
DIPARTIMENTO DI MATEMATICA
“Francesco Brioschi”

POLITECNICO DI MILANO

Entire solutions with exponential

growth for an elliptic system

modelling phase-transition

Soave, N.; Zilio, A.

Collezione dei Quaderni di Dipartimento, numero QDD 151

Inserito negli Archivi Digitali di Dipartimento in data 25-3-2013

Piazza Leonardo da Vinci, 32 - 20133 Milano (Italy)



ENTIRE SOLUTIONS WITH EXPONENTIAL GROWTH FOR AN ELLIPTIC

SYSTEM MODELING PHASE-SEPARATION

Nicola Soave
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Abstract. We prove the existence of entire solutions with exponential growth for the semilinear elliptic
system











−∆u = −uv2 in RN

−∆v = −u2v in RN

u, v > 0,

for every N ≥ 2. Our construction is based on an approximation procedure, whose convergence is ensured

by suitable Almgren-type monotonicity formulae. The construction of some solutions is extended to
systems with k components, for every k > 2.

1. Introduction and main results

In this paper we investigate the existence of entire solutions with exponential growth for the semilinear
elliptic system

(1.1)











−∆u = −uv2

−∆v = −u2v

u, v > 0,

in R2 (thus in RN for every N ≥ 2). System (1.1), which appears in the study of phase-separation
phenomena for Bose-Einstein condensates with multiple states, has been intensively studied in the last
years; we refer in particular to [1, 3, 4, 5, 9, 10], where physical motivations are discussed and a precise
description of the phase-separation is derived, and to [1, 2] where existence and qualitative properties of
entire solutions are central topics. In [9], it is proved that if (u, v) is an entire solution to (1.1) and is
globally α-Hölder continuous for some α ∈ (0, 1), then one between u and v is constant while the other
is identically 0. On the other hand, in [1] the authors show that there exists a nontrivial solution for the
system of ODEs











−u′′ = −uv2 in R

−v′′ = −u2v in R

u, v > 0

which is reflectionally symmetric with respect to a point of R, in the sense that there exists t0 ∈ R such
that u(t0 + t) = v(t0 − t) for every t ∈ R, and has linear growth: there exists C > 0 such that

u(t) + v(t) ≤ C(1 + |t|) ∀t ∈ R.
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2 EXPONENTIAL ENTIRE SOLUTIONS

The paper [2] completes the study of the 1-dimensional problem with the proof of the uniqueness of the
positive 1-dimensional profile, up to translations and scalings. Always in [2], the authors construct entire
solutions to (1.1) with algebraic growth for any integer rate of growth greater then 1; here and in the
rest of the paper we say that (u, v) has algebraic growth if there exist p ≥ 1 and C > 0 such that

u(x) + v(x) ≤ C(1 + |x|p) ∀x ∈ R
N .

The solutions constructed in [2] are not 1-dimensional, and are modeled on (we will be more precise
later, see Remark 1.2) the homogeneous harmonic polynomials ℜ(zd), for every d ≥ 2. There is a
deep relationship between entire solutions to (1.1) and harmonic functions; this relationship has been
established in [5, 9]. For instance, in case (u, v) has algebraic growth, it is possible to show that up to a
subsequence, the blow-down family, defined by

(uR(x), vR(x)) =
RN−1

∫

∂BR(0) u
2 + v2

(u(Rx), v(Rx)) ,

is uniformly convergent in every compact subset of RN , as R → +∞, to a limiting profile (Ψ+,Ψ−),
where Ψ is a homogeneous harmonic polynomial (see Theorem 1.4 in [2]).

To conclude this bibliographic introduction, we have to mention that major efforts have been done
recently in order to prove classification results and in particular the 1-dimensional symmetry of solutions
to (1.1). This is motivated by the relationship between (1.1) and the Allen-Cahn equation, which has been
established in [1], and led the authors to formulate a De Giorgi’s-type and a Gibbons’-type conjecture
for solutions to (1.1); for results in this direction, we refer to [1, 2, 6, 7, 11].

Motivated by the quoted achievements, we wonder if the system (1.1) has solutions with super-algebraic
growth. We can give a positive answer to this question proving the existence of solutions with exponential
growth. In our construction we adapt the same line of reasoning introduced in the proof of Theorem 1.3
of [2]. Therein, the authors proved the existence of solutions to (1.1) with the same symmetry of the
function ℜ(zd) in any bounded ball BR(0) ⊂ R2, with boundary conditions u = (ℜ(zd))+, v = (ℜ(zd))−

on ∂BR(0). By means of suitable monotonicity formulae, they could pass to the limit for R → +∞
obtaining convergence (up to a subsequence) for the previous family to a nontrivial entire solution. In
this sense, their solutions are modeled on the harmonic functions ℜ(zd).

Here, having in mind the construction of solutions with exponential growth, and recalling the relation-
ship between entire solution of our system and harmonic functions, we start by considering

Φ(x, y) := coshx sin y.

The first of our main results is the following.

Theorem 1.1. There exists an entire solution (u, v) ∈ (C∞(R2))2 to system (1.1) such that

1) u(x, y + 2π) = u(x, y) and v(x, y + 2π) = v(x, y),
2) u(−x, y) = u(x, y) and v(−x, y) = v(x, y),
3) the symmetries

v(x, y) = u(x, y − π) u(x, π − y) = v(x, π + y)

u
(

x,
π

2
+ y
)

= u
(

x,
π

2
− y
)

v

(

x,
3

2
π + y

)

= v

(

x,
3

2
π − y

)

hold,
4) u− v > 0 in {Φ > 0} and v − u > 0 in {Φ < 0},
5) u > Φ+ and v > Φ− in R2,
6) the function (Almgren quotient)

r 7→

∫

(0,r)×(0,2π)
|∇u|2 + |∇v|2 + 2u2v2

∫

{r}×[0,2π] u
2 + v2
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is well-defined for every r > 0, is nondecreasing, and

lim
r→+∞

∫

(0,r)×(0,2π) |∇u|
2 + |∇v|2 + 2u2v2

∫

{r}×[0,2π] u
2 + v2

= 1,

7) there exists the limit

lim
r→+∞

∫

{r}×[0,2π] u
2 + v2

e2r
=: α ∈ (0,+∞).

Remark 1.2. This solution is modeled on the harmonic function Φ, in the sense that it inherits the
symmetries of (Φ+,Φ−) and has the same rate of growth of Φ.

Remark 1.3. Point 7) of the Theorem gives a lower and a upper bound to the rate of growth of the
quadratic mean of (u, v) on {r} × [0, 2π] when r varies:

(

∫

{r}×[0,2π]

u2 + v2

)
1
2

= O(er) as r → +∞.

The domain of integration takes into account the periodicity of (u, v). The quadratic mean of (u, v) on
{r}× [0, 2π] has exponential growth, and the rate of growth is the same of the function er, which in turns
has the same rate of growth of Φ. Note that the coefficient 1 in the exponent of er coincides with the
limit as r → +∞ of the Almgren quotient defined in point 6).

Remark 1.4. With a scaling argument, it is not difficult to prove the existence of entire solutions with
exponential growth of order λ for every λ > 0 (in the previous sense). To see this, let

(uλ(x, y), vλ(x, y)) = (λu(λx, λy), λv(λx, λy) .

It is straightforward to check that (uλ, vλ) is still a solution to (1.1) in the plane, is 2π
λ -periodic in y and

is such that

uλ(x, y) ≥ λ (cosh(λx) sin(λy))
+

and vλ(x, y) ≥ λ (cosh(λx) sin(λy))
−
.

Moreover,

(1.2) lim
r→+∞

∫

(0,r)×(0, 2πλ ) |∇uλ|
2 + |∇vλ|

2 + 2u2λv
2
λ

∫

{r}×[0, 2πλ ] u
2
λ + v2λ

= λ,

and

lim
r→+∞

∫

{r}×[0, 2πλ ] u
2
λ + v2λ

e2λr
= λα.

One can consider the solution (uλ, vλ) as related to the harmonic function cosh(λx) sin(λy). This reveals
that there exists a correspondence

{(uλ, vλ) : λ > 0} ↔ {sin(λx) cosh(λy) : λ > 0}.

Due to the invariance under translations and rotations of problem (1.1), the family {(uλ, vλ) : λ > 0}
can equivalently be related with the families of harmonic functions {cosh(λx) [C1 cos(λy) + C2 sin(λy)]}
or {[C3 cos(λx) + C4 sin(λx)] cosh(λy) : λ > 0}, where C1, C2, C3, C4 ∈ R.

As observed in Remark 1.3, the limit of the Almgren quotient in (1.2) describes the rate of the growth
of the quadratic mean of (uλ, vλ) computed on an interval of periodicity in the y variable. The previous
computation reveals that for every λ > 0 we can construct a solution having rate of growth equal to λ.
This marks a relevant difference between entire solutions with polynomial growth and entire solutions
with exponential growth: while in the former case the admissible rates of growth are quantized (Theorem
1.4 of [2]), in the latter one we can prescribe any positive real value as rate of growth.
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Remark 1.4 reveals that, starting from the solution found in Theorem 1.1, we can build infinitely-many
entire solutions with different exponential growth. However, noting that system 1.1 is invariant under
rotations, translations and scalings, intuitively speaking they are all the same solution. We wonder if
there exists an entire solution of (1.1) having exponential growth which cannot be obtained by the one
found in Theorem 1.1 through a rotation, a translation or a scaling; the answer is affirmative. We denote

Γ(x, y) := ex sin y.

Theorem 1.5. There exists an entire solution (u, v) ∈ (C∞(R2))2 to system (1.1) which enjoys points
1), 3), 4) of Theorem 1.1; moreover

2) for every r ∈ R

(1.3)

∫

(−∞,r)×(0,2π)

|∇u|2 + |∇v|2 + u2v2 < +∞,

5) u > Γ+ and v > Γ− in R2 † u− v > Γ+ and v − u > Γ− in R2,
6) the function (Almgren quotient)

r 7→

∫

(−∞,r)×(0,2π)
|∇u|2 + |∇v|2 + 2u2v2

∫

{r}×(0,2π)
u2 + v2

is well-defined for every r > 0, is nondecreasing, and

lim
r→+∞

∫

(−∞,r)×(0,2π) |∇u|
2 + |∇v|2 + 2u2v2

∫

{r}×(0,2π)
u2 + v2

= 1,

7) there exist the limits

lim
r→+∞

∫

{r}×[0,2π] u
2 + v2

e2r
=: β ∈ (0,+∞) and lim

r→−∞

∫

{r}×[0,2π]

u2 + v2 = 0.

Remark 1.6. This solution is modeled on the harmonic function Γ. As explained in Remark 1.3, it
is possible to obtain a family of entire solutions which is in correspondence with a family of harmonic
functions.

Remark 1.7. Note that the Almgren quotients that we defined in Theorem 1.1 and 1.5 are different.
They are both different to the Almgren quotient which has been defined in [2].

We can partially generalize our existence result to the case of systems with many components. To be
precise, given an integer k, we will construct a solution (u1, . . . , uk) of

(1.4)

{

−∆ui = −ui
∑

j 6=i u
2
j

ui > 0,
i = 1, . . . , k,

in the whole plane R2 having the same growth and the same symmetries of Γ. Here and in the paper we
consider the indexes mod k.

Theorem 1.8. There exists an entire solution (u1, . . . , uk) ∈ (C∞(R2))k to system (1.4) such that, for
every i = 1, . . . , k,

1) ui(x, y + kπ) = ui(x, y),
2) the symmetries

ui+1(x, y) = ui (x, y − π) u1

(

x,
π

2
+ y
)

= u1

(

x,
π

2
− y
)

hold,
3) for every r ∈ R

∫

(−∞,r)×(0,kπ)

k
∑

i=1

|∇ui|
2 +

∑

1≤i<j≤k

u2iu
2
j < +∞;
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4) the function (Almgren quotient)

r 7→

∫

(−∞,r)×(0,kπ)

∑k
i=1 |∇ui|

2 + 2
∑

1≤i<j≤k u
2
iu

2
j

∫

{r}×[0,kπ]

∑k
i=1 u

2
i

is well-defined for every r > 0, is nondecreasing, and

lim
r→+∞

∫

(−∞,r)×(0,kπ)

∑k
i=1 |∇ui|

2 + 2
∑

1≤i<j≤k u
2
iu

2
j

∫

{r}×[0,kπ]

∑k
i=1 u

2
i

= 1.

5) there exist the limits

lim
r→+∞

∫

{r}×[0,kπ]

k
∑

i=1

u2i =: γ ∈ (0,+∞) and lim
r→−∞

∫

{r}×[0,kπ]

k
∑

i=1

u2i = 0.

This solution is modeled on Γ.

Our last main result is the counterpart of Theorem 1.4 of [2] in our setting. This can be quite surprising
because, as we already observed, we cannot expect a quantization of the admissible rates of growth dealing
with solutions with exponential growth, see Remark 1.4. Nevertheless, if we consider solutions which are
periodic in one direction, prescribing a period such a quantization can be recovered.

Theorem 1.9. Let (u, v) be a nontrivial solution of (1.1) in R
2 which is 2π-periodic in y, and such that

one of the following situation occurs:

(i) there holds

lim
r→−∞

∫

{r}×[0,2π]

u2 + v2 = 0,

and

d := lim
r→+∞

∫

(−∞,r)×(0,2π)
|∇u|2 + |∇v|2 + u2v2

∫

{r}×[0,2π] u
2 + v2

< +∞.

(ii) ∂xu = 0 = ∂xv on {a} × [0, 2π] for some a ∈ R, and

d := lim
r→+∞

∫

(a,r)×(0,2π) |∇u|
2 + |∇v|2 + u2v2

∫

{r}×[0,2π]
u2 + v2

< +∞.

Then d is a positive integer,
(

∫

{r}×[0,2π]

u2 + v2

)
1
2

= O(edr) as r → +∞,

and the sequence

(uR(x, y), vR(x, y)) :=
1

√

∫

{r}×[0,2π]
u2 + v2

(u(x+R, y), v(x+R, y))

converges in C0
loc(R

2) and in H1
loc(R

2) to (Ψ+,Ψ−), where Ψ(x, y) = edx (C1 cos(dy) + C2 sin(dy)) for
some C1, C2 ∈ R.

Notation. We will deal with functions defined in domains of type (a, b)× R, where a < b are extended
real numbers (a = −∞ and b = +∞ are admissible). We will often assume that (u1, . . . , uk) is kπ-periodic
in y; therefore, we can think to (u1, . . . , uk) as defined on the cylinder

C(a,b) := (a, b)× Sk where Sk = R/(kπZ).

