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Abstract

We investigate a portfolio optimization problem for an agent who invests in two
assets, a risk-free and a risky asset modeled by a geometric Brownian motion.
The investor faces both fixed and proportional transaction costs and liquidity
constraints. His objective is to maximize the expected utility from the port-
folio liquidation at a terminal finite horizon. The model is formulated as a
parabolic impulse control problem and we characterize the value function as the
unique constrained viscosity solution of the associated quasi-variational inequal-
ity. We compute numerically the optimal policy by a an iterative finite element
discretization technique, presenting extended numerical results in the case of
a constant relative risk aversion utility function. Our results show that, even
with small transaction costs and distant horizons, the optimal strategy is essen-
tially a buy-and-hold trading strategy where the agent recalibrates his portfolio
very few times. This contrasts sharply with the continuous interventions of the
Merton’s model without transaction costs.

Keywords: Portfolio Optimization, Quasi-variational Inequalities, Transaction
Costs, Viscosity Solutions

1. Introduction

Optimal portfolio investment strategies have been widely studied in the liter-
ature. In his seminal article, Merton (1969) developed a continuous time model
to study the optimal portfolio strategy for an investor managing a portfolio
of risky assets, whose prices evolve according to geometric Brownian motions.
Since then, research in this area has focused on different aspects, aiming to
make the mathematical model closer to the real market, in particular with re-
spect to liquidity issues. It is well known that, in the real economy, investors
face nontrivial transaction costs, which influence their trading policies. It is not
possible to rebalance a portfolio in a continuous way, as assumed by Merton,
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and solvency constraints and bounds on the amounts of the open short positions
are usually present.

In our article we deal with a portfolio optimization problem over a finite
horizon with two assets, a risk-free and a risky asset whose value is modeled
by a log-normal diffusion. We consider a small agent who does not affect in
any significant way the assets prices with his transactions. The investor’s ob-
jective is to maximize his utility from the liquidation of terminal wealth in the
presence of transaction costs and liquidity constraints. More specifically we
formulate the classical Merton’s problem over a finite horizon, without inter-
mediate consumption, with fixed and proportional transaction costs, a solvency
constraint, and bounds on the open short positions. Most of the literature on
portfolio optimization with transaction costs considers the problem of maximiz-
ing the cumulative expected utility of consumption over a infinite horizon, with
proportional transaction costs. See for instance Akian et al. (1996); Davis and
Norman (1990); Kumar and Muthuraman (2006); Shreve and Soner (1994). The
same infinite horizon problem but with fixed and proportional costs has been
studied in Oksendal and Sulem (2002). A second class of articles studies the
problem of maximizing the long-term growth rate of portfolio value. See Morton
and Pliska (1995) for a problem with transaction costs equal to a fixed fraction
of the portfolio value (“portfolio management fee”), (Akian et al., 2001; Assaf
et al., 1988; Dumas and Luciano, 1991) for models with proportional transac-
tion costs, and Bielecki and Pliska (2000) in the more general framework of
risk-sensitive impulse control. Fewer papers consider a portfolio optimization
problem with transaction costs over a finite horizon. Liu and Loewenstein (2002)
consider proportional transaction costs and approximate the value function by
a sequence of optimal analytical solutions for problems with exponentially dis-
tributed horizons. This allows to obtain the optimal solution by a sequence of
problems without the time dimension. However for a given terminal date the
optimal trading strategy is approximated by a stationary policy. In (Eastham
and Hastings, 1988; Korn, 1998) both fixed and variable transaction costs are
considered and the model is solved by using impulse control techniques. These
last articles, which are the closest to our assumptions, use verification theorems
to characterize the value function and the optimal policy and apart from some
simple cases only approximate the solution by an asymptotic analysis. In the
recent paper by Ly Vath et al. (2007), which has inspired our work, the authors
consider a portfolio optimization problem over a finite horizon with a perma-
nent price impact and a fixed transaction cost. The main result in Ly Vath
et al. (2007) is a viscosity characterization of the value function, but neither a
characterization of the optimal policy nor a numerical solution of the problem
is given.

Our portfolio optimization problem is formulated as an impulse control prob-
lem, associated by the dynamic programming principle to a Hamilton-Jacobi-
Bellman quasi-variational inequality (HJBQVI), as in Bensoussan and Lions
(1984) and all the subsequent literature on impulse control. The features of our
stochastic control problem lead to consider a parabolic HJBQVI in two vari-
ables and time, and to impose state constraints on the space variables. As the
value function of our problem is not necessarily continuous and because of the
state constraints, we have considered, as in (Akian et al., 2001; Ly Vath et al.,
2007; Oksendal and Sulem, 2002), the very general notion of (possibly) discon-
tinuous constrained viscosity solutions. In fact in Section 3 of this paper, by
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means of a weak comparison principle, we show that the value function is the
unique constrained viscosity solution of the HJBQVI verifying certain bound-
ary conditions, and that it is (almost everywhere) continuous. These results are
summarized in Theorem 6.

To simplify the numerical solution of the model, in Section 4 we decom-
pose our impulse control problem into a sequence of iterated optimal stopping
problems, as in (Baccarin, 2009; Chancelier et al., 2002). This reduction, first
introduced in Bensoussan and Lions (1984), has both a theoretical and com-
putational interest. It allows to represent the value function by the limit of a
sequence of solutions of variational inequalities. Moreover it makes it possible
to characterize a Markovian quasi-optimal policy which is arbitrarily close to
the optimal one. We propose an iterative finite element discretization technique
to solve numerically this sequence of variational inequalities, and therefore to
compute the value function and the optimal policy.

In Section 5 of the paper we present extended numerical results for our model
in the case of a constant relative risk aversion (CRRA) utility function, which
is the most commonly used utility function in expected utility maximization
problems. See, for instance, Akian et al. (1996); Davis and Norman (1990); Liu
and Loewenstein (2002); Ly Vath et al. (2007); Kumar and Muthuraman (2006);
Shreve and Soner (1994). We describe the form of the optimal transaction
strategy and we investigate how it varies with different values of the model
parameters. The article that comes closer to ours in this sense is Liu and
Loewenstein (2002), even if authors only considered proportional transaction
costs and stationary policies. We analyze the transaction regions, the target
portfolios, i.e., the portfolios where it is optimal to move from the transaction
regions, and how the agent’s non-stationary optimal strategy varies as time goes
on and for different horizons. To the best of our knowledge this is the first paper
where it is shown explicitly how the transaction regions and the target portfolios
change, as time passes, up to the finite horizon. Sensitivity analysis with respect
to the market and agent’s parameters and a comparison between our optimal
strategy and others suggested in literature is also provided. Our numerical
results show that the transaction costs have a dramatic impact on the frequency
of trading of an optimal policy. This phenomenon has already been noted, in
a qualitative way, in Dumas and Luciano (1991); Liu and Loewenstein (2002);
Morton and Pliska (1995). We show that the optimal strategy is essentially a
buy-and-hold trading strategy where the agent recalibrates his portfolio very
few times, in contrast with the continuous interventions of the Merton’s model
without transaction costs.

2. The model formulation

In this section we give a precise formulation of the model. We consider an
investor who holds his wealth in two financial assets: a risky asset, or stock, and
a risk-free security, which we call a bank account. We denote by S(t) the value
of the stocks held by the investor at time t, and by B(t) his amount of money
in the bank account. The initial wealth in t = 0 is given by (B0, S0). The value
S(t) evolves as a geometric Brownian motion

dS(t) = µS(t)dt+ σS(t)dW (t), S(0) = S0,
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whereWt is an adaptedWiener process on the filtered probability space (Ω, F, P,Ft),
verifying the usual conditions. The bank account grows in a certain way at the
fixed rate r

dB(t) = rB(t)dt, B(0) = B0.

At any time the investor can buy (ξ > 0) or sell (ξ < 0) the value ξ ∈ R of
stocks, reducing (or increasing) correspondingly the bank account. However to
make a transaction it is necessary to bear the associated transaction costs C(ξ),
which we assume of a fixed plus proportional type

C(ξ) = K + c |ξ| , K > 0, 0 ≤ c < 1 .

These costs are drawn immediately from the bank account. Therefore if the
value ξ of stocks is bought (or sold) the variation in the bank account is given
by −ξ −K − c |ξ| and the presence of the fixed cost K makes it unprofitable to
transact in a continuous way.
A portfolio control policy p is a sequence {(τi, ξi)} , i = 1, 2, · · · , of stopping
times τi and corresponding random variables ξi, which represent the value of
stocks bought (or sold) in τi. We define a policy as feasible if it verifies the
following conditions:















τi is a Ft stopping time
τi ≤ τi+1 ∀i
limi→+∞ τi = +∞ almost surely
ξi is Fτi measurable .

