of a bounded Hamiltonian H = H∗ on L2(I) is Λ(H),
which is the unbounded Hamiltonian on Γ[I] generating the second quantization of e−iHt, that is

e−iΛ(H)t = W
(
0, e−iHt).

The differential second quantization of an unbounded Hamiltonian H = H∗ on L2(I) is just
the Hamiltonian on Γ[I] generating W

(
0, e−iHt

)
, it is always denoted by Λ(H), and we have

1. D
(
Λ(H)

)
⊇ E

(
D(H)

)
,

2. Λ(H)ψ(f) = A†(Hf)ψ(f), ∀ f ∈ D(H),

3. Λ(H)|E(D(H)) is essentially self-adjoint.

In order to introduce Quantum Stochastic Evolutions, now we consider the symmetric Fock
space Γ[R], the Hilbert space associated to a field of bosonic particles of Hilbert space L2(R).
The bosonic degree of freedom is understood to be the conjugate momentum of the free field
energy, so that the free evolution of the bosons will be modeled by a left shift.

The canonical quantum noises on Γ[R] are the adapted processes of operators

A(t) = A
(
I(0,t)

)
, t ≥ 0,

A†(t) = A†(I(0,t)

)
, t ≥ 0,

Λ(t) = Λ
(
π(0,t)

)
, t ≥ 0,

which act non-trivially only on the corresponding factor of Γ = Γ[(−∞, 0)]⊗Γ[(0, t)]⊗Γ[(t,+∞)].
For every measurable B ⊆ R, the operator πB is the multiplication operator by IB.

We are interested in Quantum Stochastic Evolutions Vt defined by the Hudson-Parthasarathy
equation, that is in the adapted processes of operators Vt on Γ[R] which are solutions of the
Quantum Stochastic Differential Equation

dVt =

[(
σ − 1

)
dΛt − ρ̄σ dAt + ρdA†

t −
(
iη +

1

2
|ρ|2

)
dt

]
Vt, V0 = 1, (1)

where
σ = e−iα, α ∈ R, ρ ∈ C, η ∈ R.

The properties of the coefficients guarantee that Eq. (1) admits a unique adapted solution Vt,
which is a strongly continuous unitary cocycle. As we are considering the case of a 1-dimensional
initial space, the solution admits an explicit representation by Weyl operators:

Vt = e−iηtW
(
ρI(0,t) , Qt

)
, Qt = e−iα π(0,t) = 1 + (σ − 1)π(0,t), t ≥ 0, (2)

where Qt, t ≥ 0, is a strongly continuous family of unitary operators on L2(R).
In order to introduce the group Ut on the field space Γ[R] associated to Vt, it is convenient

to introduce first a group Pt on the one-boson space L2(R) associated to Qt.
Let θt be the left shift on L2(R),

θt : L2(R) → L2(R), f(r) 7→
(
θt f

)
(r) = f(r + t), t ∈ R,

which is a strongly continuous unitary group describing a quantum particle whose degree of
freedom r is the conjugate momentum of the energy, traveling from right to left. This evolution
is generated by the unbounded Hamiltonian ǫ0,

θt = e−itǫ0 , D(ǫ0) = H1(R) =
{
f ∈ L2(R) s.t. f ′ ∈ L2(R)

}
, ǫ0f = if ′,
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where f ′ is the derivative of f in the sense of distributions on R.

For every α ∈ R, let Pt be the strongly continuous unitary group on L2(R) defined by

Pt = θt Qt = θt e−iα π(0,t) = e−iα π(−t,0) θt, t ≥ 0, (3)

and by complex conjugation for t ≤ 0. This is the same evolution given by θt, perturbed by a
phase change when the quantum particle’s degree of freedom hit r = 0. Its Hamiltonian H is a
singular perturbation of ǫ0 . If we set R∗ = R\{0}, we have

Pt = e−iHt, D(H) =
{
f ∈ H1(R∗) s.t. f(0−) = e−iα f(0+)

}

, Hf = if ′, (4)

where f ′ is the derivative of f in the sense of distributions on R∗. Note that H is the limit in
the strong resolvent sense, as β ↓ 0, of the Hamiltonian ǫ0 − αVβ, where Vβ is the (bounded)

multiplication operator by vβ(r) =
1√
2πβ

exp
{
− r2

2β

}
, which describes a potential acting on

the particle. Since vβ(r) → δ(r) in the sense of distributions, heuristically we could write
Hv(r) = iv′(r) − αδ(r)v(r), where αδ would be a “function” describing a singular potential
located at r = 0. Actually, the Hamiltonian H does not comprehend a multiplication operator
term, but the whole perturbation is encoded in the boundary condition defining the domain of
the Hamiltonian.

