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1. Introduction

The application of transform techniques to price derivative contracts is rather recent. The first

and most important contributions are probably the articles by Heston [1] and Carr and Madan [2],

where the authors show how to price European options with non-Gaussian models exploiting the

Fourier transform. Similar techniques were developed later for path-dependent derivatives [3, 4].

Our paper provides a unified framework for pricing barrier and lookback (or hindsight) options

when the underlying asset evolves as an exponential Lévy process. The monitoring condition, e.g.,

the event that the underlying asset value falls below a given barrier for a down-and-out barrier

option, is assumed to be controlled at discrete time intervals.
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The proposed methodology is based on the Spitzer identity [5], an important result about the

distribution of the discrete extrema for a process with independent and identically distributed

increments. Spitzer provided a closed formula for the z-transform (or moment generating function)

of the characteristic function of the discrete extrema. Up to now its application has been difficult

because it requires the Wiener-Hopf (WH) factorization of a function defined in the complex

plane. Unfortunately, this factorization cannot be achieved analytically except in few cases, or its

computation turns out to be very demanding requiring a multidimensional integral. In addition,

with regard to a general Lévy process, very little is known for the two barriers problem. In this case

the more difficult problem of a matrix factorization arises. Possible solutions have been suggested

by approximating the Lévy process by a Lévy process with hyper-exponential jumps, when this is

possible, and subsequently exploiting the availability of an analytic Wiener-Hopf factorization for

the latter [6].

The key contributions of our paper are the following. First of all, we provide a constructive

procedure for performing the Wiener-Hopf factorization. More precisely, we express the Wiener-

Hopf factors arising in the Spitzer identity in terms of the Plemelj-Sokhotsky relations and then we

compute them exploiting the Hilbert transform. Even if the Spitzer identity has already been used

in option pricing [4, 7, 8, 9] and the present paper is mainly focused on this kind of applications, our

method goes well beyond option pricing and opens up the way to a more extensive use of the Spitzer

identity and the Wiener-Hopf factorization in other non-financial applications. In this regard we

would like to mention the applicability to queuing theory due to the strict connection between

random walks and queues, see Lindley [10] for pioneering contributions and Cohen [11], Prabhu

[12], and Asmussen [13, 14]. Further applications include insurance [15] and sequential testing [16].

Finally, the Wiener-Hopf factorization arises in almost all branches of engineering, mathematical

physics and applied mathematics. This is testified by the thousands of papers published on the

subject since its conception. A review of the different applications is given by Lawrie and Abrahams

[17].

Our methodology can deal with both a single and a double barrier. The solution in the second

case is of interest in itself and our procedure solves a long-standing problem related to an efficient

computation of the Wiener-Hopf factors in the presence of two barriers. The double-barrier case

did not admit a simple feasible solution up to now, except under few special assumptions on the

structure of the Lévy process. Indeed, it is related to the difficult problem of a matrix Wiener-Hopf

factorization, where one has to solve two coupled Wiener-Hopf equations casted in matrix form. A

general solution for the appropriate factorization of these matrices has not been found yet. Here,

we propose a constructive fixed-point algorithm based on an extension of the single barrier case

that achieves a fast convergence.
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We would also like to stress that, when the proposed methodology is applied to pricing discretely

monitored barrier and lookback options, its computational cost is independent of the number

of monitoring dates thanks to the Euler acceleration, which bounds from above the number of

Wiener-Hopf factorizations to be computed. Moreover, at least with regard to single-barrier and

lookback options, the method provides exponential order of convergence due to the fact that the

factorization is performed remaining in the complex plane. The existing methods are based on

the backward recursive formula, see for example Refs. [18, 19, 20, 21, 22], and on exploiting the

convolution structure of the transition density of the Lévy process by performing the computations

efficiently and fast using the FFT, which leads to a CPU time that grows as O(M logM), where

M is the number of discretization points. However, all the above cited methods are characterized

by a polynomial decay of the error with M . This order of accuracy is related to the fact that the

backward procedure for barrier options involves a convolution, that can be computed in the complex

plane, and a projection, which is applied in the real plane, to take into account the presence of the

barrier. A noticeable exception was presented by Feng and Linetsky [3, 23], who reformulated the

backward procedure for barrier and lookback options in terms of the Hilbert transform, so that all

steps are performed in the complex plane. Computing the Hilbert transform with a sinc function

expansion, they achieved an exponential decay of the error. However, the computational cost of

all these methods, including the one by Feng and Linetsky, increases linearly with the number of

monitoring dates.

Finally, the factorization procedure introduced here is quite general and can also be applied,

without any additional complication, to continuously-monitored contracts. Even the best available

method listed above, i.e., that by Feng and Linetsky, does not have this feature.

The structure of the paper is the following. Section 2 introduces the Spitzer identity and its

relationship with the Wiener-Hopf factorization, proposing a fast numerical method to compute the

distributions of the minimum and the maximum of a Lévy process, as well as the joint distributions

of the process at maturity and of its minimum or maximum over the whole time interval. Section 3

shows how the proposed general methodology can be implemented efficiently and accurately using

the Hilbert transform via a sinc expansion to compute the Wiener-Hopf factorization; we also

discuss the inversion of the z-transform and its acceleration through the Euler summation rule to

make the computational cost independent of the number of monitoring dates. Section 4 deals with

the pricing problem for all the derivatives, describing how the Spitzer identity can be exploited to

obtain our fast and accurate pricing methods. Section 5 reviews other pricing methods presented

in the literature and related to the proposed methodology, while Section 6 validates numerically

the pricing procedures, taking into consideration both the accuracy and the computational cost.

Finally, Section 7 addresses the continuous monitoring case.
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2. Spitzer identity and Wiener-Hopf factorization

We consider a Lévy process X(t), i.e., a process with X(0) = 0 and independent and identically

distributed increments. The Lévy-Khincine formula states that the characteristic function of the

process is given by Ψ(ξ, t) =E[eiξX(t)] = eψ(ξ)t, where ψ is the characteristic exponent of the process,

ψ(ξ) = iaξ− 1

2
σ2ξ2 +

∫

R

(
eiξη − 1− iξη1|η|<1

)
ν(dη); (1)

the parameters (a,σ, ν) are the Lévy-Khincine triplet which fully defines the Lévy process X(t).

In several applications in queueing theory, insurance and financial mathematics, the key point is

the determination of the law of the extrema of the Lévy process observed on an equally-spaced grid

Xn =X(n∆), n= 0, . . . ,N , where ∆> 0 is the time step, i.e., the distance between two consecutive

monitoring dates, which is assumed constant. We define the processes of the maximum MN and of

the minimum mN up to the Nth monitoring date as

MN = max
n=0,...,N

Xn and mN = min
n=0,...,N

Xn. (2)

To distinguish the present case, where the above processes, albeit evolving in continuous time, are

recorded only at discrete times, the terminology discrete versus continuous monitoring is used.

In particular, besides the distribution PX(x,N) of the Lévy process at maturity T =N∆, we will

need the distributions Pm(x,N) of the minimum and PM(x,N) of the maximum over the whole

set {n = 0, . . . ,N}, as well as the joint distributions PX,m(x,N) or PX,M(x,N) of the process at

maturity and of its minimum or maximum over the interval with respect to a lower (upper) barrier

l (u), and the joint distribution of the triplet (XN ,mN ,MN), PX,m,M(x,N). These distributions

are defined as

dPX(x,N) = pX(x,N)dx= P[XN ∈ [x,x+ dx)] (3)

dPm(x,N) = pm(x,N)dx= P[mN ∈ [x,x+ dx)] (4)

dPM(x,N) = pM(x,N)dx= P[MN ∈ [x,x+ dx)] (5)

dPX,m(x,N) = pX,m(x,N)dx= P[XN ∈ [x,x+ dx)∩mN > l] (6)

dPX,M(x,N) = pX,M(x,N)dx= P[XN ∈ [x,x+ dx)∩MN <u] (7)

dPX,m,M(x,N) = pX,m,M(x,N)dx= P[XN ∈ [x,x+ dx)∩mN > l∩MN <u]. (8)

We define the Fourier transform of a function g(x) as

ĝ(ξ) =Fx→ξ[g(x)](ξ) :=

∫ +∞

−∞

g(x)eiξxdx (9)

and its inverse with

g(x) =F−1
ξ→x[ĝ(ξ)](x) :=

1

2π

∫ +∞

−∞

ĝ(ξ)e−ixξdξ. (10)
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When no misunderstanding about which variable is being Fourier-transformed is possible, notably

when the argument function depends on a single variable, we will drop the subscript to the operators

