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Abstract

In this work, we study the Griffiths infinitesimal invariant of the curve in the jacobian using
secondary cohomology maps. In order to this, we construct a special differential graded algebra
A, quite similar to the Kodaira-Spencer algebra and we define a natural triple Massey product
on it. This allows us to give a description of the infinitesimal invariant in terms of Massey
products and, by the way, to study the formality of A.

Introduction

In Hodge theory, algebraic cycles can be studied using the “cycle map”: this map can be seen as
the “first” link between the theory of algebraic cycles and the study of Hodge structures. Its main
refinament is the Abel-Jacobi cycle map, which involves a secondary class with values into the com-
plex torus given by the intermediate jacobian. However, the integral structure on cohomology is
trascendental and, especially in higher codimension, this approach can be very difficult. For this
reason, Griffiths introduced a more algebraic tool, the infinitesimal variation of Hodge structures
([7], [8]). In this setting, it is possible to construct infinitesimal invariant associated to families of
algebraic cycles in families of varieties, to study behaviours and properties of the cycles. Otherwise,
it is easy to expect that one-parameter deformations of algebraic structures take into account certain
conditions on cohomology classes: often, these conditions can be expressed in terms of secondary
maps, as for example in [10].

The aim of this paper is to study the Griffiths infinitesimal invariant of the curves in their jaco-
bians using the language of Massey products on a special differential graded algebra.

Let C be a smooth complete connected curve of genus g > 2 and denote with J its jacobian
variety. Chosen a base point p ∈ C, consider the canonical morphism C −→ J : the image of C in
J is an algebraic cycle W of codimension g − 1. The basic cycle Z ∈ CHg−1(J) associated to C is
defined by

Z = W −W−

where W− is the image of W under the involution j : J −→ J . It is well known that Z is homologi-
cally equivalent to zero but W is not algebraically equivalent to W−, for the generic curve C (see [1]).

The idea to use special secondary maps in cohomology to study the algebraically inequivalence
of W and W− was suggested to us by paper of B. Harris [10]. In fact, he introduced the tecniques
of harmonic volumes and iterated integrals to detect non trivial cycles in the Griffiths group. On
a non singular algebraic curve of genus g ≥ 3, consider three real harmonic 1-forms with integer
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periods ϑ1, ϑ2, ϑ3 on C. Suppose that
∫

C
ϑi∧ϑj = 0 for i, j = 1, 2, 3 and i 6= j. The iterated integral

associates to the triple of harmonic forms a point in the real torus R/Z∫
γ

(h1ϑ2 − η12) modulo Z,

where γ is a path in C, dual to the cohomology class of ϑ3, η12 is a 1-form on C such that
dη12 = ϑ1 ∧ ϑ2 and h1 is a function on γ obtained by integrating ϑ1. Moreover, it is possible
to interprete the harmonic volume in terms of iterated integrals, showing, by its explicit computa-
tion, that Z is not algebraically trivial.

This suggests us the possibility to interprete the Griffiths infinitesimal invariant using the tec-
niques of Massey products. In order to this, we will associate to the curve C, a special differential
graded algebra A on which it is possible to define a triple Massey product.

Here we give a brief sketch of the construction of A and of the triple Massey product on it.

Consider a smooth complex non-hyperelliptic curve C of genus g > 2 and let ωC be the canonical
bundle on C. The idea of the construction of a dga A associated to ωC is the following: we define
as vector spaces, in degree even, the spaces of C∞-sections of ωk

C , A0(ωk
C), while in degree odd, the

spaces of holomorphic forms of ωk
C , A1(ωk

C). Moreover, the differential is given by the Dolbeault
operator and the zero map in alternating cases. Note that, in this case, our dga is similar to the
Kodaira-Spencer algebra.

The definition of the Massey product on A is quite natural. Consider w1, w2 two holomorphic
forms inH0(ωC) such that both are orthogonal to a third form σ with σ ∈ H1(OC). Since [wi]·[σ] = 0
for i = 1, 2, this means there exist two elements ρ1, ρ2 in A0(ωC) such that wi ·σ = ∂ρi. It is possible
to define the triple Massey product

M(w1, σ, w2) = ρ1w2 − ρ2w1.

This element lies in H0(ω2
C) but, obviously, it depends on the choice of ρi. Let I([w1], [w2]) be

the image of H0(ωC)⊗ < [w1], [w2] > in H0(ω2
C). Then M(w1, σ, w2) is a well defined element in

H0(ωC)/I([w1], [w2]).

We will show the following

Theorem 1. For smooth non-hyperelliptic curves of genus g > 2, the Griffiths’ infinitesimal invari-
ant of the cycle can be computed in terms of the triple Massey product.

More precisely, let ξ ∈ H1(TC) be a first order deformation of C: the infinitesimal invariant
φ(ξ⊗w1 ∧ w1 ∧ σ) is equal, up to a constant, to < ξ,M(w1, σ, w2) > where < , > denotes the
Poincarè duality. Moreover, it is possible to construct a secondary map in cohomology which in-
volves into the Massey product we had defined: it is easy to see that this map, defined in section 3,
is again strictly linked to the infinitesimal invariant.

