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Quantum continuous measurements: The stochastic Schrödinger equations and the

spectrum of the output

Alberto Barchielli and Matteo Gregoratti
Politecnico di Milano, Department of Mathematics,

Piazza Leonardo da Vinci 32, 20133 Milano, Italy∗

The stochastic Schrödinger equation, of classical or quantum type, allows to describe open
quantum systems under measurement in continuous time. In this paper we review the link between
these two descriptions and we study the properties of the output of the measurement. For simpli-
city we deal only with the diffusive case. Firstly, we discuss the quantum stochastic Schrödinger
equation, which is based on quantum stochastic calculus, and we show how to transform it into the
classical stochastic Schrödinger equation by diagonalization of suitable quantum observables, based
on the isomorphism between Fock space and Wiener space. Then, we give the a posteriori state,
the conditional system state at time t given the output up to that time and we link its evolution to
the classical stochastic Schrödinger equation. Finally, we study the output of the continuous meas-
urement, which is a stochastic process with probability distribution given by the rules of quantum
mechanics. When the output process is stationary, at least in the long run, the spectrum of the
process can be introduced and its properties studied. In particular we show how the Heisenberg
uncertainty relations give rise to characteristic bounds on the possible spectra and we discuss how
this is related to the typical quantum phenomenon of squeezing. We use a simple quantum system,
a two-level atom stimulated by a laser, to discuss the differences between homodyne and hetero-
dyne detection and to explicitly show squeezing and anti-squeezing and the Mollow triplet in the
fluorescence spectrum.

I. INTRODUCTION

A big achievement in the 70’s-80’s was to show that,
inside the axiomatic formulation of quantum mechan-
ics, based on positive operator valued measures and in-
struments [1, 2], a consistent formulation of the theory
of measurements in continuous time (quantum continu-
ous measurements) was possible [2–8]. Starting from
the 80’s, two other very flexible and powerful formula-
tions of continuous measurement theory were developed.
The first one is often referred as quantum trajectory the-
ory and it is based on the the stochastic Schrödinger
equation (SSE), a stochastic differential equation of clas-
sical type (commuting noises, Itô calculus) [6, 7, 9–17].
The second formulation is based on quantum stochastic
calculus [18–20] and the quantum SSE (non commut-
ing noises, Bose fields, Hudson-Parthasarathy equation)
[4–6, 8, 12, 15, 17, 21, 22]. The main applications of
quantum continuous measurements are in the photon de-
tection theory in quantum optics (direct, heterodyne, ho-
modyne detection) [9–17, 21–25]. While the classical SSE
gives a differential description of the joint evolution of the
observed signal and of the measured system, in agreement
with the axiomatic formulation of quantum mechanics,
the quantum SSE gives a dilation of the measurement
process, explicitly introducing an environment which in-
teracts with the system and mediates the observations.
In this paper we start by giving a short presenta-

tion of continuous measurement theory based on the
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quantum SSE (Secs. II and III). We consider only the
type of observables relevant for the description of homo-
dyne/heterodyne detection and we make the mathemat-
ical simplification of introducing only bounded operators
on the Hilbert space of the quantum system of interest
and a finite number of noises; for the case of unbounded
operators see [26–28].

In Sec. III we show how to derive the classical SSE and
the related stochastic master equation (SME). The key
point in the step from the quantum SSE to the classical
SSE is the introduction of an Hilbert space isomorphism
which diagonalizes a suitable complete set of quantum
observables. The classical SSE and the SME give both
the probability distribution for the observed output and
the a posteriori state, the conditional system state given
a realization of the output. These equations are driven
by classical noises, but, in spite of this, they are fully
quantum as they are equivalent to the formulation of con-
tinuous measurements based on quantum fields. It is just
in this formulation that the probabilistic structure of the
output current becomes very transparent.

In Sec. IV we introduce the spectrum of the classical
stochastic process which represents the output and we
study the general properties of the spectra of such pro-
cesses by proving characteristic bounds due to the Heis-
enberg uncertainty principle. This bound is one of the
evidences that the whole theory of continuous measure-
ments is fully quantum, independently of the adopted
formulation.

As an application, in Sec. V we present the case of a
two-level atom, which is measured in continuous time by
detection of its fluorescence light. The spectral analysis
of the output can reveal the phenomenon of squeezing
of the fluorescence light, a phenomenon related to the
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uncertainty relations. We use this example also to il-
lustrate the differences between homodyning and hetero-
dyning and between the spectrum of the squeezing and
the power spectrum. Finally we show how Mollow triplet
appears in the power spectrum in the case of an intense
stimulating laser. Section VI contains our conclusions.

II. THE QUANTUM STOCHASTIC

SCHRÖDINGER EQUATION

Quantum stochastic calculus is based on the use of
some Bose fields playing the role of non-commuting
noises and satisfying the canonical commutation relations
(CCR) with a Dirac delta in time (1). This calculus and
the unitary dynamics based on it were developed by Hud-
son and Parthasarathy [18], while Bose fields with delta-
commutations in time were already found by Yuen and
Shapiro [29] in their study of the quasi–monochromatic
paraxial approximation of the electromagnetic field.

A. Quantum stochastic calculus and unitary

dynamics

Quantum stochastic calculus and the Hudson-
Parthasarathy equation [18, 20] allow the evolution of a
Markovian open quantum system, which we call system
S, to be represented as a unitary evolution for system S
interacting with some quantum fields. For a short review
see [22, Sec. 2] or [21, Secs. 11.1, 11.2]; for a discussion
of the physical approximations see [19, 21].

1. Bose fields

Let us start by introducing the formal fields bk(t), b
†
k(t)

satisfying the CCR

[
bi(s), b

†
k(t)

]
= δikδ(t− s), [bi(s), bk(t)] = 0. (1)

In this paper we consider only the representation of the
CCR (1) on the Fock space, the one characterized by the
existence of the vacuum state.
We denote by Γ ≡ Γ

(
L2(R;Cd)

)
the symmetric Fock

space over the “one–particle space” L2(R) ⊗ Cd =
L2(R;Cd), and by e(f), f ∈ L2(R;Cd), the coherent vec-
tors, whose components in the 0, 1, . . . , n, . . . particle
spaces are

e(f) := e−
1

2
‖f‖2

(
1, f, (2!)−1/2f ⊗ f, . . . , (n!)−1/2f⊗n, . . .

)
.

(2)
Note that e(0) represents the vacuum state and that

〈e(g)|e(f)〉 = exp
{
− 1

2 ‖f‖
2 − 1

2 ‖g‖
2
+ 〈g|f〉

}
.

Let {zk, k ≥ 1} be the canonical basis in Cd and for
any f ∈ L2(R;Cd) let us set fk(t) := 〈zk|f(t)〉Cd . Then

we have

bk(t) e(f) = fk(t) e(f). (3)

It is a property of the Fock spaces the fact that the
action on the coherent vectors uniquely determines a
densely defined linear operator.

2. Factorization properties of the Fock space

A symmetric Fock space Γ(K) can be defined for every
Hilbert space K; coherent vectors are defined always by
(2). When the one-particle space is given by a direct
sum (K = K1 ⊕K2), one has the factorization property
Γ(K1 ⊕K2) = Γ(K1)⊗ Γ(K2).
In our set up, for every time interval A, let us de-

note by Γ[A] ≡ Γ
(
L2(A;Cd)

)
the symmetric Fock space

over L2(A;Cd); in particular, we have Γ = Γ[R]. Then,
for any s < t, we have L2(R;Cd) = L2

(
(−∞, s);Cd

)
⊕

L2
(
(s, t);Cd

)
⊕ L2

(
(t,+∞);Cd

)
and

Γ[R] = Γ
[
(−∞, s)

]
⊗ Γ

[
(s, t)

]
⊗ Γ

[
(t,+∞)

]
. (4)

Moreover, each space Γ[A] can be identified with a sub-
space of the full Fock space Γ[R] by taking the tensor
product of a generic vector in Γ[A] with the vacuum of
Γ[R \ A]. Then, for every f ∈ L2(R;Cd), we have the
identification

e(f |A) ∈ Γ[A] 7→ e(1Af) ∈ Γ[R].

We are denoting by 1A(·) the indicator function of the
set A and by f |A the restriction of the function f to the
set A. With an abuse of notation we write

e(f) = e
(
1(−∞,s)f

)
⊗ e

(
1(s,t)f

)
⊗ e

(
1(t,+∞)f

)
.

In particular, e
(
1(s,t)f

)
can represent a vector in Γ[R]

or in Γ[(s, t)] and we have the identification e
(
1(s,t)f

)
=

e(0)⊗ e
(
1(s,t)f

)
⊗ e(0).

3. Temporal modes and Weyl operators.

The free evolution of the bose fields is represented by
the left shift in Γ

Θt e(f) = e(θtf),
(
θtf

)
(s) = f(s+ t).

Then, the action of the shift on the fields is given by

Θ†
t bk(s)Θt = bk(s+ t).

By using the energy representation of the fields,

b̂k(ν) :=
1√
2π

∫

R

eiνtbk(t) dt,

we get Θ†
t b̂k(ν)Θt = e−iνtb̂k(ν), which shows that indeed

Θt is the usual free dynamics. Therefore, the argument
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t in the fields bk(t) has a double role: it is the time,
because it appears in the evolution operator, and it is a
field degree of freedom, the conjugate momentum of the
free field energy.
When the fields bk(t) represent the electromagnetic

field, the index k can be used to denote the polariza-
tion, the direction of propagation (discretized) or other
spatial degrees of freedom [30].
If we take a function g ∈ L2(R) we can define the

annihilation operator

ck(g) :=

∫ +∞

−∞

g(t) bk(t) dt. (5)

By Eq. (3), its action on the coherent vectors is given by

ck(g) e(f) =

∫ +∞

−∞

g(t) fk(s) ds e(f) ≡ 〈g|fk〉L2(R) e(f).