(1)

Note that condition τi → ∞ a.s. implies that the number of stopping times in
any bounded time interval is almost surely finite (τi = +∞ for some i < ∞ is
possible, it means a policy made of at most i − 1 transactions). Starting from
the initial amounts (B0, S0) of the two assets in t = 0, the dynamics of the
portfolio (Bp(t), Sp(t)), controlled by policy p, is obtained from the following
set of stochastic differential equations:

{

dS0(t) = µS0(t)dt+ σS0(t)dW (t) , S0(0) = S0

dB0(t) = rB0(t)dt , B0(0) = B0,
for any t ∈ [0, τ1] (2)

and, for any t ∈ [τi, τi+1], i ≥ 1,
{

dSi(t) = µSi(t)dt+ σSi(t)dW (t) , Si(τi) = Si−1(τi) + ξi
dBi(t) = rBi(t)dt , Bi(τi) = Bi−1(τi)− ξi −K − c |ξi| .

(3)

When τi < τi+1, we define (Bp(t), Sp(t)) = (Bi(t), Si(t)) for t ∈ [τi , τi+1). If
we have, for example, τi−1 < τi = τi+1 = ... = τi+n < τi+n+1, then we set

{

(Bp(τ−i+n), S
p(τ−i+n)) = (Bi−1(τi+n), S

i−1(τi+n))
(Bp(τi+n), S

p(τi+n)) = (Bi+n(τi+n), S
i+n(τi+n))

where in this case (Bp(τ−i+n), S
p(τ−i+n)) are the left limits in t = τi = ... = τi+n.

The resulting controlled process (Bp(t), Sp(t)) is cadlag and adapted to the
filtration Ft.

A fundamental notion in our model is that of the liquidation value of the
assets. We define the liquidation value L(B,S) of the portfolio (B,S) as

L(B,S) =

{

max {S +B −K − c |S| , B} if S ≥ 0
S +B −K − c |S| if S < 0 .
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Figure 1: Admissible region (left) and bounded value function domain (right). The

points in the figures have coordinates A = (0, K

1−c
), B = (Bmin,

K−Bmin

1−c
), C =

(

Bmin,
−Bmin+K+Lmax

1−c

)

, D =
(

Lmax,
K

1−c

)

, E = (Lmax, 0), F = (Lmax +K, 0), G =

(−(1 + c)Smin +K + Lmax, Smin), H = (−(1 + c)Smin +K,Smin) and I = (K, 0).

It represents the value when the long or short position in stocks is cleared out
(eventually by a bin trade if a positive S does not cover the fixed cost K). Note
that L(B,S) < B + S, except for S = 0, and that every transaction cannot
increase the liquidation value of the portfolio, that is L(B,S) ≥ L(B− ξ−K −
c |ξ| , S + ξ), ∀ξ ∈ R (the equality holds only if L(B,S) = S + B − K − c |S|
and ξ = −S). Besides the transaction costs, our investor must face two other
kinds of constraints. We assume that there are bounds on the short positions
and that the portfolio must satisfy a solvency constraint. Therefore we define
the admissible closed region Adr ⊂ R2,

Adr =
{

(B,S) ∈ R
2 : (L(B,S) ≥ 0) ∧ (B ≥ Bmin) ∧ (S ≥ Smin)

}

,

which represents the set of admissible portfolios. Here Bmin < 0 and Smin <
0 are the bounds in the short position in the bank account and in the risky
security, respectively. We assume B0 ≥ Bmin, S0 ≥ Smin and L(B0, S0) ≥ 0.
The admissible region is depicted in Figure 1. The investor’s preferences are
represented by a continuous, increasing, utility function U : R+ → R+, with
U(0) = 0 . We assume that U satisfies, for some C > 0 and 0 < γ < 1, the
upper bound

U(L) ≤ CLγ . (4)

The objective of our investor is to liquidate his portfolio at a fixed time horizon
T > 0. This means that the problem is to maximize the expected utility of the
portfolio liquidation value at the terminal date T. However we will assume that
our investor will be satisfied if his portfolio reaches a threshold liquidation value
Lmax > L(B0, S0), at a time t < T . In this case the portfolio will be liquidated
in t and Lmax will be invested in the bank account up to the finite horizon T .
This assumption is not restrictive, if Lmax is sufficiently large with respect to
L(B0, S0) and T . It has the big advantage to let us consider a control problem
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on a bounded domain in the state variables B and S (if Lmax < ∞). This makes
the numerical solution of the problem more precise, because it avoids the use
of artificial boundary conditions when the unbounded domain is localized. See,
for instance, Chancelier et al. (2002); Oksendal and Sulem (2002). We define
the open control region Cor

Cor =
{

(B,S) ∈ R
2 : L(B,S) < Lmax

}

and by Cor its closure. Cor is the region where it may be useful to rebalance
the portfolio because the threshold value Lmax has not been reached yet. Let
θp be the first exit time of the controlled process from the control region

θp = inf {t : (Bp(t), Sp(t)) /∈ Cor} .

We set ϑp ≡ θp ∧ T , and we will say that a policy p is admissible if the cor-
responding controlled process verifies (Bp(t), Sp(t)) ∈ Adr, ∀t ∈ [0, ϑp]. The
payoff functional Jp associated to policy p is then given by

Jp = E
[

U(L(Bp(ϑp), Sp(ϑp)) er(T−ϑp))
]

.

Note that the behaviour of (Bp(t), Sp(t)) after ϑp is irrelevant in our formulation:
that is to say (Bp(t), Sp(t)) represents the financial position of our investor only
up to ϑp. If we denote by A the set of admissible policies, the control problem
can be formulated as

max
p∈A

Jp .

It is a stochastic impulse control problem over a finite horizon where the system
is controlled only in the Cor region, and with the state constraint (Bp(t), Sp(t)) ∈
Adr, ∀t ∈ [0, ϑp]. We will solve this problem by using a dynamic programming
approach. We consider the compact set Ω = Adr ∩ Cor which is depicted in
Figure 1 and we denote by Ω its interior. We define the set Q ≡ [0, T ]× Ω and
we will denote by Q the subset [0, T ) × Ω. Now we can introduce the value
function V (t, B, S) : Q ⊂ R3 → R defined by

V (t, B, S) = sup
p∈A(t,B,S)

Jp(t, B, S) .

Here A(t, B, S) is the set of admissible policies when the controlled process
starts in t with values (B,S) and

Jp(t, B, S) = Et,B,S

[

U (L(Bp(ϑp), Sp(ϑp)) er(T−ϑp))
]

.

Remark 1. We have A(t, B, S) 6= ∅ for any initial condition (t, B, S) ∈ Q
because the policy














τ1 =

{

+∞ if S ≥ 0 and B ≥ 0
t otherwise

ξ1 =

{

arbitrary if S ≥ 0 and B ≥ 0
−S otherwise

,







τi = +∞

ξi arbitrary
for i > 1

is clearly always admissible. Note that V (t, 0, 0) = 0, ∀t ∈ [0, T ], because the
only admissible policy is doing nothing, and U(0) = 0 by assumption. Moreover
V (t, B, S) > U(Lmaxe

r(T−t)) only if (B,S) ∈ EF\E, because the points in
EF\E can be reached by an admissible policy only after ϑp, if the initial position
(B,S) /∈ EF\E.
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The value function V of our problem verifies the following dynamic program-
ming property. See (Fleming and Soner, 1993, Section V.2), or (Ly Vath et al.,
2007).

Dynamic Programming Property:
(a) For any (t, B, S) ∈ Q, p ∈ A(t, B, S) and {Fs}-stopping time α ≥ t we have

V (t, B, S) ≥ Et,B,S [V (ϑp ∧ α,Bp(ϑp ∧ α), Sp(ϑp ∧ α))] ; (5)

(b) For any (t, B, S) ∈ Q, and δ > 0, there exists p′(δ) ∈ A(t, B, S) such that
for all {Fs}-stopping time α ≥ t we have

V (t, B, S) ≤ Et,B,S [V (ϑp′

∧ α,Bp′

(ϑp′

∧ α), Sp′

(ϑp′

∧ α))] + δ. (6)

Combining (a) and (b) we obtain the following version of the dynamic pro-
gramming principle, which holds for any (t, B, S) ∈ Q and {Fs}-stopping time
α ≥ t

V (t, B, S) = sup
p∈A(t,B,S)

Et,B,S [V (ϑp ∧ α,Bp(ϑp ∧ α), Sp(ϑp ∧ α))] .

Now, we denote by F (B,S) the set of admissible transactions from (B,S) ∈ Ω

F (B,S) =
{

ξ ∈ R : (B − ξ −K − c |ξ| , S + ξ) ∈ Ω
}

and by ̥ the subset of Ω where F (B,S) 6= ∅.

Remark 2. The set F (B,S) can be empty. For example it is always empty
when B+S < K, but if F (B,S) 6= ∅, then it is a compact subset of R. Moreover
let (Bn, Sn) ∈ Adr be a sequence converging to (B′, S′) ∈ Adr with F (Bn, Sn) 6=
∅. Since the function L is upper semicontinuous we have L(B′, S′) ≥ 0 and
F (B′, S′) 6= ∅. Any sequence ξn ∈ F (Bn, Sn) stays bounded and therefore con-
tains a subsequence ξ′n converging to some ξ′ ∈ R. As L(Bn−ξ′n−K−c |ξ′n| , Sn+
ξ′n) ≥ 0 and L is upper semicontinuous we also obtain that ξ′ ∈ F (B′, S′).