Theorem 1 allows us also to study and recognize some properties of the dga A. In fact, Massey
products could be used to study the formality of the dga. Formality is an important homotopy
property, since the rational homotopy type of any nilpotent formal space can be reconstructed by
some formal procedure from its cohomology algebra. The first characterization of formal spaces was
given in [3] and states that a space is formal if and only if all rational Massey products vanish.
Examples of formal spaces are compact Kahler manifolds and compact symmetric spaces (see [3]).

Then we are able to provide an example of non formal algebra, showing the following

Theorem 2. For the generic non-hyperelliptic curve C of genus g > 2, the differential graded algebra
A associated to ωC is not formal.
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The computation of the infinitesimal invariant of the Ceresa cycle has been performed in [2]:
we will use our interpretation of the Griffiths invariant to show that, for smooth non-hyperelliptic
curves of genus g > 2, the Massey product on A does not vanish.

The paper is organized as follows.

In Section 1 we recall definitions and main results concerning differential graded algebras and we
introduce triple Massey products. Section 2 is dedicated to construct the dga A for a generic line
bundle L and we describe the dga of its cohomology. Moreover, we define a triple Massey product
on A and we underline some properties of it. In section 3, we will construct a secondary map in
cohomology which takes into account the Massey product we had defined. Finally, in Section 4, we
recall the definition of Griffiths’ infinitesimal invariant of the Ceresa cycle and we explain how the
infinitesimal invariant can be computed using Massey products. This allows us to prove Theorem 1
and Theorem 2.

Acknowledgements: I would like to thank Gian Pietro Pirola, for having suggested me this
problem and for many important conversations we had about this paper. I am also indebted to
Enrico Schlesinger for his valuable suggestions.

1 Preliminaries on formality and Massey Products

In this section, we want to give a survey of differential graded algebras and Massey products on
them. Then we introduce the concept of formality and we show how it is possible to prove the
formality using Massey products ([12], [3], [4]).

Definition 1.1. A differential graded algebra A (dga for short) is an algebra

A =
⊕
k∈N

Ak

over a field K endowed with a product Ap × Aq −→ Ap+q and a differential d : Ap −→ Ap+1 of
degree 1 such that:

• the product is graded commutative, i.e. for a ∈ Ap and b ∈ Aq, a · b = (−1)pqb · a;

• the differential satisfies d2 = 0 and it is a derivation: for a ∈ Ap and b ∈ Aq,

d(a · b) = d(a) · b+ (−1)pa · d(b).

It is possible to define in the standard way the cohomology H•(A) of the dga (A, d), where

Hp(A) =
Ker{ d : Ap −→ Ap+1}
Im {d : Ap−1 −→ Ap}

.

Note that the cohomology of a dga is itself an example of differential graded algebra as soon as we
define the differential to be the zero map (H•(A), d = 0).

An algebra (A, d) is connected if H0(A) = K; if, in addition H1(A) = 0, then we say that A is
simply connected. A morphism of dga is a map which preserves the structure of degree, products
and differentials. We say that a morphism is a quasi-isomorphism if the induced map in cohomology
is an isomorphism.

Given (A, d), one would construct another differential graded algebra which is minimal in the
following sense.
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Definition 1.2. A dga (A, d) is said to be minimal if:

1. it is free as an algebra, that is, it is a tensor product of polynomial algebras on generators of
even degrees and exterior algebras on generators of odd degrees.

2. d is decomposable, that is d(A) ⊆ A+ · A+, where A+ =
⊕

i>0Ai.

A minimal model for a dga (A, d) is a minimal dga B together with a map of differential graded
algebras φ : B −→ A which is a quasi-isomorphism.
It is well known ([12], [3]) that any connected algebra A having finite dimensional cohomology in
each degree has minimal model. Moreover, this model is unique up to isomorphism.

A dga (A, d) is called formal if there is a map ψ : A −→ H•(A) of degree zero which is a quasi-
isomorphism. Note that this is equivalent to saying that A and H•(A) have isomorphic minimal
models. An easy way to study the formality of a dga is to compute Massey products on it. So we
are going to introduce Massey products.

If a is an element in A, we write [a] for the corresponding cohomology class while if a ∈ Ap

is a element of degree p, we write a for (−1)pa. Let [a] ∈ Hp(A), [b] ∈ Hq(A), [c] ∈ Hs(A) be
cohomology classes and let a ∈ Ap, b ∈ Aq and c ∈ As be cocycles representing these cohomology
classes in A. Suppose that

[a][b] = [b][c] = 0.

These conditions mean that there are two elements x ∈ Ap+q−1 and y ∈ Ap+s−1 such that dx = a b
and dy = b c. One can check that the element a y + x c is closed and therefore it determines a
cohomology class

[a y + x c] ∈ Hp+q+s−1(A).