If we take a complete orthonormal system gi, i =
1, 2, . . ., in L2(R), we can define the annihilation oper-
ators ck(g

i). Together with their adjoint operators, they
satisfy the usual CCR. We can say that the upper index
i denotes the temporal modes, while the lower index k
denotes the polarization/spatial modes.
An important technical tool is represented by the Weyl

operators W(q), q ∈ L2(R;Cd), the unitary operators
defined by: ∀f ∈ L2(R;Cd),

W(q)e(f) = exp
{
i Im〈f |q〉L2(R;Cd)

}
e(f + q);

this is nothing but the displacement operator for the field.
By using the notation (5) we can write

W(q) = exp

{∑

k

(
c†k(qk)− h.c.

)}
, (6)

while, by using the discrete modes introduced above, we
have

W(q) = exp

{∑

ki

(
〈gi|qk〉L2(R)c

†
k(g

i)− h.c.
)}

.

By h.c. we denote the Hermitian conjugate operator.

4. The Hudson-Parthasarathy equation

Let H be the system space, the complex separable Hil-
bert space associated to the quantum system S, and we
take Γ, with its free evolution Θt, as the environment
space. Now we want to construct the unitary evolution
of the composite system on H ⊗ Γ.

By formally writing

Bk(t) =

∫ t

0

bk(s)ds, B†
k(t) =

∫ t

0

b†k(s)ds, (7)

we get the annihilation and creation processes, families
of mutually adjoint operators, whose actions on the co-
herent vectors are given by

Bk(t) e(f) =

∫ t

0

fk(s) ds e(f) ,

〈e(g)|B†
k(t)e(f)〉 =

∫ t

0

gk(s) ds 〈e(g)|e(f)〉.

The overline denotes the complex conjugation.
For t > 0, the annihilation and creation processes are

adapted, in the sense that they factorizes, with respect
to (4), as

B
(†)
k (t) = 1(−∞,0) ⊗B

(†)
k (t)⊗ 1(t,+∞),

and they satisfy a variant of the CCR, namely

[Bk(t), B
†
l (s)] = δklt ∧ s, (8)

[Bk(t), Bl(s)] = 0, [B†
k(t), B

†
l (s)] = 0;

t ∧ s is the minimum between t and s and 1A is the
identity operator on Γ[A].

By defining integrals of Itô type with respect to the in-

crements of the quantum processes Bk, B
†
k, it is possible

to construct adapted operator processes on H ⊗ Γ and
to develop a quantum stochastic calculus, whose rules
are summarized, at a heuristic level, by the quantum Itô
table

dBk(t) dB
†
l (t) = δkl dt, dB†

k(t) dBl(t) = 0, (9a)

dBk(t) dBl(t) = 0, dB†
k(t) dB

†
l (t) = 0, (9b)

dB†
k(t) dt = 0, dBk(t) dt = 0, (dt)2 = 0. (9c)

Let H0, Rk, k, l = 1, . . . , d, be bounded operators on

H such that H†
0 = H0. We set also

K := −iH0 −
1

2

∑

k

R†
kRk. (10)

Then, the quantum stochastic differential equation
(quantum stochastic Schrödinger equation or Hudson-
Parthasarathy equation) [18, 20]

dUt =

{∑

k

Rk dB
†
k(t)−

∑

k

R†
k dBk(t)+K dt

}
Ut, (11)

with the initial condition U0 = 1, has a unique solution,
which is a strongly continuous adapted family of unitary
operators on H⊗Γ, representing a system-field dynamics
in the interaction picture with respect to the free field
evolution [31].
Then, for t ≥ 0, the dynamics in the Schrödinger pic-

ture is e−iHTOTt = Θt Ut, a strongly continuous unitary
group whose Hamiltonian HTOT is a singular perturba-
tion of the unbounded generator of Θt [32, 33]. Roughly
speaking, the system S is hit by a flow of bosons which
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can have only a singular interaction with S; then, they
are carried away by their free dynamics and never come
back. The physical approximations involved in Eq. (11)
are discussed in [21, Sec. 11.1.1]. Note that the interac-
tion picture with respect to the free field dynamics co-
incides with the Schrödinger picture when only reduced
system states and observables are considered.

B. The reduced dynamics of the system

The states of a quantum system are represented by
statistical operators, positive trace-class operators with
trace one; let us denote by S(H) the set of statistical
operators on H. For every composed state Σ in S(H⊗Γ),
the partial trace TrΓ (resp. TrH) with respect to the field
(resp. system) Hilbert space gives the reduced system
(resp. field) state TrΓ Σ in S(H) (resp. TrH Σ in S(Γ)).

1. The initial state and the reduced states

As initial state of the composed system “S plus fields”
we take ρ ⊗ ̺Γ(f) ∈ S(H ⊗ Γ), where ρ ∈ S(H) is gen-
eric and ̺Γ(f) is a coherent state, ̺Γ(f) := |e(f)〉〈e(f)|.
Then, the system-field state at time t, in the field inter-
action picture, is

Σf (t) := Ut (ρ⊗ ̺Γ(f))U
†
t . (12)

We introduce also the reduced system state and the re-
duced field state:

ηt := TrΓ {Σf (t)} , Πf (t) := TrH {Σf (t)} . (13)

2. The master equation

One of the main properties of the Hudson-
Parthasarathy equation is that, with the initial state in-
troduced above, the reduced dynamics of system S ex-
actly obeys a quantum master equation [18, 20, 22]. In-
deed, we get

d

dt
ηt = L(t)[ηt], (14)

where the Liouville operator L(t) turns out to be given
by

L(t)[ρ] =− i [H0 +Hf (t), ρ]

+
∑

k

(
RkρR

†
k − 1

2
R†

kRkρ−
1

2
ρR†

kRk

)
, (15)

Hf (t) := i
∑

k

fk(t)Rk − i
∑

k

fk(t)R
†
k. (16)

Therefore, S is an open system, as it interacts with the
fields in Γ, and its evolution turns out to be Markovian

thanks to the properties of the interaction and of the
initial state of the environment.
It is useful to introduce also the evolution operator

from s to t by

d

dt
Υ(t, s) = L(t) ◦Υ(t, s), Υ(s, s) = 1. (17)

With this notation we have ηt = Υ(t, 0)[ρ].

III. CONTINUOUS MONITORING

The connections among quantum stochastic calcu-
lus, quantum Langevin equations and input and out-
put fields were developed by Gardiner and Collet in
[19]. Then, in [5] these notions were connected to
the unitary evolution (11) and to continuous measure-
ments. Indeed, another fundamental property of the
Hudson-Parthasarathy equation is that it allows for a
fully quantum description of a continuous measurement
of the system S: the measurement is obtained by a de-
tection of the bosons that have already interacted with
S. Of course such a measurement acquires information
on both S and the detected bosons.

A. Input and output fields

Let us call “input fields” the fields Bk(t), B
†
k(t), . . .

when they are considered as operators in interaction pic-
ture at time t, with respect to Θt, and let us call “output
fields” the same fields in the Heisenberg picture:

Bout
k (t) := U †

tBk(t)Ut (18)

and a similar definition for Bout †
k (t). By the properties

of the Fock space Γ and of the unitary operators Ut, it is
possible to prove that

Bout
k (t) = U†

TBk(t)UT , ∀T ≥ t. (19)

This equation is of fundamental importance and it im-
mediately implies that the output fields satisfy the same
commutation rules of the input fields, for instance the
CCR (8): the output fields remain Bose free fields. By
applying the formal rules of QSC (9), we can express the
output fields as the quantum stochastic integrals [5]

Bout
k (t) = Bk(t) +

∫ t

0

U †
sRkUs ds; (20)

Bout †
k (t) is given by the adjoint expression.

B. The field observables

The key point of the theory of continuous measure-
ments is to consider field observables represented by time
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dependent, commuting selfadjoint operators in the Heis-
enberg picture [4, 5, 22]. Being commuting at different
times, these observables represent outputs produced at
different times which can be obtained in the same exper-
iment. Here we present a very special case of observables,
some field quadratures. Let us start by introducing the
selfadjoint operators

Q(t;ϑ, h) = e−iϑ

∫ t

0

h(s) dB†
1(s) + h.c., t ≥ 0; (21)

the phase ϑ ∈ (−π, π] and the function h, with |h(t)| =
1, are fixed. The operators (21) have to be interpreted

as linear combinations of the formal increments dB†
1(s),

dB1(s) which represent field operators in the interaction
picture. The corresponding operators in the Heisenberg
picture are

Qout(t;ϑ, h) : = U †
tQ(t;ϑ, h)Ut

= U†
TQ(t;ϑ, h)UT , ∀T ≥ t, (22)

where the second equality follows from Eq. (19). These
“output” quadratures are our observables.
Each quadrature Qout(t;ϑ, h) is observed at time t and

it regards those bosons in “field 1” which have eventually
interacted with S between time 0 and time t, so it can
be interpreted as an indirect measurement performed on
the system S.
By using CCRs, one can check that the operators (21)

commute: [Q(t;ϑ, h), Q(s;ϑ, h)] = 0. The important
point is that, thanks to Eq. (22), these operators com-
mute for different times also in the Heisenberg picture.
Therefore, the observables Qout(t;ϑ, h), t ≥ 0, can be
jointly measured for every interaction (11). The output
is a (random) number at every time t, that is a signal de-
pending on time, a stochastic process, which is the result
of a continuous indirect monitoring of the system S. Its
probability distribution is given by the usual postulates
of quantum mechanics trough the joint diagonalization
of the operators Qout(t;ϑ, h). Actually, always thanks
to Eq. (22), it will be enough to jointly diagonalize the
operators Q(t;ϑ, h).
Let us stress that quadratures of type (21) with dif-

ferent phases and h functions represent incompatible ob-
servables, because they do not commute but satisfy

[Q(t;ϑ, h), Q(s;ϕ, g)] = 2i

∫ t∧s

0

dr Im
(
ei(ϑ−ϕ)h(r) g(r)

)
.

