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Abstract

In this article, the electrical characterization of Voltage Operated ionic Channels (VOCs)
in Nano—-Bio—Electronics applications is carried out. This is one of the relevant steps to-
wards a multi—physics description of hybrid bio—electronical devices such as bio—chips. Elec-
trochemical ionic transport phenomena are properly modeled by a Poisson-Nernst-Planck
partial differential system of nonlinearly coupled equations, while suitable functional iter-
ation techniques for problem decoupling and finite element methods for discretization are
proposed and discussed. Extensive numerical simulations of single species VOCs transport-
ing K ions are performed to consistently derive an electrical equivalent representation of the
channel and to quantitatively describe its interaction with an external measurement device

under several working conditions.

Keywords: Nanotechnology; hybrid bio—artificial systems; ElectroPhysiology; ionic—electrical

coupling; ionic channels; mathematical modeling; numerical simulation.



1 Introduction and Motivations

The investigation and development of accurate measurement techniques and procedures for the
experimental characterization of bio-cellular processes is a relevant and delicate issue. Some

motivations for this statement are:

e the intrinsic complexity of the biological system, because of the simultaneous presence of
several mutually interacting subsystems, such as ionic channels and ion transport pumps
[6, 10], that cooperate to regulate and maintain the dynamical electro-chemical equilibrium

between the cell surrounding environment and the intracellular milieu [1];

e the difficulty in the implementation of a tool that is capable to perform a selective acti-
vation of single subsystems and to function in a local manner, on the spatial scale of the
subsystems themselves (nanometers), filtering out the background noise due to phenomena

that occur on a macroscopic neighbourhood (micrometers) of the cellular membrane.

Several methodologies have been devised to reach a sufficient degree of accuracy for Electro-
Physiology (EP) applications, among which we mention the Voltage-Clamp (VC) [9] and the
Patch-Clamp (PC) [10, 9] techniques. The VC technique is the basic configuration tool for
measurement in EP and is aimed at stabilizing the voltage drop across the membrane in or-
der to obtain an accurate current-voltage characterization of the biological system. The VC
technique allows to selectively activate biological transmission mechanisms through the use of
specific pharmacological tools, but it is not able to solve the background noise problem. The PC
technique represents the most advanced level in measurement in EP, thanks to a highly sophis-
ticated design of the instrumentation equipment which allows to detect single biological devices
(ionic channel) and to electrically isolate them from the neighbouring environment. The PC

technique is thus able to overcome the background noise problem affecting the VC technique,



and the continuous improvement of its implementation and performance has been the main
technological supporting tool for the experimental scientifical activity that made it possible for
E. Neher and B. Sakmann to win the Nobel Prize for Medicine in 1991 “for their discoveries
concerning the function of single ion channels in cells”.

Despite the substantial progress in EP measurement procedures, the several biological, ex-
perimental and technological difficulties described above become further amplified when the
focus of the application is to design and devise a mutual interaction of electrical type between
a biological system and an integrated chip, realized according to a standard silicon-based pla-
nar technology. An example of this ambitious task, which represents one of the critical step in
Bio-Nano-Electronics applications, is the bio-hybrid EOSFET (Electrolyte Oxide Semiconduc-
tor Field Effect Transistor) device thoroughly discussed and investigated in [16, 19, 5] and more
recently object of extensive numerical analysis in [12, 13].

Mathematical modeling, combined with robust and efficient computational tools, can provide
a valid support to experimental procedures, because it allows to establish a rigorous and quan-
titative relation between the measurable information of physical interest (ionic current fluxes,
membrane potential transients, action potentials) and the corresponding biological underlying
mechanisms. In particular, a sound and accurate mathematical description of the problem makes
it possible to distinguish the contribution to the measured quantity due to the intrinsic dynamics
of the system from the (unavoidable) perturbations due to the experimental equipment.