Going back to the Fock space, let Θt be the left shift on Γ[R], that is the second quantization
of θt,

Θt : Γ[R] → Γ[R], Θt ψ(f) = ψ(θtf),

which is the strongly continuous unitary group generated by the unbounded Hamiltonian Λ(ǫ0),

Θt = e−itE0 , E0 = Λ(ǫ0).

Finally, let Ut be the strongly continuous unitary group on Γ[R] associated to the Hudson-
Parthasarathy equation, defined by

Ut = Θt Vt = e−iηtW
(
ρI(−t,0) , Pt

)
, t ≥ 0,

and by complex conjugation for t ≤ 0. The group Ut models an evolution, in Schrödinger picture,
where the field continuously flows from right to left on some singular potential localized at r = 0,
so that each boson of the field can have a unique singular instantaneous interaction with the
potential, exactly when the free evolution Θt brings it in r = 0. Thus, the cocycle Vt models the
same evolution as Ut, but in interaction picture with respect to Θt, and each factor Γ[(s, t)] of
Γ[R] is associated to those bosons of the field which interact with the singular potential in the
time interval (s, t).

The Hamiltonian K generating such an evolution Ut,

Ut = e−iKt,

is a singular perturbation of E0. As we are considering the case of a 1-dimensional initial space,
it is completely characterized by its behaviour on the exponential domain [9–11]:

1. D(K) ∩ E
(
L2(R)

)
= E(C), C =

{
f ∈ H1(R∗) s.t. f(0−) = σf(0+) + ρ

}

,
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2. Ut E(C) = E(C), ∀ t ∈ R,

3. K|E(C) is essentially self-adjoint,

4. For every f ∈ C,

K ψ(f) =
[
η +A†(if ′) − iρ̄σ f(0+) − i

2
|ρ|2

]
ψ(f),

where f ′ is the derivative of f in the sense of distributions on R∗.

Note that, when ρ = 0, we have Ut = e−iηtW (0, Pt) and so we simply have K = η+Λ(H) for every
α ∈ R. Thus, up to the irrelevant constant η, the evolution Ut is just a second quantization,
that is an evolution of non-interacting bosons, where each boson singularly interacts with the
same potential which can change its phase. When ρ 6= 0, the evolution Ut is no longer a second
quantization of a single boson evolution: the interaction with the potential includes emission
and absorption phenomena which can not be described in the one boson space L2(R), but only
in the Fock space Γ[R].

3 Discrete Quantum Stochastic Evolutions

For every n ∈ Z let us consider a 2-dimensional complex Hilbert space Ẑn with basis {ωn, zn},

Ẑn = span
{
ωn, zn

}

Then we introduce the Toy Fock space

TΓ =
⊗

n∈Z

Ẑn w.r.t. the stabilizing sequence ωn

which is a complex separable Hilbert space with basis
{
ZA

}

A∈Pf(Z)
, where Pf(Z) is the collection

of the finite subsets A = {n1 < n2 < . . . < nk} of Z, and where

ZA =
(⊗

n∈A

zn

)
⊗
(⊗

n/∈A

ωn

)
,

so that
Φ ∈ TΓ ⇒ Φ =

∑

A

ΦA ZA, ‖Φ‖2 =
∑

A

|ΦA|2.

For every f in ℓ2(Z), let φ(f) be the corresponding discrete exponential vector in TΓ,

φ(f) =
⊗

n∈Z

(ωn + fn zn),
(
φ(f)

)
A

=
∏

n∈A

fn,

‖φ(f)‖2 =
∏

n∈Z

(
1 + |fn|2

)
= exp





∑

n∈Z

log
(
1 + |fn|2

)



 .

The linear span of discrete exponential vectors is dense in TΓ, but exponentials of distinct
functions f are not necessarily linearly independent.

As usual, any operator acting on some factor Ẑn of TΓ will be extended to the whole Toy
Fock space by tensorizing with the identity.
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The canonical quantum noises on TΓ are the processes of bounded operators

b(n) = |ωn〉〈zn| b†(n) = |zn〉〈ωn| b†(n) b(n) = |zn〉〈zn|,

which, actually, will correspond to the increments of the noises introduced in continuous time.

We are interested in Quantum Stochastic Evolutions in discrete time v(n) defined by repeated
interactions, that is in adapted unitary cocycles

v(n) = e−i∆t h(n) · · · e−i∆t h(1),

defined by the Hamiltonians

h(n) = η0 +
1√
∆t

(
λ b†(n) + λ̄ b(n)

)
+

α

∆t
b†(n) b(n), n ∈ N,

where

η0, α ∈ R, λ ∈ C.