Note that for g = h we get

[Q(t;ϑ, h), Q(s;ϕ, h)] = 2i (t ∧ s) sin (ϑ− ϕ) , (23)

and for ϕ = ϑ they commute as anticipated.
When “field 1” represents the electromagnetic field, a

physical realization of a measurement of the observables
(22) is implemented by what is called balanced hetero-
dyne/homodyne detection [34–36], [21, Sec. 8.4.4]. The
light emitted by the system in the “channel 1” interferes

with an intense laser beam represented by h, the local os-
cillator. The mathematical description of the apparatus
is given in [22, Sec. 3.5].
Let us note that the operator Qout(t;ϑ, h) involves the

whole time interval [0, t] and has to be interpreted as
cumulated output. The instantaneous output current
is represented by its formal time derivative Îout(t) :=

Q̇out(t;ϑ, h). From (7), (19), (20), (22) we get

Îout(t) = eiϑ h(t)
(
b1(t) + U †

tR1Ut

)
+ h.c. (24)

C. The stochastic representation

The commuting selfadjoint operators (21) have a joint
projection valued measure (pvm) Eh

ϑ , which gives the
probability distribution for the output of the continu-
ous measurement. Moreover, via the partial trace on
the fields, Eh

ϑ gives also the instruments describing the
transformations of S from time 0 to an arbitrary time
t, conditioned on the information acquired up to time
t. Furthermore, via joint diagonalization and condition-
ing, the pvm Eh

ϑ even gives the stochastic evolution of
the conditional state ρt (or a posteriori state), the state
of S at time t given the observed signal from time 0 to
time t. This evolution turns out to satisfy a stochastic
differential equation (SSE or SME), with classical driv-
ing noises. The introduction of such stochastic evolution
equations for the conditional state was an achievement
of the quantum filtering theory [7, 37–40].
The passage from the formulation with quantum fields

and Hudson-Parthasarathy equation to the one based on
classical stochastic differential equations can be done by
different techniques. The technique based on the use of
isomorphisms between the Fock space and the Wiener
space is very powerful and clear; here we present a variant
of the construction given in [12].
Let us note that the observation we consider is not

complete, because it regards only field 1 and involves only
positive times. To make unique the isomorphism which
diagonalizes the self-adjoint operators (21), we need to
add fictitious observations, involving quadratures of the
fields 2, . . . , d too. So, we take a function ℓ ∈ L∞(R;Cd)
such that

|ℓk(t)| = 1, ∀t ∈ R, ∀k, and ℓ1(t) = e−iϑh(t), ∀t ≥ 0;

then, we introduce the field quadratures: for k = 1, . . . , d,

Qk(t) :=

∫ t

0

ℓk(s)dB
†
k(s) + h.c. (25)

We use this definition for positive and negative times by

taking the convention
∫ t

0
= −

∫ 0

t
for a negative t. These

quadratures form a complete set of compatible observ-
ables on the Fock space Γ. Note that Q1(t) = Q(t;ϑ, h).
In the following subsection we jointly diagonalize all the
observables (25) by introducing an explicit isomorphism
between Fock and Wiener spaces.
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1. Spectral representation on the Wiener space

Fixed the functions ℓ1, . . . , ℓd, that is the field quad-
ratures (25), we look for a probability space (Ω,F,Q),
a unitary operator J : Γ[L2(R;Cd)] → L2(Ω,F,Q) (the
Hilbert space of the complex square integrable random
variables on the given probability space), and a family of
random variables Wk(t) on Ω such that

(
JQk(t)Ψ

)
(ω) =Wk(t;ω)

(
JΨ

)
(ω), (26)

for all t, k, and for all Ψ in the domain of the selfadjoint
operator Qk(t). This means that each Qk(t) is repres-
ented in L2(Ω,F,Q) as the multiplication operator by
Wk(t). We can get such a joint diagonalization on the
space of the canonical representation of the Wiener pro-
cess; the canonical Wiener process is presented, for in-
stance, in [16, Secs. A.2.4, A.2.6].
Let Ω = C0(R;R

d) be the space of the continuous
functions ω : R → Rd such that ω(0) = 0. We define
the d-dimensional process W (t) : Ω → Rd, t ∈ R, by
W (t, ω) = ω(t) and we denote by F the smallest σ-
algebra of subsets of Ω for which these functions W (t)
are measurable: F = σ

(
W (t) : t ∈ R

)
. Then, there

exists a unique probability measure Q on the measurable
space (Ω,F), the Wiener measure, such that the processes
Wk(t), Wk(−t), t ≥ 0, k = 1, . . . , d are 2d independent
standard Wiener processes. Moreover, for positive times
we introduce the natural filtration (Ft)t≥0 of the process
W : Ft = σ(W (s) : s ∈ [0, t]). Let us also recall that, if
φ, ψ ∈ L2(Ω,F,Q), then their inner product is given by
the Q-expectation EQ:

〈ψ|φ〉 = EQ[ψ φ] =

∫

Ω

ψ(ω)φ(ω)Q(dω).

Let J : Γ[L2(R;Cd)] → L2(Ω,F,Q) be the linear oper-
ator defined by: ∀g ∈ L2(R;Cd),

J e(g) = exp

{
d∑

k=1

∫ +∞

−∞

ℓk(s) gk(s) dWk(s)

}

× exp

{
−1

2

d∑

k=1

∫ +∞

−∞

(
ℓk(s) gk(s)

)2

ds

}

× exp

{
−1

2

d∑

k=1

∫ +∞

−∞

|gk(s)|2 ds

}
. (27)

In particular we have

J e(0) = 1, J e(1(0,t)f) ∈ L2(Ω,Ft,Q).

The operator J turns out to be an isomorphism and it
realizes the representation (26): J Qk(t) J

−1 = Wk(t),
i.e. the field quadratures are mapped into the operators
“multiplication by the Wiener processes”. Because the
isomorphism J jointly diagonalizes all the observables
(25), then their joint pvm on the Fock space is J−11AJ ,
∀A ∈ F.

a. The distribution of the output. Let us restrict
now to the observed quadrature (21); the σ-algebra
G∞ = σ(W1(t) : 0 ≤ t < +∞) is the space of all the
events regarding our observables Q(t;ϑ, h), t ≥ 0. Then,
the joint pvm Eh

ϑ of the observed quadratures is defined
on the measurable space (Ω,G∞) by

Eh
ϑ(G) = J−11GJ, ∀G ∈ G∞. (28)

Finally, we get the distribution of the output. By setting
Gt = σ(W1(s) : s ∈ [0, t]), then, Gt ⊂ G∞, is the space of
the observed events up to time t, associated to the ob-
servables Q(s;ϑ, h) for times from 0 to t, and, according
to the usual rules of quantum mechanics, the probabilit-
ies of such events are given by

P
ϑ,h
ρ,t (G) = Tr

{(
1H ⊗ Eh

ϑ(G)
)
Σf (t)

}
, ∀G ∈ Gt, ∀t ≥ 0.

(29)
Note that, when the field state is the vacuum and there

is no interaction between system S and the fields, this

probability reduces to P
ϑ,h
ρ,t (G) = 〈e(0)|Eh

ϑ(G) e(0)〉 =
EQ[1G] = Q(G). This means that in this case the quad-
ratures (21) are distributed as a standardWiener process.
Let us stress that the pvm (28) depends on the para-

meters ϑ and h defining the quadrature (21); these para-
meters are contained in the definition of the isomorphism
J (27). On the contrary, the choices of the trajectory
space (the measurable space (Ω,G∞)) and of the pro-
cess W1 are independent of ϑ and h. With respect to
the time dependence, the physical probabilities (29) are
consistent, i.e.

0 ≤ s ≤ t, G ∈ Gs ⇒ P
ϑ,h
ρ,t (G) = Pϑ,h

ρ,s (G). (30)

This result is due to the factorization property (4) of the
Fock space and to the localization properties of Ut [22,

Theor. 2.3], which imply U†
t

(
1H⊗Eh

ϑ(G)
)
Ut = U†

s

(
1H⊗

Eh
ϑ(G)

)
Us for 0 ≤ s ≤ t and G ∈ Gs, cf. Eq. (22).

A more detailed study of the statistical properties of
the output needs the introduction of the characteristic
operator (Sec. IIID).

2. The instruments

The observation of the emitted field can be interpreted
as an indirect measurement on the system S and this
is formalized by the concept of instrument [1, 2]. The
family of instruments It, t > 0, describing our measure
is defined by: ∀G ∈ Gt, ∀τ ∈ S(H),

It(G)[τ ] = TrΓ

{(
1H ⊗ Eh

ϑ(G)
)
Ut

(
τ ⊗ ̺Γ(f)

)
U†
t

}
.