We will also denote Σr := {r} × Sk. In case b > 0, a = −b, we will simply write Cb instead of C(−b,b) to
simplify the notation.
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Plan of the paper. In section 2 we will prove some monotonicity formulae which will come useful in the
rest of the paper. We can deal with two types of solutions: solutions satisfying a homogeneous Neumann
condition defined in a cylinder C(a,b) with a > −∞, or solutions defined in a semi-infinite cylinder of
type C(−∞,b) and decaying at x → −∞. For the sake of completeness and having in mind to use some
monotonicity formulae in the proof of Theorem 1.8, we will always consider the case of systems with k
components.

The proof of Theorem 1.1 will be the object of section 3. It follows the same sketch of the proof of
Theorem 1.3 in [2]: we start by showing that for any R > 0 there exists a solution (uR, vR) to (1.1) in
the cylinder CR, with Dirichlet boundary condition

uR = Φ+ and vR = Φ− on {−R,R} × [0, 2π],

and exhibiting the same symmetries of (Φ+,Φ−). In order to obtain a solution defined in the whole C∞,
we wish to prove the C2

loc(C∞) convergence of the family {(uR, vR) : R > 1}, as R→ +∞. To show that
this convergence occurs, we will exploit the monotonicity formulae proved in subsection 2.1. With respect
to Theorem 1.3 of [2], major difficulties arise in the precise characterization of the growth of (u, v), points
6) and 7) of Theorem 1.1.

In section 4 we will prove Theorem 1.5. One could be tempted to try to adapt the proof of Theorem 1.1
replacing Φ with Γ. Unfortunately, in such a situation we could not exploit the results of subsection 2.1;
this is related to the lack of the even symmetry in the x variable of the function Γ (note that the function
Φ enjoys this symmetry). A possible way to overcome this problem is to work in semi-infinite cylinders
C(−∞,R) and use the monotonicity formulae proved in subsection 2.2. But to work in an unbounded
set introduces further complications: for instance, the compactness of the Sobolev embedding and of
some trace operators, a property that we will use many times in section 3, does not hold in C(−∞,R).
Although we believe that this kind of obstacle can be overcome, we propose a different approach for the
construction of solutions modeled on Γ, which is based on the elementary limit

lim
R→+∞

ΦR(x, y) = Γ(x, y) ∀(x, y) ∈ R
2,

where ΦR(x, y) = 2e−R cosh(x + R) sin y. We will prove the existence of a solution (uR, vR) of (1.1) in
C(−3R,R) with Dirichlet boundary condition

uR = Φ+
R and vR = Φ−

R on {−3R,R} × [0, 2π],

and exhibiting the same symmetries of (Φ+
R,Φ

−
R). Then, using again the results of section 2, we will pass

to the limit as R→ +∞ proving the compactness of {(uR, vR)}.
Section 5 is devoted to the study of systems with many components. As in [2] the authors could prove

in one shot an existence theorem for 2 or k components (there are no substantial changes in the proofs),
it is natural to wonder if here we can simply adapt step by step the construction carried on in section 3 or
4, or not. Unfortunately, the answer is negative: following the sketch of the proof of Theorem 1.1, we can
adapt most the results of sections 3 and 4 with minor changes, but in the counterpart of Proposition 3.1
we cannot prove the pointwise estimate given by point 4). As a consequence, with respect to subsections
3.2 and 4.2 we cannot show that the limit of the sequence (u1,R, . . . , uk,R) does not vanish. Note that,
in the case of two components, this nondegeneracy is ensured precisely by the above pointwise estimate.
As far as the case of k component in [2], we observe that they obtained nondegeneracy through their
Corollary 5.4, which is the counterpart of point (i) of our Corollary 2.5. But, while therein the estimate
of the growth given by this statement is optimal, in our situation it does not provide any information; this
is related to the different expression of the term of rest in the Almgren monotonicity formula, Proposition
2.4. This is why we have to use a completely different argument which is not based on the existence of
solutions for the system of k components in bounded cylinders (or in semi-infinite cylinders), but rests on
Theorem 1.6 of [2]. Roughly speaking, we will obtain the existence of a solution of (1.4) with exponential
growth as a limit of solutions of the same system having algebraic growth.

The proof of Theorem 1.9 will be the object of section 6.
We conclude the paper with an appendix, in which we state and prove some known results for which

we cannot find a proper reference.
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2. Almgren-type monotonicity formulae

Let k ≥ 2 be a fixed integer. In this section we are going to prove some monotonicity formulae for
solutions of

(2.1)

{

−∆ui = −ui
∑

j 6=i u
2
j

ui > 0

defined in a cylinder C(a,b) (this means that we assume from the beginning that (u1, . . . , uk) is kπ-periodic
in y).

In this section we will use many times the following general result:

Lemma 2.1. Let (u1, . . . , uk) be a solution of (1.4) in C(a,b). Then the function

r 7→

∫

Σr

k
∑

i=1

|∇ui|
2 +

∑

1≤i<j≤k

u2iu
2
j − 2

∫

Σr

k
∑

i=1

(∂xui)
2

is constant in (a, b).

Proof. Let a < r1 < r2 < b. We test the equation (2.1) with (∂xu1, . . . , ∂xuk) in C(r1,r2): for every i it
results

∫

C(r1,r2)

1

2
∂x
(

|∇ui|
2
)

+





∑

j 6=i

u2j



ui∂xui =

∫

Σr2

(∂xui)
2 −

∫

Σr1

(∂xui)
2.

Summing for i = 1, . . . , k we obtain

∫

C(r1,r2)

∂x





∑

i

|∇ui|
2 +

∑

i<j

u2iu
2
j



 = 2

∫

Σr2

∑

i

(∂xui)
2 − 2

∫

Σr1

∑

i

(∂xui)
2,

which gives the thesis. �

2.1. Solutions with Neumann boundary conditions. In this subsection we are interested in solu-
tions to (2.1) defined in C(a,b) (thus kπ-periodic in y), with a > −∞ and b ∈ (a,+∞], and satisfying a
homogeneous Neumann boundary condition on Σa, that is,

(2.2) ∂xui = 0 on Σa, for every i = 1, . . . , k.

Firstly, we observed that under this assumption Lemma 2.1 implies

Lemma 2.2. Let (u1, . . . , uk) be a solution of (2.1) in C(a,b), such that (2.2) holds true. For every
r ∈ (a, b) the following identity holds:

∫

Σr

k
∑

i=1

|∇ui|
2 +

∑

1≤i<j≤k

u2iu
2
j = 2

∫

Σr

k
∑

i=1

(∂xui)
2 +

∫

Σa

k
∑

i=1

(∂yui)
2 +

∑

1≤i<j≤k

u2iu
2
j .

For a solution (u1, . . . , uk) of (2.1) in C(a,b) satisfying (2.2), we define

Esym(r) :=

∫

C(a,r)

k
∑

i=1

|∇ui|
2 + 2

∑

1≤i<j≤k

u2iu
2
j ,

Esym(r) :=

∫

C(a,r)

k
∑

i=1

|∇ui|
2 +

∑

1≤i<j≤k

u2iu
2
j ,

H(r) :=

∫

Σr

k
∑

i=1

u2i
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Remark 2.3. The index sym denotes the fact that, as we will see, the quantities Esym and Esym are
well suited to describe the growth of the solution (u1, . . . , uk) only if (u1, . . . , uk) satisfies the (2.2), which
can be considered as a symmetry condition. Indeed, under (2.2) one can extend (u1, . . . , uk) on C(2a−b,b)

by even symmetry in the x variable.

By regularity, E, E and H are smooth. A direct computation shows that they are nondecreasing
functions: in particular

(2.3) H ′(r) = 2

∫

Σr

∑

i

ui∂νui = 2E(r),

where the last identity follows from the divergence theorem and the boundary conditions of (u1, . . . , uk).
Our next result consist in showing that also the ratio between E (or E) and H is nondecreasing.

Proposition 2.4. Let (u1, . . . , uk) be a solution of (2.1) in C(a,b) such that (2.2) holds true. The
Almgren quotient

Nsym(r) :=
Esym(r)

H(r)

is well defined and nondecreasing in (a, b). Moreover
∫ r

a

∫

Σs

∑

i<j u
2
iu

2
j

H(s)
ds ≤ N(r).

Analogously, the function (which we will call Almgren quotient, too) Nsym(r) :=
Esym(r)

H(r)
is well defined

and nondecreasing in (a, b), and

N
′(r) ≥ 2N(r)

∫

C(a,r)

∑

i<j u
2
iu

2
j

H(r)
+ 2

(
∫

C(a,r)

∑

i<j u
2
iu

2
j

H(r)

)2

.

In the rest of this subsection we will briefly write E, E , N and N instead of Esym, Esym, Nsym and
N

sym to ease the notation.

Proof. Since (u, v) ∈ H1
loc(C(a,b)) is nontrivial, E and H are positive in (a, b) and bounded for r bounded.

We compute, by means of Lemma 2.2

E′(r) =

∫

Σr

∑

i

|∇ui|
2 + 2

∑

i<j

u2iu
2
j

=

∫

Σr

2
∑

i

(∂xui)
2 +

∑

i<j

u2iu
2
j +

∫

Σa

∑

i

(∂yui)
2 +

∑

i<j

u2iu
2
j .

Note that ∂xui = ∂νui on Σr. Using the previous identity and the (2.3) we are in position to compute
the logarithmic derivative of N :

N ′(r)

N(r)
=
E′(r)

E(r)
−
H ′(r)

H(r)

= 2

∫

Σr

∑

i(∂νui)
2

∫

Σr

∑

i u∂νui
+

2
∫

Σa

∑

i(∂yui)
2 +

∑

i<j u
2
iu

2
j +

∫

Σr

∑

i<j u
2
iu

2
j

E(r)
− 2

∫

Σr

∑

i u∂νui
∫

Σr

∑

i u
2
i

≥ 2

(
∫

Σr

∑

i(∂νui)
2

∫

Σr

∑

i u∂νui
−

∫

Σr

∑

i u∂νui
∫

Σr

∑

i u
2
i

)

+

∫

Σr

∑

i<j u
2
iu

2
j

E(r)
≥

∫

Σr

∑

i<j u
2
iu

2
j

E(r)
≥ 0,

where we used the Cauchy-Schwarz and the Young inequalities. As a consequence, N is nondecreasing
in (a, b). Note also that

N ′(r) ≥

∫

Σr

∑

i<j u
2
iu

2
j

H(r)
⇒ N(r) ≥

∫ r

a

∫

Σs

∑

i<j u
2
iu

2
j

H(s)
ds
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for every r > a. The same argument can be adapted with minor changes to prove the monotonicity of
N. �

As a first consequence, we have the following

Corollary 2.5. Let (u1, . . . , uk) be a solution of (2.1) in C(a,b) such that (2.2) holds.

(i) If N(r) ≥ d for r ≥ s > a, then

H(r1)

e2dr1
≤
H(r2)

e2dr2
∀ s ≤ r1 < r2 < b,

ii) If N(r) ≤ d for r ≤ t < b, then

H(r1)

e2dr1
≥
H(r2)

e2dr2
∀ a < r1 < r2 ≤ t.

Proof. We prove only (ii). Recalling that H ′(r) = 2E(r) (see (2.3)), we have

d

dr
logH(r) = 2N(r) ≤ 2d ∀r ∈ (a, t].

By integrating, the thesis follows. �

The next step is to prove a similar monotonicity property for the function E. Our result rests on
Theorem 5.6 of [2] (see also [1]), which we state here for the reader’s convenience

Theorem 2.6. Let k be a fixed integer and let Λ > 1. Let

L(k,Λ) := min







∫ 2π

0

k
∑

i=1

(f ′
i)

2 + Λ
∑

1≤i<j≤k

f2
i f

2
j

∣

∣

∣

∣

f1, . . . , fk ∈ H1([0, 2π]),
∫ 2π

0

∑k
i=1 f

2
i = 1

fi+1(t) = fi
(

t− 2π
k

)

, f1(π + t) = f1(π − t)







,

where the indexes are counted mod k. There exists C > 0 such that
(

k

2

)2

− CΛ−1/4 ≤ L(k,Λ) ≤

(

k

2

)2

.

Remark 2.7. Having in mind to apply Theorem 2.6 on 2π-periodic functions, note that the condition
f1(π + t) = f1(π − t) can be replaced by f1(t+ τ) = f1(τ − t) for any τ ∈ [0, 2π).

For a fixed r0 ∈ (a, b), let us introduce

ϕ(r; r0) :=

∫ r

r0

ds

H(s)1/4
.

The function ϕ is positive and increasing in R+; thanks to point (i) of Corollary 2.5 and to the mono-
tonicity of N , whenever (u, v) is nontrivial ϕ is bounded by a quantity depending only H(r0) and N(r0).
To be precise:

(2.4) ϕ(r; r0) ≤ 2
e

1
2N(r0)r0

H(r0)
1
4N(r0)

[

e−
1
2N(r0)r0 − e−

1
2N(r0)r

]

.

This, together with the monotonicity of ϕ(·; r0), implies that if b = +∞ then there exists the limit

(2.5) lim
r→+∞

ϕ(r; r0) < +∞.