F and F−1. In some cases, for compatibility with previous literature we use an upper-case letter

instead of a lower-case letter with a hat, i.e., G(ξ) instead of ĝ(ξ). As an exception to these

notations, the above defined characteristic function Ψ of the Lévy process is the Fourier transform

of the probability density function f of the Lévy process,

Ψ(ξ,∆)=Fx→ξ[f(x,∆)](ξ,∆), (11)

where the transition probability that X(t+∆) = x when X(t) = x′ has density f(x− x′,∆) for

any t > 0. The convolution form of the density function is due to the assumption of independent

increments. We would like to stress that f(x,∆) is the forward-in-time density of the process, while

we indicate with fb(x,∆) := f(−x,∆), x ∈ R, the backward-in-time density. As an example, the

general pricing recursion to compute the price (or cost) c of a plain vanilla derivative at time t given

its value at time t+∆ can be computed from its price at time t+∆ using the backward-in-time

density

c(x, t) = e−r∆
∫ +∞

−∞

fb(x−x′,∆)c(x′, t+∆)dx′. (12)

The Fourier transform of the backward-in-time transition density is the conjugate Ψ∗(ξ,∆) of the

characteristic function. Therefore the above equation in Fourier space is

ĉ(ξ, t) = e−r∆Ψ∗(ξ)ĉ(ξ, t+∆). (13)

We define the z-transform (or generating function) of a discrete set of functions v(x,n), n∈N0,

as

ṽ(x, q) =Zn→q[v(x,n)](x, q) :=
∞∑

n=0

qnv(x,n), (14)

with q ∈C (in the more common definition, z−1 is used in place of q). It is a discrete version of the

Laplace transform. The original function v(x,n) can be recovered through the complex integral

v(x,n) =Z−1
q→n[ṽ(x, q)](x,n) =

1

2πρn

∫ 2π

0

ṽ(x,ρeiu)e−inudu, (15)

where ρ must be within the radius of convergence [24].

Using combinatorial arguments, Spitzer derived a formula for the z-transforms of the character-

istic functions of the distributions defined in Equations (3)–(8), the celebrated Spitzer identities

[5]. We recall them here. Let Φ± be two functions which are analytic in the overlap of two half

planes including the real line such that

Φ(ξ, q) := 1− qE[eiξX(∆)] = 1− qΨ(ξ,∆)=Φ+(ξ, q)Φ−(ξ, q). (16)
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Φ±(ξ, q) are the positive and negative Wiener-Hopf factors of 1− qΨ(ξ,∆). The Spitzer identities

enable to express the desired characteristic functions through the inversion of a moment-generating

function involving Φ, Φ+ and Φ−. We have

˜̂pX(ξ, q) =
∞∑

n=0

qnp̂X(ξ,n) =
∞∑

n=0

qnE
(
eiξXn

)
=

1

Φ(ξ, q)
(17)

˜̂pm(ξ, q) =
∞∑

n=0

qnp̂m(ξ,n) =
∞∑

n=0

qnE
(
eiξmn

)
=

1

Φ+(0, q)Φ−(ξ, q)
(18)

˜̂pM(ξ, q) =
∞∑

n=0

qnp̂M(ξ,n) =
∞∑

n=0

qnE
(
eiξMn

)
=

1

Φ+(ξ, q)Φ−(0, q)
(19)

˜̂pX,m(ξ, q) =
∞∑

n=0

qnp̂X,m(ξ,n) =
1

Φ(ξ, q)
− eilξ

P−(ξ, q)

Φ+(ξ, q)
= eilξ

P+(ξ, q)

Φ+(ξ, q)
(20)

˜̂pX,M(ξ, q) =
∞∑

n=0

qnp̂X,M(ξ,n) =
1

Φ(ξ, q)
− eiuξ

Q+(ξ, q)

Φ−(ξ, q)
= eiuξ

Q−(ξ, q)

Φ−(ξ, q)
(21)

˜̂pX,m,M(ξ, q) =
∞∑

n=0

qnp̂X,m,M(ξ,n) =
1

Φ(ξ, q)
− eilξ

J−(ξ, q)

Φ(ξ, q)
− eiuξ

J+(ξ, q)

Φ(ξ, q)
, (22)

where

P (ξ, q) :=
e−ilξ

Φ−(ξ, q)
= P+(ξ, q)+P−(ξ, q) (23)

Q(ξ, q) :=
e−iuξ

Φ+(ξ, q)
=Q+(ξ, q)+Q−(ξ, q). (24)

Notice that the joint probabilities in Equations (20)–(22) are given by the probability of the process

at maturity, Equation (17), minus the probability to hit a barrier; the latter vanishes if the barrier

moves to ±∞. Similar identities exist for the continuous-monitoring case too, where the quantity

to be factorized is simply 1− qψ(ξ).

The double-barrier problem, which is more difficult than the others, was not examined by Spitzer

himself, but by Kemperman [25]. Unfortunately he did not present a constructive procedure for

the determination of the quantities J+(ξ, q) and J−(ξ, q) in Equation (22). The problem was later

solved in the Gaussian case by Green, Fusai and Abrahams [4, Section 2.4]. Here we generalize

the latter construction to Lévy processes. In particular, Green, Fusai and Abrahams proved that

J+(ξ, q) and J−(ξ, q) are the solution of the coupled integral equations

J−(ξ, q)

Φ−(ξ, q)
+

1

2πi

∫ +∞

−∞

ei(u−l)ξ
′

J+(ξ
′, q)

(ξ− ξ′)Φ−(ξ′, q)
dξ′ =

1

2πi

∫ +∞

−∞

e−ilξ
′

(ξ− ξ′)Φ−(ξ′, q)
dξ′, Im ξ′ > Im ξ, (25)

J+(ξ, q)

Φ+(ξ, q)
+

1

2πi

∫ +∞

−∞

ei(l−u)ξ
′

J−(ξ
′, q)

(ξ′ − ξ)Φ+(ξ′, q)
dξ′ =

1

2πi

∫ +∞

−∞

e−iuξ
′

(ξ′ − ξ)Φ+(ξ′, q)
dξ′, Im ξ′ < Im ξ, (26)

where Im is the imaginary part.
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As proved by Krein [26], the decomposition of a complex function f̂(ξ) = f̂+(ξ) + f̂−(ξ) can be

computed as

f̂+(ξ) =
1

2πi

∫ +∞

−∞

f̂(ξ′)

ξ′ − ξ
dξ′, Im ξ′ < Im ξ, (27)

f̂−(ξ) =
1

2πi

∫ +∞

−∞

f̂(ξ′)

ξ− ξ′
dξ′, Im ξ′ > Im ξ. (28)

Therefore Equations (25)–(26) can be rewritten as

J−(ξ, q)

Φ−(ξ, q)
+

[
ei(u−l)ξJ+(ξ, q)

Φ−(ξ, q)

]

−

=

[
e−ilξ

Φ−(ξ, q)

]

−

(29)

J+(ξ, q)

Φ+(ξ, q)
+

[
ei(l−u)ξJ−(ξ, q)

Φ+(ξ, q)

]

+

=

[
e−iuξ

Φ+(ξ, q)

]

+

(30)

or

J−(ξ, q)

Φ−(ξ, q)
=

[
e−ilξ − ei(u−l)ξJ+(ξ, q)

Φ−(ξ, q)

]

−

, (31)

J+(ξ, q)

Φ+(ξ, q)
=

[
e−iuξ − ei(l−u)ξJ−(ξ, q)

Φ+(ξ, q)

]

+

. (32)

To make the above expressions usable, we need to factorize (or decompose) a complex function,

defined in a strip containing the real axis, into a product (or sum) of two functions which are

analytic in the overlap of two half planes, including the real line, where they are defined. Once this

has been done and the relevant quantities in Equations (17)–(22) have been obtained, we must

compute numerically an inverse z-transform, followed by an inverse Fourier transform. The latter

is done in a standard way using the fast Fourier transform (FFT). The inversion of the z-transform

is rather easy too. It has been discussed in detail by Abate and Whitt [24], who showed that it can

be well approximated by

v(x,n) =Z−1
q→nṽ(x, q)≈

ṽ(x,ρ)+ 2
∑n−1

j=1 (−1)j ṽ
(
x,ρeijπ/n

)
+(−1)nṽ(x,−ρ)

2nρn
. (33)

The more challenging part is the factorization of Φ in Equation (16), as well as the decomposition

of P and Q. In general, this problem can be described as follows. Given a smooth enough function

f̂(ξ), analytic in a strip around the real axis, we need to compute f̂±(ξ) such that

f̂(ξ) = f̂+(ξ)f̂−(ξ); (34)

f̂+(ξ) is such that its inverse Fourier transform f+(x) = 0 for x < 0, while f̂−(ξ) is such that

f−(x) = 0 for x> 0. Taking logarithms, this can be accomplished by the decomposition

log f̂(ξ) = log f̂+(ξ)+ log f̂−(ξ). (35)
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The conditions under which the above factorization or decomposition gives proper results have

been given by Krein [26]; the most important requirement is that f̂(ξ) is not zero anywhere.