Note that this class depends on the choices of x and y in Hp+q−1(A) and Hp+s−1(A) respectively.
The indeterminacy of [a y + x c] is the set of elements of the form a u+ c v where u, v ∈ H•(A) are
arbitrary elements with deg(a u) = deg(c v) = deg(a) + deg(b) + deg(c)− 1. Denote with I([a], [c])
the ideal of Hp+q+s−1(A) generated by elements [a] and [c]. The triple Massey product of the
cohomology classes [a], [b], [c] is the coset

[a y + x c] ∈ H•(A)/I([a], [c])

and it is denoted by M(a, b, c).

The Massey products are natural in the following sense.

Remark 1.3. Let f : A −→ B be a morphism of differential graded algebras. For every classes
a1, a2, a3 ∈ H•(A) for which M(a1, a2, a3) is defined, we have

f∗M(a1, a2, a3) ⊆M(f∗a1, f∗a2, f∗a3).

Note that if f is a quasi-isomorphism, then we have the equality in the previous relation. Thus
if M is the minimal model for A, the Massey product in H•(A) can be computed on the basis of
this minimal model. The proof follows directly from the definition.

The property of Massey operators, that is the most important one for this paper, is expressed
by the following result.

Theorem 1.4. Let A be a formal differential graded algebra. Then all triple Massey products in
H•(A) are trivial.

Proof. Let (M, d) be the minimal model for A and let H = H•(A). By the formality of A, there is a
quasi-isomorphism f : (M, d) −→ (H, dH = 0). So we can compute the Massey products in H from
(M, d) alone: let M(a1, a2, a3) be a triple Massey product, then M(a1, a2, a3) = M(a1, a2, a3)H
where the second member of the equality denotes a Massey product in H. But, since dH = 0, it is
clear that all these products are zero.
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2 Construction of a differential graded algebra

This section is devoted to construct a special differential graded algebra (A, d).

Let C be a smooth complete algebraic curve of genus g. Consider a non trivial line bundle L on C
and denote with L the sheaf of the holomorphic forms of L. Recall that A0(Lk) = A0,0(Lk) is the vec-
tor space of the C∞ sections on the sheaf Lk while A1(Lk) = A0,1(Lk) denotes the space of the (0, 1)-
forms with coefficients in Lk. Moreover, it is well known that the map ∂Lk : A0,0(Lk) −→ A0,1(Lk)
is defined by the Dolbeault operator and that the kernel of this map is given by the holomorphic
sections of Lk.

We define the graded algebra A =
⊕

n∈NAn as the family of vector spaces

An =

{
A0(Lk) if n = 2k

A1(Lk) if n = 2k + 1
∀k ∈ N.

We have to introduce an inner product Ai × Aj −→ Ai+j which has to be graded commutative.
There are three cases to consider corresponding to products between spaces with even or odd index.
We begin by considering the following product A2k ×A2h −→ A2(k+h). Using the definition of An,
this is equivalent to consider the product of holomorphic sections

A0(Lk)×A0(Lh) −→ A0(Lk+h)

which is commutative. In the case of product between spaces of different indexes A2k ×A2h+1 −→
A2(k+h)+1, we have a similar situation as soon as we rewrite this product in the following way

A0(Lk)×A1(Lh) −→ A1(Lk+h).

Finally, the third case is given by the product between a couple of spaces with odd index A2k+1 ×
A2h+1 −→ A2(k+h+1). We define this product to be zero, since the product between element in
A1(Lk) and A1(Lh) should be a (0, 2)-form with coefficient in Lk+h but forms of such type don’t
exist on a curve.

So we have just shown the following

Proposition 2.1. The inner product Ai ×Aj −→ Ai+j is graded commutative.

Now we need to introduce the differential d. For convenience, we denote with dn the differential
operator dn : An −→ An+1. We define it in the following way

dn =

{
∂Lk if n = 2k

0 if n = 2k + 1
∀k ∈ N (1)

where ∂Lk : A0(Lk) −→ A0,1(Lk) is the differential induced by the Dolbeaut operator.
We have to check that d is a derivation. Note that the only case we need to consider is the

following d(a · b) = ∂Lk+h(a · b) where a ∈ A2k and b ∈ A2h. In fact, in the other cases, the proof
is obvious since if c ∈ A2k+1, by definition we have d(c) = 0. Now the element a ∈ A2k = A0(Lk)
can be written as fαk where α is an holomorphic section of A0(L); in the same way, we have
b = gαh ∈ A0(Lh). Then showing the Leibnitz rule is easy because the product becomes

∂(fg αk+h) = ∂(fg) αk+h = [∂(f) g + ∂(g) f ] αk+h.