Lemma 2.8. Let (u1, . . . , uk) be a solution of (1.1) in C(a,b) such that (2.2) holds. Let r0 ∈ (a, b), and
assume that

(2.6) ui+1(x, y) = ui(x, y − π) and u1 (x, τ + y) = u1 (x, τ − y)

where τ ∈ [0, kπ). There exists C > 0 such that the function r 7→
E(r)

e2r
eCϕ(r;r0) is nondecreasing in r for

r > r0.
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Proof. Recalling the (2.3), we compute the logarithmic derivative

(2.7)
d

dr
log

(

E(r)

e2r

)

= −2 +

∫

Σr

∑

i (∂νui)
2
+
∫

Σr
(∂yui)

2
+ 2

∑

i<j u
2
iu

2
j

∫

Σr

∑

i ui∂νui

To apply Theorem 2.6, we observe that Σr = {r} × [0, kπ], so that

(2.8)

∫

Σr

(∂yui)
2
+ 2

∑

i<j

u2iu
2
j =

∫ kπ

0

(∂yui(r, y))
2
+ 2

∑

i<j

ui(r, y)
2uj(r, y)

2 dy

=
2

k

∫ 2π

0

(∂yũi(r, y))
2
+ 2

(

k

2

)2
∑

i<j

ũi(r, y)
2ũj(r, y)

2 dy,

where ũi(r, y) = ui
(

r, k2y
)

. By a scaling argument, thanks to assumption (2.6) (see also Remark 2.7) we

can say that for every Λ > 1
2 there holds

∫ 2π

0

(∂yũi(r, y))
2 +

(

k

2

)2
2Λ

∫ 2π

0

∑

i ũi(r, y)
2 dy

∑

i<j

ũi(r, y)
2ũj(r, y)

2 dy

≥ L

(

k, 2Λ

(

k

2

)2
)

∫ 2π

0

∑

i

ũi(r, y)
2 dy =

2

k
L

(

k, 2Λ

(

k

2

)2
)

∫

Σr

∑

i

u2i

The choice

Λ =

∫ 2π

0

∑

i

ũi(r, y)
2 dy =

2

k
H(r)

yields
∫ 2π

0

(∂yũi(r, y))
2 + 2

(

k

2

)2
∑

i<j

ũi(r, y)
2ũj(r, y)

2 dy ≥
2

k
L (k, kH(r))

∫

Σr

∑

i

u2i ,

and coming back to (2.8) we obtain
∫

Σr

(∂yui)
2
+ 2

∑

i<j

u2iu
2
j ≥

(

2

k

)2

L (k, kH(r))

∫

Σr

∑

i

u2i .

Plugging this estimate into the (2.7) we see that

d

dr
log

(

E(r)

e2r

)

≥ −2 +

∫

Σr

∑

i (∂νui)
2
+
(

2
k

)2
L (k, kH(r))

∫

Σr

∑

i u
2
i

∫

Σr

∑

i ui∂νui

≥ −2 + 2
2

k

√

L (k, kH(r)) ≥ −
C

H(r)1/4

where we used Theorem 2.6. An integration gives the thesis. �

Lemma 2.9. Let (u1, . . . , uk) be a nontrivial solution of (2.1) in C(a,+∞), and assume that (2.2) and
(2.6) hold. If d := limr→+∞N(r) < +∞, then d ≥ 1 and

lim
r→+∞

E(r)

e2r
> 0.

Proof. Let us fix r0 > a. Firstly, from the previous Lemma and the (2.5), we deduce that there exists
the limit

l := lim
r→+∞

E(r)

e2r
≥ 0.

Recalling that ϕ(r; r0) is bounded, it results

E(r)

e2r
≥ e−Cϕ(r;r0)E(r0)

e2r0
≥ C > 0 ∀r > r0,
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so that the value l is strictly greater then 0. Now, assume by contradiction that d = limr→+∞N(r) < 1.
The monotonicity of N implies N(r) ≤ d for every r > 0. Hence, from Corollary 2.5 we deduce

H(r)

e2dr
≤
H(r0)

e2dr0
∀r > r0 ⇒ lim sup

r→+∞

H(r)

e2dr
< +∞ ⇒ lim

r→+∞

H(r)

e2r
= 0,

which in turns gives

0 < l = lim
r→+∞

E(r)

e2r
= lim

r→+∞
N(r) lim

r→+∞

H(r)

e2r
= 0,

a contradiction. �

2.2. Solutions with finite energy in unbounded cylinders. In what follows we consider a solution
(u1, . . . , uk) of (2.1) defined in an unbounded cylinder C(−∞,b), with b ∈ R (the choice b = +∞ is
admissible). In this setting we assume that (u1, . . . , uk) has a sufficiently fast decay as x → −∞, in the
sense that

(2.9) H(r) :=

∫

Σr

k
∑

i=1

u2i → 0 as r → −∞.

First of all, we can show that under assumption (2.9) (u1, . . . , uk) has finite energy in C(−∞,b).

Lemma 2.10. Let (u1, . . . , uk) be a solution of (1.4) in C(−∞,b), such that (2.9) holds. Then

Eunb(r) :=

∫

C(−∞,r)

k
∑

i=1

|∇ui|
2 +

∑

1≤i<j≤k

u2iu
2
j < +∞ ∀r < b.

The index unb stands for the fact that the energy is evaluated in an unbounded cylinder, and will be
omitted in the rest of the subsection.

Proof. Firstly, being a solution in C(−∞,b), it results (u1, . . . , uk) ∈ H1
loc(C(−∞,b)). Thus, under assump-

tion (2.9), there exists C > 0 such that H(r) ≤ C for every r < b.
Let r0 < b. Let us introduce, for r > 0, the functional

e(r) :=

∫

C(−r+r0,r0)

∑

i

|∇ui|
2 +

∑

i<j

u2iu
2
j .

For the sake of simplicity, in the rest of the proof we assume r0 = 0 (thus b > 0). By direct computation
and an application of Lemma 2.1, we find

e′(r) =

∫

Σ−r

∑

i

|∇ui|
2 +

∑

i<j

u2iu
2
j = 2

∫

Σ−r

(∂xui)
2 +

∫

Σ0

∑

i

|∇ui|
2 +

∑

i<j

u2iu
2
j − 2

∫

Σ0

(∂xui)
2

that is

(2.10)

∫

Σ−r

(∂xui)
2 =

1

2
e′(r) + C0

On the other hand, testing the equation (1.4) in C(−r,0) by (u1, . . . , uk) and summing for i = 1, . . . , k, we
find

e(r) ≤

∫

C(−r,0)

∑

i

|∇ui|
2 + 2

∑

i<j

u2iu
2
j =

∫

Σ0

∑

i

ui∂xui −

∫

Σ−r

∑

i

ui∂xui

≤

∫

Σ0

∑

i

ui∂xui +

(

∫

Σ−r

∑

i

(∂xui)
2

)
1
2
(

∫

Σ−r

∑

i

u2i

)
1
2

Let us assume that by contradiction that e(r) → +∞ as r → +∞. Taking the square of the previous
inequality, using the boundedness of H and the assumption (2.9), we have

{

1
C2 (e(r) + C1)

2 − 2C0 ≤ e′(r) for r > r̄

e(r̄) > 0,
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for some C0, C1 > 0 and r̄ sufficiently large. Any solution to the previous differential inequality blows
up in finite time, in contradiction with the fact that (u1, . . . , uk) ∈ H1

loc(C(−∞,b)). As a consequence e is
bounded and, by regularity,

∫

C(−∞,r)

∑

i

|∇ui|
2 +

∑

i<j

u2iu
2
j < +∞ ∀r < b. �

Remark 2.11. As a byproduct of the previous Lemma, if (u1, . . . , uk) solves the (1.4) in C(−∞,b) and
(2.9) holds, then

lim
r→−∞

E(r) = 0.

Having in mind to recover the monotonicity formulae of the previous subsection in the present situation,
we cannot adapt the proof of Lemma 2.2, where assumption (2.2) played an important role. However,
we can obtain a similar result with a different proof.

Lemma 2.12. Let (u1, . . . , uk) be a solution to (1.1) in C(−∞,b), such that (2.9) holds. Then

∫

Σr

∑

i=k

|∇ui|
2 +

∑

1≤i<j≤k

u2iu
2
j = 2

∫

Σr

k
∑

i=1

(∂xui)
2

for every r < b.

Proof. We use the method of the variations of the domains: for ψ ∈ C1
c (−∞, r), we consider

ui,ε(r, y) = ui(r + εψ(r), y) i = 1, . . . , k.

It is possible to see (u1,ε, . . . , uk,ε) as a smooth variations of (u1, . . . , uk) with compact support in C(−∞,r):
indeed

ui(x+ εψ(x), y)− ui(x, y) = ε∂xu(ξx, y)ψ(x),

where ξx ∈ (x, x + εψ(x)). To proceed, we explicitly remark that any solution to (1.4) is critical for the
energy functional

J(v1, . . . , vk) :=

∫

C(−∞,b)

k
∑

i=1

|∇vi|
2 +

∑

1≤i<j≤j

v2i v
2
j

with respect to variations with compact support in C∞
c (C(−∞,b)). Note that J(u1, . . . , uk) = E(b). As

(u1, . . . , uk) is a smooth solution of (1.4) with finite energy E(r), it follows that

0 = lim
ε→0

∫

C(−∞,r)

∑

i |∇ui,ε|
2 +

∑

i<j u
2
i,εu

2
j,ε − E(r)

ε

=

∫

C(−∞,r)

∂

∂ε





∑

i

|∇ui(x+ εψ(x), y)|2 +
∑

i<j

u2i (x+ εψ(x), y)u2j (x+ εψ(x), y)





∣

∣

∣

∣

∣

∣

ε=0

dxdy

+ 2 lim
ε→0

∫

C(−∞,r)

ψ′(x)
∑

i

(∂xui)
2(x+ εψ(x)) dxdy

=

∫

C(−∞,x)



2
∑

i

(∂xui)
2 −





∑

i

|∇ui|
2 +

∑

i<j

u2iu
2
j







ψ′

(2.11)

for every ψ ∈ C1
c (−∞, x). Since E(r) < +∞, for every ε > 0 there exists a compact Kε ⊂ C(−∞,r) such

that
∫

C(−∞,r)\Kε

∑

i

|∇ui|
2 +

∑

i<j

u2iu
2
j < ε.



EXPONENTIAL ENTIRE SOLUTIONS 13

Let ψ ∈ C1(−∞, r) be such that ‖ψ‖C1(−∞,r) < +∞ and ψ = 0 in a neighborhood of r. It is possible

to write ψ = ψ1 + ψ2 where ψ1 ∈ C1
c (−∞, r) and suppψ2 × (R/kπZ) ⊂ (C(−∞,r) \Kε). Therefore, from

(2.11) it follows

∫

C(−∞,r)



2
∑

i

(∂xui)
2 −





∑

i

|∇ui|
2 +

∑

i<j

u2iu
2
j







ψ′

=

∫

C(−∞,r)\Kε



2
∑

i

(∂xui)
2 −





∑

i

|∇u|2 +
∑

i<j

u2iu
2
j







ψ′
2

≤ 3‖ψ‖C1(−∞,x)

∫

C(−∞,r)\Kε





∑

i

|∇ui|
2 +

∑

i<j

u2iu
2
j



 < Cε.

Since ε has been arbitrarily chosen, we obtain

(2.12)

∫

C(−∞,r)



2
∑

i

(∂xui)
2 −





∑

i

|∇ui|
2 +

∑

i<j

u2iu
2
j







ψ′ = 0

for every ψ ∈ C1(−∞, r) be such that ‖ψ‖C1(−∞,r) < +∞ and ψ = 0 in a neighborhood of r.

Now, let ψ ∈ C1((−∞, r]) be such that ‖ψ‖C1((−∞,r]) < +∞. For a given ε > 0, we introduce a cut-off
function η ∈ C∞(R) such that

η(s) =

{

1 if s ≤ r − ε

0 if s ≥ r.

Since ηψ ∈ C1(−∞, r), ‖ηψ‖C1(−∞,r) < +∞ and ηψ = 0 in a neighborhood of r, from (2.12) we deduce

(2.13)

∫

C(−∞,r)



2
∑

i

(∂xui)
2 −





∑

i

|∇ui|
2 +

∑

i<j

u2iu
2
j







 ηψ′

=

∫

C(−∞,r)





∑

i

|∇ui|
2 +

∑

i<j

u2iu
2
j − 2

∑

i

(∂xui)
2



 η′ψ.

Denoting by

γ =





∑

i

|∇ui|
2 +

∑

i<j

u2iu
2
j − 2

∑

i

(∂xui)
2



ψ,

the right hand side is

∫ kπ

0

(∫ r

r−ε

η′(x)γ(s, y) dx

)

dy = −

∫ kπ

0

γ(r − ε, y) dy

−

∫ kπ

0

(
∫ r

r−ε

η(s)∂xγ(x, y) dx

)

dy

=

∫

Σr



2
∑

i

(∂xui)
2 −





∑

i

|∇ui|
2 +

∑

i<j

u2iu
2
j







ψ + o(1)

as ε→ 0, where the last identity follows from the regularity of (u1, . . . , uk) and from the C1-boundedness
of ψ and η. Passing to the limit as ε → 0 in the (2.13), we deduce that for every ψ ∈ C1((−∞, r]) such
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that ‖ψ‖C1((−∞,r]) < +∞ it results

∫

C(−∞,r)



2
∑

i

(∂xui)
2 −





∑

i

|∇ui|
2 +

∑

i<j

u2iu
2
j







ψ′

=

∫

Σr



2
∑

i

(∂xui)
2 −





∑

i

|∇ui|
2 +

∑

i<j

u2iu
2
j







ψ.

Choosing ψ = 1 we obtain the thesis. �

This result permits to prove an Almgren monotonicity formula for a solution (u1, . . . , uk) of (1.4) in
C(−∞,b) such that (2.9) holds. For such a solution, let us set

Eunb(r) :=

∫

C(−∞,r)

k
∑

i=1

|∇ui|
2 + 2

∑

1≤i<j≤k

u2iu
2
j ,

We will briefly write E in the rest of the subsection. Clearly, Lemma 2.10 and the fact that E(r) → 0 as
r → −∞ (see Remark 2.11) implies that

(2.14) E(r) < +∞ ∀r < b and lim
r→−∞

E(r) = 0.

By regularity, E, E and H are smooth. A direct computation shows that E and E are increasing in r.
As far as H is concerned, with respect to the previous subsection we cannot deduce the identity (2.3) by
means of a simple integration by parts, since we are working in an unbounded domain. However,

Lemma 2.13. Let (u1, . . . , uk) be a solution to (1.4) in C(−∞,b), such that (2.9) holds. Then

H ′(r) = 2

∫

Σr

k
∑

i=1

ui∂νui = 2E(r)

for every r < b. In particular, H is nondecreasing.

Proof. For every s < r < b, the divergence theorem and the periodicity of (u1, . . . , uk) imply that

E(r) = E(s) +

∫

C(s,r)

∑

i

|∇ui|
2 + 2

∑

i<j

u2iu
2
j

= E(s)−

∫

Σs

∑

i

ui∂xui +

∫

Σx

∑

i

ui∂νui.