For any given function Z : Q → R we define the intervention (non local)
operator M by

MZ (t, B, S) =

{

sup
ξ∈F (B,S)

Z(t, B − ξ −K − c |ξ| , S + ξ) if (B,S) ∈ ̥

−1 if (B,S) /∈ ̥.
(7)

Considering all p ∈ A(t, B, S) with an immediate transaction in t of arbitrary
size ξ ∈ F (B,S) and setting α = t in (5), we can see as a direct consequence of
dynamic programming property that V (t, B, S) ≥ MV (t, B, S), ∀(t, B, S) ∈ Q
(this is obvious if F (B,S) 6= ∅ because V is non-negative).

It is well known that we can associate to the value function of an impulse con-
trol problem a Hamilton-Jacobi-Bellman quasi-variational inequality (HJBQVI)
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which plays the same role of the HJB equation in continuous optimization. We
introduce the second order differential operator L

LV (t, B, S) = rB
∂V

∂B
+ µS

∂V

∂S
+

1

2
σ2S2 ∂

2V

∂S2

which corresponds to the infinitesimal generator of the uncontrolled process
(B(t), S(t)). We will show that the value function of our problem is a weak
solution of the following HJBQVI in Q

min

{

−
∂V

∂t
− LV, V −MV

}

= 0. (8)

One cannot hope to show that V is a classical solution of (8). It is easy to see
that the value function is not even continuous in some points of ∂Q, such as, for
instance, points A, I, in Figure 1, ∀t ∈ [0, T ], or line S = 0 in t = T . In these
points V is only upper-semicontinuous. In the next section we will characterize
V as the unique constrained viscosity solution of (8) verifying certain boundary
conditions.

3. Boundary properties, bounds, and viscosity characterization of the

value function

By ∂∗Q we will denote the subset of ∂Q given by ∂∗Q ≡ ([0, t)×∂Ω)∪(T×Ω).
The boundary ∂Ω of Ω is divided in two parts:

∂1Ω ≡ {(B,S) ∈ ∂Ω : L(B,S) < Lmax}

and its complement ∂2Ω ≡ ∂Ω\∂1Ω. In the points of ∂2Ω the threshold liq-
uidation value Lmax has already been reached. It will be also useful to define
∂∗
2Q ≡ ([0, t) × ∂2Ω) ∪ (T × Ω), which is the part of ∂∗Q where, or t = T or

L(B,S) ≥ Lmax. We will investigate the behavior of V at the boundary ∂∗Q.

For t = T we have obviously V (T,B, S) = U(L(B,S)) for any (B,S) ∈ Ω. It
is always optimal not to intervene in T because any intervention cannot increase
the portfolio liquidation value. However one single transaction ξ = −S is also
optimal if S < 0 or if S > 0 and S + B −K − c |S| ≥ B. In this case we have
V = MV , otherwise V > MV . Note that V is upper-semicontinuous but not
continuous for any point (T,B, 0) ∈ Q.

For t ∈ [0, T ) the behavior of V depends on which part of ∂Ω we are consid-
ering:

(a) Along the segments OA and OI in Figure 1 it is not possible to intervene
because this will bring the process (B,S) outside the admissible region Adr.
Actually in the points A and I there is one admissible transaction which leads us
to the origin O, but this is certainly unprofitable. Therefore we have V > MV .
Apart from V (t, 0, 0) = 0, the value of V is not known a priori in this part of
∂∗Q.

(b) Except for the points A and I, along the segments AB and IH it is
necessary to make a transaction, otherwise the process could leave Adr with
a positive probability. Moreover the only admissible intervention brings the
process to O. Consequently it holds V = MV = 0. Note that V is upper-
semicontinuous but not continuous in A and I.
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(c) In the interior points of the segments BC and HG it is necessary to make
a transaction because one of the bounds in the short position is reached. The
value of V is not known a priori. We have V = MV .

(d) In the upper part of ∂∗Q, that is along the segments CD, DE, EF and
FG, the threshold liquidation value Lmax has already been reached. The value
of V is known. If (B, 0) ∈ EF then V (t, B, 0) = U(B er(T−t)). If (B,S) ∈
CD ∪DE ∪ {FG\F} then V (t, B, S) = U(Lmax er(T−t)). It is always optimal
not to intervene, but we also have V = MV, with ξ = −S in (7), if S < 0 or if
S > 0 and S + B − K − c |S| ≥ B. Note that V is upper-semicontinuous but
not continuous in the point F , ∀t ∈ [0, T ).

We give now some bounds on the value function. Since Jp ≥ 0, ∀p ∈
A(t, B, S), it is obvious that V (t, B, S) is nonnegative in [0, T ] × Ω. By the
problem definition we also have V (t, B, S) ≤ U((Lmax +K)er(T−t)), that is the
value function is finite. Moreover, as it holds U(L(B,S)er(T−t)) ≤ V (t, B, S) ≤
U(Lmaxe

r(T−t)) when (B,S) /∈ EF , the value function is also continuous in the
segments CD, {DE\E}, {FG\F}. It is not difficult to show that V is also
bounded from above by the value function of the same problem with U(L) =
CLγ and without transaction costs and liquidity constraints (a Merton problem
over a finite horizon without consumption and a CRRA utility function, see
Merton (1969)).

Proposition 1. We have

V (t, B, S) ≤ Ceδ(T−t) (B + S)γ (9)

in [0, T ]× Ω, where

δ = γ

(

r +
(µ− r)2

2σ2(1− γ)

)

.

Proof. We set Z(t, B, S) := Ceδ(T−t) (B + S)γ . The inequality (9) is true
in T × Ω as V (T,B, S) = U(L(B,S)) ≤ C L(B,S)γ ≤ C (B + S)γ and in
[0, T ) × (0, 0) because here we have V (t, 0, 0) = 0. Moreover, in Ω\ {0} , Z
verifies Z > MZ and −∂Z

∂t
− LZ ≥ 0. Indeed MZ = −1 if (B,S) /∈ ̥,

MZ ≤ Ceδ(T−t) (B + S − K)γ < Z if (B,S) ∈ ̥, and, differentiating Z, it
is easy to verify that ∂Z

∂t
+ LZ ≤ 0 in Ω\ {0}. Now consider an admissible

policy p ∈ A(t, B, S), for the controlled process starting in t ∈ [0, T ) with
values (B,S) ∈ Ω\ {0}. We define τp0 = t and, almost surely, np(ω) = max
{i ≥ 0 : τpi (ω) ≤ ϑp(ω)}. Applying the generalized Itô’s formula to the function
Z, from t to ϑp, we have:

Z(ϑp, Bp(ϑp), Sp(ϑp)) = Z(t, B, S) +
∫ ϑp

t
(∂Z
∂t

+ LZ) ds+
∫ ϑp

t
σS ∂Z

∂S
dW (s)+

+
∑np

i=1(Z(τi, B(τ−i )− ξi −K − c |ξi| , S(τ
−
i ) + ξi)− Z(τi, B(τ−i ), S(τ−i ))) .

Since ∂Z
∂t

+ LZ ≤ 0 and Z > MZ it follows that, a.s.,

Z(ϑp, Bp(ϑp), Sp(ϑp)) < Z(t, B, S) +

∫ ϑp

t

σS
∂Z

∂S
dW (s) .

Taking expectations, the stochastic integral vanishes, since ∂Z
∂S

is bounded, and
we obtain

Z(t, B, S) > E[Z(ϑp, Bp(ϑp), Sp(ϑp))] ∀p ∈ A(t, B, S) .
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Therefore

Z(t, B, S) ≥ sup
p∈A(t,B,S)

E[Z(ϑp, Bp(ϑp), Sp(ϑp))] =

= sup
p∈A(t,B,S)

E[C(Bp(ϑp) + Sp(ϑp))γeδ(T−ϑp)] ≥

≥ sup
p∈A(t,B,S)

Jp = V (t, B, S) .

�

Bound (9) shows in particular that V (t, B, S) is continuous in (t, 0, 0), where
V (t, 0, 0) = 0, ∀t ∈ [0, T ]. Now we give the precise characterization of the
value function as a viscosity solution of (8). Since V is not even continuous
at some points in ∂Q it is necessary to consider the notion of discontinuous
viscosity solutions. Moreover the state constraint (Bp(t), Sp(t)) ∈ Adr, ∀t ∈
[0, ϑp], requires a particular treatment of the lateral boundary conditions when
(t, B, S) ∈ [0, T )× ∂1Ω and the use of constrained viscosity solutions. We recall
now the definitions of (possibly discontinuous) constrained viscosity solutions.
Let USC(Q) and LSC(Q) be respectively the sets of upper-semicontinuous (usc)
and lower-semicontinuous (lsc) functions defined on Q. Given a locally bounded
function u : Q → R+ we will denote by u∗ and u∗ respectively the usc envelope
and the lsc envelope of u

u∗(t, B, S) = lim sup
(t′,B′,S′)∈Q

(t′,B′,S′)→(t,B,S)

u(t′, B′, S′) ∀ (t, B, S) ∈ Q

u∗(t, B, S) = lim inf
(t′,B′,S′)∈Q

(t′,B′,S′)→(t,B,S)

u(t′, B′, S′) ∀ (t, B, S) ∈ Q .