In the present article, we have the following objectives:

e to characterize a single-species voltage operated ionic channel (VOC) transporting KT
ions through the adoption of an established model based on partial differential equations
(PDE) such as the Poisson-Nernst-Planck (PNP) system. For this purpose, we employ

suitable and effective functional iteration procedures for the linearization of the PNP
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model, combined with accurate and stable numerical schemes for its temporal and spatial

discretization;

e to describe the interaction between the single ionic channel and the measurement system
through the coupling of the PNP model with a reduced-order model based on ordinary
differential equations (ODE) and characterized by the introduction of suitable lumped
electrical equivalent parameters that represent the non-ideal effects and limitations of the

instrumentation equipment;

e to perform a preliminary study of the effects related to a multi-channel stimulation, under
the simplifying assumption that the involved channels share the same structure, morphol-

ogy and functional behaviour.

A summary of the contents of the article is as follows. In Sect. 2 we provide a schematical
description of a current-voltage measurement tool based on the VC technique, and we address
the need of performing a coupled multi-physics PDE/ODE model in order to end up with a
quantitatively accurate description of the system at the expense of a computationally affordable
simulation. In Sect. 3 we discuss in detail the PNP model for electrochemical charge transport
in a VOC, while in Sect. 4 we illustrate the functional and numerical techniques adopted for
linearization and discretization. Finally, in Sect. 5 we demonstrate the physical validity of
the model and the accuracy of computational techniques, on the numerical simulation of a
measurement system in the case of a single-channel and multi-channel configuration under several
working conditions. Some concluding remarks and future research directions are addressed in

Sect. 6.



2 Schematic Description of A Current-Voltage Measurement

Tool For VOCs

In this section, we provide a schematic description of a typical voltage—current measurement
tool in ElectroPhysiology applications, based on the VC technique introduced in Sect. 1. For
further details and information, we refer to [6, 1].

In Fig. 1, we show the electrical voltage stimulator Vy; (assumed to be lossless) and a two-
dimensional cross—section of the cellular membrane (shaded area) where a number of N, potas-
sium (K) ionic channels is distributed. The stimulator is connected with the electrolyte bath
at the inside (cytoplasm) and outside (extracellular electrolyte) of the cell through a pair of
electrodes made of Silver/Silver—Chloride. Three main contributions to ionic current flow can
be identified in the figure. The first contribution (A) is a membrane displacement current and
the second contribution (B) is the leakage current sinked by the ionic channel [9]. The third con-
tribution (C) is a current background noise accounting for the remainder of the cell membrane
structure. The sum of these contributions constitutes the current measured by the VC tool,
the contribution (C) being almost negligible in the more sophisticated PC technique. In view
of a manageble mathematical modeling of the above system, we show in Fig. 2 its representa-
tion through lumped and distributed electrical equivalent parameters. The lumped parameters
R, and C, are the electrolyte resistance R, and the membrane capacitance, respectively. The
former parameter accounts for ohmic losses due to the nonideal contact between electrodes and
membrane, while the latter parameter accounts for the perfect insulator behaviour of the cel-
lular membrane. Typical values of R, and C,, are M Qs and tenths of f F', respectively. The
distributed RC line embodies membrane background effects in a way that is similar to the Area-

Contact model proposed in [5], while the remaining N, equivalent bipoles represent the effective
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Figure 1: Schematic description of a voltage—clamp measurement system.

number of ionic channels that are directly stimulated by the voltage source V. The electrical
equivalent characterization of these bipoles requires a detailed modeling of charge transport in
each of the ionic channels. This can be done by adopting the Poisson-Nernst-Planck (PNP)
system of partial differential equations (PDE) illustrated in Sect. 3 which accounts for the main
electrochemical mechanisms driving ion flow throughout a channel [18, 17, 2]. In the case where
N,p, gets large and/or there are several typologies of ionic channels, such a detailed modeling
becomes computationally expensive and necessarily demands for the use of a reduced-order de-
scription. This can be done by a two-step procedure. The first step consists of performing an
off-line simulation for each type of channel, based on the PNP differential model. The second
step consists of extracting from the obtained results a suitable lumped electrical equivalent rep-
resentation for the considered channel. The resulting reduced-order model, addressed in Sects. 3
and 5, is constituted by the system of ordinary differential equations (ODE), which is far cheaper

than the full PDE-based approach and is ideally suited for an efficient and accurate description



of a bio-chip device through a multi-physics coupled model as discussed in [12], Chapt. 1, which

is the ultimate goal of our ongoing research activity.
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Figure 2: Equivalent electrical representation of a voltage—clamp measurement system.