(31)
For τ = ρ, the initial system state, Eq. (31) gives the
non-normalized state of S at time t conditioned on the
information that the values of the signal in the time in-
terval from 0 to t were in G. Of course we have

TrH {It(G)[ρ]} = P
ϑ,h
ρ,t (G), (32)
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while the normalized conditioned state is given by
It(G)[ρ] divided by its trace (32).
Let us remark that

ηt = It(Ω)[ρ], (33)

so that the system reduced state at time t in the case
of no observation (ηt) coincides with the so called a pri-
ori state (It(Ω)[ρ]), that is the system state at time t
in the case of observation performed but not taken into
account. This is in agreement with our rough picture of
the measurement process: we observe fields which have
already interacted with system S and which will never
interact again with it. This means that we acquire in-

formation on S, as we have It(G)[ρ] 6= P
ϑ,h
ρ,t (G)ηt, but we

do not add any perturbation on its evolution as we have
It(Ω)[ρ] = ηt.
a. The a posteriori states. Now we want to intro-

duce ρt, the state of S at time t conditioned on the
whole information supplied by our indirect measurement
between time 0 and time t, that is by the signal produced
by the measurement of Q(s;ϑ, h) for s ∈ [0, t]. Therefore,
ρt has to be a random state depending on the output
W1(s), 0 ≤ s ≤ t, that is a random state measurable
with respect to Gt; in other terms, we have the func-
tional dependence ρt(ω) = ρt

(
ω1(s), 0 ≤ s ≤ t). Such

a state is called a posteriori state and it is determined
by the initial state ρ and by the instrument It: it is the
unique Gt-measurable random state such that

It(G)[ρ] =
∫

G

ρt(ω)P
ϑ,h
ρ,t (dω), ∀G ∈ Gt. (34)

The definition of a posteriori state is not linked only to
measurements in continuous time, but it has been intro-
duced for a generic instrument [41].
As we have a reference probability Q on the out-

put space (Ω,Gt) we can equivalently look for the
non-normalized a posteriori state σt, the unique Gt-
measurable random positive operator such that

It(G)[ρ] =
∫

G

σt(ω)Q(dω), ∀G ∈ Gt. (35)

Then, Tr{σt} is the probability density of P
ϑ,h
ρ,t with re-

spect to Q and we have ρt = σt/Tr{σt}.
The non-normalized a posteriori state σt can be com-

puted by using the spectral representation (26) of the op-
erators Qk and its evolution can be obtained by passing
through the SSE.

3. The stochastic Schrödinger equation

In order to compute the a posteriori state of our in-
strument It (31), it is convenient to pass through two

fictitious instruments: Ĵt, associated to a complete set
of compatible observables in Γ, and Jt, associated to a
complete set of compatible observables in Γ[(0, t)]. This

latter instrument has the simple a posteriori state (38),
whose evolution is given by the SSE (40).
First of all, let us imagine, in the Heisenberg picture,

that in the time interval [0, t] we measure all the quad-
ratures Qout

k (s) = U†
sQk(s)Us, k = 1, . . . , d, s ∈ [0, t],

and moreover we conclude the measure by observing at

time t also the field observables Q̂k(u; t) = U†
tQk(u)Ut,

k = 1, . . . , d and u < 0 or u > t. This is a family of
commuting observables, thanks to (23) and to (19), that

implies Qout
k (s) = U†

tQk(s)Ut. Then, the instrument Ĵt

associated to this fictitious measurement is given by an
expression analogous to (31). If the system initial state
is pure, ρ = |r〉〈r|, r ∈ H, ‖r‖ = 1, then ∀F ∈ F,

Ĵt(F )[|r〉〈r|] = TrΓ
{(

1H ⊗ J−11FJ
)
|Ψt〉〈Ψt|

}
, (36)

where

Ψt = Ut

(
r ⊗ e(f)

)
.

To get the expression (36) we have changed picture and
cycled Ut against the state; then we have used the iso-
morphism J (27) that diagonalizes all the quadratures
Qk(u) (25).
The isomorphism J−1 does not involve the space H

and it can be cycled after 〈Ψt|; in this way we get

Ĵt(F )[|r〉〈r|] =
∫

F

|ϕt(ω)〉〈ϕt(ω)|Q(dω), (37)

where ϕt is the random H-vector

ϕt = JΨt = J Ut

(
r ⊗ e(f)

)
.

By comparing Eq. (37) with Eq. (35), we get that the

non-normalized a posteriori state σĴ
t associated to the

instrument Ĵ and to the premeasurement system state
ρ = |r〉〈r| is

σĴ
t (ω) = |ϕt(ω)〉〈ϕt(ω)|.

By construction σĴ
t is a random positive trace-class op-

erator, which is F-measurable.
Suppose now that we measure only the quadratures

Qout
k (s), 0 ≤ s ≤ t, k = 1, . . . , d; note that this set

of compatible observables is complete in Γ[(0, t)], not in
Γ[R]. With respect to the previous case, we simply have
to drop some commuting observables and thus the new
instrument Jt is just the restriction of Ĵt to the σ-algebra
Ft ⊂ F and, therefore, the new a posteriori state σJ

t is
the conditional expectation

σJ
t = EQ

[
σĴ
t

∣∣Ft

]
,

which is an Ft-measurable random positive operator.
Thanks to the properties of the Hudson-Parthasarathy
equation and to the choice of the observed quadratures
(local in (0, t) and no k neglected) the a posteriori state
is still almost surely pure:

σJ
t (ω) = |φt(ω)〉〈φt(ω)|, φt = J Ut

(
r ⊗ e(f1(0,t))

)
.

(38)
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a. The linear SSE. It is the (Ft)-adapted stochastic
process φt that satisfies the linear SSE and we show now
how to get it.

By introducing the Weyl operators Wt := W(f1(0,t))
we can write e(f1(0,t)) = Wte(0) and

φt = J Ut Wt

(
r ⊗ e(0)

)
. (39)

By using the definition of the Weyl operators and the
quantum stochastic calculus it is easy to check that Wt

satisfies a quantum SSE (11) with Rk = fk(t) and H0 =

0. Then, the quantum stochastic differential of UtWt is
given by

d (UtWt) =
(
(dUt)Wt + Ut dWt + (dUt) dWt

)
.

This can be computed by using the quantum Itô table (9)
and exploiting that operators localized in disjoint time

intervals commute and that the differentials dB
(†)
k (t) are

localized in (t, t+dt) with respect to the factorization (4)
of the Fock space; in particular this means that dBk(t)
and Ut commute and the same holds for dBk(t) and Wt.
The result is

d (UtWt) =

{
Kdt+

∑

k

[(
Rk + fk(t)

)
dB†

k(t)−
(
R†

k + fk(t)
)
dBk(t)−

(
1
2 |fk(t)|

2
+ fk(t)R

†
k

)
dt
]}
Ut Wt.

Now, we use this result to compute the differential of φt (39). The key point is that

(
dBk(t)

)
Ut Wt (r ⊗ e(0)) = Ut Wt dBk(t) (r ⊗ e(0)) = 0,

so that we can change the coefficient of dBk(t) as we wish. By this and the fact that |ℓk(t)| = 1, we can write

dφt = J

{
Kdt+

∑

k

[(
Rk + fk(t)

)
ℓk(t) dQk(t)−

(
1
2 |fk(t)|

2
+ fk(t)R

†
k

)
dt
]}
Ut Wt

(
r ⊗ e(0)

)
.

Finally, by Eqs. (10), (26), and (39) we obtain the linear SSE:

dφt =

{∑

k

[
ℓk(t)

(
Rk + fk(t)

)
dWk(t)−

1

2

(
R†

k + fk(t)
) (
Rk + fk(t)

)
dt

]
− i

[
H0 +

i

2

∑

k

(
fk(t)Rk − fk(t)R

†
k

)]
dt

}
φt.

(40)

Therefore, the a posteriori evolution of system S under
the continuous measurement It is a stochastic evolution
mapping pure states into pure states. In particular, the
evolution of the non-normalized pure state φt is given by
the linear SSE (40) and it is Markovian and depends on
the interaction (11) between S and Γ, on the field initial
state ̺Γ(f) and on the observed quadratures Qout

k (s).

It is now possible to show that ‖φT (ω)‖2H Q(dω) defines
a new probability on (Ω,FT ) and that, under this new
probability, the process ψt := φt/ ‖φt‖H, t ∈ [0, T ], sat-
isfies a nonlinear stochastic differential equation. This
last equation is the nonlinear SSE, which is the start-
ing point for useful numerical simulation. A key point
in the change of probability is the fact that ‖φt‖2H is a
Q-martingale and that the so called Girsanov transform-
ation can be invoked. For the theory of the linear and
nonlinear SSE we refer to [16, Sec. 2].

4. The stochastic master equation

By Itô calculus, from the SSE (40) we get the stochastic
equation satisfied by the random operator σJ

t (38):

dσJ
t =L(t)[σJ

t ] dt+
∑

k

{
ℓk(t)

(
Rk + fk(t)

)
σJ
t

+ σJ
t ℓk(t)

(
R†

k + fk(t)
)}

dWk(t), (41)

where L(t) is the Liouville operator (15).
We can now get rid of the hypothesis of a pure ini-

tial state and prove that Eq. (41) gives the a posteriori
evolution for a generic system initial state

ρ =
∑

ℓ

pℓ|rℓ〉〈rℓ|, ‖rℓ‖H = 1, pℓ > 0,
∑

ℓ

pℓ = 1.