In general neither the factorization nor the decomposition can be done analytically. With con-

tinuous monitoring, where the quantity to be factorized is 1− qψ(ξ) instead of 1− qΨ(ξ,∆), an

analytical treatment becomes possible for a Brownian motion or if we impose strong restrictions

on the structure of the considered Lévy process [27], such as the assumption that it is spectrally

one-sided, i.e., jumps are either always up or always down. Another assumption that makes the

factorization feasible is if the jumps are of phase type [28], which includes the Kou double exponen-

tial jump model as a special case. In these cases the Wiener-Hopf factorization is tractable because

1− qψ(ξ) is a rational function and its decomposition in upper/lower factors is quite immediate.

For example, Jeannin and Pistorius [6] approximate different Lévy models by the class of general-

ized hyper-exponential models, which have a tractable Wiener-Hopf factorization. A similar idea

is pursued by Asmussen, Madan and Pistorius [29].

Unfortunately, with discrete monitoring even under the above assumptions the factorization

is not doable analytically, because 1 − qΨ(ξ,∆) is no more a rational function. In addition, all

the above mentioned methods consider only the single-barrier case. An exception was given by

Boyarchenko and Levendorskii [30], who obtained exact analytical pricing formulae in terms of

Wiener-Hopf factors, and, under additional conditions on the process, derived simpler approximate

formulae. For the general difficulty in computing the factors, with reference to the important

financial engineering problem of pricing barrier options, Carr and Crosby [31] state: “Pricing

barrier options for arbitrary Lévy processes is far from trivial. There are, in principle, some results

... based on Wiener-Hopf analysis although they involve inversion of triple Laplace transforms

and it is open to debate as to whether this could be done efficiently enough for use in a trading

environment.” Similarly, Cont and Tankov [32], a popular reference text for applications of Lévy

processes in finance, state: “The Wiener-Hopf technique is too computationally expensive and we

recommend Monte Carlo simulation or numerical solution of partial integro-differential equations.”

These remarks are based on the representation of the Wiener-Hopf factors for the continuous

monitoring case as double integrals. Indeed we have ϕ(ξ) := 1− qψ(ξ) =ϕ+(ξ)ϕ−(ξ) with

logϕ+(ξ) =

∫ +∞

0

t−1e−t/qdt

∫ +∞

0

(1− eiξx)PX(dx), (36)

and

logϕ−(ξ) =

∫ +∞

0

t−1e−t/qdt

∫ 0

−∞

(1− eiξx)PX(dx), (37)

where PX(·) is the distribution of the Lévy process X [32, Chapter 11.3]. With reference to financial

applications, some attempts to compute the Wiener-Hopf factors have been done by Boyarchenko

and Levendorskii [30], Kuznetsov et al. [33], among the others.
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A more convenient representation of the Wiener-Hopf factors can be found using the Hilbert

transform and the Plemelj-Sokhotsky relations. The Hilbert transform [34] of a function f̂(ξ) is

defined as

Hξf̂(ξ) = p.v.
1

πξ
∗ f̂(ξ) = p.v.

1

π

∫ +∞

−∞

f̂(ξ′)

ξ′ − ξ
dξ′, (38)

where ∗ denotes convolution and p.v. the Cauchy principal value,

p.v.
1

π

∫ +∞

−∞

f̂(ξ′)

ξ− ξ′
dξ′ = lim

ǫ→0+

1

π

(∫ −ǫ

−1/ǫ

f̂(ξ′)

ξ− ξ′
dξ′ +

∫ 1/ǫ

ǫ

f̂(ξ′)

ξ− ξ′
dξ′

)
; (39)

the latter assigns a value to an improper integral which would otherwise result in the indefinite

form +∞−∞. The convolution theorem

f̂(ξ) ∗ ĝ(ξ) =F [f(x)g(x)], (40)

which maps a convolution to a product via a Fourier transform, together with the inverse Fourier

transform

p.v.F−1 1

πξ
=−i sgnx, (41)

enables to express the Hilbert transform through an inverse Fourier transform (from f̂(ξ) to f(x))

and a direct Fourier transform

iHf̂(ξ) =F
[
sgnxf(x)

]
; (42)

Thus a fast method to compute the Hilbert transform numerically consists simply in evaluating

Eq. (42) through an inverse and a direct FFT. In Section 3.1 we will see a more sophisticated

numerical method based on a sinc function expansion.

Define the projections of a function f(x) on the positive or the negative half-axis through the

multiplication with the indicator function of that set,

P+
x f(x) := 1x>0f(x) = f+(x) (43)

P−
x f(x) := 1x<0f(x) = f−(x). (44)

Now substitute

sgnxf(x) = (1x>0 −1x<0)f(x) = f+(x)− f−(x) (45)

into Equation (42), obtaining the remarkable property

f̂+(ξ)− f̂−(ξ) = iHf̂(ξ). (46)

Together with the identity

f̂+(ξ)+ f̂−(ξ) = f̂(ξ), (47)
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this allows to achieve a decomposition of a function f̂(ξ), and thus a factorization of exp f̂(ξ),

via its Hilbert transform. To this end, Equations (46) and (47) are conveniently rearranged to the

Plemelj-Sokhotsky relations

f̂+(ξ) =
1

2

[
f̂(ξ)+ iHf̂(ξ)

]
(48)

f̂−(ξ) =
1

2

[
f̂(ξ)− iHf̂(ξ)

]
. (49)

Obtaining the Wiener-Hopf factors of exp f̂(ξ) through Equations (48)–(49) with the Hilbert trans-

form computed in a straightforward way by Equation (42) corresponds to performing in sequence

an inverse Fourier transform, a projection on the positive or negative half axis and a Fourier

transform,

f̂+(ξ) =Fx→ξ

[
P+
x F−1

ξ→xf̂(ξ)
]
(ξ) (50)

f̂−(ξ) =Fx→ξ

[
P−
x F−1

ξ→xf̂(ξ)
]
(ξ), (51)

corresponding to the scheme

f̂
F−1

−→ ·
P+

ր
ց
P−

· F−→ f̂+

· F−→ f̂−.

(52)

This factorization turns out to be very fast, because it can be accomplished numerically with two

fast Fourier transforms (FFTs) and one projection [35, 36]. On the other hand, switching back and

forth between the complex and the real planes, the application of the projection causes a loss of

accuracy; at the end this procedure turns out to have only quadratic accuracy.

A numerically more accurate approach consists in the computation of the Hilbert transform,

and thus of the Plemelj-Sokhotsky relations, using a sinc expansion approximation to analytic

functions. This approach uses two FFTs too to multiply Toeplitz matrices with vectors and thus

has a computational cost of O(M logM), but it does not leave Fourier space and its discretization

error decreases exponentially with respect to M ; see Section 3.1 for details.

We stress here the similarities and differences with the approach followed by Feng and Linetsky

[3, 23]. The analogy is due to the fact that in the mentioned papers the Hilbert transform is applied

in the backward-in-time pricing procedure. In practice, the projection step is performed in the

complex plane using the Hilbert transform; greater details on how this is possible will be given in

Section 5.1. This transform is computed at a high degree of accuracy via sinc expansion. No direct

relationship of their procedure with the Wiener-Hopf factorization can be devised. The analogy is

that we are able to express the Wiener-Hopf factors via the Hilbert transform and then we can

exploit their idea of performing this transform with a sinc expansion. At the end, we are able to

achieve the same accuracy as their method, but with a significant saving of computational time,



Fusai, Germano, Marazzina: Fast option pricing based on the Spitzer identity and the Wiener-Hopf factorization

11

because our procedure turns out to have a cost independent of the number of monitoring dates N ,

whilst all existing methods, including [3, 23], this cost increases linearly with N .

For the sake of truth, an advantage of the Feng and Linetsky method with respect to our

procedure is that it can easily deal with non-equally spaced monitoring dates. On the other side,

our methodology can cope with the continuous monitoring case, as shown in Section 7, whilst Feng

and Linetsky approach, and other Fourier methods, cannot.

The new approach proposed in the present paper is therefore summarized in performing the

Wiener-Hopf factorization through the Plemelj-Sokhotsky relations (48)–(49), and computing the

Hilbert transform in Fourier space using sinc functions. The detailed procedure is described in

Section 4, considering different financial applications.

3. Discrete approximation error and efficient implementation

The implementation of the proposed procedure to estimate the distributions in the Equations

(3)–(8) contains mainly two sources of error: the computation of the Wiener-Hopf factorizations

using M discretization points, and the inversion of the z-transform. In the following, we detail

how to efficiently implement both the factorization, exploiting sinc functions, and the z-transform

inversion, via the Euler acceleration technique.