3 Multi-Physics Mathematical Modeling Of Tonic Channels

In this section, we discuss a mathematical model based on a multi-physics approach to de-
scribe electrochemical transport phenomena in a single-species ionic channel and the interaction
between the channel and the local surrounding environment. For this purpose, we consider in
Sect. 3.1 the classical PNP partial differential model, and we characterize in Sect. 3.2 the system
geometry as well as the boundary and initial conditions to be supplied to close the differential

problem.



3.1 The PNP Partial Differential System

Electrochemical ionic transport phenomena in a single-species VOC can be described by the

following Poisson-Nernst-Planck (PNP) system of partial differential equations [18, 17, 2]:

(

g—TtL—FdivJ:O
MdivE =n+ D
J=WpE+au)n—puVn

E =-Vo.

\

The variables of the system are the concentration n of the ionic species (which is assumed to be
positively charged), the associated current density J and the electric field E, that is related to
the electric potential ¢ by (1)4. The velocity of the electrolyte fluid w in (1)3 is a given function,
and in a more general mathematical picture, it is the solution of another partial differential
system, the Navier-Stokes (NS) equations, which accounts for fluid-mechanical effects in the
description of ionic transport in the channel. In the remainder of the article, the electrolyte
fluid contribution will be neglected by setting u = 0, and we refer the reader to [4, 12, 13] for
a detailed discussion and numerical validation of the coupled PNP/NS model. The quantities
# and D are the ion mobility and a given function which represents a fixed concentration in
the channel, respectively. We notice that a classical Drift-Diffusion-like constitutive equation is
used for the current density J in (1)3 (cf. [7]), with the addition of the term cun (« being a
positive scaling constant), which acts as a correction to the drift term and is responsible for the
coupling between electro—chemical forces and fluid—mechanical forces in (1). The parameter A

is the scaled Debye length [11] of the electrolyte, and is defined as
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where @, m and T are the scaling factors for potential, concentrations and spatial coordinates,



respectively, while g and ¢, are the electron charge and the electrolyte permittivity, respectively.
It is relevant to observe that if A> < 1, the PNP system exhibits a singularly perturbed char-
acter (see [14]), and the corresponding solutions may exhibit internal and/or boundary layers,
depending on the form of D and the given boundary conditions. In the problem at hand, a
typical value of the above parameter is A = 2-1072, which demonstrates that the PNP problem

is singularly perturbed.

3.2 Geometry, Boundary and Initial Conditions

In this section, we define the computational domain and provide proper boundary and initial
conditions for the PNP system. With this aim, Fig. 3 (left) shows a simplified geometrical de-
scription of a two—dimensional cross—section of a VOC, while Fig. 3 (right) shows the equivalent
electrical representation of the physical system under investigation. In particular, Vi is the time-
dependent applied voltage stimulation, R, is the resistance accounting for ohmic contributions
due to the cytoplasm electrolyte and the extracellular environment, and C,, is the capacitance
accounting for charge accumulation across the membrane thickness due to the dielectrical be-
haviour of the membrane itself. From now on, we denote by Q C R? the computational channel
domain, and by I its boundary, with I' =Ty UT's UT'3s UT'4, and nr the unit outward normal
vector. For each boundary segment I';, j = 1,... ,4, an appropriate boundary condition can be
imposed, according to either the user need or physical adherence. We also denote by (i, — to)
the (scaled) duration of the temporal evolution of system (1), ¢y being the starting time of
the evolution, and in view of numerical time advancing, we partition the interval [to, ¢7;n] into
Nt > 1 time slabs of equal length At = (¢4, — to)/Nr.