(2.15)

We consider the second term on the right hand side. Let η ∈ C∞
c (−1, 1) be a non negative cut-off

function, even with respect to r = 0, such that η(0) = 1 and η ≤ 1 in (−1, 1). Let ηs(x) = η(x − s);
testing the equation (2.1) with uiηs in C(s−1,s), we find

∫

C(s−1,s)

∇ui · ∇(uiηs) + u2i
∑

i6=j

u2jηs =

∫

Σs

ui∂xui

Summing up for i = 1, . . . , k, we obtain
∫

Σs

∑

i

ui∂xui =

∫

C(s−1,s)

∑

i

(

ui∂xuiη
′
s + |∇ui|

2ηs
)

+ 2
∑

i<j

u2iu
2
jηs

≤ C(η′)
∑

i

‖ui‖
2
H1(C(s−1,s))

+ E(s),
(2.16)

where the last estimate follows from the Hölder inequality. We claim that
∑

i

‖ui‖H1(C(s−1,s)) → 0 as s→ −∞.
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This is a consequence of the Poincaré inequality

∫

C(s−1,s)

u2 ≤ C

(

∫

Σs

u2 +

∫

C(s−1,s)

|∇u|2

)

∀u ∈ H1(C(s−1,s))

together with assumption (2.9) and the fact that E(s) → 0 as s → −∞ (see (2.14)). Thus, from the
(2.16) we deduce that

lim
s→−∞

∫

Σs

∑

i

ui∂xui = 0,

which in turns can be used in the (2.15) to obtain the thesis:

E(r) = lim
s→−∞

(

E(s)−

∫

Σs

∑

i

ui∂xui +

∫

Σx

∑

i

ui∂νui

)

=

∫

Σx

∑

i

ui∂νui. �

In light of the previous results, the proof of the following statements are straightforward modification
of the proofs of Proposition 2.4, Corollary 2.5 and Lemmas 2.8 and 2.9.

Proposition 2.14. Let (u1, . . . , uk) be a solution of (2.1) in C(−∞,b) such that (2.9) holds. TheAlmgren
quotient

Nunb(r) :=
Eunb(r)

H(r)

is well defined in (−∞, b) and nondecreasing. Moreover,

∫ r

−∞

∫

Σs

∑

i<j u
2
iu

2
j

H(s)
ds ≤ N(r).

Analogously, the function N
unb(r) :=

Eunb(r)

H(r)
is well defined in (−∞, b) and nondecreasing.

We will briefly write N and N instead of Nunb and N
unb in the rest of this subsection.

Corollary 2.15. Let (u1, . . . , uk) be a solution of (2.1) in C(−∞,b) such that (2.9) holds.

(i) If N(r) ≥ d for r ≥ s, then

H(r1)

e2dr1
≤
H(r2)

e2dr2
∀ s ≤ r1 < r2 < b,

ii) If N(r) ≤ d for r ≤ t < b, then

H(r1)

e2dr1
≥
H(r2)

e2dr2
∀ r1 < r2 ≤ t.

For a fixed r0 < b, let us introduce

ϕ(r; r0) :=

∫ r

r0

ds

H(s)1/4
.

The function ϕ is positive and increasing in R+; thanks to point (i) of Corollary 2.15 and to the mono-
tonicity of N , whenever (u, v) is nontrivial ϕ is bounded by a quantity depending only H(r0) and N(r0):

(2.17) ϕ(r; r0) ≤ 2
e

1
2N(r0)r0

H(r0)
1
4N(r0)

[

e−
1
2N(r0)r0 − e−

1
2N(r0)r

]

.

This, together with the monotonicity of ϕ(·; r0), implies that if b = +∞ then there exists the limit

lim
r→+∞

ϕ(r; r0) < +∞.
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Lemma 2.16. Let (u1, . . . , uk) be a solution of (1.1) in C(−∞,b) such that (2.9) hold. Let r0 ∈ (−∞, b),
and assume that

(2.18) ui+1(x, y) = ui(x, y − π) and u1 (x, τ + y) = u1 (x, τ − y)

where τ ∈ [0, kπ). There exists C > 0 such that the function r 7→
E(r)

e2r
eCϕ(r;r0) is nondecreasing in r for

r > r0.

Lemma 2.17. Let (u1, . . . , uk) be a nontrivial solution of (2.1) in C∞, and assume that (2.9) and (2.18)
hold. If d := limr→+∞N(r) < +∞, then d ≥ 1 and

lim
r→+∞

E(r)

e2r
> 0.

Remark 2.18. The achievements of this section hold true for solutions to
{

−∆ui = −βui
∑

j 6=i u
2
j

ui > 0

with the energy density
∑

i

|∇ui|
2 + 2

∑

i<j

u2iu
2
j replaced by F

∑

i

|∇ui|
2 + 2β

∑

i<j

u2iu
2
j .

2.3. Monotonicity formulae for harmonic functions. Here we prove some monotonicity formulae
for harmonic functions of the plane which are 2π periodic in one variable. In what follows, in the definition
of C(a,b) and Σr we mean k = 2. The following results will come useful in section 6.

Firstly, it is not difficult to obtain the counterpart of Lemma 2.1.

Lemma 2.19. Let Ψ be an entire harmonic function in C(a,b). Then

r 7→

∫

Σr

|∇Ψ|2 − 2Ψ2
x

is constant.

Proof. We proceed as in the proof of Lemma 2.1: for a < r1 < r2 < b, we test the equation −∆Ψ = 0
with Ψx in C(r1,r2) and integrate by parts. �

In what follows we consider a harmonic function Ψ defined in an unbounded cylinder C(−∞,b), with
b ∈ R or b = +∞. We assume that

(2.19) H(r; Ψ) :=

∫

Σr

Ψ2 → 0 as r → −∞.

Lemma 2.20. Let Ψ be a harmonic function in C(−∞,b) such that (2.19) holds true. Then

(i) for every r ∈ R it results Eunb(r; Ψ) :=

∫

C(−∞,r)

|∇Ψ|2 < +∞

(ii) it results

(2.20)

∫

Σr

|∇Ψ|2 = 2

∫

Σr

(∂xΨ)2

Proof. In light of Lemma 2.19, it is not difficult to adapt the proof of Lemma 2.11 and obtain (i). As far
as (ii), we can proceed as in the proof of Lemma 2.12. �

Proposition 2.21. Let Ψ be a nontrivial harmonic function in C(−∞,b), such that (2.19) holds true.
The Almgren quotient

Nunb(r; Ψ) :=

∫

C(−∞,r)
|∇Ψ|2

∫

Σr
Ψ2
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is nondecreasing in r. If N(·; Ψ) is constant for r in some non empty open interval (r1, r2), then N(r; Ψ)
is constant for all r ∈ R and there exists a positive integer d ∈ N such that N(r; Ψ) = d; furthermore,

Ψ(x, y) = [C1 cos(dy) + C2 sin(dy)] e
dx

for some C1, C2 ∈ R.

Proof. The Almgren quotient is well defined, thanks to Lemma 2.20. To prove its monotonicity, we
compute the logarithmic derivative by means of the Pohozaev identity (2.20) and the fact that H ′(r; Ψ) =
2Eunb(r; Ψ) (this follows from (2.19)):

(Nunb)′(r; Ψ)

Nunb(r; Ψ)
=

∫

Σr
|∇Ψ|2

∫

C(−∞,r)
|∇Ψ|2

− 2

∫

Σr
Ψ∂xΨ

∫

Σr
Ψ2

= 2

∫

Σr
|∂xΨ|2

∫

Σr
Ψ∂xΨ

− 2

∫

Σr
Ψ∂xΨ

∫

Σr
Ψ2

≥ 0

where in the last step we used the Cauchy-Schwarz inequality.
Let us assume now that Nunb(r; Ψ) is constant for r ∈ (r1, r2). By the previous computations it follows

that necessarily
∫

Σr

|∂xΨ|2
∫

Σr

Ψ2 =

(∫

Σr

Ψ∂xΨ

)2

for every r ∈ (r1, r2). Again from the Cauchy-Schwarz inequality, we evince that it must be

∂xΨ = λΨ on Σr

for some constant λ ∈ R and for every r ∈ (r1, r2). Solving the differential equation, we find that Ψ is of
the form

Ψ(x, y) = ψ(y)eλx.

This, together with the equation ∆Ψ = 0, yields

ψ′′ + λ2ψ = 0 ⇒ Ψ(x, y) = [C1 cos(λy) + C2 sin(λy)] e
λx ∀(x, y) ∈ (r1, r2)× R,

and Ψ can be uniquely extended to R
2 by the unique continuation principle for harmonic functions. Since

Ψ satisfies the condition (2.19) and is nontrivial, it follows that λ > 0. The proof is complete, recalling
the periodicity in y of the function Ψ and computing its Almgren quotient. �

3. Proof of Theorem 1.1

In this section we construct a solution to (1.1) modeled on the harmonic function Φ(x, y) = coshx sin y.

3.1. Existence in bounded cylinders. For every R > 0 we construct a solution (uR, vR) to

(3.1a)











−∆u = −uv2 in CR

−∆v = −u2v in CR

u, v > 0

(equivalently, we can consider the problem in (−R,R)× (0, 2π) with periodic boundary condition on the
sides [−R,R]× {0, 2π}) with Dirichlet boundary condition

(3.1b) u = Φ+, v = Φ− on ΣR ∪ Σ−R,

and exhibiting the same symmetries of (Φ+,Φ−). To be precise:

Proposition 3.1. There exists a solution (uR, vR) to problem (3.1a) with the prescribed boundary con-
ditions (3.1b), such that

1) uR(−x, y) = uR(x, y) and vR(−x, y) = vR(x, y),
2) the symmetries

vR(x, y) = uR(x, y − π) uR(π − x, y) = vR(π + x, y)

uR

(

x,
π

2
+ y
)

= uR

(

x,
π

2
− y
)

vR

(

x,
3

2
π + y

)

= vR

(

x,
3

2
π − y

)

hold,
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3) uR − vR > 0 in {Φ > 0} and vR − uR > 0 in {Φ < 0},
4) uR > Φ+ and vR > Φ−.

Remark 3.2. In light of the evenness of (uR, vR) in x, it results

∂xu = 0 = ∂xv on Σ0.

As a consequence, the monotonicity formulae proved in subsection 2.1 hold true for (uR, vR) in the
semi-cylinder C(0,R).

In order to keep the notation as simple as possible, in what follows we will refer to a solution of
(3.1a)-(3.1b) as to a solution of (3.1).

Proof. Let

UR :=















(u, v) ∈ (H1(CR))
2

∣

∣

∣

∣

∣

∣

∣

∣

u = Φ+, v = Φ− on ΣR ∪ Σ−R, u ≥ 0,
u− v ≥ 0 in {Φ ≥ 0},
v(x, y) = u(x, y − π), u(−x, y) = u(x, y),
u(x, π − y) = v(x, π + y), u

(

x, π2 + y
)

= u
(

x, π2 − y
)















.

Note that if (u, v) ∈ UR then v is nonnegative, even in x and symmetric in y with respect to 3
2π; moreover,

u− v ≤ 0 in {Φ < 0}. It is immediate to check that UR is weakly closed with respect to the H1 topology.
We seek solutions of (3.1) as minimizers of the energy functional

J(u, v) :=

∫

CR

|∇u|2 + |∇v|2 + u2v2

in UR. The existence of at least one minimizer is given by the direct method of the calculus of variations;
for the coercivity of the functional J , we use the following Poincaré inequality:

(3.2)

∫

CR

u2 ≤ C

(

∫

Σ−R

u2 +

∫

CR

|∇u|2

)

∀u ∈ H1(CR),

where C depends only on R. To show that a minimizer satisfies equation (3.1), we consider the parabolic
problem

(3.3)











Ut −∆U = −UV 2 in (0,+∞)× CR

Vt −∆V = −U2V in (0,+∞)× CR

U = Φ+, V = Φ− on (0,+∞)× (ΣR ∪ Σ−R)

with initial condition in UR. There exists a unique local solution (U, V ); by Lemma A.1 if follows U, V ≥ 0;
hence, the maximum principle gives

0 ≤ U ≤ sup
CR

Φ+ and 0 ≤ V ≤ sup
CR

Φ−.

This control reveals that (U, V ) can be uniquely extended in the whole (0,+∞). Since

(3.4)
d

dt
J(U(t, ·), V (t, ·)) = −2

∫

CR

(

U2
t + V 2

t

)

≤ 0,

that is, the energy is a Lyapunov functional, from the parabolic theory it follows that for every sequence
ti → +∞ there exists a subsequence (tj) such that (U(tj ·), V (tj , ·)) converges to a solution (u, v) of (3.1).
Therefore, in order to prove that (uR, vR) solves (3.1), it is sufficient to show that there exists an initial
condition in UR such that the limiting profile (u, v) coincides with (uR, vR). We use the fact that

(3.5) UR is positively invariant under the parabolic flow.

To prove this claim, we firstly note that by the symmetry of initial and boundary conditions and by the
uniqueness of the solution to problem (3.3), we have

V (t, x, y) = U(t, x, y − π), U(t,−x, y) = U(t, x, y),

V (t, x, π + y) = U(t, x, π − y), U
(

t, x,
π

2
+ y
)

= U
(

t, x,
π

2
− y
)

.
(3.6)
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This implies
U(t, x, π) − V (t, x, π) = 0 ∀(t, x) ∈ (0,+∞)× [−R,R].

Furthermore, using the (3.6) and the periodicity of (U, V )

U(t, x, 0)− V (t, x, 0) = U(t, x, 0)− V (t, x, 2π) = 0 ∀(t, x) ∈ (0,+∞)× [−R,R]

U(t, x, 2π)− V (t, x, 2π) = U(t, x, 2π)− V (t, x, 0) = 0 ∀(t, x) ∈ (0,+∞)× [−R,R].

This means that U − V = 0 on {Φ = 0}. Let us introduce DR := {Φ > 0} ∩ CR. For each initial datum
in UR, we have

(3.7)











(U − V )t −∆(U − V ) = UV (U − V ) in (0,+∞)×DR

U − V ≥ 0 on {0} ×DR

U − V ≥ 0 on [0,+∞)× ∂DR.

Lemma A.1 implies U − V ≥ 0 in (0,+∞)×DR. This completes the proof of the claim.
Let us consider equation (3.3) with the initial conditions U(0, x, y) = uR(x, y), V (0, x, y) = vR(x, y);

let us denote (UR, V R) the corresponding solution. On one side, by minimality,

J(uR, vR) ≤ J(UR(t, ·), V R(t, ·)) ∀t ∈ (0,+∞);

we point out that this comparison is possible because of (3.5). On the other side, by the (3.4),

J(UR(t, ·), V R(t, ·)) ≤ J(uR, vR) ∀t ∈ (0,+∞).

We deduce that J(UR, V R) is constant, which in turns implies (we can use again the (3.4)),

UR
t (t, x, y) = V R

t (t, x, y) ≡ 0 ⇒ UR(t, x, y) = uR(x, y), V R(t, x, y) = vR(x, y).