3.1. Hilbert transform with sinc functions

The Hilbert transform can be efficiently computed using the sinc expansion approximation of

analytic functions. The use of sinc functions,

Sk(z,h) =
sin(π(z− kh)/h)

π(z− kh)/h
, k ∈Z, (53)

has been deeply studied by Stenger [37, 38], who showed that a function f(z) analytic on the whole

complex plane and of exponential type with parameter π/h, i.e.,

|f(z)| ≤Ceπ|z|/h, (54)

can be reconstructed exactly from the knowledge of its values on an equispaced grid of step h, as

f(z) admits the sinc expansion [37, Theorem 1.10.1]

f(z) =
+∞∑

k=−∞

f(kh)Sk(z,h). (55)

Now, since

Fz→ζSk(z,h) = heikhζ (56)
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% Fast Hilbert transform: Hilbert transform through fast Fourier transforms.
function iHF = ifht(F)
% Setup
[M N] = size(F); % Dimension parameters: number of equations and of grid points
P = N; % Number of zero padding elements
Q = N+P; % Number of grid points after zero padding
% Define the auxiliary vector
t = (1-(-1).̂ (-Q/2:Q/2-1))./(pi*(-Q/2:Q/2-1));
t(Q/2+1) = 0;
vec = repmat(imag(fft(ifftshift(t))),M,1);
% Compute the Hilbert transform times the imaginary unit
f = ifft(F,Q,2); % Optional padding with P trailing zeros to length Q = N + P
iHF = fft(vec.*f,[],2);
iHF = iHF(:,1:N);

Figure 1 Matlab code to compute the Hilbert transform via sinc function expansion.

% Factorise L = 1-H
lL = log(1-H);
iHlL = ifht(lL); % imaginary unit times the fast Hilbert transform of L
lLp = (lL+iHlL)/2; % Plemelj-Sokhotsky
lLm = (lL-iHlL)/2; % Plemelj-Sokhotsky
Lp = exp(lLp);
Lm = exp(lLm);

Figure 2 Matlab code to compute the Wiener-Hopf factorization via the Hilbert transform.

and [3, Corollary 6.1]

HzSk(z,h) =
1− cos(π(z− kh)/h)

π(z− kh)/h
, (57)

also the Fourier and Hilbert transforms of f(z) admit the sinc expansions

f̂(ζ) = h
+∞∑

k=−∞

f(kh)eikhζ if |ζ|<π/h, (58)

f̂(ζ) = 0 if |ζ| ≥ π/h, since functions analytic on the whole plain and of exponential type have

Fourier transforms that vanish outside of the finite interval (−π/h,π/h) [37, Theorem 1.10.1], and

Hf(z) =
+∞∑

k=−∞

f(kh)
1− cos(π(z− kh)/h)

π(z− kh)/h
. (59)

The integrals of f and |f |2 can be written as sinc expansions too,

∫

R

f(x)dx= h
+∞∑

k=−∞

f(kh),

∫

R

|f(x)|2dx= h
+∞∑

k=−∞

|f(kh)|2. (60)

The above results show in particular that the trapezoidal quadrature rule with step size h is exact.

This holds true for a function f(z) that is analytic in the whole complex plane. However, this

can be used also to approximate a function that is analytic only in a strip including the real axis,
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which is the case considered in this article. More precisely, Stenger shows [37, Theorems 3.1.3, 3.1.4

and 3.2.1] that in this case the trapezoidal approximation has an error that decays exponentially

with respect to h. The computation of the Hilbert transform via a sinc expansion can be performed

using the FFT [3, Section 6.5]. The idea is that to compute a discrete Hilbert transform it is

necessary to do matrix-vector multiplications involving Toeplitz matrices. As is well known, this

kind of multiplications can be performed exploiting the FFT, once those matrices are embedded

in a circulant matrix [3, Appendix B][19]; see also Section 5.2. In particular, Feng and Linetsky,

with respect to the computation of the Hilbert transform [23, Theorem 3.3] and of the whole

Plemelj-Sokhotsky formulas (48)–(49) [3, Theorem 6.5] [23, Theorem 3.4] with sinc functions, prove

the following convergence result: if a function is analytic in a suitable strip around the real axis,

then the discretization error of its numerical factorization or decomposition decays exponentially

with the number of discretization points M . We will show the connection of Feng and Linetsky’s

procedure with the Plemelj-Sokhotsky formula in Section 5.1. Further details can be found in the

cited references [3, Section 6] [23, Section 3.4], while Matlab code to compute the Hilbert transform

via sinc functions and the WH factorization via the Hilbert transform is reported in Figures 1 and

2.

3.2. Acceleration of the inverse z-transform via Euler summation

The inverse z-transform Z−1
q→n is performed according to Equation (33), where ρ ∈ (0,1) is a free

parameter; setting ρ = 10−6 yields a 10−12 accuracy of the option price [19, 24]. Moreover, we

apply the Euler summation, which is a convergence-acceleration technique well suited to evaluate

alternating series. The idea of the Euler summation is to approximate Z−1
q→nṽ(ξ, q) by the binomial

average, also called Euler transform, of its partial sums bk from k= nE to k= nE +mE, i.e.,

Z−1
q→nṽ(ξ, q)≈

1

2mEnρn

mE∑

j=0

(
mE

j

)
bnE+j(ξ), (61)

where

bk =
k∑

j=0

(−1)jaj Re ṽ
(
ξ, ρeijπ/n

)
, (62)

with a0 = 0.5, aj = 1, j = 1, . . . , nE+mE, and nE andmE are suitably chosen such that nE+mE <n.

Thus the number of parameters q= ρeijπ/n to be considered in Equation (33) drops from n+1 to

nE+mE+1. Numerical tests suggest to set nE = 12 and mE = 20. In Figure 3 we show graphically

the convergence of the partial sums bk to the inverse z-transform.

To conclude, the pricing algorithm proposed in Section 4 has a computational cost of

O ((min{n,nE +mE}+1)M logM),
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Figure 3 Convergence of the partial sum bk to Z−1
q→nṽ(ξ, q)≈ 1

2mEnρn

∑mE

j=0

(
mE

j

)
bnE+j(ξ). The real (imaginary)

part of bk, k= 0,1, . . . , nE+mE , corresponds to the red circles (black squares), while the real (imaginary)

part of the solution corresponds to the red (black dashed) line. The test case is related to the computation

of dPX,m with X(t) a double exponential Lévy process, a log-barrier l= 0.8, N = 100 monitoring dates

and M = 214 grid points.

and a discretization error which exponentially decays till it reaches an accuracy of about 10−12.

This is confirmed in the numerical experiments reported in Section 6 to price derivatives. The only

exception is for double-barrier options, and therefore when we deal with the probability dPX,m,M ,

where the decay of the error turns out to be polynomial. Likely, this is related to the fixed-point

algorithm described in Section 4.3 and necessary to compute J± in Equations (25) and (26).

4. Applications to option pricing

In option pricing applications, we use the Lévy process X(t) as driving source in describing the

evolution of an asset price S(t) according to

S(t) = S0e
X(t), (63)

S0 = S(0) being the initial spot price. The stock price dynamics is directly specified under the

so-called risk-neutral measure, so that in Equation (1) a= r− δ− 1
2
σ2−

∫
R

(
eη − 1− η1|η|<1

)
ν(dη),

where r is the risk-free interest rate and δ the asset dividend rate.

In pricing path-dependent options such as barrier and lookback options, the relevant quantities

are the maximum MN and the minimum mN up to time N∆= T . To price a fixed-strike lookback

option we need the distribution PM(x,N) of the maximum or Pm(x,N) of the minimum. For a
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single-barrier option we need the joint distribution PX,M(x,N) or PX,m(x,N) of the Lévy process

at maturity T = N∆, ∆ being the (constant) time interval between two subsequent monitoring

dates, and of its maximum (up-and-out case) or minimum (down-and-out case) registered during

the entire life n= 0, . . . ,N of the option. For a double-barrier option we need the joint distribution

PX,m,M(x,N) of the triplet (XN ,mN ,MN).

In pricing the above mentioned contracts, we are interested in the truncated payoff

φ(x) = eαx
(
S0e

x− ek
)+

1x≤u (64)

for a call option and

φ(x) = eαx
(
ek−S0e

x
)+

1x≥l, (65)

for a put option, where k= log(K/S0) is the rescaled log-strike of the option, and l= log(L/S0) and

u= log(U/S0) are the rescaled lower and upper log-barriers. In the following we assume l < k < u.

The damping factor eαx with a suitable choice of the parameter α is introduced to make the Fourier

transform of the above payoff well defined.

The option price can be obtained discounting the expectation value with respect to the appro-

priate distribution; this expectation can conveniently be computed through the Parseval relation

[39] by a product in Fourier space and an inverse Fourier transform,

E[φ(x)] =

∫ +∞

−∞

φ(x)p(x)dx=

∫ +∞

−∞

φ̂(ξ)p̂∗(ξ)dξ =

∫ +∞

−∞

φ̂∗(ξ)p̂(ξ)dξ =F−1
[
φ̂∗(ξ)p̂(ξ)

]
(0), (66)

where p(x) = pM(x,N) or pm(x,N) for lookback options (to be synthetic, in the following we

will consider only fixed-strike lookback options written on the minimum), p(x) = pX,M(x,N) or

pX,m(x,N) for single-barrier options, and p= pX,m,M(x,N) for double-barrier options.