The boundary and initial conditions that are considered in the present analysis of the PNP
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Figure 3: A two—dimensional geometrical description of a VOC (left). Equivalent electrical
representation of the system comprising the ionic channel, the external stimulator, the membrane

and the intracellular environment (right).

system (1) read as follows:

| p(t) =0 on Ty
o) + B On ™D v )~ R, L) o
Vy-nr= onI'yUTg
y n="m on I's, (2)
n =" on I'y,
J-nr=0 on T; UTs,
\ n(z,tg) = n’(x) in ,

where 7; is the value of ion concentration on I';, while n%(z) is the initial ion concentration in
the channel at time ¢ = ;. With reference to Fig. 3 (right), condition (2); states that node B
is grounded, while condition (2) is the result of the enforcement of the circuit Voltage Kirchoff

Law (VKL), having defined

Iy(t) = Wep / J(z,t)-ndy Vi€ [to, tyil,
Ty
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and having assumed that the channel has a square cross-section in the direction perpendicular
to the ionic flow axis of size Wy, (see Fig. 1). It is worth noting that condition (2)2 amounts to
solving an ordinary differential equation for ¢(t) at each time level. The numerical implemen-
tation of this latter procedure will be discussed in the nextcoming section. Conditions (2)4—5
express the fact that a given concentration gradient is maintained across the channel, and con-
ditions (2)3 and (2)¢ express the fact that the channel is electrochemically self-contained. We
notice that this latter condition can be easily generalized to include the possibility for an ionic
current to flow (by osmosis) from the membrane into the ionic channel [4, 12, 13], thus in-
creasing the portability of the model to other possible applications (for example, bio-hydraulics,

micro-and-nano fluidics, plasma-dynamics, see [8]).

4 Functional Iterations and Numerical Approximation

In order to deal with the numerical approximation of the nonlinearly coupled PNP differential
system discussed in the previous sections, we need to introduce a suitable iterative procedure
which allows the successive solution of the model equations. Then, proper finite element formu-

lations must be used for the discretization of the resulting decoupled differential subproblems.

4.1 A Staggered Algorithm

The staggered algorithm for the successive solution of the PNP system proceeds as indicated
in the flowchart of Fig. 4. For each time level ¢,,, m = 0,... , Ny — 1, the following steps are

performed, for each k& > 0:

(a) solve the PNP system with a given voltage ¢*) on T'y. This provides in output the updated

Iikﬂ)-

ion concentration n(*+1) and electric field E*+1) and, in turn, the current ;
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Figure 4: Flow-chart of the staggered iteration.

(b) use the VKL (2)3 to compute the updated value ¢*t1) of the potential of node A

E) (1) — @(tm)
At ’

Vit(tmi1) — o* D (t)

R = ik_H)(tm) +Cn L4

(¢) compare the voltage increment with a specified input tolerance toll
D (t) — 0B ()| < toll k> 0; (3)
(d) let k* be the value of k at which (3) is satisfied for the time level ¢™. Then, set
(@, tme1) = 0 (@ tm), @@, tmir) = o) (@, tn)

and set t = ty41.

Step (a) is carried out by resorting to a suitable linearization of the PNP system, through the
classical Gummel’s map that is widely employed in contemporary semiconductor device simu-
lation (see [7] for a detailed description of the algorithm and for the analysis of its convergence
properties).

13



4.2 Finite Element Approximation

As previously anticipated, the solutions of the PNP subsystem can exhibit a markedly singularly
perturbed character (see [7]). Moreover, due to the common structure in divergence form of
(1)1,2, conservation of fluxes (electric field and current density) is an important issue for the
computed solution. As a matter of fact, it is well-known that flux post—processing may lead to a
degradation in the accuracy, due to numerical differentiation. Moreover, standard displacement—
based finite element formulations do not provide interelement continuity of normal flux, which
constitutes a violation of the action-reaction principle on the discrete level. Therefore, in view
of the finite element approximation of the PNP system, we use the Exponentially Fitted Mixed
Finite Volume scheme proposed and analyzed in [15] and further investigated in [3]. The most
relevant features of this finite element formulation are that it is locally conservative and it satisfies
a discrete maximum principle. This latter property ensures that the computed approximate
ion concentration is a strictly positive function under the sole request that the computational
grid is of Delaunay type, this latter condition allowing the presence of obtuse triangles in the
geometrical partition of the domain. The numerical performance of the discretization scheme in

the simulation of VOCs are extensively discussed in [4, 12, 13].