To visualize the chain complex, we can write it in the following way

A0
∂−→ A1

0−→ A2
∂L−→ A3 −→ · · · −→ A2k

∂
Lk−→ A2k+1

0−→ A2k+2

∂
Lk+1−→ A2n+3 −→ · · ·

We have shown the following
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Theorem 2.2. The graded algebra A endowed with the inner product Ai ×Aj −→ Ai+j, described
before, and the differential d, defined by (1), is a differential graded algebra.

It is easy to compute the cohomology of this dga A.

Remark 2.3. The cohomology of the differential graded algebra A is the following

H2k(A) = H0(Lk) H2k+1(A) = H1(Lk).

The proof is quite simple: it is enough to recall the definition of the Dolbeaut cohomology. In
fact, by definition of Hp(A), we have

H2k(A) = Ker{ ∂Lk : A0(Lk) −→ A1(Lk)} = H0(Lk)

H2k+1(A) =
A1(Lk)

∂Lk(A0(Lk))
= H1(Lk)

2.1 A new Massey product

Now we are going to construct a triple Massey product on our dga A.

Let [s1], [s2] be two elements in H2(A) and let [τ ] be a class in H1(A). Denote with s1, s2
two representants of the cohomology classes in A2, while τ is a representant in A1. Suppose that
[si] · [τ ] = 0 for i = 1, 2 in H3(A). This means that si · τ is an exact element. Then, there is an
element ri ∈ A2 such that

si · τ = ∂ri for i = 1, 2.

The triple Massey product of [s1], [τ ], [s2] is the cocycle in H4(A)

M(s1, τ, s2) = r1s2 − r2s1

defined modulo the ideal spanned by [s1] and [s2].

2.1.1 Computations on the Massey product

We would give an “interpretation” of this Massey product when L = ωC with the language of vector
bundles. This will allow us to show the relation with the Griffiths invariant and to detect directly
whether the Massey product vanish.

Let [w1], [w2] be two elements in H2(A) and let [σ] be a class in H1(A). We begin by noting that
H4(A) corresponds to H0(ω2

C). Let [ξ] be an element in H1(TC). So, using the Poincaré duality, we
can contract our Massey product against [ξ]: explicity we have

< ξ,M(w1, σ, w2) >=
∫

C

ξ ∧ (r1w2 − r2w1) =
∫

C

r1 ∧ ξ · w2 − r2 ∧ ξ · w1. (2)

Since H1(TC) ' Ext1(ωC ,OC), the element [ξ] can be seen as the extension class of the following
exact sequence

0 −→ OC −→ E −→ ωC −→ 0, (3)

where E is a rank 2 vector bundle. Since we have fixed [ξ], the coboundary map induced in cohomol-
ogy δξ : H0(ωC) −→ H1(OC) is given by the cup product with the extension class. Let K = Ker(δξ).
Assume that dim(K) ≥ 2 and suppose that w1 and w2 lie in this kernel, i.e. [ξ] · [si] = 0 for i = 1, 2.
This means that there are two elements hi for i = 1, 2 in A0(OC) such that

ξ · si = ∂hi.
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So the integral (2) can be rewritten in the following way∫
r1(∂h2)− r2(∂h1) =

∫
h1(∂r2)− h2(∂r1) =

=
∫
h1(w2 · σ)− h2(w1 · σ) =

∫
(h1w2 − h2w1) · σ.

Note that (h1w2 − h2w1) is a section in H0(ωC). We would interprete this element in terms of a
special map, the “adjunction” map, introduced in [2], to study the infinitesimal invariant. (For more
details, see also [11])

Consider again the sequence (3). The vector bundle E has canonical determinant: then it is
well defined the determinant map ∆ :

∧2
H0(E) −→ H0(

∧2
E) −→ H0(ωC). Fix a 2-dimensional

subspace U in K. Set ρ−1(U) = W ⊂ H0(E) where ρ : H0(E) −→ H0(ωC). So we can consider the
restriction of the map ∆ to

∧2
W

∆W :
2∧
W ↪→

2∧
H0(E) −→ H0(ωC). (4)

Let V be the space generated by all the images of W in H0(ωC) and consider the map β :
∧2

W −→
H0(ωC)/V as the composition of ∆W with the quotient map. It is easy to show that β factors
through

∧2 U to give a map

αξ :
2∧
U −→ H0(ωC)/V. (5)

Suppose that w1, w2 lie in U . We can lift these two sections to w̃1, w̃2 ∈ H0(E). In local
coordinates, they can be written as w̃i = wi + hidε where hi ∈ A0(OC) for i = 1, 2. The map α acts
on the element w1 ∧ w2 as

det

[
w1 w2

h1 h2

]
.

Hence we can conclude that

< ξ,M(w1, σ, w2) >=
∫
σ ∧ αξ(w1 ∧ w2). (6)

2.1.2 Some remarks on the dga A and its Massey products

The definition of a dga can be, in some way, generalized if we define the algebra A as a Z graded
vector space. We have to say that the theory of minimal models of dga is developed especially for
algebras graded on N. For this reason, studying these algebras could not be easy, althought intere-
sting. However, in this paper, we want to show an other way to compute the infinitesimal invariant
using a dga graded on Z: this allows us to underline a kind of “duality” between Massey products.