While it is known that the Fourier transform of the truncated payoff is

φ̂(ξ) =Kek(α+iξ)
(
1− eb(α+iξ)

α+ iξ
− 1− eb(1+α+iξ)

1+α+ iξ

)
(67)

with b= log(U/K) for a call option and b= log(L/K) for a put option in the barrier case [3], the

main problem is the computation of the characteristic functions of the (joint) probability densities

defined in Equations (5)–(8). Here we exploit the Spitzer identity and the factorization procedure

previously described.

So let us assume for the moment that the quantities appearing on the right-hand side of Equa-

tions (18)–(22) are known; then if we take the z-transform of the undiscounted expectation value

in Equation (66), we obtain

∞∑

n=0

qnE [φ(x)] =
∞∑

n=0

qnF−1[φ̂∗(ξ)p̂(ξ,n)](0), (68)
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and swapping the z-transform and the Fourier transform1

F−1
ξ→x

[
φ̂∗(ξ)

∞∑

n=0

qnp̂(ξ,n)

]
(0) =F−1

ξ→x

[
φ̂∗(ξ)˜̂p(ξ, q)

]
(0). (69)

Using the inverse z-transform defined in Equation (15), we obtain finally the option price through

the double inverse transform

v(x,n) = e−rTF−1
ξ→x

[
Z−1
q→n

[
φ̂∗(ξ)˜̂p(ξ, q)

]]
, (70)

evaluated for (x,n) = (0,N). Later we will discuss a few little improvements to the above formula

in order to enhance the numerical accuracy of the final result.

In Equation (70) the inverse z-transform is performed before the inverse Fourier transform to

minimize the computational cost. The reason is that the inversion operator Z−1
q→n is well approxi-

mated by a sum of n+1 terms (or nE+mE+1 if the Euler acceleration is considered). Therefore,

from a computational point of view it is advantageous to do a single inverse Fourier transform of

the sum instead of a separate transform of each of the addends.

Since we have to deal with unbounded domains, we use a domain truncation based on a moments’

bound with tolerance 10−8 [19]; thus the truncation error is constant, but, according to the reported

numerical experiments [18, 19], it does not affect the first significant decimal digits.

4.1. Lookback options

In the case of lookback options (we recall that, to be synthetic, we deal only with fixed-strike

lookback on the minimum), assuming a number of monitoring dates N > 1, it is convenient to

modify the pricing formula (70) into

v(x,N) = e−rTF−1
ξ→x

[
Ψ(ξ)φ̂∗(ξ)Z−1

q→N−1

[
1

Φ+(0, q)Φ−(ξ, q)

]]
, (71)

evaluated for x= 0, i.e., to apply the inverse z-transform to a number of monitoring dates reduced

by 1, and to account for the extra date multiplying the conjugated Fourier transform of the payoff

function by the characteristic function Ψ. This smooths the payoff function, giving it the required

regularity to ensure an exponential decay of the error. From a financial point of view, this smoothing

is equivalent to price a lookback option with N − 1 monitoring dates and a payoff v1 = v(x,1),

where v(x,n) is the value of the option at time (N −n)∆ and log-price x. Thus, lookback options

are priced according to the algorithm

φ≡ v0
F−→ v̂0

Ψ∗

−→ v̂1
ZS−→ v̂N

F−1

−→ vN , (72)

1 The interchange of integration and summation requires
∑

∞

n=0
qnf(z,n) to converge uniformly. The z-transform∑

∞

n=0
qnf(z,n) is in fact a power series in q with coefficients f(z,n) and radius of convergence given by ρ. A power

series converges uniformly in a closed and bounded interval contained in the interval of convergence [40].
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where the operator ZS is defined as

ZS : F (ξ)→ F ∗(ξ)Z−1
q→N−1

[
1

Φ+(0, q)Φ−(ξ, q)

]
. (73)

Recall that the conjugate operator applied to the generic function F is due to the Parseval relation.

The full procedure consists of the following steps:

1. For each q necessary to invert the z-transform, factorize

Φ(ξ, q) := 1− qΨ(ξ, q) =Φ+(ξ, q)Φ−(ξ, q) (74)

and compute the Spitzer identity

˜̂pm(ξ, q) =
1

Φ+(0, q)Φ−(ξ, q)
. (75)

2. Apply the inverse z-transform Z−1
q→N−1 to ˜̂pm(ξ, q) and multiply the result by Ψ(ξ)φ̂∗(ξ),

obtaining v̂(ξ,N).

3. Apply the inverse FFT to v̂(ξ,N) and pick the value for x= 0, obtaining the option price.

A similar procedure is valid for fixed-strike lookback options written on the maximum, where

˜̂pM(ξ, q) is used in place of ˜̂pm(ξ, q).

4.2. Single-barrier options

Without loss of generality, let us consider the case of a down-and-out barrier option. Assuming

again a number of monitoring dates N > 2, we reduce this number by 1 and multiply the payoff

function by the characteristic function, as we did for lookback options. Then our methodology is

applied to the remaining N−1 monitoring dates. The full procedure can be summarized as follows:

φ≡ v0
F−→ v̂0

Ψ∗

−→ v̂1
ZS−→ v̂N

F−1

−→ vN (76)

δ
F−→ · Ψ−→ ↑· (77)

In this case we denote with ZS the operator

ZS : F (ξ)→ F ∗(ξ)Z−1
q→N−2

[
eilξ

P+(ξ, q)

Φ+(ξ, q)

]
, (78)

and

P (ξ, q) :=Ψ(ξ)
e−ilξ

Φ−(ξ, q)
= P+(ξ, q)+P−(ξ, q). (79)

If we compare the above operator with the definition of ˜̂pX,m in Equation (20), we notice that the

only difference is the presence of P , which differs from P only for the factor Ψ. This is necessary to

smooth the function P , substituting it with P , that has the regularity required to ensure an expo-

nential decay of the error. The substitution is related to the procedure sketched in Equation (77):
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in computing the distribution PX,m we do not start from time 0, but we move one step forward

with a convolution procedure, which corresponds to multiplying with Ψ the Fourier transform of

the Dirac delta function, i.e., the value of the probability at time 0, and then apply the Spitzer

identity. Moreover, notice that the procedures given by Equation (76) and Equation (77) are per-

formed backward and forward-in-time, respectively, since the first one is related to the price of the

derivative (starting point: payoff at time T ), while the second one to the probability distribution

of the log-price (starting point: Dirac delta at time 0).

Therefore, for a down-and-out barrier option we perform the following steps:

1. For each q necessary to invert the z-transform, factorize

Φ(ξ, q) := 1− qΨ(ξ, q) =Φ+(ξ, q)Φ−(ξ, q), (80)

decompose

P (ξ, q) :=Ψ(ξ)
e−ilξ

Φ−(ξ, q)
= P+(ξ, q)+P−(ξ, q), (81)

and compute the Spitzer identity

R(ξ, q) := eilξ
P+(ξ, q)

Φ+(ξ, q)
. (82)

The function R(ξ, q) is related to ˜̂pX,m(ξ, q) in Equation (18): more precisely, Z−1
q→N−1R(ξ, q) =

Z−1
q→N

˜̂pX,m(ξ, q) = p̂X,m(ξ,N).

2. Apply the inverse z-transform Z−1
q→N−2 and then the inverse Fourier transform, obtaining the

option price from

v(x,N) = e−rTF−1
ξ→x

[
Ψ(ξ)φ̂∗(ξ)Z−1

q→N−2

[
eilξ

P+(ξ, q)

Φ+(ξ, q)

]]
(83)

evaluated for x = 0, where φ̂∗ is the conjugated Fourier transform of the payoff, possibly with a

damping factor to make its transform computable, Equation (67), and conjugated because of its

use within the Parseval relation, Equation (66).

4.3. Double-barrier options

For the double-barrier option pricing problem the missing piece is the computation of the factors

J+ and J− in Equation (22). This requires the solution of a system of two integral equations. We

are not aware of any previous efficient computational procedure able to deal with this problem, and

we propose here a new procedure via an iterative computation based on the fixed-point algorithm.
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Starting from Equations (25)–(26), as for the single-barrier case we assume a number of moni-

toring dates N > 2 and we move one step forward in the computation of the probability dPX,m,M

via convolution. This corresponds to consider

J−(ξ, q)

Φ−(ξ, q)
=

[
e−ilξΨ(ξ)− ei(u−l)ξJ+(ξ, q)

Φ−(ξ, q)

]

−

, (84)

J+(ξ, q)

Φ+(ξ, q)
=

[
e−iuξΨ(ξ)− ei(l−u)ξJ−(ξ, q)

Φ+(ξ, q)

]

+

, (85)

instead of Equations (31)–(32). To compute J± we propose the following iterative procedure: start-

ing from a guess function J
(0)
+ (ξ, q) = 0, compute J±(ξ, q) and thus the solution with the following

fixed-point algorithm: for i= 1, . . .