By the above argument, as (uR, vR) coincides with the asymptotic profile of a solution of the parabolic
problem (3.3), it solves (3.1). Points 1)-3) of the thesis are satisfied due to the positive invariance of UR.
The strong maximum principle yields uR > 0 and vR > 0. Moreover,

{

−∆(uR − vR − Φ) = uRvR(uR − vR) ≥ 0 in DR

uR − vR − Φ = 0 on ∂DR

⇒ uR − vR − Φ ≥ 0 in DR,

so that by the strong maximum principle and the fact that uR, vR > 0 we deduce uR > Φ+. Analogously,
vR > Φ−. �

Remark 3.3. The existence of a positive solution of (3.1) satisfying the conditions 1)-2) of the Propo-
sition can be proved by means of the celebrated Palais’ Principle of Symmetric Criticality. To do this, it
is sufficient to minimize the functional J in the weakly closed set







(u, v) ∈ (H1(CR))
2

∣

∣

∣

∣

∣

∣

u = Φ+, v = Φ− on ΣR ∪ Σ−R,
v(x, y) = u(x, y − π), u(−x, y) = u(x, y),
u(x, π − y) = v(x, π + y), u

(

x, π2 + y
)

= u
(

x, π2 − y
)







,

and apply the maximum principle. We have chose a more complicated proof since we will strongly use
the pointwise estimates given by point 4).

3.2. Compactness of the family {(uR, vR)}. In this section we aim at proving that, up to a subse-
quence, the family {(uR, vR) : R > 1} obtained in Proposition 3.1 converges, as R → +∞, to a solution
(u, v) of (1.1) defined in the whole C∞. Then, by looking at (u, v) as defined in R2 (this is possible
thanks to the periodicity), we obtain a solution of (1.1) satisfying the conditions 1)-5) of Theorem 1.1.
At a later stage, we will also obtain the estimates of points 6) and 7).

We denote ER, ER, HR, NR and NR the functions Esym, H, Esym, Nsym and N
sym (which have been

defined in subsection 2.1) when referred to (uR, vR). As observed in Remark 3.2, for these quantities the
results of subsection 2.1 apply.

We will obtain compactness of the sequence (uR, vR) using some uniform-in-R control on NR and HR.
We start with a uniform (in both r and R) upper bound for the Almgren quotients NR(r).

Lemma 3.4. There holds NR(r) ≤ 2, for every R > 0 and r ∈ (0, R).
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Proof. It is an easy consequence of the monotonicity of NR and of the minimality of (uR, vR) for the
functional J in UR: noting that J(uR, vR) = ER(R), we compute

NR(r) ≤ NR(R) ≤
2ER(R)

HR(R)
≤

2
∫

ΣR
Φ2

∫

C(0,R)

|∇Φ|2 = 2 tanhR.

We used the fact that the restriction of (Φ+,Φ−) in CR is an element of UR for every R, and the boundary
condition of (uR, vR) on ΣR. �

In the proof of the following Lemma we will exploit the compactness of the local trace operator
TΣ1 : u ∈ H1(C(0,1)) 7→ u|Σ1 ∈ L2(Σ1), see Corollary A.4.

Lemma 3.5. There exists C > 0 such that HR(1) ≤ C for every R > 1.

Proof. By contradiction, assume that HRn
(1) → +∞ for a sequence Rn → +∞. Let us introduce the

sequence of scaled functions

(ûn(x, y), v̂n(x, y)) :=
1

√

HRn
(1)

(uRn
(x, y), vRn

(x, y)) .

We wish to prove a convergence result for such a sequence, in order to obtain a uniform lower bound for
NRn

(1). In a natural way, the scaling leads us to consider, for r ∈ (0, 1), the quantities

Ên(r) :=

∫

C(0,r)

|∇ûn|
2 + |∇v̂n|

2 + 2HRn
(1)û2nv̂

2
n,

Ĥn(r) :=

∫

Σr

û2n + v̂2n, N̂n(r) :=
Ên(r)

Ĥn(r)
.

By construction, it holds Ĥn(1) = 1 and N̂n(r) = NRn
(r) ≤ 2; therefore, thanks to Lemma 3.4

(3.8)

∫

C(0,1)

|∇ûn|
2 + |∇v̂n|

2 ≤ Ên(1) = N̂n(1)Ĥn(1) ≤ 2,

which gives a uniform bound in the H1(C(0,1)) norm of the sequence (ûn, v̂n) (we can use a Poincaré

inequality of type (3.2)). Then, we can extract a subsequence which converges weakly in H1(C(0,1)) to
some limiting profile (û, v̂), which is nontrivial in light of the compactness of the local trace operator TΣ1

and of the fact that Ĥn(1) = 1. Since

V :=

{

(u, v) ∈
(

H1(C(0,1))
)2
∣

∣

∣

∣

u− v ≥ 0 in Φ ≥ 0, v(x, y) = u(x, y − π),
u(x, π − y) = v(x, π + y), u

(

x, π2 + y
)

= u
(

x, π2 − y
)

}

,

is closed in the weakH1(C(0,1)) topology and (ûn|C(0,1)
, v̂n|C(0,1)

) ∈ V for every n, û and v̂ are nonnegative

functions with the same symmetries of (uR, vR); moreover we can show that (û, v̂) satisfies the segregation
condition ûv̂ = 0 a.e. in C(0,1). Indeed, by the compactness of the Sobolev embedding H1(C(0,1)) →֒

L4(C(0,1)) we deduce that the interaction term

I(u, v) :=

∫

C(0,1)

u2v2

is continuous in the weak topology of (H1(C(0,1)))
2. From the estimate (3.8), we infer

2HRn
(1)I(ûn, v̂n) ≤ Ên(1) ≤ 2;

passing to the limit as n→ +∞, we conclude

I(û, v̂) = lim
n→∞

I(ûn, v̂n) = 0 ⇒ ûv̂ = 0 a.e. in C(0,1).

Moreover, from the compactness of the local trace operator TΣ1 , we also deduce
∫

Σ1
û2 + v̂2 = 1. Let us

consider the functional

J∞(u, v) :=

∫

C(0,1)

|∇u|2 + |∇v|2,
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defined in the set

M :=

{

(u, v) ∈ (H1(C(0,1)))
2

∣

∣

∣

∣

∫

Σ1
u2 + v2 = 1,

v(x, y) = u(x, y − π), uv = 0 a.e. in C1

}

.

Due to the compactness of the trace operator, one can check that M is closed in the weak (H1(C(0,1)))
2

topology. It is clear that (û, v̂) ∈ M. We claim that

inf
(u,v)∈M

J∞(u, v) =: m > 0.

Indeed, let us assume by contradiction that the infimum is 0: since the set M is weakly closed and
J∞ is weakly lower semi-continuous and coercive, there exists (ū, v̄) such that J∞(ū, v̄) = 0. It follows
that (ū, v̄) is a vector of constant functions; the symmetry and the segregation condition imply that
(ū, v̄) ≡ (0, 0), but this is in contrast with the fact that (ū, v̄) ∈ M. Thus, the weak convergence of the
sequence (ûn, v̂n) entails

lim inf
n→∞

N̂n(1) ≥ lim inf
n→∞

∫

C(0,1)

|∇ûn|
2 + |∇v̂n|

2 ≥ m > 0,

so that whenever n is sufficiently large

(3.9) NRn
(1) = N̂n(1) ≥

1

2
m.

Thanks to Lemma 3.4 we know that 1
2m ≤ NRn

(1) ≤ 2, and from the assumption HRn
(1) → +∞ we

deduce that (recall the (2.4))

ϕRn
(r; 1) : =

∫ r

1

ds

HRn
(s)1/4

≤ 2
e

1
2NRn(1)

HRn
(1)

1
4NRn

(1)

[

e−
1
2NRn(1) − e−

1
2NRn(1)r

]

→ 0

as n→ ∞, for every r > 1. In particular, there exists C > 0 such that

(3.10) ϕRn
(r; 1) ≤ C ∀1 ≤ r ≤ Rn, ∀n.

This implies that the sequence (ERn
(1))n is bounded. To see this, we firstly note that (uRn

, vRn
) satisfies

the symmetry condition (2.6) which is necessary to apply Lemma 2.8; consequently, the variational
characterization of (uRn

, vRn
) (see also the proof of Lemma 3.4 and the (3.10)) implies that

ERn
(1)

e2
≤ eCϕRn(Rn;1)

ERn
(Rn)

e2Rn
≤ 2C

ERn
(Rn)

e2Rn

≤ C

∫

C(0,Rn)
|∇Φ|2

e2Rn
= C

sinhRn coshRn

e2Rn
≤ C,

where C does not depend on n. Since (ERn
(1))n is bounded and (HRn

(1))n tends to infinity, we obtain

lim
n→∞

NRn
(1) = lim

n→∞

ERn
(1)

HRn
(1)

= 0,

in contradiction with (3.9). �

Proposition 3.6. There exists a subsequence of (uR, vR) which converges in C2
loc(C∞), as R → +∞, to

a solution (u, v) of (1.1) in the whole C∞. This solution satisfies point 2)-5) of Theorem 1.1, and its
Almgren quotient N is such that

N(r) ≤ 2 ∀r > 0 and lim
r→+∞

N(r) ≥ 1.

Proof. As HR(1) is bounded in R and NR(1) ≤ 2, also ER(1) is bounded in R. By means of a Poincaré
inequality of type (3.2), this induces a uniform-in-R bound for the H1(C(0,1)) norm of (uR, vR), which in

turns, by the compactness of the trace operator, gives a uniform-in-R bound for the L2(∂C(0,1)) norm.

Due to the subharmonicity of (uR, vR), the L
2(∂C(0,1)) bound provides a uniform-in-R bound for the L∞

norm of (uR, vR) in every compact subset of C(0,1); the regularity theory for elliptic equations (see [8])
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ensures that, up to a subsequence, (uR, vR) converges in C2
loc(C(0,1)), as R → +∞, to a solution (u1, v1)

of (1.1) in C(0,1). As each (uR, vR) is even in x, this solution can be extended by even symmetry in x to

C1, and here satisfies the conditions 1)-4) of Proposition 3.1 (hence both u1 and v1 are nontrivial). The
previous argument can be iterated: indeed, by Corollary 2.5 and Lemma 3.4, we deduce

HR(r) ≤
HR(1)

e4
e4r ≤ Ce4r ∀r > 1;

that is, a uniform-in-R bound for HR(1) induces a uniform-in-R bound for HR(r) for every r > 1. As a
consequence we obtain, for every r > 1, a solution (ur, vr) to equation (1.1) in Cr. A diagonal selection
gives the existence of a solution (u, v) to (1.1) in the whole C∞. This solution inherits by (ur, vr) the
conditions 1)-4) of Proposition 3.1, and thanks to the C2

loc(C∞) convergence and Lemma 3.4 there holds

N(r) =

∫

C(0,r)
|∇u|2 + |∇v|2 + 2u2v2

∫

Σr
u2 + v2

≤ 2 ∀r > 0.

From Lemma 2.9, which we can apply in light of the symmetries of (u, v), we conclude

lim
r→+∞

N(r) ≥ 1. �

The following Lemma completes the proof of point 6) of Theorem 1.1. After that, by means of the
pointwise estimates u > Φ+ and v > Φ− and Corollary 2.5, it is straightforward to obtain also point 7).

Lemma 3.7. There holds d := lim
r→∞

N(r) = 1.

Proof. In light of the fact that d ≥ 1, it is sufficient to show that d ≤ 1. Let (uRn
, vRn

) be the convergent
subsequence found in Proposition 3.6, which we will simply denote {(un, vn)}. For r > 0 we let

fn(r) :=

∫

C(0,r)
u2nv

2
n

HRn
(r)

, gn(r) :=

∫

Σr
u2nv

2
n

HRn
(r)

.

With f and g we identify the same quantities computed for the limiting profile (u, v). Observe that
fn, gn, f and g are continuous and nonnegative. By definition,

(3.11) fn(r) ≤
1

2
NRn

(r) ≤ 1 ∀r > 0,

where we used Lemma 3.4. The uniform convergence of (un, vn) implies that fn → f and gn → g
uniformly on compact intervals, while by Theorem 2.4 we have

∫ r

0

gn(s) ds ≤ NRn
(r) and

∫ r

0

g(s) ds ≤ N(r),

so that in particular gn ∈ L1(0, R) and g ∈ L1(R+). By means of the monotonicity formula for the
Almgren quotient N, Proposition 2.4, it is possible to refine the computation in Lemma 3.4:

NRn
(r) = NRn

(r) + fn(r) ≤ NRn
(Rn) + fn(r) ≤ 1 + fn(r).

In light of the strong H1
loc(C∞) convergence of (un, vn) to (u, v), we deduce

N(r) ≤ 1 + lim
n→+∞

fn(r) = 1 + f(r).

We have to show that f(r) → 0 as r → +∞. To prove this, we begin by computing the logarithmic
derivative of fn:

f ′
n(r)

fn(r)
=

∫

Σr
u2nv

2
n

∫

C(0,r)
u2nv

2
n

− 2
ERn

(r)

HRn
(r)

=
gn(r)

fn(r)
− 2NRn

(r),

where we used the fact that H ′
Rn

(r) = 2ERn
(r), see equation (2.3). Exploiting the strong H1 convergence

of the sequence {(un, vn)} and the fact that limr→+∞N(r) ≥ 1, we deduce that there exist r0, δ > 0 such
that NRn

(r0) > δ for every n sufficiently large. Consequently, fn satisfies the inequality

f ′
n(r) + 2δfn(r) ≤ gn(r) for r ∈ (r0, Rn).
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Multiplying for e2δr and integrating in (r1, r2) for r0 < r1 < r2 < Rn, we obtain

fn(r2) ≤ e2δ(r1−r2)fn(r1) +

∫ r2

r1

gn(s)e
2δ(s−r2) ds ≤ e2δ(r1−r2) +

∫ r2

r1

gn(s) ds,

where we used the estimate (3.11). This implies

f(r2) ≤ e2δ(r1−r2) +

∫ r2

r1

g(s) ds for r0 < r1 < r2.

Since g ∈ L1(R+) and f ≥ 0, choosing r1 = 1
2r2 we find

lim sup
r→+∞

f(r) = 0 = lim
r→+∞

f(r). �

4. Proof of Theorem 1.5

In this section we construct a solution to (1.1) modeled on the harmonic function Γ(x, y) = ex sin y.
Our construction is based on the trivial observation that

ΦR(x, y) := 2 cosh(x+R)e−R sin y → Γ(x, y) as R→ +∞.