Indeed, if we set

φℓt = J Ut Wt

(
rℓ ⊗ e(0)

)
,

then, by linearity the process

σJ
t (ω) =

∑

ℓ

pℓ|ϕℓ
t(ω)〉〈ϕℓ

t(ω)|
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is adapted, satisfies Eq. (41), and gives the a posteriori
state of Jt,

Jt(F )[ρ] =

∫

F

σJ
t (ω)Q(dω), ∀F ∈ Ft. (42)

Finally, we consider our instrument It, which is the
restriction of Jt to Gt, so that Eq. (35), defining the non-
normalized a posteriori states, holds with

σt = EQ

[
σJ
t

∣∣Gt

]
. (43)

Let us recal that ℓ1(t) = e−iϑh(t), that the Q-mean of any
Wk(s) is zero, that Gt is generated by W1 and that the
other components of the Wiener process are independent
from the first one. Then, by applying the conditional
expectation with respect to Gt to (41), we obtain the
linear SME for the non-normalized a posteriori states of
It

dσt =L(t)[σt] dt+
{
eiϑh(t)

(
R1 + f1(t)

)
σt

+ σt e
−iϑh(t)

(
R†

1 + f1(t)
)}

dW1(t). (44)

As already said at the end of Sec. III C 2, the quant-
ity TrH {σt(ω)} is the density of the physical probability
with respect to Q. Indeed, from Eqs. (35) and (32) we
get

P
ϑ,h
ρ,t (G) =

∫

G

TrH {σt(ω)}Q(dω), ∀G ∈ Gt. (45)

By taking the trace of the SME (44), it is possible to
show that TrH {σt} is a Q-martingale. In the stochastic
formulation it is just this fact that implies the consistency
property (30), which we already encountered in the Fock
space formulation.
As already seen, if we define ρt = σt/TrH{σt}, we get

the a posteriori state for the instrument It and the pre-
measurement state ρ. By (33), the a posteriori states are
related to the system reduced state by

∫

Ω

ρt(ω)P
ϑ,h
ρ,t (dω) =

∫

Ω

σt(ω)Q(dω) = ηt. (46)

It is also possible to prove that, under the physical
probability, ρt satisfies a nonlinear SME. Moreover, by
studying the stochastic differential of TrH {σt} and by
using Girsanov theorem, it is possible to prove the fol-
lowing result.

a. The noise. Under the physical probability P
ϑ,h
ρ,T

the process

Ŵ1(t) :=W1(t)−2Re

∫ t

0

eiϑh(s) TrH
{(
R1 + f1(s)

)
ρs
}
ds

is a standard Wiener process for t ∈ [0, T ].

In other terms we can say that, under the physical
probability, the instantaneous output I(t) = Ẇ1(t) is

the sum of a white noise dŴ1(t)/dt plus a regular signal
2ReTrH

{(
R1 + f1(t)

)
ρt
}
. White noise and signal turn

out to be correlated in general. Let us stress that this
result on the structure of the output is a byproduct of
the stochastic representation of the continuous measure-
ments. From this representation and Eq. (46) the mean
value of the observed quadrature at time t is

Tr
{(

1H ⊗Q(t;ϑ, h)
)
Σf (t)

}
=

∫

Ω

W1(t;ω)P
ϑ,h
ρ,t (dω)

= 2Re

∫ t

0

eiϑh(s) TrH
{(
R1 + f1(s)

)
ηs
}
ds. (47)

The full theory of the linear and nonlinear SME’s and
their relations with the physical probability and the ref-
erence probability Q are presented in [16, Secs. 3 and 5].

D. Characteristic functional and moments

In the study of stochastic processes it is often useful
to have explicit formulae for the moments, for instance
for the second order moments, which determine the spec-
trum of the process; see Sec. IVA. In the case of our out-
put, the mean function is given by Eq. (47); to get the
higher moments it is useful to introduce the character-
istic functional, which is the functional Fourier transform
of the probability distribution of the process.

Let us denote by E
ϑ,h
ρ,t the expectation with respect

to the physical probability P
ϑ,h
ρ,t . By recalling that the

output is represented byW1, the characteristic functional
up to time t > 0 is

Φt(k;ϑ, h) = E
ϑ,h
ρ,t

[
exp

{
i

∫ t

0

k(s) dW1(s)

}]
; (48)

the argument k is any real test function in L∞(R+).
By functional differentiation with respect to the test

function one gets all the moments of the process, as
done in Sec. IIID 2. Moreover, when the characteristic
functional is given, one gets the probabilities by anti-
Fourier transform. For instance, the finite-dimensional
probability densities of the increments W1(t1)−W1(t0),
W1(t2)−W1(t1), . . . , W1(tn)−W1(tn−1), with 0 ≤ t0 <
t1 < · · · < tn ≤ t, are given by

1

(2π)n

∫

Rn

dκ1 · · · dκn
( n∏

j=1

e−iκj ·xj

)
Φt(k;ϑ, h),

where we have introduced the test function k(s) =∑n
j=1 1(tj−1,tj)(s)κj .

1. Characteristic operators

As our measurement is an indirect observation of S
performed by a direct observation of Γ, the character-
istic functional (48) can be expressed either in terms
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of the system S only or in terms of the fields only.
First, we want to express it in terms of the quantum
observables (21). We introduce the characteristic oper-

ator Φ̂t(k;ϑ, h), the Fourier transform of the pvm Eh
ϑ [21,

Sec. 11.4.2], [22, Sec. 3.2]:

Φ̂t(k;ϑ, h) =

∫

Ω

exp

{
i

(∫ t

0

k(s) dW1(s)

)
(ω)

}
Eh

ϑ(dω).

(49)

By using the representation (28) of the pvm, the cor-
respondence between Q and W1 (26), and the definition
of Q (21), we get

Φ̂t(k;ϑ, h) = J−1 exp

{
i

∫ t

0

k(s) dW1(s)

}
J

= exp

{
i

∫ t

0

k(s) dQ(s;ϑ, h)

}

= exp

{
ie−iϑ

∫ t

0

k(s)h(s) dB†
1(s)− h.c.

}
.

(50)

By comparing this expression with Eq. (6), we see that
the characteristic operator is the unitary Weyl operator

Φ̂t(k;ϑ, h) = W(q), qj(s) = δj1ie
−iϑk(s)h(s)1[0,t](s).

Then, by using the expression (29) of the physical
probability, the characteristic functional can be written
as

Φt(k;ϑ, h) = Tr
{
Φ̂t(k;ϑ, h)Σf (t)

}

= Tr

{
exp

[
i

∫ t

0

k(s) dQout(s;ϑ, h)

]
ρ⊗ ̺Γ(f)

}

= TrΓ

{
Φ̂t(k;ϑ, h)Πf (t)

}
. (51)

The last step is due to the fact that Φ̂t(k;ϑ, h) depends
only on field operators; recall that Σf (t) is the state of
the total system S plus fields, while Πf (t) is the reduced
state of the fields (13).

Finally, let us define the reduced characteristic operator
Gt as the functional Fourier transform of the instrument
(31) [3, 4, 16, 22]:

Gt(k;ϑ, h) =

∫

Ω

exp

{
i

(∫ t

0

k(s) dW1(s)

)
(ω)

}
It(dω).

(52)
It can be shown that Gt satisfies a closed differential equa-
tion, a kind of modification of the master equation [4].
Then, by the representation (32) of the physical probab-
ilities, we get a further expression of the characteristic
functional:

Φt(k;ϑ, h) = TrH {Gt(k;ϑ, h)[ρ]} .

2. The output moments

By functional differentiation of the characteristic func-
tional, we get all the moments of the classical output
process. Let us introduce the formal time derivatives
I(t) = Ẇ1(t) and Î(t) = Q̇(t;ϑ, h); from (50) and (51)
we obtain immediately the expressions of mean function
and autocorrelation function:

E
ϑ,h
ρ,T [I(t)] = Tr

{
Q̇(t;ϑ, h)Σf (T )

}
= TrΓ

{
Î(t)Πf (T )

}

= 2Re
(
eiϑ h(t) TrΓ {b1(t)Πf (T )}

)
, (53a)

E
ϑ,h
ρ,T [I(t)I(s)] = TrΓ

{
Î(t)Î(s)Πf (T )

}

= δ(t− s) + 2Re
(
h(s) TrΓ

{(
h(t)b†1(t)

+ e2iϑ h(t) b1(t)
)
b1(s)Πf (T )

})
, (53b)

where T > t, T > s. Analogous formulae hold for
higher moments. Let us note that the order of the op-
erators Î(t) and Î(s) in (53b) does not matter, because
they commute. Moreover, the moments of the classical
process I(t) are expressed in terms of quantum means
and quantum correlations of the fields [21, p. 165 and

Sec. 11.3.2]: TrΓ {b1(t)Πf (T )}, TrΓ
{
b†1(t)b1(s)Πf (T )

}
,

TrΓ {b1(t)b1(s)Πf (T )}, and the complex conjugated ex-
pressions. The fields are all in normal order because we
put in evidence the delta term coming out from a com-
mutator.
By studying the properties of the reduced character-

istic operator (52), it is possible to prove that all the mo-
ments of our classical output can be expressed by means
of quantities concerning only system S [22]. For the mean
and autocorrelation functions the final result is [22, Secs.
3.3, 3.5]

E
ϑ,h
ρ,T [I(t)] = 2Re (TrH {Z(t)ηt}) , (54a)

E
ϑ,h
ρ,T [I(t)I(s)] = δ(t− s) + 2Re

(
TrH

{
Z(t2)

×Υ(t2, t1)
[
Z(t1)ηt1 + ηt1Z(t1)

†
]})

,

(54b)

where t2 = t ∨ s, t1 = t ∧ s and

Z(t) := eiϑ h(t) (R1 + f1(t)) .