We have u∗ ≤ u ≤ u∗ and u is usc (lsc) if and only if u = u∗ (u = u∗). In the
following, sometimes we set x ≡ (B,S) ∈ Ω̄ to simplify the notation.

Definition 1. Given O ⊂Ω, a locally bounded function u : Q → R+ is called a
viscosity subsolution (resp. supersolution) of (8) in [0, T )×O if for all (t, x) ∈
[0, T ) × O and ϕ(t, x) ∈ C1,2(Q) such that (u∗ − ϕ)(t, x) = 0 (resp. (u∗ −
ϕ)(t, x) = 0) and (t, x) is a maximum of u∗ − ϕ (resp. a minimum of u∗ − ϕ)
on [0, T )×O, we have

min

{

−
∂ϕ

∂t
(t, x)− Lϕ(t, x), u∗(t, x)−Mu∗(t, x)

}

≤ 0 (10)

(resp. u∗ and ≥ 0) (11)

On [0, T )×∂2Ω the value function V verifies the Dirichlet boundary condition
V (t, B, S) = U(L(B,S)er(T−t)). To deal properly with the state constraint
(Bp(t), Sp(t)) ∈ Adr, ∀t ∈ [0, ϑp], it will be necessary to require that V satisfies
the subsolution property also on the [0, T ) × ∂1Ω part of the lateral boundary
[0, T ) × ∂Ω (see (Crandall et al., 1992, section 7C’), or (Oksendal and Sulem,
2002; Ly Vath et al., 2007)).

Definition 2. We say that a locally bounded function u : Q → R+ is a ∂1Ω
constrained viscosity solution of (8) in Q = [0, T )× Ω if it is a viscosity super-
solution of (8) in Q and a viscosity subsolution of (8) in [0, T )× {Ω ∪ ∂1Ω}.
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We will need the following properties of the non-local operator M.

Lemma 2. Given a locally bounded function u : Q → R+ we have:
(a) if u is lower-semicontinuous (resp. usc) then Mu is lower-semicontinuous
(resp. usc)
(b) Mu∗ ≤ (Mu)∗ and Mu∗ ≥ (Mu)∗

(c) if u is upper-semicontinuous then there exists a Borel measurable function
ξ∗u : ̥ → R such that for any (B,S) ∈ ̥

Mu(t, B, S) = u(t, B − ξ∗u(B,S)−K − c |ξ∗u(B,S)| , S + ξ∗u(B,S)). (12)

Proof. (a) and (b) can be proven in the same way as in (Ly Vath et al., 2007,
Lemma 5.5). As u is upper-semicontinuous and for (B,S) ∈ ̥ the set F (B,S)
is compact the sup in (7) is reached for some values of ξ, ∀(B,S) ∈ ̥. Moreover,
as ̥ is σ-compact, we can select a Borel measurable function ξ∗u : ̥ → R such
that (c) holds true (see Fleming and Rishel, 1975, Appendix B, Lemma B).

�

We can now state the viscosity property of the value function.

Theorem 3. The value function V (t, B, S) is a ∂1Ω constrained viscosity solu-
tion of (8) in Q.

Proof. Using the dynamic programming property (5-6), and properties (a)
and (b) of Lemma 2, the proof can be done in the same way as the proof of (Ly
Vath et al., 2007, Theorem 5.3). The only difference is that in our problem it
is possible to prove the subsolution property only in Q and in the [0, T )× ∂1Ω
part of the lateral boundary. The reason is that an admissible policy can now
allow the controlled process to leave Q from the subset [0, T ) × ∂2Ω of ∂∗Q.
On [0, T ) × ∂2Ω the value function will be determined by the Dirichlet type
condition V (t, B, S) = L(B,S)er(T−t).

�

As there can be many viscosity solutions of (8) the next step is to deter-
mine the right boundary conditions on ∂∗Q which are sufficient to uniquely
determine the value function. The usual way to show uniqueness of viscosity
solutions is to prove a comparison theorem between viscosity sub and superso-
lution. The purpose is to show that a subsolution is lower than a supersolution
on the whole domain if it assumes the same or a lower value at the bound-
ary ∂∗Q. But in our problem the value of V is not known in some part of
[0, T )×∂1Ω, such as the segments BC and HG in Figure 1. Thus on [0, T )×∂1Ω
we will need the viscosity boundary condition given by the subsolution prop-
erty. Moreover if we look at V ∗ as a subsolution and at V∗ as a supersolu-
tion, along the segments ITFT ≡

{

(t, B, S) ∈ Q : t = T , S = 0, B ≥ K
}

and

F0FT ≡
{

(t, B, S) ∈ Q : B = Lmax +K, S = 0
}

the subsolution V ∗ is greater
than the supersolution V∗. Therefore on the rectangular region

R ≡
{

(t, B, S) ∈ Q : S = 0, B ≥ K
}

we cannot hope to show that V ∗ ≤ V∗, and consequently that V is continuous
in R, because by definition V ∗ ≥ V∗, and thus V ∗ = V∗. All this will induce us
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to prove only a weaker comparison principle between viscosity sub and super-
solutions, which holds on Q\R. Thus we will distinguish the cases S > 0 and
S < 0 denoting by Ω+, Q+, ∂∗Q+, Ω−, Q−the sets

Ω+ ≡ {(B,S) ∈ Ω : S > 0} , Q+ ≡ [0, T )× Ω+,

and by Ω
+
, Q

+
, their closures. We also define the boundaries

∂∗Q+ ≡ [0, T )× ∂Ω+ ∪ T × Ω
+
,

∂1Ω
+ ≡

{

(B,S) ∈ ∂Ω+ : L(B,S) < Lmax

}

, ∂2Ω
+ = ∂Ω+\∂1Ω

+,

∂∗
2Q

+ ≡ [0, T )× ∂Ω+
2 ∪ T × Ω

+
.

The sets Ω−, Q−, Ω
−
, Q

−
, ∂∗Q−, ∂2Ω

−, ∂∗
2Q

− are defined similarly by setting
S < 0.

Theorem 4 (Weak Comparison Principle). Assume that u ∈ USC(Q) is a
viscosity subsolution of (8) in [0, T )×{Ω ∪ ∂1Ω} and v ∈ LSC(Q) is a viscosity
supersolution of (8) in Q = [0, T )× Ω Furthermore assume that


























































lim sup
(t′,B′,S′)∈Q+

(t′,B′,S′)→(t,B,S)

u(t′, B′, S′) ≤ lim inf
(t′,B′,S′)∈Q+

(t′,B′,S′)→(t,B,S)

v(t′, B′, S′) ∀ (t, B, S) ∈ ∂∗
2Q

+

lim sup
(t′,B′,S′)∈Q−

(t′,B′,S′)→(t,B,S)

u(t′, B′, S′) ≤ lim inf
(t′,B′,S′)∈Q−

(t′,B′,S′)→(t,B,S)

v(t′, B′, S′) ∀ (t, B, S) ∈ ∂∗
2Q

−

lim sup
(t′,B′,S′)∈Q

(t′,B′,S′)→(t,0,0)

u(t′, 0, 0) ≤ lim inf
(t′,B′,S′)∈Q

(t′,B′,S′)→(t,0,0)

v(t′, 0, 0) ∀t ∈ [0, T ) .

(13)
Then u ≤ v on Q\R.

Proof. The proof of this theorem is somewhat long and technical. For the
reader’s convenience we leave it to the Appendix. �

In order to use the comparison principle to identify the only viscosity so-
lution which represents the value function we need to describe the behavior of
V approaching the boundary ∂∗

2Q and taking account of the discontinuity in
∂∗
2Q ∩R.