We define the extended version of the dga A simply adding the negative degree parts of our
algebra. Then let Â be the Z graded vector space defined by

An =

{
A0(ωk

C) if n = 2k

A1(ωk
C) if n = 2k + 1

∀k ∈ Z.

This algebra is endowed with the usual inner product and the differential d exactly given by (1)
extended also to negative degree spaces.

· · · −→ A−2
∂−→ A−1

0−→ A0
∂−→ A1

0−→ A2 −→ · · · −→ A2k
∂−→ A2k+1

0−→ A2k+2
∂−→ A2k+3 −→ · · ·

Note that on Â, the Massey product M(w1, σ, w2) is again well defined. We would like to define
an other triple Massey product on the dga Â in the following way.
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Let [w1], [w2] be two representatives in H2(A) and let [ξ] be a class in H−1(A). Assume that
[ξ] · [wi] = 0 for i = 1, 2. Consider the bilinear product A2 × A−1 −→ A1: then we can find two
functions on C, h1 and h2 in A0, such that

ξ · wi = ∂hi for i = 1, 2.

The triple Massey product M(w1, ξ, w2) is exactly the cocycle

M(w1, ξ, w2) = h1w2 − h2w1.

Note that this form lies in H2(A) and it is well defined modulo the ideal generated by [w1], [w2]
exactly as in the previous case.

Observe that if ξ · wi = 0, the Massey product M(w1, ξ, w2) is exactly given by the adjuction map
described in the previous section.

Remark 2.4. Consider wi for i = 1, 2 two holomorphic forms in H0(ωC) and σ a form in H1(OC).
Let ξ be an element in H1(TC) such that ξ ·wi = 0 for i = 1, 2. Then it holds the following formula

< ξ,M(w1, σ, w2) >=<M(w1, ξ, w2), σ > .

3 The harmonic variation

In this section, we are going to define a secondary map in cohomology, called harmonic variation,
which takes into account the Massey product we had defined. The construction of this map was
inspired by the definition of the Massey products: for this reason, it can be considered a kind of
“generalization” of Massey products. The harmonic variation shows two important aspects: on one
side, it is involved into the computation of the infinitesimal invariant, on the other side, this map
allows us to underline some properties of simmetry of the Griffiths’ invariant.

Let w1, w2 be two holomorphic forms in H0(ωC) and consider ξ ∈ H1(TC). The element ξ ·wi is
an element of H1(OC) where · stays for the cup product. Consider now the element

ψ = w1 ∧ ξ · w2 − w2 ∧ ξ · w1.

Clearly, ψ is a (1, 1)-form such that
∫

C
ψ = 0, through the canonical isomorphism H1(ωC) ' C.

Now we analize more in details the meaning of this form.
Consider the harmonic representative of ξ ·wi, i.e. the image of the element ξ ·wi in H0,1 under the
map H : A0,1(C) −→ H0,1(C), and we denote again with ξ · wi its harmonic representative. Then
we set

ξ · w1 = θw1 − ∂h1, ξ · w2 = θw2 − ∂h2,

where hi are C∞ functions on C and θwi is Dolbeaut representative of ξ · wi. Then we have

ψ = ∂(h2w1 − h1w2).

Since the form ψ is a ∂ exact form, then ∂ψ = 0. The ∂∂-lemma assures that there is a C∞ function
on C β1,2 such that ψ = ∂∂β1,2. Then, starting from a couple of holomorphic forms w1, w2 we
construct an holomorphic (1, 0)-form

α3 = ∂β1,2 − h2w1 + h1w2.

Remark 3.1. This definition holds also if ξ vanishes both w1 and w2. In this case, the form ψ is
zero as (1, 1)-form, since ξ · wi = 0 for i = 1, 2. Then it is easy to see that ∂β1,2 is zero and hence
α3 is the image of w1 ∧ w2 under the map αξ or, in the language of our Massey product,

α3 = M(w1, ξ, w2)
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Now we define the harmonic variation.

Consider three holomorphic forms wi in H0(ωC) and ξ ∈ H1(TC). We can repeat the same
construction for every pair (wi, wj) with i 6= j and we obtain three (1, 0) holomorphic forms αk =
∂βi,j − hjwi + hiwj , for k 6= i, j where βi,j ∈ C∞(C). This allows us to define a map

L : H1(TC)⊗H0(ωC)⊗H0(ωC)⊗H0(ωC) −→ H0(ω2
C),

which associates to the element (ξ⊗w1⊗w2⊗w3) the following sum
∑3

i=1 wiαi. An equivalent
definition of this map is the following L(ξ⊗w1⊗w2⊗w3) =

∑3
i,j,k=1 wi∂βj,k for i 6= j, k, as we can

show by a direct computation.

The map L is well defined as we show in the following proposition.

Proposition 3.2. The map L does not depend on the choice of the Dolbeault representation of ξ ·wi.