These expressions are more useful for computations,
while the expressions (53) are better suited for theor-
etical considerations; cf. [21, Sec. 5.4.6].

IV. THE SPECTRUM OF THE OUTPUT

Inside the theory of continuous measurements, the out-
put of the measurement is a classical stochastic process,
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whose distribution is determined by quantum mechan-
ics; so, the spectrum of the output can be introduced by
using the classical definition of spectrum of a stochastic
process [42–44].

A. The spectrum of a stationary process

In the classical theory of stochastic processes, the spec-
trum is related to the Fourier transform of the autocorrel-
ation function [45]. Let Y be a stationary real stochastic
process with finite moments; then, the mean is inde-
pendent of time E[Y (t)] = E[Y (0)] =: mY , ∀t ∈ R, and
the second moment is invariant under time translations:
∀t, s ∈ R,

E[Y (t)Y (s)] = E[Y (t− s)Y (0)] =: RY (t− s). (55)

The function RY (t), t ∈ R, is called the autocor-
relation function of the process. Obviously, we have
Cov [Y (t), Y (s)] = RY (t− s)−m 2

Y .
The spectrum of the stationary stochastic process Y is

the Fourier transform of its autocorrelation function:

SY (µ) :=

∫ +∞

−∞

eiµtRY (t) dt. (56)

This formula has to be intended in the sense of distribu-
tions. If Cov [Y (t), Y (0)] ∈ L1(R), we can write

SY (µ) := 2πm 2
Y δ(µ) +

∫ +∞

−∞

eiµt Cov [Y (t), Y (0)] dt.

(57)
By the properties of the covariance, the function
Cov [Y (t), Y (0)] is positive definite and, by the prop-
erties of positive definite functions, this implies∫ +∞

−∞
eiµt Cov [Y (t), Y (0)] dt ≥ 0; then, also SY (µ) ≥ 0.

By using the stationarity and some tricks on multiple
integrals, one can check that an alternative expression of
the spectrum is

SY (µ) = lim
T→+∞

1

T
E



∣∣∣∣∣

∫ T

0

eiµtY (t) dt

∣∣∣∣∣

2

 . (58)

The advantage now is that the positivity of the spectrum
appears explicitly and only positive times are involved
[45]. Expression (58) can be generalized also to processes
which are stationary only in some asymptotic sense and
to singular processes as our I(t).

B. The spectrum of the output in a finite time

horizon

Let us consider our output I(t) = dW1(t)/dt under the

physical probability P
ϑ,h
ρ,T . We call “spectrum up to time

T” of I(t) the quantity

ST (µ;ϑ) =
1

T
E
ϑ,h
ρ,T



∣∣∣∣∣

∫ T

0

eiµt dW1(t)

∣∣∣∣∣

2

 . (59)

Note that the spectrum is an even function of µ:
ST (µ;ϑ) = ST (−µ;ϑ). When the limit T → +∞ exists,
we can speak of spectrum of the output, but this existence
depends on the specific properties of the concrete model.
By writing the second moment defining the spectrum

as the square of the mean plus the variance, the spectrum
splits in an elastic or coherent part and in an inelastic or
incoherent one:

ST (µ;ϑ) = Sel
T (µ;ϑ) + Sinel

T (µ;ϑ), (60a)

Sel
T (µ;ϑ) =

1

T

∣∣∣∣∣E
ϑ,h
ρ,T

[∫ T

0

eiµt dW1(t)

]∣∣∣∣∣

2

, (60b)

Sinel
T (µ;ϑ) =

1

T
Varϑ,hρ,T

[∫ T

0

cosµt dW1(t)

]

+
1

T
Varϑ,hρ,T

[∫ T

0

sinµt dW1(t)

]
. (60c)

Let us note that

Sel
T (µ;ϑ) = Sel

T (−µ;ϑ), Sinel
T (µ;ϑ) = Sinel

T (−µ;ϑ).
(61)

In Sec. IIID we have seen two ways of expressing the
output moments, by means of field operators or by means
of system operators.
By using the expression (53b) for the autocorrelation

function of the output, we obtain

ST (µ;ϑ) = 1 +
2

T

∫ T

0

dt

∫ T

0

ds eiµ(t−s) Re
(
h(s)

× TrΓ

{(
h(t)b†1(t) + e2iϑ h(t) b1(t)

)
b1(s)Πf (T )

})
.

(62)

Let us note that Eq. (62) expresses the spectrum as a
Fourier transform (in a finite time interval) of a normal
ordered quantum correlation function of the field; cf. [15,
Sec. 9.3.2].
By using the expressions (54) for the first two moments

we get the spectrum in a form which involves only system
operators:

Sel
T (µ;ϑ) =

1

T

∣∣∣∣∣

∫ T

0

eiµt TrH
{(
Z(t) + Z(t)†

)
ηt
}
dt

∣∣∣∣∣

2

=
4

T

∣∣∣∣∣

∫ T

0

eiµt Re
[
eiϑ h(t)

(
TrH {R1ηt}+ f1(t)

)]
dt

∣∣∣∣∣

2

,

(63a)

Sinel
T (µ;ϑ) = 1 +

2

T

∫ T

0

dt

∫ t

0

ds cosµ(t− s)

× TrH

{(
Z̃(t) + Z̃(t)†

)
Υ(t, s)

[
Z̃(s)ηs + ηsZ̃(s)

†
]}

,

(63b)

Z̃(t) = Z(t)−TrH {Z(t)ηt} = eiϑ h(t)
(
R1−TrH {R1ηt}

)
.
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C. Properties of the spectrum and the Heisenberg

uncertainty relations

Equations (63) give the spectrum in terms of the re-
duced description of system S (the fields are traced out);
this is useful for concrete computations. But the general
properties of the spectrum are more easily obtained by
working with the fields; so, here we trace out system S
and we start from expression (62).
Let us define the field operators

QT (µ;ϑ) =
1√
T

∫ T

0

eiµt dQ(t;ϑ, h), (64a)

Q̃T (µ;ϑ) = QT (µ;ϑ)− TrΓ {Πf (T )QT (µ;ϑ)} ; (64b)

the local oscillator wave h is fixed. Let us stress that
QT (µ;ϑ) commutes with its adjoint and thatQT (µ;ϑ)

† =
QT (−µ;ϑ). By using Eqs. (51) and (53) and taking first
the trace over H, we get

ST (µ;ϑ) = TrΓ
{
Πf (T )QT (µ;ϑ)

†QT (µ;ϑ)
}
≥ 0, (65a)

Sel
T (µ;ϑ) = |TrΓ {Πf (T )QT (µ;ϑ)}|2 ≥ 0, (65b)

Sinel
T (µ;ϑ) = TrΓ

{
Πf (T )Q̃T (µ;ϑ)

†Q̃T (µ;ϑ)
}
≥ 0.

(65c)

1. Spectrum and field modes

To elaborate the previous expressions it is useful to
introduce annihilation and creation operators for bosonic
temporal modes, as in Sec. II A 3:

aT (µ) :=
1√
T

∫ T

0

eiµth(t) dB1(t) ≡ c1(g
µ
T ), (66)

gµT (t) :=
e−iµt

√
T
h(t)1[0,T ](t). (67)

The operators aT (µ), a
†
T (µ) are true bosonic modes, as

they satisfy the CCR

[aT (µ), aT (µ
′)] = [a†T (µ), a

†
T (µ

′)] = 0, (68a)

[aT (µ), a
†
T (µ)] = 1. (68b)

However, for finite T these modes are only approximately
orthogonal, as we get

[aT (µ), a
†
T (µ

′)] =
ei(µ−µ′)T − 1

i(µ− µ′)T
for µ′ 6= µ. (69)

Then, from Eqs. (21), (64a), (65a) we have easily

QT (µ;ϑ) = eiϑaT (µ) + e−iϑa†T (−µ), (70)

ST (µ;ϑ) = TrΓ

{(
e−iϑa†T (−µ) + eiϑaT (µ)

)

×Πf (T )
(
e−iϑa†T (µ) + eiϑaT (−µ)

)}
. (71)

Let us stress that only two field modes contribute to the
spectrum for µ 6= 0, and only one mode in the case of
µ = 0. By using the CCR (68) we get the normal ordered
version of (71):

ST (µ;ϑ) = 1

+ TrΓ

{
Πf (T )

(
a†T (µ)aT (µ) + a†T (−µ)aT (−µ)

+ e−2iϑa†T (µ)a
†
T (−µ) + e2iϑaT (−µ)aT (µ)

)}
. (72)

Note that Eq. (69) played no role in the normal ordering
operation.
By Eqs. (65b) and (70) we get for the elastic part of

the spectrum

Sel
T (µ;ϑ) =

∣∣∣TrΓ {Πf (T )aT (µ)}

+ e−2iϑ TrΓ

{
Πf (T )a

†
T (−µ)

} ∣∣∣
2

. (73)

To obtain a similar expression also for the inelastic
part, it is convenient to introduce the operators

ãT (µ) := aT (µ)− TrΓ {Πf (T )aT (µ)} , (74)

which satisfy the same commutation relations (68), (69)
as the operators aT (µ) and their adjoint. Then, we get

Q̃T (µ;ϑ) = eiϑãT (µ) + e−iϑã†T (−µ), (75)

Sinel
T (µ;ϑ) = 1

+ TrΓ

{
Πf (T )

(
ã†T (µ)ãT (µ) + ã†T (−µ)ãT (−µ)

+ e−2iϑã†T (µ)ã
†
T (−µ) + e2iϑãT (−µ)ãT (µ)

)}
. (76)

2. Spectra of complementary quadratures

Let us consider two choices of the phase ϑ: ϑ and ϑ±
π/2. From Eq. (23) we get

[Q(t;ϑ, h), Q(s;ϑ± π/2, h)] = ∓2i (t ∧ s) ,
which means that we are considering two incompatible
field quadratures, measured by two different setups. For
these quadratures we have the important bounds and re-
lations given in the following theorem.