Lemma 5. The value function V verifies the following limit conditions near
the boundary ∂∗

2Q:






















































lim
(t′,B′,S′)∈Q

(t′,B′,S′)→(t,B,S)

V (t′, B′, S′) = U(L(B,S)er(T−t)) ∀(t, B, S) ∈ ∂∗
2Q\R

lim
(t′,B′,S′)∈Q+

(t′,B′,S′)→(t,B,0)

V (t′, B′, S′) = U(B er(T−t)) ∀(t, B, 0) ∈ ∂∗
2Q ∩R

lim
(t′,B′,S′)∈Q−

(t′,B′,S′)→(t,B,0)

V (t′, B′, S′) = U((B −K)er(T−t)) ∀(t, B, 0) ∈ ∂∗
2Q ∩R

(14)
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Proof. First consider (t, B, S) ∈ ∂∗
2Q\R. Since U(L(B,S)er(T−t)) is continu-

ous in (t, B, S) ∈ ∂∗
2Q\R and, by construction, it always holds V (t′, B′, S′) ≥

U(L(B′, S′)er(T−t′)), we have for any (t, B, S) ∈ ∂∗
2Q\R

V∗(t, B, S) ≡ lim inf
(t′,B′,S′)∈Q

(t′,B′,S′)→(t,B,S)

V (t′, B′, S′) ≥ U(L(B,S)er(T−t)) . (15)

Now let
V ∗(t, B, S) = lim sup

(t′,B′,S′)∈Q

(t′,B′,S′)→(t,B,S)

V (t′, B′, S′)

and (tm, Bm, Sm) be a sequence in Q such that

lim
(tm,Bm,Sm)→(t,B,S)

V (t′, B′, S′) = V ∗(t, B, S).

By (6), for any m there exists a quasi-optimal policy pm = {(τmi , ξmi )} such that
pm ∈ A(tm, Bm, Sm) and V (tm, Bm, Sm) ≤ Jpm

(tm, Bm, Sm)+ 1
m
. Denoting the

controlled process (Bpm

, Spm

) by Xm it follows (here ϑm = T ∧ θp
m

)

V (tm, Bm, Sm) ≤ Etm,Bm,Sm

[

U (L(Xm(ϑm)) er(T−ϑm))
]

+
1

m
. (16)

As it is always optimal not to intervene in ϑm we can assume τmi 6= ϑm, ∀i.
Defining ∆Xm

s ≡ Xm(s) − Xm(s−), where s ≥ tm and Xm(t−m) ≡ (Bm, Sm),
we have

Xm(ϑm) = Xm(t−m)+∆Xm
tm

+

ϑm
∫

tm

α(Xm(s))ds+

ϑm
∫

tm

β(Xm(s))dWs+
∑

tm<s<ϑm

∆Xm
s

(17)
where α(Xm) = [rBpm

, µSpm

] and β(Xm) = [0, σSpm

]. Since (tm, Bm, Sm) →
(t, B, S) ∈ ∂∗

2Q it follows that ϑm − tm converges a.s. to zero when m → ∞.
Thus the two integrals in (17) vanish because Xm ∈ Ω is bounded. Moreover
the last summation also vanishes because the jump sizes are uniformly bounded
and the number of interventions after tm and before ϑm, converges to zero as
tm → ϑm. The first difference ∆Xm

tm
, at least for a subsequence, converges

to some ∆X1 when m → ∞. Finally sending m to infinity in (16), by the
dominated convergence theorem we obtain

V ∗(t, B, S) ≤ U(L((B,S) + ∆X1)e
r(T−t)) ≤ U(L(B,S)er(T−t)), (18)

and therefore the first condition in (14) is true. If (t, B, 0) ∈ ∂∗
2Q ∩ R and

(t′, B′, S′) ∈ Q+ converges to (t, B, 0) from above R, we have

lim
(t′,B′,S′)∈Q+

(t′,B′,S′)→(t,B,0)

U(L(B′, S′)er(T−t′)) = U(Ber(T−t)),

and we can repeat the same reasoning as for (t, B, S) ∈ ∂∗
2Q\R. But if (t′, B′, S′) ∈

Q− converges to (t, B, 0) from below R, we have

lim
(t′,B′,S′)∈Q−

(t′,B′,S′)→(t,B,0)

U(L(B′, S′)er(T−t′)) = U((B −K)er(T−t))
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and, by the same procedure used before to obtain (15) and (18), we get

V ∗
Q−(t, B, 0) ≡ lim sup

(t′,B′,S′)∈Q−

(t′,B′,S′)→(t,B,0)

V (t′, B′, S′) ≤ U((B −K)er(T−t))

≤ V∗ Q−(t, B, 0) ≡ lim inf
(t′,B′,S′)∈Q−

(t′,B′,S′)→(t,B,0)

V (t′, B′, S′) .

�

Now we are able to give the complete viscosity characterization of the value
function.

Theorem 6. The value function V (t, B, S) is continuous in Q\R and it is the
unique, in Q\R, ∂1Ω constrained viscosity solution of (8) which verifies the limit
conditions (14) and

lim
(t′,B′,S′)∈Q̄

(t′,B′,S′)→(t,0,0)

V (t′, B′, S′) = V (t, 0, 0) = 0 ∀t ∈ [0, T ] . (19)

Proof. We apply the comparison principle theorem, using V ∗ as a subsolution
and V∗ as a supersolution. In particular the boundary conditions (13) are verified
as equalities since (14) and (19) hold true. We derive that V ∗ ≤ V∗ on Q\R
and since by definition V ∗ ≥ V∗ we obtain immediately that V is continuous in
Q\R. Now suppose V is another ∂1Ω constrained viscosity solution of (8) in Q
which verifies the boundary conditions (14), (19). By the comparison principle

it follows that V
∗
≤ V∗ ≤ V ∗ ≤ V ∗ and therefore V = V in Q\R.

�

4. Computation of the value function and the optimal policy by iter-

ated optimal stopping

To simplify the numerical solution of the HJBQVI (8) we reduce our im-
pulse control problem to a sequence of optimal stopping time problems. This
reduction, first introduced in Bensoussan and Lions (1984), has the advantage
to reduce the solution of a HJBQVI to the solution of an iterative sequence
of variational inequalities, where the obstacles are explicit (see Baccarin, 2009;
Chancelier et al., 2002; Korn, 1998; Oksendal and Sulem, 2007). We denote by
An the set of admissible policies with at most n ≥ 1 interventions, that is

An(t, B, S) = {p ∈ A(t, B, S) : τn+1 = +∞}

and by Vn(t, B, S) : Q ⊂ R3 → R the value function of the corresponding
problem with a bounded number of transactions

Vn(t, B, S) = sup
p∈An(t,B,S)

Jp(t, B, S) .

It is not difficult to show that increasing the number of interventions Vn con-
verges to V.

Theorem 7. We have limn→∞ Vn = V for all (t, B, S) ∈ Q.
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Proof. As A1(t, B, S) ⊂ A2(t, B, S) ⊂ .... ⊂ A(t, B, S), it holds V1(t, B, S) ≤
V2(t, B, S) ≤ .... ≤ V (t, B, S) and limn→∞ Vn ≤ V for all (t, B, S) ∈ Q. To
obtain the reverse inequality consider an ǫ-optimal policy pǫ ∈ A(t, B, S) such
that

V (t, B, S) ≤ Jpǫ(t, B, S) + ǫ . (20)

Setting τ i ≡ τpǫ

i ∧ ϑpǫ , by (1) for a.a. ω there exists n(ω) such that τn(ω) =
ϑpǫ(ω). If we define

Jp
n(t, B, S) = Et,B,S

[

U (L(Bpǫ(τn), S
pǫ(τn)) e

r(T−τn))
]

by the dominated convergence theorem it follows that

Jpǫ(t, B, S) = limn→∞ Jp
n(t, B, S),

and we can choose n such that

Jpǫ(t, B, S) ≤ Jp
n(t, B, S) + ǫ . (21)

Consider now the policy pn = {(τ i, ξ
pǫ

i )} , i = 1, 2, · · · , n, setting τn+1 = ∞
a.s.. We have pn ∈ An(t, B, S) and combining (20) and (21) we obtain

V (t, B, S) ≤ Jpn(t, B, S) + 2ǫ .

Since ǫ is arbitrary, it follows V ≤ limn→∞ Vn for all (t, B, S) ∈ Q. �

We consider now the following iterative sequence of optimal stopping prob-
lems. Let (B(s), S(s)) be the uncontrolled process. We set

θ ≡ {inf s ≥ t : (B(s), S(s)) /∈ Cor} , and ϑ ≡ θ ∧ T.

and we define on Q ∩ R3
+

P0(t, B, S) = Et,B,S

[

U (L(B(ϑ), S(ϑ)) er(T−ϑ)
]

that is the expected utility without interventions, starting with nonnegative B
and S (to be sure the process does not exit from Adr before ϑ). Then we define,
recursively, for n ≥ 1

Pn(t, B, S) = sup
τ∈A1(t,B,S)

Et,B,S

[

MPn−1(τ,B(τ), S(τ))χτ<ϑ

+U (L(B(ϑ), S(ϑ)) er(T−ϑ)χτ≥ϑ

]

(22)

for all (t, B, S) ∈ Q. Here MPn−1 is defined by (7) and it is a given function
at step n (note that P0 is defined in Q ∩ R3

+ but all Pn and (MPn−1), n ≥ 1,

are defined in Q). To the optimal stopping problem (22) it is associated the
variational inequality

min

{

−
∂Pn

∂t
− LPn, Pn −MPn−1

}

= 0 . (23)

Using the same techniques of the preceding section it is not difficult to show
that Pn is the unique constrained viscosity solution of (23) verifying the same
boundary conditions of (8), whereMPn is replaced byMPn−1. By the following
theorem we can reduce the impulse control problem to the sequence (22) of
optimal stopping problems.
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Theorem 8. For all (t, B, S) ∈ Q and n ≥ 1 it holds Pn(t, B, S) = Vn(t, B, S).
Moreover for each (t, B, S) ∈ Q there exists p∗ ∈ An(t, B, S) such that

Vn(t, B, S) = Jp∗

(t, B, S) .