Proof. Let ξ · w1 = θw1 − ∂h1 be a representation of ξ · w1, with h1 ∈ C∞(C). Suppose that there
is a second description of ξ · w1, given by θ′w1 − ∂g1. Observe that θ − θ′ = ∂τ where τ is a C∞
function on TC . The difference of the two representations is

(θ − θ′)w1 − ∂(h1 − g1) = ∂τ · w1 − ∂(h1 − g1) = 0;

this implies that the function τ · w1 − h1 + g1 = c1 is holomorphic on TC . We have two different
(1, 0)-forms α3 corresponding to the two different representations

∂β1,2 + h1w2 − h2w1 = α3 ∂β′1,2 + g1w2 − g2w1 = α′3.

We compute the difference between α3 and α′3. Since, up to a constant, we can identify ∂β1,2 = ∂β′1,2,
we obtain α3 − α′3 = c2w1 − c1w2.
In similar way, we proceed also for the other forms. If we denote with α′i the form corresponding
to the second representation, we have α1 − α′1 = c3w2 − c2w3 and α2 − α′2 = c1w3 − c3w1, with
ci ∈ A1(TC). Now a straight computation shows that

∑3
i=1 αiwi =

∑3
i=1 α

′
iwi.

Moreover, the map L is alternant with respect to forms wi: then it is actually defined on the
wedge product

∧3
H0(ωC).

Lemma 3.3. The map L is invariant under cyclic permutations of forms in H0(ωC).

Proof. Let w1, w2, w3 be three forms in H0(ωC). Suppose to apply the map L to the element
ξ⊗(w2⊗w1⊗w3). We want to show that the result is the opposite of L(ξ⊗(w1⊗w2⊗w3)), that
is, the map L changes sign under the transposition (12). Note that

∂∂βk,j = −∂∂βj,k.

Denote with α̂i the “new” form; it is easy to see that α̂i = −αi for i = 1, 2, 3. This shows that
L(ξ⊗(w1⊗w2⊗w3)) = −L(ξ⊗(w2⊗w1⊗w3)). In similar way, it is possible to show that the map
L changes sign under the transposition (13) and this concludes the proof.

Definition 3.4. The map

L : H1(TC)⊗
3∧
H0(ωC) −→ H0(ω2

C)

which sends ξ⊗w1 ∧ w2 ∧ w3 in the holomorphic form
∑3

i=1 wiαi, is called harmonic variation.
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3.0.3 Properties of the map L

In this paragraph, we study some properties of the harmonic variation: in particular, we show the
simmetry of the map L. Let ξ1, ξ2 ∈ H1(TC). We have the following equality

ξ1 · L(ξ2⊗w1 ∧ w2 ∧ w3) = ξ2 · L(ξ1⊗w1 ∧ w2 ∧ w3). (7)

In order to show (7), we have to evaluate L(ξj ⊗w1 ∧ w2 ∧ w3) for j = 1, 2. We recall the
description of ξj ·wi in terms of harmonic representatives ξ1wi = θ1wi− ∂hi and ξ2wi = θ2wi− ∂gi.

Suppose that L(ξ1⊗w1 ∧ w2 ∧ w3) =
∑3

i,j,k=1 wi∂βj,k with i 6= j, k and we compute explicitally
< ξ2,L(ξ1⊗w1 ∧ w2 ∧ w3) >. Assume that, in every sum, i 6= j, k. We have∫

θ2 ∧
3∑

i,j,k=1

wi∂βj,k =
3∑

i,j,k=1

∫
θ2 ∧ (wi∂βj,k) =

3∑
i,j,k=1

∫
θ2wi ∧ ∂βj,k =

=
3∑

i,j,k=1

∫
(ξ2wi + ∂gi) ∧ ∂βj,k =

3∑
i,j,k=1

∫
∂gi ∧ ∂βj,k.

since we have
∫
ξ2wi ∧ ∂βj,k = 0. Since, by property of the differential of wedge product, we have

∂gi ∧ ∂βj,k = d(gi ∧ ∂βj,k)− gi ∧ ∂∂βj,k, we obtain
∑3

i,j,k=1

∫
∂gi ∧ ∂βj,k = −

∑3
i,j,k=1

∫
gi ∧ ∂∂βj,k.

It’s easy to rewrite the second member in the following way∫
(g3∂h1 − g1∂h3) ∧ w2 + (g1∂h2 − g2∂h1) ∧ w3 + (g2∂h3 − g3∂h2) ∧ w1.

The proof is ended as soon as we compute the element < ξ1,L(ξ2⊗w1 ∧ w2 ∧ w3) > . It’s enought
to repeat the same subject, changing the role of ξ1 and ξ2, to obtain exactly the same expression.