Theorem 1. For every ϑ and µ we have the following
relations:

1

2

(
Sel
T (µ;ϑ) + Sel

T (µ;ϑ± π
2 )
)

= |TrΓ {Πf (T )aT (µ)}|2 + |TrΓ {Πf (T )aT (−µ)}|2 ,
(77a)

1

2

(
Sinel
T (µ;ϑ) + Sinel

T (µ;ϑ± π
2 )
)
= 1

+ TrΓ

{
Πf (T )

(
ã†T (µ)ãT (µ) + ã†T (−µ)ãT (−µ)

)}
,

(77b)
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√
Sinel
T (µ;ϑ)Sinel

T (µ;ϑ± π
2 ) ≥ 1

+
∣∣∣TrΓ

{
Πf (T )

(
ã†T (µ)ãT (µ)− ã†T (−µ)ãT (−µ)

)}∣∣∣ .
(78)

Then, independently of the system state ρ, of the field
state ̺Γ(f), of the function h and of the Hudson-
Parthasarathy evolution U , the following two important
bounds hold:

Sinel
T (µ;ϑ)Sinel

T (µ;ϑ± π
2 ) ≥ 1, (79)

1

2

(
Sinel
T (µ;ϑ) + Sinel

T (µ;ϑ± π
2 )
)
≥ 1. (80)

Proof. First of all from Eqs. (73), (76) we get Eqs. (77).
Then, the bound (80) comes immediately from Eq. (77b).
The bound (79) is a trivial consequence of Eq. (78).
To prove the bound (78), we write

Sinel
T (µ;ϑ) = TrΓ

{(
e−iϑã†T (−µ) + eiϑãT (µ)

)

×Πf (T )
(
e−iϑã†T (µ) + eiϑãT (−µ)

)}
.

The usual tricks to derive the Heisenberg-Scrödinger-
Robertson uncertainty relations can be generalized also
to non-selfadjoint operators [8]. For any choice of the
state ̺ and of the operators X1, X2 (with finite second
moments with respect to ̺) the 2×2 matrix with elements

Tr
{
Xi̺X

†
j

}
is positive definite and, in particular, its

determinant is not negative. Then, we have

Tr
{
X1̺X

†
1

}
Tr

{
X2̺X

†
2

}
≥

∣∣∣Tr
{
X1̺X

†
2

}∣∣∣
2

≥
∣∣∣ImTr

{
X1̺X

†
2

}∣∣∣
2

=
1

4

∣∣∣Tr
{
̺
(
X†

2X1 −X†
1X2

)}∣∣∣
2

.

By taking ̺ = Πf (T ),

X1 = e−iϑã†T (−µ) + eiϑãT (µ),

X2 = ∓ie−iϑã†T (−µ)± ieiϑãT (µ),

we get

Sinel
T (µ;ϑ)Sinel

T (µ;ϑ± π
2 )

≥
∣∣∣1 + TrΓ

{
Πf (T )

(
ã†T (−µ)ãT (−µ)− ã†T (µ)ãT (µ)

)}∣∣∣
2

.

But we can change µ in −µ and we have also

Sinel
T (µ;ϑ)Sinel

T (µ;ϑ± π
2 ) = Sinel

T (−µ;ϑ)Sinel
T (−µ;ϑ± π

2 )

≥
∣∣∣1 + TrΓ

{
Πf (T )

(
ã†T (µ)ãT (µ)− ã†T (−µ)ãT (−µ)

)}∣∣∣
2

.

The two inequalities together give the final result (78).

Equations (77) express the independence from ϑ of the
arithmetic mean, in both cases of elastic and inelastic
spectra. Equation (78) is a bound of Robertson type;
such a bound does not depend on ϑ, but it is still de-
pendent on the initial state and on the dynamics. The
Heisenberg-type relation (79) and the bound (80) are
fully independent of the initial state and of the dynamics.

One speaks of squeezed field or of the spectrum of
squeezing [15, Sec. 9.3.2] if, at least in a region of the
µ line, for some ϑ one has Sinel

T (µ;ϑ) < 1. If this
happens, the bounds (79) and (80) say that necessar-
ily Sinel

T (µ;ϑ + π
2 ) > 1 in such a way that the product

and the arithmetic mean are bigger than one. Note that,
with our choice of the environment initial state, any pos-
sible squeezing can be imputed to the interaction with
S. Indeed, in the case of no interaction, the output
W1 is a Wiener process plus a deterministic drift and
Sinel
T (µ, ϑ) ≡ 1.

V. HOMODYNING VERSUS HETERODYNING

OF THE FLUORESCENCE LIGHT OF A

TWO-LEVEL ATOM

Let us take as system S a two-level atom, which means
H = C2, H0 = ν0

2 σz; ν0 > 0 is the resonance frequency
of the atom. We denote by σ− and σ+ the lowering and
rising operators and by σx = σ− + σ+, σy = i(σ− − σ+),
σz = σ+σ− − σ−σ+ the Pauli matrices; we set also

σϑ = eiϑ σ− + e−iϑ σ+, P± = σ±σ∓.

The atom can absorb and emit light and it is stimulated
by a laser; some thermal environment can be present too.
The quantum fields Γ model the whole environment.

a. The absorption/emission terms. The electro-
magnetic field is split in two fields, according to the dir-
ection of propagation: one field for the photons in the
forward direction (k = 2), that of the stimulating laser
and of the lost light, one field for the photons collected by
the detector (k = 1). In the rotating wave approximation
we can take

R1 =
√
γp σ− , R2 =

√
γ(1− p)σ− .

The coefficient γ > 0 is the natural line-width of the
atom, p is the fraction of the detected fluorescence light
and 1 − p is the fraction of the lost light (0 < p < 1)
[9, 21, 22, 44].

b. Other dissipation terms. We introduce also the
interaction with a thermal bath,

R3 =
√
γnσ− , R4 =

√
γnσ+ , n ≥ 0,

and a term responsible of dephasing (or decoherence),

R5 =
√
γkd σz , kd ≥ 0.
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c. The laser wave. We consider a perfectly coherent
monochromatic laser of frequency ν > 0:

fk(t) = δk2
iΩ

2
√
γ(1− p)

e−iνt1[0,T ](t); (81)

T is a time larger than any other time in the theory and
the limit T → +∞ is taken in all the physical quantities.
The quantity Ω ≥ 0 is called Rabi frequency and ∆ν =
ν0 − ν is called detuning.
d. Master equation. With these choices the Li-

ouville operator (15) becomes

L(t)[ρ] =− i

2
[ν0σz +Ωσνt, ρ] + γkd (σzρσz − ρ)

+ γ (n+ 1)

(
σ−ρσ+ − 1

2
{P+, ρ}

)

+ γn

(
σ+ρσ− − 1

2
{P−, ρ}

)
. (82)

The master equation (14) can be solved by using Bloch
equations in the rotating frame [16, Sec. 8.2]. Indeed, we
have

Υ(t, s)[ρ] = e−
i

2
νtσzeĽ(t−s)

[
e

i

2
νsσzρe−

i

2
νsσz

]
e

i

2
νtσz ,

(83a)

Ľ[ρ] =− i

2
[ν0σz +Ωσx, ρ] + γkd (σzρσz − ρ)

+ γ (n+ 1)

(
σ−ρσ+ − 1

2
{P+, ρ}

)

+ γn

(
σ+ρσ− − 1

2
{P−, ρ}

)
. (83b)

The system reduced state turns out to be given by

ηt =
1

2

{
1+ [x(t) + iy(t)] eiνtσ−

+ [x(t)− iy(t)] e−iνtσ+ + z(t)σz
}
, (84)

where

~x(t) = e−At~x(0)− γ
1− e−At

A



0
0
1


 ,

A =



γ
(
1
2 + n+ 2kd

)
∆ν 0

−∆ν γ
(
1
2 + n+ 2kd

)
Ω

0 −Ω γ (1 + 2n)


 .