5 Numerical Results

In this section, we discuss a selection of significant test cases, which demonstrate how the
modeling strategies outlined in Sects. 2 and 3 can be profitably employed for the simulation of a
realistic VOC subject to a measurement procedure, with an optimal trade-off between accuracy

and computational effort. In all the performed computations, we assume that the external
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voltage stimulation has the following form
Vvst(t) =Vn+ AVu(t — tst)a (4)

where Vy is the Nernst potential typical of the K™ channel, u(-) is the unit step function, and
ts¢ > to is the time level at which a voltage drop equal to AV is applied across the membrane.
We also set tg = 0, Ny = 20 and t5 = to + 2At, while the values of the parameters AV and At
are specified for each simulation. The computational domain {2 is a rectangle as in Fig. 1 with
L, = 10nm and W, = 1nm, while the finite element grid consists of 288 triangles. The initial
condition for the ionic concentration in the channel is n°(z) = ny, (x), where ny, represents

the ion concentration at the Nernst equilibrium condition.

5.1 Test Case With Ideal Voltage Stimulation

In this section, we consider a simulation test case that represents an example of the two—step
procedure proposed in Sect. 2. The off-line computations, based on the PNP partial differential
model, needed to extract an equivalent electric lumped parameter model are performed under
the assumption of an ideal simulation. Referring to Fig. 3 (right), this means that the electrode
shortcuts the resistive path R, stimulating directly node A. Such a situation corresponds to
placing the electrode in contact with the cellular membrane, which amounts to setting L, = 0 in
Fig. 1 and R, = 0 in (2)9. A first simplified scheme of the equivalent electric model is illustrated
in Fig. 5. The equivalent capacitance C,q, which accounts for the accumulation/depletion of

ions during the current transient, is defined as

AQ
Cea = Ay
with AQ = ftf:: n(I4(1) — I3(7)) d1, I4 and Is being the currents flowing across the cross-sections

I’y and I'y of the channel. The purely resistive load R, exhibited by the channel in stationary
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Figure 5: Equivalent electric model of the channel.

conditions is computed as

AV
R, = .
“d I4(tfin)

In view of transient simulations, R,, is partitioned into two contributions by introducing the
adimensional parameter &, as illustrated in Fig. 5. This latter parameter is tuned up in such
a way that the solution of the ODE model of the equivalent electrical circuit agrees with the
current transient computed with the PDE off-line simulation.

Such parameter extraction procedure is carried out in the case AV = 250mV and At =
500ps, as shown in Fig. 6. The circular markers identify the ionic current obtained by solving
the PNP problem, with a solid line to interpolate the computed current values. The cross
markers represent the transient current predicted by the equivalent ODE model, having set
Ceq = 0.28aF, Rey = 9.61GQ and £ = 0.19. Defining by I4¢(t) the current flowing from
node A to node C and computed by the ODE model (cf. Fig. 5), the maximum discrepancy, in
absolute value, between I4(t) and I4¢(t) over the time interval of the simulation is of the order

of bpA, which corresponds to an accuracy of the reduced-order model with respect to the full-
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Figure 6: Transient behaviour of the ionic current in the case AV = 250mV.

scale PNP model of about 90 percent. This obtained accuracy is a very good result, compared
with the extreme simplicity of the electrical equivalent lumped parameter approximation that
is employed. A second numerical experiment similar to the previous one is illustrated in Fig. 7
in the case of a negative voltage biasing drop AV = —150mV applied to the channel. The time
step At is the same as in the previous test case, while the electrical equivalent parameters are
Ceg = 0.17aF, Roq = 19.47GQ and £ = 0.08. The accuracy of the ODE model is the same as

computed in the case where the voltage drop is equal to AV = 250mV.