Proof. We first show that Pn ≥ Vn, ∀(t, B, S) ∈ Q. Let p ∈ An(t, B, S), with
p = {τpi , ξ

p
i }i=1,··· ,n, and (Bp, Sp) the corresponding controlled process. Since

MPn−1 is given at step n, the function Pn is, for any n, the value function of
an optimal stopping problem. By using the dynamic programming principle for
the value functions of optimal stopping problems (see Krylov, 1980, Chapter 3,
Section 1), it can be shown, as in (Chancelier et al., 2002, Corollary 3.7), that
the process

Zn(s) = Pn(s ∧ ϑp, Bp(s ∧ ϑp), Sp(s ∧ ϑp)), s ≥ t (24)

is a supermartingale, for any n and any given stopping time α ≥ t. From the
optional sampling theorem it follows that if t ≤ α1 ≤ α2 are stopping times
then we have

Et,B,S [Pn(α1 ∧ ϑp, Bp(α1 ∧ ϑp), Sp(α1 ∧ ϑp))]

≥ Et,B,S [Pn(α2 ∧ ϑp, Bp(α2 ∧ ϑp), Sp(α2 ∧ ϑp))] . (25)

Define τ0 ≡ 0, τ i ≡ τpi ∧ϑp and let (Bp(s), Sp(s)) = (B(s), S(s)) in any interval
[τ j , τ j+1). By (25) and the definitions (7) and (22) we obtain for j = 0, ...., n−1

Et,B,S [Pn−j(τ j , B(τ j), S(τ j))] ≥ Et,B,S

[

Pn−j(τ j+1, B(τ −
j+1), S(τ

−
j+1))

]

= Et,B,S

[

Pn−j(τ j+1, B(τ −
j+1), S(τ

−
j+1))

]

χ
τ
p
j+1i

≤ϑp

+Et,B,S

[

Pn−j(τ j+1, B(τ −
j+1), S(τ

−
j+1))

]

χ
τ
p
j+1i

>ϑp

≥ Et,B,S

[

MPn−j−1(τ j+1, B(τ −
j+1), S(τ

−
j+1))

]

χ
τ
p
j+1i

≤ϑp

+Et,B,S

[

Pn−j−1(τ j+1, B(τ −
j+1), S(τ

−
j+1))

]

χ
τ
p
j+1i

>ϑp

≥ Et,B,S [Pn−j−1(τ j+1, B(τ j+1), S(τ j+1))] .
(26)

Summing up all these inequalities from j = 0 to j = n− 1 we obtain

Pn(t, B, S) ≥ Et,B,S [P0(τn, B(τn), S(τn))] . (27)

By property (25) we also have

Et,B,S [P0(τn, B(τn), S(τn))] ≥ Et,B,S [P0(ϑ
p, B(ϑp), S(ϑp))]

= Et,B,S

[

U (L(B(ϑp), S(ϑp)) er(T−ϑp))
]

= Jp(t, B, S) . (28)

Thus we have shown that Pn(t, B, S) ≥ Jp(t, B, S), ∀p ∈ An(t, B, S) and Pn ≥
Vn, ∀(t, B, S) ∈ Q.

To obtain the reverse inequality we build an optimal policy p∗ ∈ An(t, B, S)
such that Jp∗

(t, B, S) = Pn(t, B, S). First of all, let us define the control sets

Ci ≡
{

(t, B, S) ∈ Q : Pi(t, B, S) = MPi−1(t, B, S)
}

, i = 1, · · · , n.
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Moreover, let I1 be the set

I1 ≡ {ϑ ≥ s ≥ t : (s,B(s), S(s)) ∈ Cn} .

We choose τ∗1 such that

τ∗1 =

{

inf I1 if I1 6= ∅
+∞ if I1 = ∅

and ξ∗1 is given by

ξ∗1 =

{

ξ∗Pn−1
(B(τ∗−

1 ), S(τ∗ −
1 )) if τ∗1 < ∞

arbitrary if τ∗1 = ∞

where ξ∗Pn−1
(B,S) is defined in Lemma 2 (c). If α1, α2 are stopping times such

that t ≤ α1 ≤ α2 ≤ τ∗1 , it follows by the dynamic programming principle
that (25) becomes an equality. See (Chancelier et al., 2002, Corollary 3.7b)
and (Oksendal and Sulem, 2007, Chapter 7). From this fact and the choice of
(τ∗1 , ξ

∗
1), all the inequalities in (26) become equalities and, being τ∗1 ≡ τ∗1 ∧ ϑ,

we obtain
Pn(t, B, S) = Et,B,S [Pn−1(τ

∗
1, B(τ∗1), S(τ

∗
1))]. (29)

Now we define the policy p∗ recursively by















τ∗i =

{

inf Ii if Ii 6= ∅
+∞ if Ii = ∅

ξ∗i =

{

ξ∗Pn−i
(B(τ∗−

i ), S(τ∗ −
i )) if τ∗i < ∞

arbitrary if τ∗i = ∞

(30)

for i = 1, ..., n, with τ∗0 ≡ 0 and where Ii is the random interval

Ii ≡
{

ϑ ≥ s ≥ τ∗i−1 : (τ∗i , B
p∗

(τ∗−
i ), Sp∗

(τ∗−
i )) ∈ Cn+1−i

}

.

By the same argument of (29) we have

Et,B,S [Pn−i(τ
∗
i , B

p∗

(τ∗i ), S
p∗

(τ∗i ))] = Et,B,S [Pn−i−1(τ
∗
i+1, B

p∗

(τ∗i+1), S
p∗

(τ∗i+1))],
(31)

with τ∗i ≡ τ∗i ∧ ϑp∗

. Considering all the n equalities (31) we end the proof with

Pn(t, B, S) = Et,B,S [P0(τ
∗
n, B

p∗

(τ∗n), S
p∗

(τ∗n))]

= Et,B,S [P0(ϑ
p∗

, B(ϑp∗

), S(ϑp∗

))]

= Et,B,S [U (L(B(ϑp∗

), S(ϑp∗

)) er(T−ϑp∗ ))] = Jp∗

(t, B, S) .
�

Therefore, as limn→∞ Vn = limn→∞ Pn = V, we can compute the value function
by solving the sequence (23) of variational inequalities. Each solution Vn = Pn

has the meaning of the value function of the same problem with at most n
transactions. Moreover the optimal trading strategy p∗ described in Theorem
8 gives us, for n large enough, a payoff which is arbitrarily close to the optimal
one. In our numerical experiments we have simplified the domain in Figure 1
as in Figure 2, i.e., we have prolonged the segments AB and CD respectively
up to the points I and F considering V (t, B, S) continuous at the boundary ∂Q,
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Figure 2: Simplified value function domain for numerical discretization. Coordinates of ver-
tices as in Figure 1.

and therefore everywhere. This corresponds to impose a transaction whenever
the investor liquidates his position, i.e., to assume L(B,S) = S+B−K− c |S|.
We are quite confident that, for the small values of K we used in our numerical
experiments, assuming V continuous everywhere is irrelevant for the numerical

results. We denote by D the numerical domain and we set Q
′
= [0, T ] × D.

Thus we have slightly modified the boundary conditions stated in the previous
section, setting:

• V (t, B, S) = U(Lmaxe
r(T−t)), ∀t ∈ [0, T ], along the entire edges CF and

FG;

• V (t, B, S) = 0 ∀t ∈ [0, T ] along the entire edges BI and HI.

Moreover, we compute the function P0(t, B, S), that is the expected utility
without interventions, solving the PDE

−
∂P0

∂t
− LP0 = 0

in Q
′
∩ R3

+ with the additional boundary conditions, when S = 0 or B = 0:

• P (t, B, 0) = U(Ber(T−t));

• µS ∂P
∂S

(t, 0, S) + 1
2σ

2S2 ∂2P
∂S2 (t, 0, S) +

∂P
∂t

(t, 0, S) = 0.