A consequence of this simmetry is the following

Proposition 3.5. Let wi be three forms in H0(ωC). Consider two deformations ξj for j = 1, 2 in
H1(TC) such that for i = 1, 2 and j = 1, 2, ξj · wi = 0. The harmonic variation acts as follows

ξ2 · L(ξ1⊗w1 ∧ w2 ∧ w3) =
∫
αξ1(w1 ∧ w2) ∧ ξ2 · w3. (8)

Proof. Let ξ1, ξ2 ∈ H1(TC) such that ξj · wi = 0 for j = 1, 2 and i = 1, 2. We have to evaluate
< ξ2,L(ξ1⊗w1 ∧ w2 ∧ w3) > . Thus, we consider

< ξ2,
3∑

i=1

αiwi >=< ξ2, α1w1 > + < ξ2, α2w2 > + < ξ2, α3w3 > .

The first two summands are zero, because for i = 1, 2 < ξ2, αiwi >=
∫
ξ2 ∧αiwi =

∫
αi ∧ ξ2 ·wi = 0.

Then it remains only the third part < ξ2, α3w3 > . Remark (3.1) assures that if ξ1 ·w1 = ξ1 ·w2 = 0,
then α3 is exactly the adjunction image αξ1(w1∧w2). Then, the final result is< ξ2, αξ1(w1∧w2) w3 >,
that is,

∫
αξ1(w1 ∧ w2) ∧ ξ2 · w3.

4 The infinitesimal invariant

In this section, we want to show that the infinitesimal invariant δ(ν) can be rewritten using the
triple Massey product on the differential graded algebra A constructed before in the case L = ωC .
As a corollary, we deduce that for smooth non-hyperelliptic curves of genus g > 2, the differential
graded algebra A associated to ωC is not formal.

10



4.1 The Griffiths’ infinitesimal invariant

The first definition of the infinitesimal invariant is given by Griffiths in [8] to determine if normal
functions are locally constant. Later, the theory of the infinitesimal invariant was completed by
Green and Voisin (see for example [5], [14]). Here we present the definition given by Green in [6].

Let f : C −→ S be a family of smooth complete connected curves of genus g > 2 over a smooth
irreducible variety S of dimension n. Suppose there is a section of C over S, and then, by means of
Abel-Jacobi map, we define

i : C −→ J .

The image of this morphism is an algebraic cycle W of codimension g− 1 in the family of jacobians
J . Let W− be the image of W under the involution j : J −→ J , j(u) = −u. The cycles W and
W− are homologically equivalent on J but not algebraically equivalent as Ceresa shows in [1]. We
have the Ceresa cycle Z = W −W− ∈ CHg−1(J )hom. Consider the higher Abel-Jacobi map

AJg−1
J : CHg−1(J )hom −→ J g−1

where J g−1 is the family of the intermediate jacobians.

In order to study the Abel-Jacobi map, Griffiths introduced the concept of normal functions in a
general context of a family of algebraic varieties. In our case, the normal function associated to the
family of cycles Z is a holomorphic section ν : S −→ J g−1 given by ν(s) = AJJs

(Zs) ∈ Jg−1(C),
where Zs = Z ∩ Js is a cycle homologous to zero in Js, fiber of J over the generic point s ∈ S.

The main tool to determine if normal functions are locally constant is the infinitesimal invariant.
We define (g − 1)-th Koszul complex associated to the family C the complex

Kk
g−1 = Ωk

S ⊗F g−1−kR2g−3
π∗ C

with the boundary map ∇ given by the Gauss-Manin connection. Let ν̃ be a local lifting of ν on a
open set U ⊂ S. We have

∇ν̃ ∈ Ω1
S ⊗F g−2R2g−3

π∗ C = K1
g−1.

The flatness of the Gauss-Manin connection assures that ∇ν̃ vanishes in K2
g−1 = Ω2

S ⊗F g−3R2g−3
π∗ C.

Moreover, it is possible to show that ∇ν̃ doesn’t depend on the choice of the lifting. So, we can
conclude that ∇ν̃ determines a well defined element

δ(ν) ∈ H1(K•
g−1).

Definition 4.1. The Griffiths’ infinitesimal invariant δ(ν) of the normal function ν is an element
of the cohomology of the following Koszul complex

F g−1R2g−3
π∗ C −→ Ω1

S ⊗F g−2R2g−3
π∗ C −→ Ω2

S ⊗F g−3R2g−3
π∗ C.