The parameter ∆t is the temporal step of the discrete evolution and it will play a role only in

the limit from discrete to continuous time. If ωn =

(
1
0

)

and zn =

(
0
1

)

, we have the matrix

representation

e−i∆t h(n) = e−i∆t η0−iα

2





cos
√

α2

4 + |λ|2∆t+ iα2
sin

√
α2

4
+|λ|2∆t

√
α2

4
+|λ|2∆t

−i
√

∆t
sin

√
α2

4
+|λ|2∆t

√
α2

4
+|λ|2∆t

λ̄

−i
√

∆t
sin

√
α2

4
+|λ|2∆t

√
α2

4
+|λ|2∆t

λ cos
√

α2

4 + |λ|2∆t− iα
2

sin

√
α2

4
+|λ|2∆t

√
α2

4
+|λ|2∆t





Let θ̂ be the left shift on TΓ,

θ̂ : TΓ → TΓ, θ̂ φ(f) =
⊗

n∈Z

(ωn + fn+1 zn), θ̂ ZA = ZA−1,

where A− 1 = {n1 − 1 < n2 − 1 < . . . < nk − 1}. Of course, θ̂ is a unitary operator.

Finally, let u be the unitary operator

u = θ̂ v(1)

and let us consider the evolution given by un, n ∈ Z, the corresponding unitary group on TΓ.
Note that

un = θ̂n v(n) ∀ n ∈ N.

Similarly to the continuous time case, the group un models an evolution, in Schrödinger picture,
where the quantum system TΓ flows from right to left on some localized potential, and each
factor Ẑn describes the fraction of the system which interacts with the potential (only) during
the nth temporal step. The cocycle v(n) models the same evolution as un, but in interaction
picture with respect to the free evolution θ̂n.
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4 From discrete to continuous Quantum Stochastic evolutions

In order to recover the continuous time evolution from the repeated interactions model, we
embed the Toy Fock space TΓ in the symmetric Fock space Γ[R] and then we take the limit
∆t ↓ 0. For every given ∆t > 0, we set tn = n∆t, n ∈ Z, and we get

Γ[R] =
⊗

n∈Z

Γ[(tn−1, tn)] w.r.t. the stabilizing sequence Ωn = ψ(0|(tn−1,tn)).

The Toy Fock space is embedded in the symmetric Fock space by the isometries

Jn : Ẑn → Γ[(tn−1, tn)], ωn 7→ Ωn = ψ(0|(tn−1,tn)), zn 7→ Xn =
1|(tn−1,tn)√

∆t
,

J∆t =
⊗

n∈Z

Jn : TΓ → Γ[R]

with ranges

γn = Jn(Ẑn) = span
{
Ωn, Xn

}

γ∆t = J∆t(TΓ) =
⊗

n∈Z

γn w.r.t. the stabilizing sequence Ωn

and projections

Pn : Γ[(tn−1, tn)] → γn,

P∆t =
⊗

n∈Z

Pn : Γ[R] → γ∆t.

Then

J∗
∆t

= J−1
∆t
P∆t : Γ[R] → TΓ.

Let us note that J∗
∆t

maps exponential vectors to discrete exponential vectors:

J∗
∆t
ψ(f) = φ(f̂∆t) =

⊗

n∈Z

(
ωn + f̂∆t(n) zn

)
, f̂∆t(n) = 〈Xn|f |(tn−1,tn)〉 =

1√
∆t

∫ tn

tn−1

f(r) dr.

(5)
In order to embed the noises, for every n ∈ Z let us introduce E1(n), the projection from

Γ[(tn−1, tn)] to its one-boson subspace L2
(
(tn−1, tn)

)
, tensorized with the identity on the other

factors of Γ[R], and then the operators

a(n) = A

(
I(tn−1,tn)√

∆t

)
E1(n) : Γ[R] → Γ[R].

Then

J∆t b(n) J∗
∆t

: Γ[R] → Γ[R], J∆t b(n) J∗
∆t

= a(n).

The evolutions in discrete time embedded in the symmetric Fock space are

J∆t v(n) J−1
∆t

: γ∆t → γ∆t, J∆t θ̂
n J−1

∆t
=
(
J∆t θ̂ J

−1
∆t

)n
: γ∆t → γ∆t,

J∆t u
n J−1

∆t
=
(
J∆t uJ

−1
∆t

)n
: γ∆t → γ∆t.

Then, taking the limit ∆t ↓ 0, we have [3]:
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1. P∆t → 1Γ[R] strongly,

2.