1. Decompose

P
(i)
(ξ, q) :=

e−ilξΨ(ξ)

Φ−(ξ, q)
− ei(u−l)ξJ

(i−1)
+ (ξ, q)

Φ−(ξ, q)
= P

(i)

+ (ξ, q)+P
(i)

− (ξ, q) (86)

and compute

J
(i)
− (ξ, q) = P

(i)

− (ξ, q)Φ−(ξ, q). (87)

2. Decompose

Q
(i)
(ξ, q) :=

e−iuξΨ(ξ)

Φ+(ξ, q)
− ei(l−u)ξJ

(i−1)
− (ξ, q)

Φ+(ξ, q)
=Q

(i)

+ (ξ, q)+Q
(i)

− (ξ, q) (88)

and compute

J
(i)
+ (ξ, q) =Q

(i)

+ (ξ, q)Φ+(ξ, q). (89)

3. Compute

R(i)(ξ, q) :=
Ψ

Φ(ξ, q)
− eilξ

J
(i)
− (ξ, q)

Φ(ξ, q)
− eiuξ

J
(i)
+ (ξ, q)

Φ(ξ, q)
; (90)

if the distance between the new and old functions R(i) and R(i−1) is greater than a given toler-

ance, increase i and return to Step (a), otherwise stop and set R = R(i), J− = J
(i)
− , J+ = J

(i)
+ .

The function R(ξ, q) is related to ˜̂pX,m,M(ξ, q) in Equation (22): more precisely, Z−1
q→N−1R(ξ, q) =

Z−1
q→N

˜̂pX,m,M(ξ, q) = p̂X,m,M(ξ,N).

Therefore the scheme for the computation of the option price is the following:

1. For each q necessary to invert the z-transform, factorize

Φ(ξ, q) = 1− qΨ(ξ, q) =Φ+(ξ, q)Φ−(ξ, q), (91)

and compute R(ξ, q) via the iterative scheme.

2. Apply the inverse z-transform Z−1
q→N−2 to R(ξ, q) and then the inverse Fourier transform,

obtaining the option price from

v(x,N) = e−rTF−1
ξ→x

[
Ψ(ξ)φ̂∗(ξ)Z−1

q→N−2

[
Ψ

Φ(ξ, q)
− eilξ

J−(ξ, q)

Φ(ξ, q)
− eiuξ

J+(ξ, q)

Φ(ξ, q)

]]
(92)
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evaluated for x = 0. Thus, the methodology to price a double-barrier option is close to the one

proposed for single-barrier contracts and consists of the same steps as sketched in Equations (76)–

(77), with a modified R(ξ, q) inside the operator ZS, i.e.,

ZS : F (ξ)→ F ∗(ξ)Z−1
q→N−2 [R(ξ, q)] , (93)

replacing R(ξ, q) defined in Equation (82) with the one computed, via the fixed-point algorithm,

in Equation (90). Even if the factorization is performed with a Hilbert transform computed as

proposed in Section 3.1, our numerical experiments show that this pricing algorithm provides a

quadratic convergence of the error, instead of the exponential one of single-barrier (and look-

back) options. In practice, the fixed-point algorithm causes a loss of accuracy with respect to the

backward-in-time procedure used by Feng and Linetsky [3]. On the other hand, the above numeri-

cal scheme solves a long-standing problem related to an efficient computation of the Wiener-Hopf

factors in the double-barrier case.

4.4. Defaultable bonds

It is straightforward to apply our fast Wiener-Hopf factorization to compute the survival probability

of a firm and to price defaultable bonds in the context of a structural approach to credit risk.

According to Black and Cox [41], the credit event is defined as the first time that the firm value

falls below a predefined lower barrier. Consider the firm value process

V (t) = V0e
X(t), (94)

where X(t) is a Lévy process. The firm will default when its value falls below a barrier L. Here,

we assume that the default event is monitored at discrete dates and the default time is defined as

the first hitting time of a level L,

τ = min
j=0,...,N

{j∆ : V (j∆)≤L} . (95)

The default probability P(τ ≤ j∆) is related to the distribution of the minimum value of the

underlying asset Pm defined in Equation (4). Indeed the relationship between default time and

minimum firm value is, for any j = 0, . . . ,N ,

P(τ ≤ j∆)= P(mj ≤ logL). (96)

A defaultable zero-coupon bond issued by the firm V is a bond which at maturity T pays a unit

notional if the firm does not default, or pays the recovery fraction R< 1 of the notional otherwise

(R could also be equal to 0). Once the probability of default p = P(mN ≤ logL), as well as its
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complement, the survival probability 1−p, have been computed, and the recovery rate is assigned,

the price Pd(T ) of the defaultable zero-coupon with maturity T is

Pd(T ) = e−rT (1− p+Rp) . (97)

In the above computations, the knowledge of the distribution of the minimum is fundamental, and

it can be computed as

F−1
ξ→xZ−1

q→N

[
1

Φ+(0, q)Φ−(ξ, q)

]
, (98)

as shown in Equation (18). See Ref. [42] for further details.

5. Other Fourier-based transform methods

In this section we discuss other numerical methods presented in the literature which are based

on Fourier and Hilbert transforms. We will not try to be exhaustive, but limit ourselves to those

approaches that are most related to our own, and thus we will not cover e.g. the Cos method

[43]. For ease of exposition, we will consider only a down-and-out barrier option and neglect the

damping factor.

5.1. Convolution and Hilbert transform

First of all, we briefly describe the convolution method [21, 22], as well as the method based on

the Hilbert transform due to Feng and Linetsky [3]. Both are based on observing that the option

price can be obtained recursively via

v(x, j) = e−r∆
∫ +∞

l

f(z−x,∆)v(z, j− 1)dz (99)

Therefore, it holds

v(x, j) = e−r∆PΩ

(
f(−x,∆) ∗ v(x, j− 1)

)

= e−r∆PΩF−1
ξ→x

(
Ψ∗(ξ)v̂(ξ, j− 1)

)
, (100)

where we recall that ∗ is the convolution operator and PΩ is the projector operator on Ω := (l,+∞),

i.e., PΩf(x) = 1x∈Ω(x)f(x). The indicator function 1x∈Ω can be replaced by the Heaviside step

function centered on l: it is 1 if x> l and 0 if x< l, while for x= l it can be assigned the values 0

(left-continuous choice), 1 (right-continuous choice) or 1/2 (symmetric choice). The value for x= l

matters only from a numerical point of view, as the measure of this point is zero.

At each time step the convolution method proceeds by moving from the real to the Fourier space

and backward trough the iteration

vj−1
F−→ v̂j−1

∗−→Ψ∗v̂j−1
PF−1

−→ vj, j = 1, . . . ,N. (101)
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This method has been used, among the others, by Jackson et al. [21] and Lord et al. [22]. Lord

et al. improved this numerical methods in order to have a monotonic convergence to zero of the

discretization error.

The method of Feng and Linetsky [3] is based on the Hilbert transform (38). In fact, considering

the Plemelj-Sokhotsky relation

FPΩh=
1

2

[
Fh+ ieiξlHξ(e

−iξlFh)
]
, (102)

the Fourier transform of Equation (100) yields

v̂(ξ, j) =
1

2
e−r∆(Ψ∗(ξ)v̂(ξ, j− 1)+ ieiξlHξ(e

−iξlΨ∗(ξ)v̂(ξ, j− 1))). (103)

Thus all the computations are in Fourier space:

v0
F−→ v̂0 −→ . . .−→ v̂j−1

∗−→Ψ∗v̂j−1
H−→ v̂j −→ . . .−→ v̂N

F−1

−→ vN . (104)

The Hilbert transform is computed in the Fourier space via sinc functions and thanks to this

procedure the pricing error decays exponentially, as stated in Section 3.1. Therefore the Hilbert

method has to be preferred to the convolution approach. The computational cost of both methods

is O(NM logM).

5.2. Quadrature methods

Fusai et al. [18, 20] solved the recursion given by Equation (99) using quadrature. If the domain is

truncated as in [19], the quadrature nodes are denoted with xi, i= 1, . . . ,M ,K is theM×M square

matrix with elements Kij = e−r∆f(xj−xi,∆), D is theM ×M diagonal matrix which contains the

quadrature weights, and (vj)i = v(xi, j), i= 1, . . . ,M, j = 0, . . . ,N , then Equation (99) becomes

vj =KDvj−1 (105)

for j = 1, . . . ,N . Thus, in order to compute the option price, one only has to perform N matrix-

vector multiplications.

This approach can be efficiently implemented using the FFT, provided Newton-Cotes quadrature

rules are considered. In fact, if the quadrature formula is characterized by equidistant nodes, the

matrix K is a Toeplitz matrix and the matrix-vector multiplication in Equation (105) can be

performed using the FFT as follows.