It is easy to show that a normal function ν is locally constant if and only if δ(ν) = 0.
It is possible to give a more detailed description of the Koszul complex which defines the in-

finitesimal invariant. In fact, the complex K•
g−1 can be filtered by the subcomplexes Kk

g−1,m =
Ωk

S ⊗Fm−kR2g−3
π∗ C for m ≥ g − 1. Using the definition of Hodge filtration, we can note that, for

every k, K̂k
g−1,m = Kk

g−1,m/K
k
g−1,m+1 = Ωk

S ⊗Hm−k,2g−3−m+k(C). Observe that if H1(K̂•
g−1,m) = 0

for all m ≥ g − 1 then H1(K•
g−1) = 0. So the Griffiths’ infinitesimal invariant can be seen as an

element of the cohomology of the complex K̂•
g−1,g−1,

Hg−2,g−1 −→ Ω1
S ⊗Hg−1,g−2−→Ω2

S ⊗Hg,g−3. (9)
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If we dualize this complex, δ(ν) can be seen as a linear map Ker(γ)/Im(β) −→ C, where γ and β
are the maps into the dual complex

2∧
TS ⊗H3,0 β−→ TS ⊗H2,1 γ−→ H1,2. (10)

Now the problem is whether it is possible to “compute” the infinitesimal invariant. In the next
section, we will report the result of Collino and Pirola [2]: they give a kind of formula to compute
the infinitesimal invariant of the Ceresa cycle which allows them to recovering the cycle from its
infinitesimal invariant.

4.1.1 The formula

Let C −→ S = SpecC [ε]/(ε2) be a family of smooth curves of genus g over a smooth variety S of
dimension 1. Denote with C the fiber of the family C over the generic point s ∈ S. Consider the
following natural exact sequence

0 −→ N∗ −→ Ω1
C |C −→ ωC −→ 0, (11)

where Ω1
C |C is the cotangent bundle of the family C restricted to C and N∗ is the conormal bundle.

Chosen a basis for the tangent space TS,s at the point s ∈ S, it is easy to see that N∗ is trivial.

The class of extension [ξ] of (11) lies in H1(TC): hence, geometrically, it represents a first order
deformation of C. So the map (5) is the adjunction map αξ :

∧2 U −→ H0(ωC)/V, where, as in
section 2.1.1, U is a 2-dimensional subspace of the kernel of the coboundary map of (11).

Consider w1 and w2 two forms in U i.e. such that ξ ·wi = 0 for i = 1, 2 and let σ be a third form
in H1(OC) such that σ is orthogonal to w1 and w2. Note that the element ξ⊗w1 ∧ w2 ∧ σ lies in
the kernel of γ; then it is possible to calculate the infinitesimal invariant δ(ν)(ξ⊗w1 ∧ w2 ∧ σ).

Collino and Pirola showed the following

Theorem 4.2 ([2]). δ(ν)(ξ⊗w1 ∧ w2 ∧ σ) = −2
∫

C
αξ(w1 ∧ w2) ∧ σ.

4.2 The main Theorem

This section is dedicated to showing that how it is possible to compute the Griffiths’ infinitesimal
invariant using Massey products and the harmonic variation.

Let ξ ∈ H1(TC) and σ ∈ H1(OC). Consider two holomorphic forms w1, w2 ∈ H0(ωC) such that
ξ ·wi = 0 for i = 1, 2: we can suppose that w1, w2 lie in U . Moreover, assume that wi are orthogonal
to σ. This condition allows us to construct a triple Massey product on A. In fact, in the language
of our dga, [w1], [w2] are two elements in H2(A) and [σ] is a class in H1(A). Since [wi] · [σ] = 0 for
i = 1, 2, then there are two elements ρi ∈ A2 such that wi ∧ σ = ∂ρi for i = 1, 2. The triple Massey
product of [w1], [σ], [w2] is the cocycle in H4(A)

M(w1, σ, w2) = ρ1w2 − ρ2w1

defined modulo the ideal spanned by [w1] and [w2].

Now if we consider the formula (6) and apply the theorem (4.2), we are able to show the following

Theorem 4.3. Let w1, w2 be forms in H0(ωC), σ a form in H1(OC) and ξ ∈ H1(TC). Suppose
that σ is orthogonal to wi for every i and ξ · wi = 0 for i = 1, 2. Assume it is possible to compute
the infinitesimal invariant δ(ν) of ξ⊗w1 ∧ w2 ∧ σ. Then we have

δ(ν)(ξ⊗w1 ∧ w2 ∧ σ) = −2 < ξ,M(w1, σ, w2) > .
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Finally, proposition (3.5) and again theorem (4.2) show the following

Corollary 4.4. Under the hypoteses of theorem (4.3), if we assume that ξ · σ = σ, we have

δ(ν)(ξ⊗w1 ∧ w2 ∧ σ) = −2ξ · L(ξ⊗w1 ∧ w2 ∧ σ).

4.3 Non-Formality of A
The construction of the triple Massey on A suggests us to study the formality of the dga. We
change point of view: it is well known that, for a smooth complete non-hyperelliptic curve of genus
g > 2, the infinitesimal invariant of the Ceresa cycle is not trivial (see for example [2]). Then
theorem (4.3) assures that also the Massey product M(w1, σ, w2) is not trivial: since we have found
a non-vanishing Massey product on A, we can conclude, by theorem (1.4), that A is a non formal
differential graded algebra. Hence we have shown the following

Theorem 4.5. Let C be a smooth non-hyperelliptic curve of genus g > 2. Consider A the differential
graded algebra defined in section 2 with L = ωC . Then the algebra (A, d) is not formal.
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