Thus we are now ready to deal with the numerical discretization of our
optimal stopping problem.
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4.1. Discretization

Each variational inequality (23) can be solved by a discrete approximation
using the finite element method (see (Achdou and Pironneau, 2005; Marazzina
et al., 2012) for instance, and Barucci and Marazzina (2012) for an application
to a financial optimization problem). Setting LtV = −∂V

∂t
− LV , we discretize

the PDE LtV = 0 with a finite element technique based on polynomial of degree
1, coupled with a Crank-Nicholson scheme. We consider a triangular mesh onto
the space D with N nodes and a equally-spaced time grid 0 = t0 < t1 < · · · <
tW = T , of W time steps. Denoting by vi the discrete approximation of Vi,
if (Bn, Sn) is a vertex of the mesh, n = 1, ...., N , we set vij,n = vi(tj , Bn, Sn).
As proved in Wilmott et al. (1993) with reference to American options, the i-th
discrete variational inequality can be solved backward-in-time (j = W−1, · · · , 0)
by the following algebraic systems in the unknown vectors vi

j :

vi
j ≥ Mi

j , Avi
j ≥ bi

j+1,
(

vi
j −Mi

j

) (

Avi
j − bi

j+1

)

= 0 (32)

Here vi
j is the N dimensional vector vi(tj , ., .), the obstacle Mj , depending on

the solution vi−1, is defined by M i
j,n = Mvi−1(tj , Bn, Sn), A is the Crank-

Nicholson finite element matrix associated to the operator Lt, and the vector
bi
j+1 is constructed using vector vi

j+1.
Problem (32) can be solved using a Projected SOR (PSOR) algorithm (see

Wilmott et al. (1993)). To compute vi
j , we used as first guess solution vi

j+1 and
we stopped the PSOR iterations when the L∞ distance between two consecutive
solutions falls under a given tolerance (TOL). Similarly, we considered vi a
good approximation of V (t, B, S), the value function of our problem, when the
distance between vi and vi−1 falls under another given tolerance (TOL2). In the
next section we show, by an example, the convergence of our numerical scheme
when we increase the number of mesh nodes and time steps.

5. Numerical results

In this section we present extended numerical results in the case of a CRRA
utility function

U(L) =
Lγ

γ

with 0 < γ < 1. This utility function, which is the most commonly used in
the literature, belongs to the class of hyperbolic absolute risk aversion (HARA)
utility functions. Using these functions the Merton’s portfolio problem without
transaction costs admits closed form solutions. Therefore it is possible to com-
pare these exact solutions with the numerical results in the presence of liquidity
costs. The main alternative in this class would be to consider the exponential
utility which implies a constant absolute risk aversion. However, if we con-
sider our portfolio problem without transaction costs and exponential utility,
the optimal strategy would be to maintain constant the discounted amount of
money invested in the risky asset, which appears to be a very unrealistic pol-
icy (see Korn, 1997, chapter 3). In all the case studies we have set the values
Bmin = Smin = −20, Lmin = 0, Lmax = 100, TOL=10−5 (the tolerance error in
the PSOR algorithm), TOL2=0.001 (the tolerance error to exit from the iter-
ated optimal stopping cycle). In the following, we investigate the form of the

19



Figure 3: Transaction region in the plane (B,S). Time t = 0, N = 5000, W = 250, K = 0.1
and c = 0.01.

Figure 4: Transaction region in the plane (B,S). Time t = 0.5 (left) - t = 0.75 (middle) -
t = 0.9 (right), N = 5000, W = 250, K = 0.1 and c = 0.01.

optimal transaction strategy and we describe how it varies with different values
of the model parameters. Moreover we show how dramatic is the impact of
transaction costs on the frequency of trading of an optimal policy.

In our first numerical experiment, which we use as base case, we set the
following values of the model parameters: K = 0.1, c = 0.01, r = 0.04, µ = 0.1,
σ = 0.4, γ = 0.3 and T = 1.

Figures 3 and 4 show the corresponding (blue) transaction regions and
(white) continuation regions, at four different time instants: t = 0, 0.5, 0.75,
0.9. The red lines represent the re-calibrated portfolios, i.e. the portfolios where
it is optimal to move when the investor’s position falls in the intervention area.
After a possible first transaction, made if the initial portfolio is in the inter-
vention region, the investor will maintain his position inside the white regions
re-calibrating his portfolio only if it reaches the boundary of the blue areas. In
Figure 3 some optimal transactions at t = 0 have been depicted: these lines
connect the threshold portfolios in the transaction region to the corresponding
target portfolios on the red lines. The target portfolios are always inside the
continuation region because the intervention costs make two consecutive trans-
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actions unprofitable. Moreover the upper (lower) red line are the target points
of the upper (lower) part of the transaction area. Unlikely the infinite hori-
zon case (see Dumas and Luciano, 1991; Davis and Norman, 1990; Shreve and
Soner, 1994), the optimal policy is not stationary: the transaction regions, as
well as the target portfolios, change as time goes by. As expected the size of the
intervention regions decreases as the time increases because, approaching the
finite horizon, only a large change in the portfolio composition can compensate
the transaction costs. However the evolution of the two parts of the transaction
region is not symmetric. The size of the lower part decreases faster than the
upper one. This reveals that the finite horizon and the bounded liquidation
region induce a bias, as time goes on, in favor of the riskless asset. For example
in t = 0.75 the lower blue region is already below the axis S = 0. This implies
that if in t = 0.75 the investor has a long position in stock he will never buy
again the stock up to T = 1. Similarly the lower red line decreases with time
towards the axis S = 0, and it is already equal to the axis S = 0 in t = 0.75. The
same kind of liquidity preference in case of shorter investment horizons can be
noted if we fix t = 0 and we consider a variable terminal date T , as we will do in
Section 5.2. The more distant is the horizon T, the lower is the no-transaction
region and the percentange of cash which is allowed to remain in the portfolio.
This result is consistent with the common life-cycle investment advice that a
young investor should hold a greater share of stocks in the portfolio than an
old investor, see on this point Liu and Loewenstein (2002). In the graphs the
Merton straight line is also depicted, which is constant in time and it repre-
sents the optimal portfolios for the same problem but without the transaction
costs. It is interesting to note that the upper red line remains approximately
equal to the Merton line. In both Figures 3-4 the two optimal lines move down
approaching to the edges CF and FG of the liquidation region (see Figure 2).
This is due to the fact that the portfolio liquidation value is already near to
Lmax = 100, the value considered satisfactory by the investor. Probably he will
liquidate his position in short time and before T = 1, this induces again a bias
in favor of cash. For all t and most of the liquidation domain, the shape of the
continuation region closely resembles a cone (enlarging with time) containing
two straight lines of optimal portfolios. We conjecture that this would be the
exact shape if we considered the same problem with an unbounded liquidation
region (Lmax = +∞, i.e. the investor is never satisfied before T = 1). Figure
5 shows the value and the shape of the value function at time t = 0 and the
decrease in the optimal expected utility between time 0 and time 0.5.

In Table 1 and 2 we illustrate the convergence of our numerical scheme. We
consider the solutions at t = 0 increasing the number of sub-intervals of the
time-grid (W ), and the number of mesh-points (N). In Table 1 we compute the
L2-norm error assuming as exact solution the one computed with W = 250 and
N = 5000. More specifically in the upper part of the table we fix N = 5000
and we show the convergence increasing the time grid. Conversely, in the lower
part we fix W = 250 and we make the space grid more dense. As expected, in
both cases the solutions converge. Moreover, in Table 2 we show the convergence
when we increaseW andN at the same time; we do not assume an exact solution
(an analytical solution is not available) but we list the distances, increasing
both W and N , between two consecutive solutions in the numerical sequence.
We consider both the L2 and L∞ relative errors. To show the convergence
of the optimal control regions, we have also computed the Hausdorff distances
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Figure 5: Value function in the plane (B,S). Solution at t = 0 (left) - Difference between the
solution at t = 0 and t = 0.5 (right). N = 5000, W = 250, K = 0.1 and c = 0.01.

Distance from the W = 250 solution, setting N = 5000
W = 25 50 100 200

0.0051 0.0026 0.0012 0.0008

Distance from the N = 5000 solution, setting W = 250
N = 1000 2000 3000 4000

0.0032 0.0014 0.0011 0.0005

Table 1: L2 distance from the solution with W = 250 and N = 5000 at time t = 0, increasing
W (above) and N (below).

W N L∞ L2 HD1 HD2 Iterations CPU Time (s)
25 1000 - - - - 6 283
50 2000 0.0324 0.0023 0.0734 0.1562 6 1578
75 3000 0.0219 0.0014 0.0565 0.0720 5 3715
100 4000 0.0163 0.0011 0.0350 0.0348 5 8435
250 5000 0.0098 0.0005 0.0291 0.0296 4 23635

Table 2: L∞ and L2 errors and Hausdorff distances between the transaction regions (HD1)
and the optimal lines (HD2) of two consecutive solutions in the sequence, at time t = 0.

(normalized by the length of the domain L) between the transaction regions
and between the target portfolios of the consecutive solutions (the Hausdorff
distance is the supremum of the distances of the points in one region to the other
region, and vice versa). Both Tables 1 and 2 indicate a rapid convergence of the
solutions and of the optimal regions. Finally in Table 2 we also list the number
of variational inequalities (number of iterations above the obstacle) which were
necessary to achieve the TOL2 convergence and the CPU time necessary for the
computation. All the computation have been performed in Matlab R2011a and
on a personal computer equipped with a Pentium Dual-Core 2.70 GHz and 4
GB RAM.