[ t

∆t ]∑

n=1

a†(n) a(n) → Λt strongly on
{
ξ ∈ Γ[R] :

∑∞
n=0 n‖ξn‖2

L2(Pn) <∞
}
,

3.
√

∆t

[ t

∆t ]∑

n=1

a(n) → At strongly on
{
ξ ∈ Γ[R] :

∑∞
n=0 n‖ξn‖2

L2(Pn) <∞
}
,

4.
√

∆t

[ t

∆t ]∑

n=1

a†(n) → A
†
t strongly on

{
ξ ∈ Γ[R] :

∑∞
n=0 n‖ξn‖2

L2(Pn) <∞
}
,

5. ∆t

[ t

∆t ]∑

n=1

|Ωn〉〈Ωn| → t strongly on
{
ξ ∈ Γ[R] :

∑∞
n=0 n‖ξn‖2

L2(Pn) <∞
}
,

6. J∆t v([ t

∆t ])J
∗
∆t

= J∆t v([ t

∆t ]) J
−1
∆t
P∆t → Vt strongly

if η = η0 + |λ|2 sinα− α

α2
, σ = e−iα, ρ =

σ − 1

α
λ.

To these limits we can add the following ones, regarding the evolutions in Schrödinger picture
and their Hamiltonians.

Theorem 1. As ∆t ↓ 0, we have

7. J∆t θ̂
[ t

∆t ] J∗
∆t

=
(
J∆t θ̂ J

−1
∆t

)[ t

∆t ]
P∆t → Θt strongly,

8. J∆t u
[ t

∆t ] J∗
∆t

=
(
J∆t uJ

−1
∆t

)[ t

∆t ] P∆t → Ut strongly,

9. i
J∆t θ̂ J

−1
∆t

− 1

∆t
P∆t → E0 strongly on D(E0),

10. i
J∆t uJ

−1
∆t

− 1

∆t
P∆t → K strongly on E(C).

Let us remark that we recover the Hamiltonians E0 and K by taking a unique limit which
combine the limit from repeated to continuous interactions with the limit of the difference
quotient of the evolution. This limit gives E0 on its full domain and K at least on E(C), which
is anyway a domain of essential self-adjointness. It is not obvious that it should work, even
if P∆t → 1 strongly, as P∆t projects outside the domains D(E0) and D(K) for every ∆t > 0.
Indeed, if we consider the Hilbert space L2(R), the evolution Pt (3) with Hamiltonian H (4),
the projections π(−∆t,∆t)c , and we take the limit ∆t ↓ 0, then π(−∆t,∆t)c → 1 strongly, but
Pt − 1

∆t
π(−∆t,∆t)c f has divergent norm for every f ∈ D(H) with f(0+) 6= 0.
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Proof.

7. Since
J∆t θ̂ J

∗
∆t

= P∆t Θ∆t (6)

we have
J∆t θ̂

[ t

∆t ] J∗
∆t

= P∆t Θ
∆t[ t

∆t ]
→ Θt strongly,

as P∆t → 1 and Θ
∆t[ t

∆t ]
→ Θt strongly and they all have norms bounded by 1: taken

ξ ∈ Γ[R],

∥∥∥
(
J∆t θ̂

[ t

∆t ] J∗
∆t

− Θt

)
ξ
∥∥∥ ≤

∥∥∥P∆t

(
Θ

∆t[ t
∆t ]

− Θt

)
ξ
∥∥∥+

∥∥∥
(
P∆t Θt − Θt

)
ξ
∥∥∥

≤
∥∥∥
(
Θ

∆t[ t
∆t ]

− Θt

)
ξ
∥∥∥+

∥∥∥
(
P∆t − 1

)
Θt ξ

∥∥∥→ 0.

8. Similarly to the previous point,

J∆t u
[ t

∆t ] J∗
∆t

=
(
J∆t θ̂

[ t

∆t ] J∗
∆t

) (
J∆t v([ t

∆t ])J
∗
∆t

)
→ Ut strongly.

9. Taken ξ ∈ D(E0), thanks to Eq. (6), we have

i
J∆t θ̂ J

−1
∆t

− 1

∆t
P∆t ξ − E0 ξ = iP∆t

Θ∆t − 1

∆t
ξ − E0 ξ

= iP∆t

(
Θ∆t − 1

∆t
+ iE0

)
ξ +

(
P∆t − 1

)
E0 ξ → 0.

10. For this limit we can not repeat the argument used for E0, as J∆t uJ
∗
∆t

6= P∆t U∆t.