5.2 Test Case With Non-Ideal Voltage Stimulation

In this section, we consider a more realistic measurement experiment, accounting for non—ideal
effects such as ohmic losses in the electrolyte bath. These latter are well-known to be responsible
for a slower current transient, because they limit the ability of the electrode to instantaneously

provide all of the ionic charge needed by the cellular membrane [9]. Referring to Fig. 1, we set
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Figure 7: Transient behaviour of the ionic current in the case AV = —150mV.

W, = 1lum, which corresponds to an electrode of surface A, = 1um?, and L, = W,. Noting
that the specific capacitance C, s per unit area of the membrane is of the order of 1uF cm 2
(see [10]), the capacitive load exhibited by the cellular membrane is Cp, = Cp, s Ae = 10fF.
We set also R, = TM(2, having assumed a resistive path of length L, and cross—section A,.
The time step chosen for the simulation is At = 20ns, while AV = —150mV. Fig. 8 shows
the time evolution of the total current provided by the electrode, while Fig. 9 represents the
time evolution of the current sinked by the ionic channel. The current peak at the beginning
of the transient is due to the displacement current contribution (A) (cf. Fig. 1) and is almost
three orders of magnitude larger than the steady-state current sinked by the ionic channel (cf.
Fig. 9). The equivalent time constant of the transient phenomenon can be roughly estimated
as Teg = Re Cpp ~ T0ns, and can be compared with the time scale of the current dynamics in

the case of an ideal stimulation, confirming that the transient duration is dominated by the

displacement current contribution, as anticipated above.
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A concluding test case is carried out in the following to check the effect of the presence of a
large number of ionic channels involved in the measurement process on the overall simulation of
the biological system. In such a realistic case the use of the equivalent electrical model discussed
in Sect. 5.1 is strongly recommended in order to reach an optimal trade-off between modeling
accuracy and computational effort. With this purpose, under the simplifying assumption that
all the channels are identical from the structural point of view, we can still employ the boundary

conditions described in Sect. 4 by modifying Eq. (2)2 as

olt) + B On 22D v, 0) — BN 1) )

in order to account for the amplification equal to a factor N, of the single current contribution
I;. Fig. 10 illustrates the time evolution of the voltage drop across the membrane in the case
N, = 1000. Notice that the effective applied voltage stimulation across the mebrane is 40 mV

lower than the external voltage drop AV = —150mV because of the significant ohmic loss
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Figure 9: Ionic current sinked by the channel.

introduced, in the present case, by the electrolyte resistive path R,.

6 Conclusions and Future Perspectives

In this article, we have addressed the mathematical modeling and simulation of a measurement
procedure for voltage operated ionic channels.

With this aim, a partial differential system of equations has been proposed to describe charge
transport in the channel, and the model has been coupled to the external stimulator equipment
through the introduction of proper boundary conditions for the electric potential across the
channel membrane.

The PDE model has then been employed to derive an equivalent reduced-order model for
the electrical representation of the channel by means of simple lumped parameters.

Extensive numerical experiments have been performed to compare the accuracy of the full
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Figure 10: Voltage drop across the membrane in the case N, = 1000.

PDE model with that of the reduced-order model on the simulation of ionic channels subject to
ideal and non-ideal stimulations.
Further research directions that we aim to investigate in the framework of measurement

applications in ElectroPhysiology are:

e the improvement of the extraction procedure of equivalent electrical parameters by ac-
counting for the specific biological, electrochemical and geometrical properties of the con-

sidered channel;

e the implementation of a mixed-mode simulation tool based on the coupling between the
PDE and ODE differential models, in order to study more complex physical situations

such as gating phenomena and action potentials [6];

e the use of the mathematical modeling and computational techniques discussed above for

the accurate and efficient simulation of the Patch Clamp measurement equipment.
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