A. Homodyning

The squeezing in the fluorescence light is revealed by
homodyne detection, which needs to maintain phase co-
herence between the laser stimulating the atom and the
laser in the detection apparatus which determines the ob-
servables Q(t;ϑ, h). To maintain phase coherence for a

long time, the stimulating wave f and the local oscillator
wave h must be produced by the same physical source
and this means to take h proportional to f . So, by in-
cluding any phase shift in the pase ϑ already present in
the definition (21), to describe homodyning we take

h(t) =
−if2(t)

|f2(t)|
. (85)

With the choice (21) for f , we get h(t) = e−iνt1[0,T ](t).
The limit T → +∞ can be taken in Eqs. (63) and it is

independent of the atomic initial state [44]. The result is
[16, Sec. 9.2.1]

Sel
hom(µ;ϑ) : = lim

T→+∞
Sel
T (µ;ϑ)

= 2πγp |~s(ϑ) · ~xeq|2 δ(µ), (86)

Sinel
hom(µ;ϑ) : = lim

T→+∞
Sinel
T (µ;ϑ)

= 1 + 2pγ ~s(ϑ) ·
(

A

A2 + µ2
~t(ϑ)

)
, (87)

where

~t(ϑ) =



(
1 + zeq − x 2

eq

)
cosϑ− xeqyeq sinϑ(

1 + zeq − y 2
eq

)
sinϑ− xeqyeq cosϑ

− (1 + zeq)~s(ϑ) · ~xeq


 ,

~s(ϑ) =



cosϑ
sinϑ
0


 , ~xeq = −γA−1



0
0
1


 .

Examples of inelastic homodyne spectra are plotted in
Figure 1 for γ = 1, n = kd = 0, p = 4/5. The Rabi fre-
quency Ω, the detuning ∆ν and the phase ϑ are chosen
in order to get the deepest minimum of Sinel

hom in µ = 2.
Thus, in this case the analysis of the homodyne spec-
trum reveals the squeezing of the detected light. Also the
complementary spectrum is shown, in order to illustrate
the role of the Heisenberg-type uncertainty relation (79).
One could also compare the homodyne spectrum with
and without n and kd, thus verifying that the squeezing
is very sensitive to any small perturbation.

B. Heterodyning

When the local oscillator and the stimulating wave are
not produced by the same source, the phase difference
cannot be maintained for a long time; in this case we
have heterodyne detection. In the case of perfectly mono-
chromatic waves, with a stimulating laser represented by
(81), we take as local oscillator

h(t) = e−iνlot1[0,T ](t), νlo 6= ν. (88)
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Figure 1. Sinel

hom(µ;ϑ) with ∆ν = 1.4937, Ω = 1.4360 and
ϑ = −0.1748 (solid line), ϑ = π

2
− 0.1748 (dashed line).

Again the limit T → +∞ can be taken in Eqs. (63)
and it turns out to be independent of the atomic initial
state and of ϑ. Let us set

v := νlo − ν;

then, the final result is: Shet(µ; νlo) = Sel
het(µ; νlo) +

Sinel
het (µ; νlo),

Sel
het(µ; νlo) = lim

T→+∞
Sel
T (µ;ϑ)

=
π

2
γp

(
x 2
eq + y 2

eq

) (
δ(µ− v) + δ(µ+ v)

)

=
1

4

[
Sel
hom(µ− v ; 0) + Sel

hom(µ− v ;π/2)

+ Sel
hom(µ+ v ; 0) + Sel

hom(µ+ v ;π/2)
]
,

(89a)

Sinel
het (µ; νlo) = lim

T→+∞
Sinel
T (µ;ϑ) = γpD(µ, v)

+
1

4

[
Sinel
hom(µ− v ; 0) + Sinel

hom(µ− v ;π/2)

+ Sinel
hom(µ+ v ; 0) + Sinel

hom(µ+ v ;π/2)
]
, (89b)

D(µ, v) :=

= ~s
(
π
2

)
·
(

(µ+ v)/2

A2 + (µ+ v)2
− (µ− v)/2

A2 + (µ− v)2

)
~t(0)

− ~s(0) ·
(

(µ+ v)/2

A2 + (µ+ v)2
− (µ− v)/2

A2 + (µ− v)2

)
~t
(
π
2

)
.

(89c)

Recall that ~s(0) = (1, 0, 0) and ~s(π/2) = (0, 1, 0).
The inelastic heterodyne spectrum (89c) can also be

written as

Sinel
het (µ; νlo) = 1 + 2πp [Σinel(µ+ v) + Σinel(µ− v)] ,

(90)

Σinel(µ) =
γ

4π
Re

(
(1, i, 0) · 1

A+ iµ

[
~t(0)− i~t(π/2)

])
.

(91)

1. Properties of the heterodyne spectrum

By explicit computations, it is possible to prove [16,
Proposition 9.3 and Remark 9.4 in Sec. 9.1.2] that

∆ν = 0 ⇒ D(µ, v) = 0

and that

n = 0 and kd = 0 ⇒ D(µ, v) = 0.

In these cases the heterodyne spectrum reduces to a lin-
ear combination of different homodyne contributions.
a. The lower bound of the heterodyne spectrum. Be-

ing Sinel
het (µ; νlo) independent of ϑ, any one of the two

bounds in Theorem 1 implies

Sinel
het (µ; νlo) ≥ 1, ∀µ, ∀νlo. (92)

This means that it is impossible to see squeezing by het-
erodyning. This is true not only in the model of this
section, but in any physical set up for which the depend-
ence on ϑ is lost.

2. The power spectrum

Let us consider now the heterodyne spectrum as a func-
tion of the frequency of the local oscillator in the case
µ = 0. By particularizing the expressions (89), we get

Sel
het(0; νlo) = πγp

(
x 2
eq + y 2

eq

)
δ(v),

Sinel
het (0; νlo) =

1

2

(
Sinel
hom(v ; 0) + Sinel

hom

(
v ; π

2

))
+ γpD(0; v)

= 1 + 4πpΣinel(v), (93)

D(0, v) = ~s
(
π
2

)
·
(

v

A2 + v
2
~t(0)

)
−~s(0)·

(
v

A2 + v
2
~t
(
π
2

))
.

It can be shown that Shet(0; νlo) is proportional to the
mean of the power of the heterodyne current [16, Sec.
9.1.1]; so, as a function of νlo, it represents the power
spectrum. This interpretation can be strengthened by
expressing Shet(0; νlo) in terms of the fields. Let us con-
sider now the mode operators (66) in the case h(t) = 1:

aT (µ)
∣∣
h=1

≡ 1√
T

∫ T

0

eiµt dB1(t) =: âT (µ).

These operators, together with their adjoint, satisfy the
bosonic commutation relations (68). By taking into ac-
count that the ϑ-dependent terms vanish in the limit
T → ∞, from (76) we get

Shet(0; νlo) = 1 + 2 lim
T→+∞

TrΓ

{
Πf (T )â

†
T (νlo)âT (νlo)

}
.

(94)
So, the mean observed power spectrum is composed by
the flat spectrum of the shot noise, conventionally set
equal to 1, plus a term proportional to the mean number
of photons in the temporal mode of frequency approxim-
ately equal to νlo.
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a. The fluorescence spectrum. The quantity

Shet(0; νlo)− 1

4πp
=
γ
(
x 2
eq + y 2

eq

)

4
δ(v) + Σinel(v)

is interpreted as the fluorescence spectrum of the atom
[16, Sec. 9.1.2]; the normalization is chosen in order to
have its integral over v equal to the rate of emission of
photons in the equilibrium state. For n = kd = 0 this
quantity coincides with the original Mollow spectrum [16,
Sec. 9.1.2.2], [17, pp. 178–181], [21, p. 288]. In Figure 2
we give the plot of the inelastic part of the fluorescence
spectrum in an asymmetric case (n 6= 0, kd 6= 0) in which
the Mollow triplet is well visible (Ω large).
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Figure 2. Σinel(µ) with ∆ν = 1.5, Ω = 8.0, n = 0.01,
kd = 0.7.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have presented two formulations of
the quantum theory of measurements in continuous time.
The first one is based on the Hudson-Parthasarathy equa-
tion, on quantum stochastic calculus and on the obser-
vation of commuting field observables. The other one
is based on the SSE, the stochastic master equation and

the notion of conditional states. We have also shown how
to connect the two formulations. Then, we have studied
the properties of the observed output and in particular
the output spectrum and the uncertainty relations on the
spectra of incompatible quadratures.

Being the two formulations of quantum continuous
measurements equivalent, the output spectra can be de-
duced from the classical SSE or from the quantum one,
and the bounds (of Heisenberg type) on the spectra hold
independently of the formulation. This point is conceptu-
ally relevant, because this equivalence and the presence of
uncertainty relations in both formulations show that the
“classical” SSE is not a semiclassical approximation to
some “quantum” theory, but it is itself fully “quantum”.
However, let us stress that the proof of the bounds is
based on the quantum field formulation and on the un-
certainty relations for incompatible quadratures of the
fields. On the other side we have shown that the most
complete results on the probabilistic structure of the out-
put can be obtained only in the stochastic formulation.

The final part of the paper is devoted to a relat-
ively simple example which allows to show squeezing in
the homodyne spectrum and to illustrate the differences
between homodyning and heterodyning.

Various generalizations of the theory presented in this
paper are possible, first of all by introducing direct de-
tection [2, 4, 7, 9, 15, 21–25, 30] and Markovian feedback
[10, 11, 16, 42, 44, 46–49]. The quantum trajectory ap-
proach can be generalized to introduce also feedback con-
trol with delay, coloured noises, various non-Markovian
effects [50–55]. The simplest non-Markovian contribu-
tion is to take the laser wave f to be random [22, 25].
This means to consider as initial state of the field a clas-
sical mixture of coherent states, the mean of ̺Γ(f). Even
the local oscillator wave h can be random, which again
means to take a mixture of coherent vectors as state of
the local oscillator [22, 55]. This randomness can be used
to introduce more realistic models of laser light, not only
perfectly coherent monochromatic waves, but also waves
exhibiting some coherence time. This allows for a bet-
ter analysis of the differences between homodyning and
heterodyning [55].
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