Taken a vector ξ ∈ D(K), we have

i
J∆t uJ

−1
∆t

− 1

∆t
P∆t ξ −K ξ =

(
iP∆t

U∆t − 1

∆t
ξ −K ξ

)
+ i

J∆t uJ
−1
∆t
P∆t − P∆t U∆t

∆t
ξ,

where the first term goes to 0 as before. Let us show that also the second term goes to 0
when ξ belongs to E(C) ⊆ D(K), that is if ξ = ψ(f) with f ∈ C. First of all, let us note
that J∗

∆t
ψ(f) = φ(f̂∆t) by eq. (5) where, as C ⊆ H1(R∗), we have

f̂∆t(1) =
1√
∆t

∫ ∆t

0
f(r) dr = f(0+)

√
∆t+ o(

√
∆t), as ∆t→ 0.

Moreover, we can compute both

J∆t uJ
−1
∆t
P∆tψ(f) = J∆t θ̂ v(1)φ(f̂∆t) = J∆t θ̂ v(1)

⊗

n∈Z

(
ωn + f̂∆t(n) zn

)

= exp

{
−iη0∆t− i

α

2

}


⊗

n6=0

(
Ωn + f̂∆t(n+ 1)Xn

)




⊗
[

cos

√
α2

4
+ |λ|2∆t+ i

α

2

sin
√

α2

4 + |λ|2∆t
√

α2

4 + |λ|2∆t
− i

√
∆t

sin
√

α2

4 + |λ|2∆t
√

α2

4 + |λ|2∆t
λ̄ f̂∆t(1)



Ω0

+



−i
√

∆t
sin
√

α2

4 + |λ|2∆t
√

α2

4 + |λ|2∆t
λ+ cos

√
α2

4
+ |λ|2∆t f̂∆t(1) − i

α

2

sin
√

α2

4 + |λ|2∆t
√

α2

4 + |λ|2∆t
f̂∆t(1)



X0

]
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and

P∆t U∆t ψ(f)

= P∆t exp

{

−iη0∆t−
1

2
|ρ|2∆t− ρ̄σ

∫ ∆t

0
f(r) dr

}

ψ
(
θ∆t e−iαπ(0,∆t) f + ρ I(−∆t,0)

)

= exp

{

−iη0∆t−
1

2
|ρ|2∆t− ρ̄σ

∫ ∆t

0
f(r) dr

}


⊗

n6=0

(
Ωn + f̂∆t(n+ 1)Xn

)




⊗
(
Ω0 +

(
σ f̂∆t(1) + ρ

√
∆t
)
X0

)
.

Therefore

J∆t uJ
−1
∆t
P∆t − P∆t U∆t

∆t
ψ(f) =

1

∆t




⊗

n6=0

(
Ωn + f̂∆t(n+ 1)Xn

)




⊗
{[

e−iη0∆t−iα

2



cos

√
α2

4
+ |λ|2∆t+ i

α

2

sin
√

α2

4 + |λ|2∆t
√

α2

4 + |λ|2∆t
− i

√
∆t

sin
√

α2

4 + |λ|2∆t
√

α2

4 + |λ|2∆t
λ̄ f̂∆t(1)





− e−iη0∆t− 1
2
|ρ|2∆t−ρ̄σ

∫ ∆t

0
f(r) dr

]

Ω0

+

[

e−iη0∆t−iα

2



−i
√

∆t
sin
√

α2

4 + |λ|2∆t
√

α2

4 + |λ|2∆t
λ+ cos

√
α2

4
+ |λ|2∆t f̂∆t(1) − i

α

2

sin
√

α2

4 + |λ|2∆t
√

α2

4 + |λ|2∆t
f̂∆t(1)





− e−iη0∆t− 1
2
|ρ|2∆t−ρ̄σ

∫ ∆t

0
f(r) dr

(
σ f̂∆t(1) + ρ

√
∆t
)]

X0

}

=




⊗

n6=0

(
ωn + f̂∆t(n+ 1) zn

)


⊗

(
o(∆t)ω0 + o(∆t) z0

)

∆t
→ 0.

Thus lim
∆t↓0

i
J∆t uJ

−1
∆t

− 1

∆t
P∆t is the right limit to find directly the Hamiltonian K in the limit

from repeated to continuous interactions. Anyhow, the generalization of this result to the case
of an arbitrary initial space H is not trivial, as one would loose the explicit solution (2) of the
Hudson-Parthasarathy equation and the straightforward computation of the limit.

Then one could study under which conditions the existence of such a limit is an alternative
characterization of K, giving its full domain or some domain of essential self-adjointness.
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