We recall that an M ×M Toeplitz matrix T can be embedded in a 2M × 2M circulant matrix2

C. Thus, given an M × 1 vector x, we can compute the component i of Tx, i= 1, . . . ,M , as

(Tx)i =
(
FFT−1 (FFT(c)FFT(x∗))

)
i
, (106)

2 A circulant matrix is a special kind of Toeplitz matrix where each row vector is rotated one element to the right
relative to the preceding row vector.
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c being the first column of the circulant matrix C and x∗ being the extension of the vector x

obtained appending M zeros to x. Thus, in our case, Equation (105) becomes

(vj)i =
(
FFT−1

(
FFT(c)FFT

(
(Dvj−1)

∗)))
i
, (107)

i = 1, . . . ,M , c being the first column of the circulant matrix embedding K. Since (K)i,j =

e−r∆f(xj − xi,∆) = e−r∆f((j − i)h,∆), h being the distance between the quadrature nodes, and

f is computed with an inverse Fourier transform of the characteristic function Ψ, it follows that

ĉ := FFT(c) can be computed directly by using Ψ, avoiding one FFT. At the end the computa-

tional cost of this pricing procedure becomes 2NM logM , since for each iteration of the pricing

recursion we have to compute one FFT and one inverse FFT. Notice that we also have to compute

the matrix-vector multiplication Dvj−1, however, being D a diagonal matrix, the computational

cost consists of M operations. Thus the quadrature-FFT based approach is implemented through

the following procedure:

vj−1 −→Dvj−1
F−→F [Dvj−1]

∗−→ ĉF [Dvj−1]
F−1

−→ vj. (108)

5.3. The Z-WH algorithm

Another approach consists in relating the pricing problem to the solution of an integral equation.

This approach is presented in [44, 19], where, after applying the z-transform to Equation (99) and

by defining

w(x) :=w(x, q) =
+∞∑

n=0

qnv(x,n), (109)

it is shown that w(x) solves the Wiener-Hopf integral equation

w(x) = qe−r∆
∫ +∞

l

f(z−x,∆)w(z)dz+φ(x) for x≥ l. (110)

Two solutions strategies are possible to solve the integral equation. The first one, considered in

[44, 19], consists to apply a quadrature scheme to Equation (110) and therefore it reduces the

problem to the solution of the linear system

(I− qKD)w= g, (111)

with parameter q, I being theM×M identity matrix, before inverting the z-transform to obtain the

option price. This approach was introduced in Fusai et al. [19]: the authors presented a numerical

scheme, based on a preconditioning technique, to speed up the solution of these linear systems: in

fact, considering Newton-Cotes quadrature rules and an iterative linear system solution method,

like the generalized minimal residual (GMRes) method, the authors provide an FFT based method



24

which computational cost is O(min{N,mE + nE}IM logM), M being the number of quadrature

nodes and I denoting the average number of GMRes iterations necessary to solve a linear system.

The authors showed that the scheme provides a great accuracy at a low computational cost if the

matrix D is nearly equal to cI, for any constant c: in fact only in this case I is independent on the

number of monitoring dates. This is true for the trapezoidal rule (diag (D) = h[0.5,1,1, . . . ,1,0.5]),

but not, for example, for the Simpson rule.

Another possibility consists in relating the Spitzer-Wiener-Hopf factorization to the solution

of the integral equations. Indeed, we remark that the well known methodology to solving a WH

integral equation also requires the knowledge of the WH factors. More precisely, the main steps

for solving the Wiener-Hopf integral equation (110) are the following:

1. Factorize the function L(ξ, q) := 1− qe−r∆Ψ∗(ξ,∆) into

L(ξ, q) =L+(ξ, q)L−(ξ, q). (112)

2. Given the payoff function φ(x), define P (ξ, q) := e−ilξφ̂(ξ)/L−(ξ, q) and decompose it into

additive components that are analytic in the appropriate complex half planes,

P (ξ, q) = P+(ξ, q)+P−(ξ, q). (113)

3. The Fourier transform of the solution of the integral equation (110) is now given by

W (ξ, q) = P+ (ξ, q)/L+ (ξ, q) . (114)

Therefore, the following pricing methodology can be considered, assuming that the number of

monitoring dates is greater than 2.

1. Compute the value of v̂(ξ,1) by convolution, i.e.,

v̂(ξ,1) =Ψ∗(ξ)φ̂(ξ). (115)

2. Compute v̂(ξ,N − 1), i.e., consider an option with N − 2 monitoring dates and payoff φ(x) =

F−1
ξ→xv̂(ξ,1), whose price is v(·,N − 1), with

v̂(ξ,N − 1) =Z−1
q→N−2 [ṽ(ξ, q)] , (116)

solving the Wiener-Hopf integral equations using the Wiener-Hopf factorization to obtain ṽ(ξ, q)

for the different values of q necessary to invert the z-transform.

3. Compute the value of v̂(x,N) by convolution, as in Equation (115).

4. Apply an inverse Fourier transform to obtain the option price v(x,N).
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All the computations are performed in Fourier space:

v0
F−→ v̂0

Ψ∗

−→ v̂1
ZWH−→ v̂N−1

Ψ∗

−→ v̂N
F−1

−→ vN , (117)

where ZWH stands for the second step of the above algorithm. As in the algorithm described in

Section 4.2, Steps 1 and 3 are necessary in order to smooth the tails of the payoff and of the inverse

of the z-transform in Fourier space, v̂(x,N − 1), before applying the z-transform (Step 2) and the

inverse Fourier transform (Step 4), respectively, and thus to obtain an exponential convergence

considering the Wiener-Hopf factorization described in Section 3.1. We would like to stress that

φ(x) =F−1
ξ→xv̂(x,1) differs from v(x,1) because of a projection, i.e., v(x,1) =P{x>l}F−1

ξ→xv̂(ξ,1).

In the case of double-barrier options, the WH equation becomes a Fredholm equation of the

second type with a convolution kernel. This problem is very old but up to now no efficient and

accurate procedure has been devised for its solution. So the scheme here presented deserves some

interest on its own. More precisely, the pricing equation becomes

w(x) = qe−r∆
∫ u

l

f(z−x,∆)w(z)dz+φ(x), (118)

and this can be solved using the fixed-point algorithm similar to the one presented in Section 4.3,

being Equations (84)–(85) replaced by

J−(ξ, q)

L−(ξ, q)
=

[
e−ilξΨ∗(ξ)φ̂(ξ)− ei(u−l)ξJ+(ξ, q)

L−(ξ, q)

]

−

, (119)

J+(ξ, q)

L+(ξ, q)
=

[
e−iuξΨ∗(ξ)φ̂(ξ)− ei(l−u)ξJ−(ξ, q)

L+(ξ, q)

]

+

. (120)

Once J± are computed via the fixed-point algorithm described in Section 4.3, the option price is

given by

v(x,N) =F−1
ξ→x

[
Ψ∗(ξ)Z−1

q→N−2

[
φ̂(ξ)Ψ∗(ξ)

L(ξ, q)
− eilξ

J−(ξ, q)

L(ξ, q)
− eiuξ

J+(ξ, q)

L(ξ, q)

]]
. (121)

Thus the pricing algorithm consists of the following steps:

φ≡ v0
F−→ v̂0

Ψ∗

−→ v̂1
ZWH−→ v̂N−1

Ψ∗

−→ v̂N
F−1

−→ vN , (122)

where here we denote with ZWH the operator

ZWH : F (ξ)→Z−1
q→N−2

[
F (ξ)− eilξJ−(ξ, q)− eiuξJ+(ξ, q)

L(ξ, q)

]
. (123)
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Figure 4 Down-and-out barrier call option: pointwise absolute errors for N = 100 (left) and N = 252 (right).

6. Numerical experiments

In this section we compare the proposed pricing techniques with others presented in the literature.

We consider:

• Z-S and Z-WH, i.e., the new fast methods presented in this article, Z-S in Section 4 and Z-WH

in Section 5.3. Both methods exploit the Wiener-Hopf factorization via the Hilbert transform.

• CONV, i.e., the convolution method of Lord et al. [22] described in Section 5.1.

• HILB, i.e., the recursive method of Feng and Linetsky [3] based on the Hilbert transform and

described in Section 5.1.

• REC-QUAD, i.e., the recursive method based on the trapezoidal quadrature rule and described

in Section 5.2.

• Z-QUAD, i.e., the method of Fusai et al. [19] based on the z-transform and the trapezoidal

quadrature rule, described in Section 5.3.

All the numerical experiments have been performed with Matlab R2011b running under Windows

7 on a personal computer equipped with an Intel Core i7 Q720 1600MHz processor and 6GB of

RAM. We would like to stress that with lookback and single-barrier options and with all Fourier-

based methods we have unbounded domains. Therefore, as already stated in Section 4, we truncate

the domain with a Chernoff bound computed according to the first ten moments, as suggested in

Fusai et al. [19].