4.1. Existence in bounded cylinders. As a first step, using the same line of reasoning developed in
Proposition 3.1, it is possible to show the existence of solution to the system

(4.1a)











−∆u = −uv2 in C(−3R,R)

−∆v = −u2v in C(−3R,R)

u, v > 0

(equivalently, we can consider the problem in the rectangle (−3R,R) × (0, 2π) with periodic boundary
condition on the sides [−3R,R]× {0, 2π}) and such that

(4.1b) uR = Φ+
R, vR = Φ−

R on ΣR ∪ Σ−3R.

More precisely:

Proposition 4.1. There exists a solution (uR, vR) to problem (4.1a) with the prescribed boundary con-
ditions (4.1b), such that

1) uR(−R− x, y) = uR(−R+ x, y) and vR(−R− x, y) = vR(−R+ x, y),
2) the symmetries

vR(x, y) = uR(x, y − π) uR(x, π − y) = vR(x, π + y)

uR

(

x,
π

2
+ y
)

= uR

(

x,
π

2
− y
)

vR

(

x,
3

2
π + y

)

= vR

(

x,
3

2
π − y

)

hold,
3) uR − vR > 0 in {ΦR > 0} and vR − uR > 0 in {ΦR < 0},
4) uR > (ΦR)

+ and vR > (ΦR)
−.

Sketch of proof. One can recast the proof of Proposition 3.1 in this setting. �

Remark 4.2. In light of point 1) of the Proposition, it results

∂xuR = 0 = ∂xvR on Σ−R.

Therefore, the monotonicity formulae proved in subsection 2.1 hold true for (uR, vR) in the semi-cylinder
CR.
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4.2. Compactness of the family {(uR, vR)}. As in the previous section, we denote as ER, ER, NR and
NR the functions Esym, Esym, Nsym and N

sym defined in subsection 2.1 when referred to (uR, vR). We
follow here the same line of reasoning adopted in subsection 3.2. Firstly, it is not difficult to modify the
proof of Lemmas 3.4 and 3.5 obtaining the following estimates:

Lemma 4.3. There holds NR(r) ≤ 2, for every R > 0 and r ∈ (−R,R).

Lemma 4.4. There exists C > 0 such that HR(1) ≤ C for every R > 1.

We are in position to show that the family {(uR, vR)} is compact, in the following sense.

Proposition 4.5. There exists a subsequence of {(uR, vR)} which converges in C2
loc(C∞), as R → +∞,

to a solution (u, v) of (1.1) in the whole C∞. This solution has the properties 2)-4) of Proposition 4.1.

Proof. As HR(1) is bounded in R and NR(1) ≤ 2, also ER(1) is bounded in R, and a fortiori
∫

C1

|∇uR|
2 + |∇vR|

2 ≤ C ∀R > 1.

This estimate, the boundedness of HR(1) and a Poincarè inequality of type (3.2) imply that {(uR, vR)}
is bounded in H1(C1). Consequently, it is possible to argue as in the proof of Proposition 3.6 and obtain
the existence of a subsequence of {(uR, vR)} which converges in C2

loc(C1) to a solution (u1, v1) of (1.1)
in C1, which inherits by {(uR, vR)} the properties 2)-4) of Proposition 4.1. In light of Corollary 2.5 and
Lemma 4.3, this procedure can be iterated: indeed

HR(r) ≤
HR(1)

e4
e4r ≤ Ce4r ∀r > 1,

so that applying the previous argument we obtain a subsequence of {(uR, vR)} which converges in C2
loc(Cr)

to a solution (ur, vr) of (1.1) in Cr, and inherits by {(uR, vR)} the properties 2)-4) of Proposition 4.1.
A diagonal selection gives the existence of a solution (u, v) of (1.1) in the whole C∞, and this solution
enjoys the properties 2)-4) of Proposition 4.1. �

Remark 4.6. The monotonicity formulae proved in subsection 2.1 do not apply on (u, v), because passing
to the limit we lose the Neumann condition ∂xuR = 0 = ∂xvR on Σ−R.

In the next Lemma, we show that (u, v) is a solution with finite energy, so that the achievements
proved in subsection 2.2 applies.

Lemma 4.7. Let (u, v) be the solution found in Proposition 4.5. It results

(4.2) Eunb(r) :=

∫

C(−∞,r)

|∇u|2 + |∇v|2 + u2v2 < +∞ ∀r ∈ R

and

lim
r→−∞

H(r) = lim
r→−∞

∫

Σr

u2 + v2 = 0.

Recall that Eunb has been defined in subsection 2.2.

Proof. Let {(uRn
, vRn

)} be the converging subsequence found in Proposition 4.5, which we will simply
denote {(un, vn)}. Since {(un, vn)} converges to (u, v) in C2

loc(C∞), it follows that

lim
n→∞

(

|∇un|
2 + |∇vn|

2 + u2nv
2
n

)

χC(−Rn,r)
=
(

|∇u|2 + |∇v|2 + u2v2
)

χC(−∞,r)
a.e. in C(−∞,r),

for every r > 1. Therefore, applying Corollary 2.5 on (un, vn), Lemma 4.4 and the Fatou lemma, we
deduce

Eunb(r) ≤ lim inf
n→∞

∫

C(−∞,r)

(

|∇un|
2 + |∇vn|

2 + u2nv
2
n

)

χC(−Rn,r)
≤ lim inf

n→∞
ERn

(r)

= lim inf
n→∞

NRn
(r)HRn

(r) ≤ lim inf
n→∞

2
HRn

(1)

e4
e4r ≤ Ce4r,
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which proves the (4.2). To complete the proof, we firstly note that necessarily Eunb(r) → 0 as r → −∞,
and hence the same holds for Eunb (which has been defined in subsection 2.2). Assume by contradiction
that for a sequence rn → −∞ it results H(rn) ≥ C > 0. We define

(ûn(x, y), v̂n(x, y)) :=
1

√

H(rn)
(u(x+ rn, y), v(x+ rn, y)) .

A direct computation shows that
∫

C(−∞,0)

|∇ûn|
2 + |∇v̂n|

2 ≤

∫

C(−∞,0)

|∇ûn|
2 + |∇v̂n|

2 + 2H(rn)û
2
nv̂

2
n =

1

H(rn)
Eunb(rn) → 0

as n→ ∞. Consequently, (ûn, v̂n) tend to be a pair of constant functions of type (û, v̂) with û = v̂ (this
follows from the symmetries of (u, v)). As

C

∫

C(−∞,0)

û2nv̂
2
n ≤ H(rn)

∫

C(−∞,0)

û2nv̂
2
n → 0,

necessarily (ûn, v̂n) → (0, 0) almost everywhere in C(−∞,0). This is in contradiction with the fact that
∫

Σ0
û2n + v̂2n = H(rn) ≥ C. �

So far we proved that the solution (u, v), found in Proposition 4.5, enjoys properties 1)-5) of Theorem
1.5, and is such that H(r) → 0 as r → −∞. The previous Lemma enables us to apply the achievements
of subsection 2.2 for Eunb, H,Nunb and N

unb (which we consider referred to the solution (u, v) found in
Proposition 4.5), and permits to complete the description of the growth of (u, v), points 6)-7) of Theorem
1.5.

Lemma 4.8. Let (u, v) be the solution found in Proposition 4.5. It results

lim
r→+∞

Nunb(r) = 1.

Proof. Let {(uRn
, vRn

)}be the converging subsequence found in Proposition 4.5, , which we will simply
denote {(un, vn)}. Firstly, arguing as in the proof of the previous Lemma, we note that by the C2

loc(C∞)
convergence of (un, vn) to (u, v) it follows that

Nunb(r) ≤ lim inf
n→∞

NRn
(r) ≤ 2 ∀r ∈ R,

thanks to the Fatou lemma. This, together with the symmetries of (u, v), permits to use Lemma 2.17,
which gives limr→+∞Nunb(r) ≥ 1. To complete the proof, it is sufficient to show that limr→+∞Nunb(r) ≤
1. For any r > 0, let

fn(r) :=

∫

Cr
u2nv

2
n

HRn
(r)

, gn(r) :=

∫

Σr∪Σ−r
u2nv

2
n

HRn
(r)

,

and let f and g the same quantities referred to the solution (u, v). Observe that fn, gn, f and g are
continuous and nonnegative. The uniform convergence of (un, vn) to (u, v) implies that fn → f and
gn → g, as n→ ∞, uniformly on compact intervals. By definition,

(4.3) fn(r) ≤
1

2
NRn

(r) ≤ 1 ∀r > 0.

whenever Rn ≥ r. We claim that g ∈ L1(R+). Indeed, by the monotonicity of H and Proposition 2.14,
it follows that
∫ r

0

g(s) ds =

∫ r

0

∫

Σs
u2v2

H(s)
ds+

∫ 0

−r

∫

Σs
u2v2

H(−s)
ds ≤

∫ r

−r

∫

Σs
u2v2

H(s)
ds ≤

∫ r

−∞

∫

Σs
u2v2

H(s)
ds ≤ Nunb(r),

for every r > 0. Let r > 0; it is possible to refine the computation on Lemma 3.4 to obtain

NRn
(r) ≤ 1 + fn(r) +

∫

C(−Rn,−r)
u2nv

2
n

HRn
(r)

≤ 1 + fn(r) +
ERn

(−r)

HRn
(r)
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Therefore, using again the Fatou lemma we deduce

Nunb(r) ≤ lim inf
n→∞

NRn
(r) ≤ 1 + f(r) + lim inf

n→∞

ERn
(−r)

HRn
(r)

,

and to complete the proof we will show that

(4.4) lim
r→+∞

(

f(r) + lim inf
n→∞

ERn
(−r)

HRn
(r)

)

= 0.

Firstly, we note that

lim inf
n→∞

ERn
(−r)

HRn
(r)

= lim inf
n→∞

NRn
(−r)HRn

(−r)

HRn
(r)

≤ 2 lim inf
n→∞

HRn
(−r)

HRn
(r)

.

From the C2
loc(C∞) convergence of (un, vn) to (u, v) it follows

2 lim inf
n→∞

HRn
(−r)

HRn
(r)

= 2
H(−r)

H(r)
→ 0 as r → +∞

where we used Lemma 4.7 and the fact that H(r) > H(0) > 0 for every r > 0. For the (4.4) it remains
to prove that f(r) → 0 as r → +∞. Having observed that limr→+∞N(r) ≥ 1 and that g ∈ L1(R+), it is
not difficult to adapt the conclusion of the proof of Lemma 3.7. �

5. Systems with many components

In this section we are going to prove the existence of entire solutions with exponential growth for the
k component system (1.4). Our construction is based on the elementary limit

lim
d→+∞

ℑ

[

(

1 +
z

d

)d
]

= ex sin y,

which shows that the harmonic function ex sin y can be obtained as limit of homogeneous harmonic
polynomial. We wish to prove that the same idea applies to solutions of the system (1.4): there exists
an entire solution to (1.4) having exponential growth which can be obtained as limit of entire solutions
having algebraic growth.

5.1. Preliminary results. We recall some results contained in [2]. For d ∈ N

2 , let Gd be the rotation of
angle π

d in counterclockwise sense.

Theorem 5.1 (Theorem 1.6 of [2]). Let k ≥ 2 be a positive integer, let d ∈ N

2 be such that

2d = hk for some h ∈ N.

There exists a solution (ud1, . . . , u
d
k) to the system (1.4) which enjoys the following symmetries

udi (x, y) = udi (G
k
d(x, y))

udi (x, y) = udi+1(Gd(x, y))

udk+1−i(x, y) = udi (x,−y)

(5.1)

where we recall that indexes are meant mod k. Moreover

lim
r→+∞

1

r1+2d

∫

∂Br

k
∑

i=1

(

udi
)2

= b ∈ (0,+∞),

and

(5.2) lim
r→+∞

r
∫

Br

∑k
i=1 |∇u

d
i |

2 +
∑

1≤i<j≤k

(

udi u
d
j

)2

∫

∂Br

∑k
i=1

(

udi
)2 = d,

where Br denotes the ball of center 0 and radius r.
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2π/3

π/3

2π/9 π/6

Figure 1. In the figure we represent some of the solutions obtained in Theorem 5.1.
Here the number of components is set as k = 3: each component is drawn with a
different color. On the other hand the periodicity (that is, how many times the patch
of 3-components is replicated in the circle) is given by h = 1 (up left), h = 2 (up right),
h = 3 (down left) and h = 4 (down right), respectively. As a consequence, the growth
rate d varies as d = 3

2 , 3,
9
2 , 6, following the same order.

The solution (ud1, . . . , u
d
k) is modeled on the harmonic function ℑ(zd), as specified by the symmetries

(5.1). In the quoted statement, the authors modeled their construction on the functions ℜ(zd): it is
straightforward to obtain an analogous result replacing the real part with the imaginary one.

Remark 5.2. We point out that the symmetries (5.1) implies that ud1 is symmetric with respect to the
reflection with the axis y = tan

(

π
2d

)

x.

For a solution (u1, . . . , uk) of system (1.4) in R2, we introduce the functionals

Ealg(r; Λ) :=

∫

Br

k
∑

i=1

|∇ui|
2 + Λ

∑

1≤i<j≤k

(uiuj)
2

Halg(r) :=
1

r

∫

∂Br

k
∑

i=1

(ui)
2

(5.3)
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The index alg denotes the fact that these quantities are well suited to describe the growth of (u1, . . . , uk)
under the assumption that (u1, . . . , uk) has algebraic growth. In particular, as proved in Lemma 2.1 of
[6] and Corollary A.8 of [7] for the case k = 2, the Almgren quotient

Nalg(r; 1) :=
Ealg(r; 1)

Halg(r)

is bounded in r ∈ R+ if and only if (u1, . . . , uk) has algebraic growth.
It is not difficult to adapt the proof of Proposition 5.2 in [2] to obtain the following general result (in

the sense that it holds true for an arbitrary solution of (1.4) in RN , for any dimension N ≥ 2).

Proposition 5.3 (see Proposition 5.2 of [2]). Let N ≥ 2,

Λ ∈

{
[

1, N
N−2

]

if N > 2

[1,+∞) if N = 2,

and let (u1, . . . , uk) be a solution of (1.4) in RN ; the Almgren quotient

Nalg(r; Λ) :=
Ealg(r; Λ)

Halg(r)
=

r

∫

Br

k
∑

i=1

|∇ui|
2 + Λ

∑

1≤i<j≤k

(uiuj)
2

∫

∂Br

k
∑

i=1

(ui)
2

is well defined in (0,+∞) and nondecreasing in r.