First of all, we consider a down-and-out call barrier option assuming that the underlying asset

evolves according to a Merton jump diffusion process with the same parameters as in Feng and

Linetsky [3], including the procedure to choose the damping parameter α. The lower barrier is

L= 0.80, the initial spot price S0 and the strike price K are both set to 1, and the time to maturity

is T = 1. The underlying asset has a dividend rate δ= 0.02 and the risk-free interest rate is r= 0.05.

In Figure 4 we consider the case with N = 100 and N = 252 monitoring dates: we report in

double logarithmic scale both the pointwise error, computed at the spot price S0 = 1, taking for

reference as the exact solution the price computed with the HILB method and a grid of 216 points.
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Figure 5 Down-and-out barrier call option: pointwise absolute errors, for N = 100 (left) and N = 252 (right), as

a function of CPU time.

Figure 6 Down-and-out barrier call option: pointwise absolute errors, for N = 504 (left) and N = 1260 (right), as

a function of CPU time.

The CONV, REC and Z-QUAD methods have a polynomial convergence; moreover the REC and

the Z-QUAD algorithms show a similar polynomial accuracy. Our newly proposed methods, Z-S

and Z-WH, and the HILB algorithm exhibit an exponential convergence due to the use of the sinc

expansion and to the fact that all computations are performed in Fourier space, as already described

in [3]. As expected, both the Z-S and Z-WH methods rapidly reach the maximum accuracy allowed

by the approximation used to invert the z-transform, i.e., 10−12.

In Figures 5 and 6 we report the pointwise absolute error against the CPU time necessary for

the price computation for different numbers of monitoring dates. It is clear that the Z-S, the Z-WH

and the HILB methods are the most accurate. Their exponential convergence enables them to be

used with a limited number M of grid nodes. The Z-S and the Z-WH are able to compute option

prices with an accuracy of 10−12 in less than a quarter of a second. Notice that increasing the

number of monitoring dates from 252 to 504 or 1260, the computational costs of the z-transform

based methods do not change, due to the Euler acceleration technique. From this experiments,

it appears that, among the methods proposed in this paper, the Z-S and the Z-WH methods are

preferable when the number of dates is large. However, if a greater accuracy is necessary and the

number of monitoring dates is not too large, the HILB method by Feng and Linetsky [3] should

also be considered.
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Table 1 Down-and-out barrier call option: option price and CPU time in seconds; M = 214.

Z-S Z-WH HILB

N Price CPU time Price CPU time Price CPU time

50 0.04775954751 0.604597 0.04775954751 0.615977 0.04775954750 0.411529
100 0.04775180473 0.598856 0.04775180473 0.585755 0.04775180472 0.719666
252 0.04774580616 0.613833 0.04774580616 0.600996 0.04774580615 1.745266
504 0.04774337792 0.601078 0.04774337791 0.591950 0.04774337791 3.468807

Figure 7 Knock-and-out barrier call option: pointwise absolute error with N = 252.

To complete the numerical tests on single-barrier options, Table 1 shows results for a down-and-

out barrier call option, assuming that the underlying asset evolves according to a NIG process

with the same parameters as in Feng and Linetsky [3]. All the other parameters are as before.

These results confirm the good performance of the Z-S and Z-WH algorithms when the number of

monitoring dates increases.

In Figure 7 we consider a double-barrier option and we plot the pointwise absolute error for the

fixed-point algorithm presented in Section 5.3. We use a a double exponential model, again with

the same parameters as in Feng and Linetsky [3]. The lower (upper) barrier is L= 0.8 (U = 1.2), the

initial spot price is S0 = 1 and the strike price is K = 1.1. A one year daily monitoring is assumed,

i.e., T = 1 and N = 252. The error is again computed considering as exact the solution computed

with the HILB method and M = 216 grid points. The numerical experiments show that the orders

of convergence of the newly proposed algorithms, Z-WH and Z-S, are no more exponential as in the

single-barrier case, but approximately quadratic. We would like to stress that the average number

of fixed-point iterations necessary to reach a tolerance of 10−12 is as low as 3. Moreover, the newly

proposed methods are still slightly more accurate than the CONV, REC and Z-QUAD ones.

Finally, in Table 2 we price a fixed-strike lookback put option written on the minimum, as well

as a call on the maximum, with N = 50 monitoring dates. We set S0 =K = 1. We assume that

the underlying asset evolves as a geometric Brownian motion with the same parameters as in Feng
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Table 2 Fixed-strike lookback call (on the maximum) and put (on the minimum) options: option price and CPU

time in seconds.

Call Put

M Price CPU time Price CPU time

28 0.183264603755 0.0097 0.117871584305 0.0087
29 0.183264598264 0.0169 0.117871585215 0.0114
210 0.183264598276 0.0214 0.117871585217 0.0175
211 0.183264598268 0.0361 0.117871585212 0.0371
212 0.183264598273 0.0722 0.117871585216 0.0964
213 0.183264598262 0.1933 0.117871585210 0.1753
214 0.183264598287 0.3211 0.117871585214 0.3052
215 0.183264598282 0.6192 0.117871585214 0.5601
216 0.183264598276 1.2780 0.117871585214 1.0442

and Linetsky [23], i.e., σ= 0.3, r= 0.1, T = 0.5. We report the option price and the computational

cost of the Z-S approach for different numbers of grid points M . For the call option, compare the

benchmark price 0.183264598300 provided by Feng and Linetsky [23, Table 1]. From this table we

notice the same exponential convergence of the algorithm as in the single-barrier case.

7. Continuous versus discrete monitoring

As mentioned in Section 2, identities similar to Equations (17)–(22) exist for continuous monitoring

too. The discrete minimum and maximum operators are replaced with their continuous versions,

M c
t = sup

s∈(0,t)

X(s) and mc
t = sup

s∈(0,t)

X(s). (124)

In this case the quantities to be factorized are of the kind λ1 + λ2ψ(ξ), for suitable parameters

λ1, λ2, instead of 1−qΨ(ξ,∆). Moreover the z-transform is replaced by the Laplace transform. The

following relation holds [4, Section 4.1.2]: if we define Φc(ξ) := λ+ψ(z), λ > 0, and set q = e−λ∆,

then

lim
∆→0

Φ(ξ, q)

∆
= lim

∆→0

1− qΨ(ξ,∆)

∆
= lim

∆→0

1− e−(λ+ψ(ξ))∆

∆
= λ+ψ(ξ) =Φc(ξ). (125)

Similar limits hold for the WH factors of Φ and Φc:

lim
∆→0

Φ±(ξ, q)√
∆

=Φc
±(ξ). (126)

Remarkably, the WH factorization of Φc is not obtained through a passage to the limit of the WH

factorization of Φ, but directly from Φc itself using the Hilbert transform like for the factorization

of Φ. Therefore, our procedure can price contracts in the continuous monitoring case too, once the

z-transform is replaced with the Laplace transform. To show that the WH factorization of both

the discrete and continuous case can be computed with our procedure, in Figure 8 we consider a

double exponential distribution, whose characteristic exponent is

ψ(ξ) = iγξ− 1

2
σ2ξ2 + η

(
p

η1
η1 + iξ

+(1− p)
η2

η2 − iξ
− 1

)
. (127)
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Figure 8 Convergence of Φ+(ξ, q)/
√
∆ to Φc

+ (left) and of Φ−(ξ, q)/
√
∆ to Φc

− (right), ξ ∈ [−1,1].

We set γ = 0.2, σ = 0.2, η = 0.5, p= 0.5, η1 = 0.4, η2 = 0.4 and λ= 0.23, and we plot Φc
± as well

as Φ±(ξ, q)/
√
∆ for different values of ∆, showing numerically the convergence of the latter to the

former. The method by Feng and Linetsky, as well as all the other methods described in Section

5, can deal only with the discrete monitoring case. In these cases, the continuous monitoring value

can be obtained only through a passage to the limit, but it is well known that the convergence

is slow. This clarifies the importance of an efficient numerical method able to deal with both the

discrete and continuous monitoring. The methodology proposed here factorizes directly λ1+λ2ψ(ξ)

and is exempt from the problem of the slow convergence from discrete to continuous monitoring.

8. Conclusions

In this article we present fast and accurate pricing methodologies based on the Spitzer identity and

the Wiener-Hopf factorization. We apply them to barrier and lookback options, as well as default-

able zero-coupon bonds, when the monitoring is discrete and the underlying evolves according to

an exponential Lévy process. First of all, in order to use the Spitzer identity, we provide a construc-

tive procedure to perform the Wiener-Hopf factorization, and to employ it in pricing the above

mentioned contracts. The numerical implementation exploits the fast Fourier transform and the

Euler summation, and the computational cost is independent of the number of monitoring dates,

while the error decays exponentially with the number of grid points. For double-barrier options we

introduce an iterative algorithm based on the Wiener-Hopf factorization. Our procedure applies

also to continuous monitoring. Extensions to other exotic derivatives like perpetual Bermudan,

occupation time, quantile and step options are straightforward too combining our method with the

Wendel-Port-Dassios identity [45].
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