Proof. We observe that

d

dr
Ealg(r; Λ) =

d

dr





1

rN−2

∫

Br

∑

i

|∇ui|
2 +

∑

i<j

(uiuj)
2



 +
d

dr





Λ− 1

rN−2

∫

Br

∑

i<j

(uiuj)
2





=
2

rN−2

∫

∂Br

∑

i

(∂νui)
2 +

2

rN−1

∫

Br

∑

i<j

(uiuj)
2

+
(2−N)(Λ− 1)

rN−1

∫

Br

∑

i<j

u2iu
2
j +

Λ− 1

rN−2

∫

∂Br

∑

i<j

u2iu
2
j ,

(5.4)

where we used equation (5.3) in [2]. Proceeding as in the proof of Proposition 5.2 in [2], one gets

d

dr
Nalg(r; Λ) ≥ (2 + (Λ − 1)(2−N))

∫

Br

∑

i<j u
2
iu

2
j

rN−1Halg(r)
+

(Λ − 1)
∫

∂Br

∑

i<j u
2
iu

2
j

rN−2Halg(r)
,

which is ≥ 0 by our assumption on Λ. �

Remark 5.4. In [2] the authors consider the case Λ = 1.

We work in the plane R2, so that it is possible to choose Λ = 2 in Proposition 5.3. We denote Ed(·; Λ)
and Hd the quantities defined in (5.3) when referred to the functions (ud1, . . . , u

d
k) defined in Theorem 5.1;

also, we denote Nd(·; Λ) :=
Ed(·; Λ)

Hd
. In case Λ = 2, we will simply write Ed and Nd to ease the notation.

Lemma 5.5. Let (ud1, . . . , u
d
k) be defined in Theorem 5.1. There holds limr→+∞Nd(r) = d.

Proof. It is an easy consequence of the (5.2) and of Corollary 5.8 in [2], where it is proved that for the
solution (ud1, . . . , u

d
k) there holds

lim
r→+∞

Ed(r; 2)

r2d
= lim

r→+∞

Ed(r; 1)

r2d
.
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Therefore,

lim
r→+∞

Nd(r) = lim
r→+∞

Ed(r; 2)

Hd(r)
= lim

r→+∞

Ed(r; 2)

r2d
· lim
r→+∞

r2d

Hd(r)

= lim
r→+∞

Ed(r; 1)

r2d
· lim
r→+∞

r2d

Hd(r)
= lim

r→+∞
Nd(r; 1) = d. �

As a consequence, the following doubling property holds true:

Proposition 5.6 (See Proposition 5.3 of [2]). For any 0 < r1 < r2 it holds

Hd(r2)

r2d2
≤
Hd(r1)

r2d1
.

Proof. A direct computation shows that

d

dr
log

Hd(r)

r2d
=

2Nd(r)

r
−

2d

r
≤ 0;

an integration gives the thesis. �

Let us consider the scaling

(5.5) (ud1,R, . . . , u
d
k,R) :=

(

2d

kHd(R)

)
1
2
(

ud1(Rx,Ry), . . . , u
d
k(Rx,Ry)

)

,

where R will be determined later as a function of d. We see that

(5.6)



















−∆udi,R = −βd
R u

d
i,R

∑

j 6=i

(

udj,R
)2

in R2

∫

∂B1

k
∑

i=1

(

udi,R
)2

=
2d

k

where βd
R := k

2dHd(R)R
2.

Remark 5.7. As a function of R, βd
R is continuous and such that βd

R → 0 if R → 0 and βd
R → ∞ if

R → ∞.

Accordingly with our scaling, we introduce the new Almgren quotient

Nd,R(r) :=
Ed,R(r)

HR(r)
=

r

∫

Br

k
∑

i=1

|∇udi,R|
2 + 2βd

R

∑

1≤i<j≤k

(

udi,R u
d
j,R

)2

∫

∂Br

k
∑

i=1

(

udi,R
)2

.

We point out that Nd,R(r) = Nd(Rr), so that from Lemma 5.5 and the monotonicity of Nd we deduce

(5.7) Nd,R(r) ≤ d ∀r, R > 0,

for every d. By the symmetries, the solution (ud1,R, . . . , u
d
k,R) is

kπ
d -periodic with respect to the angular

component, thus it is convenient to restrict our attention to the cones

Sd
r :=

{

(ρ, θ) : ρ ∈ (0, r), θ ∈

(

0,
kπ

d

)}

and Sd :=

{

(ρ, θ); ρ > 0, θ ∈

(

0,
kπ

d

)}

.

The boundary ∂Sd
r can be decomposed as ∂Sd

r = ∂pS
d
r ∪ ∂rS

d
r , where

∂pS
d
r := (0, r)×

{

0,
kπ

d

}

and ∂rS
d
r := {r} ×

(

0,
kπ

d

)

.
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Taking into account the periodicity of (ud1,R, . . . , u
d
k,R), we note that (u

d
1,R, . . . , u

d
k,R) has periodic bound-

ary conditions on ∂pS
d
r ; furthermore

Ed,R(r) =
2d

k

∫

Sd
r

∑

i

|∇udi,R|
2 + 2βd

R

∑

i<j

(

udi,R u
d
j,R

)2

Hd,R(r) =
2d

kr

∫

∂rSd
r

∑

i

(

udi,R
)2

Nd,R(r) =

r

∫

Sd
r

∑

i

|∇udi,R|
2 + 2βd

R

∑

i<j

(

udi,R u
d
j,R

)2

∫

∂Sd
r

∑

i

(

udi,R
)2

.

(5.8)

5.2. A blow-up in a neighborhood of (1, 0). In order to pursue our strategy, we consider the further
scaling

(5.9) (ûd1,R(x, y), . . . , û
d
k,R(x, y)) =

√

βd
R

d

(

ud1,R

(

1 +
x

d
,
y

d

)

, . . . , udk,R

(

1 +
x

d
,
y

d

))

.

Accordingly, we will consider the scaled domains Ŝd
r = d

(

Sd
r − (1, 0)

)

and Ŝd = d
(

Sd − (1, 0)
)

and the
respective boundaries. Having in mind to let d → ∞, we observe that this scaling is a blow-up centered
in the point (1, 0). It is easy to verify that (ûd1,R, . . . , û

d
k,R) solves (see (5.6))

(5.10)



















−∆ûdi,R = −ûdi,R
∑

j 6=i

(

ûdj,R
)2

in Ŝd

∫

∂r Ŝd
1

k
∑

i=1

(

ûdi,R
)2

=
βd
R

d
,

with suitable periodic conditions on ∂Ŝd. A direct computation shows that from (5.8) it follows

Nd,R(r) = d

r

∫

Ŝd
r

∑

i

|∇ûdi,R|
2 + 2

∑

i<j

(

ûdi,Rû
d
j,R

)2

∫

∂r Ŝd
r

∑

i

(

ûdi,R
)2

,

where in the new coordinates

(5.11) r =

√

(

1 +
x

d

)2

+
(y

d

)2

.

We are then led to define a new Almgren quotient for the scaled functions (ûd1,R, . . . , û
d
k,R):

Êd,R(r) :=

∫

Ŝd
r

k
∑

i=1

|∇ûdi,R|
2 + 2

∑

1≤i<j≤k

(

ûdi,Rû
d
j,R

)2

Ĥd,R(r) :=
1

r

∫

∂r Ŝd
r

k
∑

i=1

(

ûdi,R
)2

N̂d,R(r) :=
Êd,R(r)

Ĥd,R(r)
=

1

d
Nd,R(r).

From the equation (5.7), we deduce

(5.12) N̂d,R(r) ≤ 1 ∀r, R > 0, ∀d ∈
N

2
.
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In order to understand the behavior of (ûd1,R, . . . , û
d
k,R) when d → ∞, we fix R = R(d) to get a

non-degeneracy condition.

Lemma 5.8. For every d ∈ N

2 there exists Rd > 0 such that

Ĥd,Rd
(1) =

∫

∂r Ŝd
1

∑

i

(

ûdi,Rd

)2
= 1.

Proof. By (5.10) we know that Ĥd(1) =
βd
R

d , so that we have to find Rd such that βd
R = d. As observed

in Remark 5.7, this choice is possible. �

We denote (ûd1, . . . , û
d
k) := (ûd1,Rd

, . . . , ûdk,Rd
), Ĥd := Ĥd,Rd

, Êd := Êd,Rd
, N̂d := N̂d,Rd

and βd := βd
Rd

.

We aim at proving that, up to a subsequence, the family
{

(ûd1, . . . , û
d
k) : d ∈ N

2

}

converges, as d→ +∞,

to a solution of (1.4). To this aim, major difficulties arise from the fact that Ŝd
r and Ŝd depend on d; in

the next Lemma we show that this problem can be overcome thanks to a convergence property of these
domains.

Lemma 5.9. For any r > 1, the sets Ŝd
r converge to R× (0, kπ) as k → +∞, in the sense that

R× (0, kπ) = Int





⋂

n∈ N

2

⋃

d>n

Ŝd
r



 ,

where for A ⊂ R2 we mean that Int(A) denotes the inner part A. Analogously,

R× (0, kπ) = Int





⋂

n∈ N

2

⋃

d>n

Ŝd



 and (−∞, 0)× (0, kπ) = Int





⋂

n∈ N

2

⋃

d>n

Ŝd
1



 ,

and for every x̄ ∈ R

(−∞, x̄)× (0, kπ) = Int





⋂

n∈ N

2

⋃

d>n

Ŝd
1+ x̄

d



 .

Proof. We prove only the first claim. Let r > 1.

Step 1). R× (0, kπ) ⊂
⋂

n∈ N

2

⋃

d>n

Ŝd
r .

Let (x, y) ∈ R× (0, kπ). We show that for every d ∈ N

2 sufficiently large (x, y) ∈ Ŝd
r , that is,

(

1 + x
d ,

y
d

)

∈

Sd
r , which means

√

(

1 +
x

d

)2

+
(y

d

)2

< r and arctan

(

y

x+ d

)

∈

(

0,
kπ

d

)

.

For the first condition it is possible to choose d sufficiently large, as r > 1. To prove the second condition,

we start by considering d > −x, so that arctan
(

y
x+d

)

> 0. Now, provided d is sufficiently large

arctan

(

y

x+ d

)

<
kπ

d
⇔ y < (x+ d) tan

(

kπ

d

)

.

Since y < kπ, there exists ε > 0 such that y ≤ k(1− ε)π. Let d̄ be sufficiently large so that

x+ d >
(

1−
ε

2

)

d and
d

kπ
tan

(

kπ

d

)

> 1−
ε

2

for every d > d̄. Then

(x+ d) tan

(

kπ

d

)

>
(

1−
ε

2

)2

kπ > (1− ε)kπ ≥ y

whenever d > d̄.
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Figure 2. Visualization of the construction in Lemma 5.9. In red the limiting set
R× (0, kπ). In blue some of the scaled domains Ŝd

r , for r > 1.

Step 2).
⋂

n∈ N

2

⋃

d>n

Ŝd
r ⊂ R× [0, kπ].

We show that (R× [0, kπ])c ⊂
(

⋂

n∈ N

2

⋃

d>n Ŝ
d
r

)c

. If (x, y) 6∈ R × [0, kπ], then y > kπ or y < 0. We

consider only the case y > kπ; in such a situation

y > kπ = lim
d→∞

(x+ d) tan

(

kπ

d

)

,

so that (x, y) 6∈ Ŝd
r for every d sufficiently large. �

Remark 5.10. As a consequence of the previous result, we see that

∂rŜ
d
1 → {0} × [0, kπ] and ∂rŜ

d
1+ x̄

d
→ {x̄} × [0, kπ]

for every x̄ ∈ R.

Remark 5.11. Recall the expression of r in the new variable, given by (5.11). For every r > 0 and
d ∈ N

2 there exists ξ(r, d) such that

r = 1 +
ξ(r, d)

d
⇔ ξ(r, d) = d(r − 1).

Note that for every (x, y) ∈ ∂rŜ
d
r it results x < ξ(r, d). On the contrary, fixing (x, y) ∈ ∂rŜ

d
r there exists

ζ(d, x, y) such that

r =

√

(

1 +
x

d

)2

+
(y

d

)2

= 1 +
x

d
+ ζ(d, x, y).

In particular, if y = 0 we have ζ(d, x, 0) = 0, while if y > 0, ζ(d, x, y) ∼ d−2.

We are ready to prove the convergence of {(ûd1, . . . , û
d
k)} as d→ ∞.

Lemma 5.12. Up to a subsequence, {(ûd1, . . . , û
d
k)} converges in C2

loc (C∞), as d → ∞, to a nontrivial
solution (û1, . . . , ûk) of (1.4). This solution, which is kπ-periodic in y, enjoys the symmetries

ûi+1(x, y) = ûi (x, y − π) and û1

(

x, y +
π

2

)

= û1

(

x, y −
π

2

)

Proof. From Proposition 5.6 and Lemma 5.8, we deduce that for any r ≥ 1 and d the inequality

Ĥd(r)

r2d
=
kβdHd(r)

2d2r2d
≤
kβd

2d2
Hd(1) = Ĥd(1) = 1
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holds. For every x > 0, let r = 1 + x
d ; for every d sufficiently large, we have

(5.13) Ĥd

(

1 +
x

d

)

≤
(

1 +
x

d

)2d

≤ 2e2x

Recalling the (5.12) (which we apply for R = Rd), we deduce

(5.14) Êd

(

1 +
x

d

)

= N̂d

(

1 +
x

d

)

Ĥd

(

1 +
x

d

)

≤ 2e2x

for every d sufficiently large. Recall that (ûd1, . . . , û
d
k) can be extended by angular periodicity in the whole

plane R
2. Let us introduce

T d
r :=

{

(ρ, θ) : ρ < r, θ ∈
(

−
π

d
, (k + 1)

π

d

)}

⊃ Sd
r ,

and let T̂ d
r := d

(

T d
r − (1, 0)

)

⊃ Ŝd
r . Suitably modifying the argument in Lemma 5.9, it is not difficult to

see that

Int





⋂

n∈ N

2

⋃

d>n

T̂ d
1+ x̄

d



 = (−∞, x̄)× (−π, (k + 1)π)

for every x̄ ∈ R. Hence, let B an open ball contained in R× (−π, (k+1)π), and let xB := sup{x : (x, y) ∈
B}, so that B ⊂ (−∞, xB + 1)× (−π, (k+1)π). Using the same argument in the proof of Lemma 5.9, it
is possible to show that

B ⊂ T̂ d

1+
xB+1

d

,

for every d sufficiently large, and by the (5.14) and the periodicity of (û1, . . . , ûk) we deduce
∫

B

∑

i

|∇ûdi |
2 ≤ 3Êd

(

1 +
xB + 1

d

)

≤ 6e2(xB+1)

whenever d is sufficiently large. This, together with (5.13), implies that {(ûd1, . . . , û
d
k)} is uniformly

bounded in H1(B), for every B ⊂ R × (−π, (k + 1)π). By the boundedness of the trace operator, this
bound provides a uniform-in-d bound on the L2(∂K) norm for every compact K ⊂⊂ R× (−π, (k+1)π),
which in turns, due to the subharmonicity of udi , gives a uniform-in-d bound on the L∞(K) norm of
{(ûd1, . . . , û

d
k)}, for every compact set K ⊂⊂ R × (−π, (k + 1)π). The standard regularity theory for

elliptic equations guarantees that when d→ ∞ then {(ûd1, . . . , û
d
k)} converges in C2

loc(R× (−π, (k+1)π)),
up to a subsequence, to a function (û1, . . . , ûk) which is a solution to (1.4). By the convergence and by
the normalization required in Lemma 5.8, we deduce that (recall also the convergence of the boundaries

∂Ŝd
1 , Remark 5.10)

∫ kπ

0

∑

i

ûi(0, y)
2 dy = 1;

in particular, (û1, . . . , ûk) is nontrivial. The kπ-periodicity in y follows directly form the convergence
of the domains, Lemma 5.9. By the pointwise convergence of (ûd1, . . . , û

d
k) to (û1, . . . , ûk) and by the

symmetries of each function (ûd1, . . . , û
d
k) (see equation (5.1) and Remark 5.2) we deduce also that

ûi+1(x, y) = ûi (x, y − π) and û1

(

x, y +
π

2

)

= û1

(

x, y −
π

2

)

. �

5.3. Characterization of the growth of (û1, . . . , ûk). So far we proved the existence of a solution
(û1, . . . , ûk) of (1.4) which enjoys the properties 1) and 2) of Theorem 1.8. In this subsection, we are
going to complete the proof of the quoted statement, showing that (û1, . . . , ûk) enjoys also the properties

3)-5). We denote as Ê , Ê, Ĥ and N̂ the quantities Eunb, Eunb, H and Nunb introduced in subsection 2.2
when referred to the function (û1, . . . , ûk). Firstly, we show that (û1, . . . , ûk) has finite energy, point 3)

of Theorem 1.8, and that Ĥ(x) → −∞ as x→ −∞.
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Lemma 5.13. For every x ∈ R there holds Ê(x) < +∞. In particular

Ê(x) ≤ lim inf
d→∞

Êd

(

1 +
x

d

)

and Ê(x) ≤ lim inf
d→∞

Êd

(

1 +
x

d

)

.

Furthermore, lim
x→−∞

Ĥ(x) = 0.

Proof. By the C2
loc(R

2) convergence of (ûd1, . . . , û
d
k) to (û1, . . . , ûk) and by the convergence properties of

the domains Ŝd
1+ x

d
, Lemma 5.9, we deduce

lim
d→∞





∑

i

|∇ûdi |
2 +

∑

i<j

(

ûdi û
d
j

)2



χŜd
1+ x

d

=





∑

i

|∇ûi|
2 +

∑

i<j

(ûiûj)
2



χC(−∞,x)
a. e. in C∞,

for every x ∈ R. As a consequence, we can apply the Fatou lemma obtaining

Ê(x) ≤ lim inf
d→∞

Êd

(

1 +
x

d

)

≤ 2e2x,

where the uniform boundedness of Êd
(

1 + x
d

)

comes from (5.14). To prove that Ĥ(x) → 0 as x → −∞,
we can proceed with the same argument developed in Lemma 4.7. �

In light of the previous Lemma, the monotonicity formulae proved in subsection 2.2 applies for Ê , Ê, Ĥ

and N̂ .

Lemma 5.14. There holds

lim
x→+∞

N̂(x) = 1.

Proof. By Proposition 2.14, we know that N̂ is nondecreasing in x, and thanks to the symmetries of
(û1, . . . , ûk), see Lemma 5.12, Lemma 2.17 implies that limx→+∞ N̂(x) ≥ 1. It remains to show that this
limit is smaller then 1. This follows from the estimates of Lemma 5.13 and from the strong convergence
of (ûd1, . . . , û

d
k) → (û1, . . . , ûk), which implies that Ĥd

(

1 + x
d

)

→ Ĥ(x) as d → ∞: therefore, for every
x ∈ R

N̂(x) =
Ê(x)

Ĥ(x)
≤

lim infd→∞ Êd(x)

limd→∞ Ĥd(x)
= lim inf

d→∞
N̂d(x) ≤ 1,

where we used the (5.12). �

In light of this achievement, we can apply Corollary 2.15 to complete the proof of point 5) of Theorem
1.8. The fact that γ > 0 follows by Lemmas 5.14 and 2.17:

lim
r→+∞

Ĥ(r)

e2r
= lim

r→+∞

Ê(r)

e2r
· lim
r→+∞

1

N̂(r)
> 0.

Remark 5.15. With a similar construction, it is possible to obtain the existence of solutions to (1.4) in
R2 modeled on coshx sin y. To do this, we can first construct solutions of (1.4) having algebraic growth
defined outside the ball of radius 1, with homogeneous Neumann boundary conditions on ∂B1. This
can be done suitably modifying the proof of Theorem 1.6 in [2]. Then, performing a new blow-up in
a neighborhood of (1, 0), we can obtain a solution of (1.4) defined in R

2
+, with homogeneous Neumann

condition on {x = 0}; this solution can be extended by even-symmetry in x in the whole R2.

6. Asymptotics of solutions which are periodic in one variable

In this section we prove Theorem 1.9.

Proof of Theorem 1.9. Let us start with case (i). Since the solution (u, v) is nontrivial N(0) > 0: in
particular, from point (i) of Corollary 2.15 it follows that H(r) → +∞ as r → +∞. Let us consider the
shifted functions

(uR(x, y), vR(x, y)) :=
1

√

H(R)
(u(x+R, y), v(x+R, y))
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which solve the system














−∆uR = −H(R)uRv
2
R in C∞

−∆vR = −H(R)u2RvR in C∞
∫

Σ0

u2R + v2R = 1

and share the same periodicity of (u, v). We introduce

ER(r) :=

∫

C(−∞,r)

|∇uR|
2 + |∇R|

2 + 2H(R)u2Rv
2
R,

HR(r) :=

∫

Σr

u2R + v2R and NR(r) :=
ER(r)

HR(r)
.

It is easy to see that

ER(r) =
1

H(R)
Eunb(r +R)

HR(r) =
1

H(R)
H(r +R)

⇒ NR(r) = Nunb(r +R)

for any r (recall that Eunb andNunb have been defined in subsection 2.2). We point out that, by definition
and the monotonicity of Nunb, Proposition 2.14, NR1(r) ≤ NR2(r) for every R1 < R2. Furthermore,
NR(r) ≤ d = limr→∞N(r) for every r, R and NR(r) → d as R → ∞ for every r ∈ R. Therefore, NR

tends to the constant function d in L1
loc(R).

Thanks to the normalization condition HR(0) = 1 and the uniform bound NR(r) ≤ d, applying
Corollary 2.15 (see also Remark 2.18) we deduce that HR(r) is uniformly bounded in R for every r > 0.
Consequently, also ER(r) is uniformly bounded in R for every r > 0. By means of a Poincaré inequality
of type (3.2), we deduce that the sequence (uR, vR) is uniformly bounded in H1

loc(C∞) and, by standard
elliptic estimates, in L∞

loc(C∞). From Theorem 2.6 of [11] (it is a local version of Theorem 1.1 of [9]), we

evince that the sequence (uR, vR) is uniformly bounded also in C0,α
loc (C∞) for any α ∈ (0, 1). Consequently,

up to a subsequence, (uR, vR) converges in C0
loc(C∞) and in H1

loc(C∞) to a pair (Ψ+,Ψ−), where Ψ is a
nontrivial harmonic function (this is a combination of the main results in [9] and [5]). By the convergence,
Ψ has to be 2π-periodic in y.

Firstly, we prove that H(r; Ψ) → 0 ar r → −∞, so that the results of subsection 2.3 hold true for
Ψ. As already observed, NR(r) ≥ NR̄(r) for every r ∈ R, for every R > R̄. By the expression of the
logarithmic derivative of HR, see Corollary 2.15 (see also Remark 2.18) we have

d

dr
logHR(r) = 2NR(r) ≥ 2NR̄(r) =

d

dr
logHR̄(r) ∀r.

As a consequence, taking into account that HR(0) = 1 for every R, for every r < 0 it results

HR(0)

HR(r)
≥
HR̄(0)

HR̄(r)
⇔ HR̄(r) ≥ HR(r) ∀R > R̄.

Passing to the limit as R → +∞, by the C0
loc(R

2) convergence of (uR, vR) to (Ψ+,Ψ−) it follows that
HR̄(r) ≥ H(r; Ψ), which gives H(r; Ψ) → 0 as r → −∞ in light of our assumption on (u, v).

Using again the expression of the logarithmic derivative of HR and H(·; Ψ), we deduce

log
HR(r2)

HR(r1)
= 2

∫ r2

r1

NR(s) ds and log
H(r2; Ψ)

H(r1; Ψ)
= 2

∫ r2

r1

N(s; Ψ) ds,

where r1 < r2. The left hand side of the first identity converges to the left hand side of the second
identity; recalling that NR → d in L1

loc(R), we deduce
∫ r2

r1

N(s; Ψ) ds = lim
R→+∞

∫ r2

r1

NR(s) ds = d(r2 − r1) ⇒
1

r2 − r1

∫ r2

r1

N(s; Ψ) ds = d.
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for every r1 < r2. It is well known that, being N(·; Ψ) ∈ L1
loc(R), the limit as r2 → r1 of the left hand

side converges to N(r1; Ψ) for almost every r1 ∈ R. Hence, N(r; Ψ) = d for every r ∈ R. We are then in
position to apply Proposition 2.21:

lim
R→+∞

N(R) = lim
R→+∞

NR(0) = N(0;Ψ) = d ∈ N \ {0},

and Ψ(x, y) = [C1 cos(dy) + C2 sin(dy)] e
dx for some constant C1, C2 ∈ R.

As far as case (ii) is concerned, for the sake of simplicity we assume a = 0. One can repeat the proof
with minor changes replacing Eunb andNunb with Esym andNsym (which have been defined in subsection
2.1). The unique nontrivial step consists in proving that in this setting H(r; Ψ) → 0 as r → −∞. To this
aim, we note that, as before,

HR(r) ≤ HR̄(r) ∀R > R̄,

for every r > −R̄. In particular, if r ∈ (1− R̄, 0), by Proposition 2.4 and Corollary 2.5 we deduce

HR(r) ≤ HR̄(r) =
H(r + R̄)

H(R̄)
≤
e2N(1)(r+R̄)

e2N(1)R̄
= e2N(1)r ∀R > R̄.

Passing to the limit as R → +∞, by C0
loc(R

2) convergence we obtain

H(r; Ψ) ≤ e2N(1)r ∀r ∈ (−∞, 0),

which yields H(r; Ψ) → 0 as r → −∞. �

Appendix A.

We start with the following version of the parabolic minimum principle, which we used in the proof of
Proposition 3.1.

Lemma A.1. Let N ≥ 2, let Ω = (a, b) × Ω′ ⊂ RN be open and connected, let c ∈ L∞(Ω) and let
w ∈ H1(Ω) be such that











wt −∆w ≥ c(x)w in [0, T ]× Ω

w ≥ 0 on {0} × Ω

w ≥ 0 on (0, T )× (a, b)× ∂Ω′,

and w has (b − a)-periodic boundary condition on {a, b} × Ω′. Then w ≥ 0.

Proof. Let J(t) := 1
2

∫

Ω
(w−)2. A direct computation shows that J ′(t) ≤ 2‖c‖L∞(Ω)J(t), where we used

the boundary conditions. Consequently,

J(t) ≤ J(0)e2‖c‖L∞(Ω)t = 0 ∀t ∈ [0, T ]

where the last identity follows by the initial condition. �

Remark A.2. Note that we do not require anything about the sign of c.

In sections 3 and 4, we exploited many times the following properties of the trace operators.

Theorem A.3. For a < b real numbers, let C(a,b) = (a, b)×Sk be a bounded cylinder. The trace operator

TrC(a,b)
: u ∈ H1(C(a,b)) 7→ u|Σa∪Σb

∈ L2(Σa ∪ Σb) is compact.

Proof. For the sake of simplicity we consider the case a = 0 and b = 1. Let (un) ⊂ H1(C(0,1)) be such

that un ⇀ 0. We show that un|Σ0∪Σ1 → 0 in L2(Σ0∪Σ1). Let w(x, y) := x(x−1). We note that ∂νw = 1
on Σ0 ∪ Σ1. Let

F (x, y) = ∇w(x, y) = (2x− 1, 0) and g(x, y) = ∆w(x, y) = 2.

By the divergence theorem

2

∫

C(0,1)

u2n =

∫

C(0,1)

(divF )u2n = −2

∫

C(0,1)

2unF · ∇un +

∫

Σ0∪Σ1

u2n,
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so that
∫

Σ0∪Σ1

u2n ≤ 2‖un‖
2
L2(C(0,1))

+ 2‖un‖L2(C(0,1))‖∇un‖L2(C(0,1)) → 0

as n→ ∞, by the compactness of the Sobolev embedding H1(C(0,1)) →֒ L2(C(0,1)). �

Corollary A.4. For a < b real numbers, let C(a,b) = (a, b) × Sk be a bounded cylinder. The local trace

operator TΣb
: u ∈ H1(C(a,b)) 7→ u|Σb

∈ L2(Σb) is compact.

Proof. It is an easy consequence of Theorem A.3 and of the fact that the linear operator Lf : ϕ ∈
L2(Σa ∪ Σb) 7→ fϕ ∈ L2(Σa ∪ Σb) is continuous for every f ∈ L∞(Σa ∪ Σb). As TΣb

= LχΣb
◦ TrC(a,b)

,
where χΣb

is the characteristic function of Σb, TΣb
is compact. �
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