5.1. Sensitivity analysis

In this section we make a comparative static analysis to investigate how the
optimal policy is influenced by the different model parameters. The numerical
results have been obtained imposing W = 100 and N = 4000. Except for the
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t = 0 t = 0.5
K\c 0.01 0.005 0.001 0 0.01 0.005 0.001 0
0.5 0.3938 0.4200 0.4397 0.4501 0.2352 0.2533 0.2989 0.3020
0.25 0.4876 0.5288 0.5703 0.5795 0.3764 0.4095 0.4684 0.4735
0.1 0.5841 0.6239 0.6577 0.6607 0.4873 0.5455 0.6138 0.6267
0.05 0.6362 0.6657 0.6804 0.6845 0.5424 0.6667 0.6780 0.6801
0.01 0.6990 0.7307 0.7708 0.7753 0.6185 0.6928 0.7559 0.7667

Table 3: Transaction Region in the plane (B,S) (percentage) for different values of fixed (K)
and proportional (c) transaction costs. Other parameters: r = 0.04, µ = 0.1, σ = 0.4, γ = 0.3
and T = 1.

parameters under investigation, the values of the other parameters are the same
as in the preceding base case.

5.1.1. Sensitivity with respect to the transaction costs

Naturally enough, increasing the transaction costs, the size of the interven-
tion region decreases. Due to the finite horizon T , if we increase K and c only
fewer large transactions can be profitable. In Table 3 we show the percent-
age of the transaction region on the overall domain decreasing both K and c.
Figure 6 depicts the optimal regions of some of the cases considered in the ta-
ble. Increasing the transaction costs produces a variation in the optimal policy
which is similar to that caused by approaching the finite horizon T . The lower
part of the intervention region decreases faster than the upper one, indicating
a shift towards the riskless asset which is not present with an infinite horizon
and an unbounded domain. The lower target portfolios are soon made only of
the riskless asset while the upper optimal line stays close to the Merton one.
It is interesting to observe how the optimal policy varies when we change the
size of the variable cost c with respect to the fixed component K. In Figure 7
we set K = 0.1 and we consider different values of c. For vanishing c the lower
optimal line converge to the upper one, i.e., the Merton line. In fact, in all our
experiments with c = 0 we have only one line of target portfolios. Conversely,
an increase in c pull the lines apart and closer to the intervention region. Van-
ishing K the solution tends towards the solution of a singular control problem
where the optimal policy is an instantaneous reflection at the boundary of the
intervention region (see Davis and Norman, 1990; Shreve and Soner, 1994). This
behaviour of the optimal control sets, varying the relative size of the variable
and of the fixed part of the intervention costs, has already been noted, for a
cash management problem, in Baccarin (2009).

5.1.2. Sensitivity with respect to the other model parameters

When we change the market parameters σ and r or the relative risk aversion
coefficient (1−γ) the Merton line varies its position and the no transaction area
follows it in the same direction. If σ or (1 − γ) increase the investor will hold
more of the riskless asset because he is risk averse, and, if r increases, he will hold
more cash since the stock becomes less attractive. Consequently the Merton’s
line moves down towards the axis S = 0. In Table 4 we show the percentage
of the transaction area on the overall domain increasing r, σ and (1− γ). This
percentage grows in all cases, essentially because the upper optimal line follows
closely the Merton’s one and the upper part of the transaction region becomes
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Figure 6: Transaction area in the plane (B,S). Time t = 0, K = 0.05, c = 0.005 (left) -
K = 0.1, c = 0.01 (middle) - K = 0.25, c = 0.05. Other parameters: r = 0.04, µ = 0.1,
σ = 0.4, γ = 0.3 and T = 1.

Figure 7: Transaction area in the plane (B,S). Time t = 0, K = 0.1, c = 0.001 (left) -
K = 0.1, c = 0.01 (middle) - K = 0.1, c = 0.1 (right). Other parameters: r = 0.04, µ = 0.1,
σ = 0.4, γ = 0.3 and T = 1.

Figure 8: Transaction area in the plane (B,S). Time t = 0, r = 0.02 (left) - r = 0.06 (middle)
- r = 0.08 (right). Other parameters: σ = 0.4, γ = 0.3, µ = 0.1, K = 0.1, c = 0.01 and T = 1

bigger. In Figure 8 we illustrate the optimal regions for some increasing values
of r. The qualitative behavior of the optimal policy increasing (1 − γ) or σ is
similar.

5.2. The impact of transaction costs on the frequency of trading and on the
value of the final portfolio

In order to get an estimate of the number of transactions that an investor
will make if he follows the optimal policy we have coupled our numerical solution
to a Monte Carlo simulation. Precisely we have considered an agent with initial
portfolio made only of cash, B0 = 20, S0 = 0, who behaves according to the
optimal intervention and continuation regions that we have computed using our
numerical procedure. In this section, where we also consider distant horizons,
we set the drift parameter of the risky asset µ = 0.06 and the risk-free interest
rate r = 0.02 (the other model parameters are the same as in our base case). If
the investor’s position is in the continuation region, which changes dynamically
according to our numerical solution, we simulate the evolution of the stock value
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r
t 0.02 0.04 0.06 0.08
0 0.5713 0.5841 0.6111 0.6746
0.5 0.4565 0.4873 0.5502 0.6185

σ
t 0.3 0.4 0.5 0.6
0 0.4748 0.5841 0.6595 0.7122
0.5 0.2880 0.4873 0.6003 0.6763

γ
t 0.2 0.3 0.4 0.5
0 0.6085 0.5841 0.5539 0.5109
0.5 0.5243 0.4873 0.4332 0.3748

Table 4: Transaction Region in the plane (B,S) (percentage) for different values of interest
rate (r), volatility (σ) and risk aversion coefficient (γ). Other parameters: µ = 0.1, K = 0.1,
c = 0.01 and T = 1.

S(t) by a computer generated random walk (the bank account B(t) grows in
a deterministic way). Whenever the simulated portfolio falls into the transac-
tion region the agent re-calibrates its portfolio moving to the corresponding (at
that time instant) optimal target portfolio and paying the necessary transac-
tion costs. The Monte Carlo simulations were performed with 100 time steps,
according to the time grid of the numerical solution computed with W = 100
and N = 4000. In Table 5 we show the average and the standard deviation
of the number of transactions, computed using 500 000 simulations, considering
T = 1 and different values for the transaction costs. Rather surprisingly, it is
clear from this table that the optimal policy is essentially a buy-and-hold trad-
ing strategy. In fact, in almost all simulations, or the number of transactions
is equal to zero, i.e., the investor does not perform any transaction, or is equal
to two, that is the investor transacts at time 0, moving to the lower optimal
line, and at time T = 1 (or before T = 1, if the agent’s portfolio exits from
the domain). Thus transaction costs result into a strong change in the optimal
behavior of the agent: we recall that in the Merton’s model, without these costs,
the investor transacts continuously at every time instant. It is natural to ask
how distant must be the horizon, to have a significant number of interventions.
In Tables 6 we show the average number of transactions for increasing values
of T , up to forty years. It is surprising to observe that, even with the smallest
transaction costs (K = 0.01 and c = 0), on average more than three years are
necessary to have a third transaction and that less than five interventions are
made every ten years on the overall period (T = 40). Note that if we consider
a thousand euros as the unit of measure, K = 0.01 means a cost of 10 euros for
each transaction, which is a very low fixed cost to rebalance a portfolio of initial
value B0 = 20 thousand euros.

It is also interesting to compare some alternative policies with the optimal
one. In Table 7 we have considered the following trading strategies:

• the risk-free strategy (RF): the agent only invests his wealth in the risk-
free asset
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Average Standard Deviation
c c

K 0.01 0.005 0.001 0 0.01 0.005 0.001 0
0.5 0 0 0 0 0 0 0 0
0.1 0 0 2 2.0002 0 0 0 0.0141
0.01 2.0000 2.0028 2.0049 2.0484 0.0045 0.0532 0.0700 0.2168

Table 5: Average (left) and standard deviation (right) of the number of transactions. Param-
eters: r = 0.02, µ = 0.06, σ = 0.4, γ = 0.3 and T = 1. Initial portfolio: B0 = 20, S0 = 0.
Number of simulations equal to 500 000.

T
K c 2 3 5 10 20 40

Average
0.1 0.01 2.0007 2.0167 2.0952 2.6626 3.8775 6.1432
0.1 0.005 2.0014 2.0223 2.1233 2.7154 3.9962 6.3354
0.1 0.001 2.0030 2.0283 2.1454 2.7573 4.1726 6.4378
0.1 0 2.0052 2.0322 2.2523 2.8319 4.2174 6.8480
0.01 0.01 2.0414 2.2146 2.9961 4.6006 7.6706 12.5226
0.01 0.005 2.2142 2.5109 3.0501 4.8450 8.0899 13.5611
0.01 0.001 2.2150 2.6285 3.2504 5.5152 8.9542 15.1048
0.01 0 2.2629 2.7840 3.5118 5.6233 9.9649 17.1312

Standard Deviation
0.1 0.01 0.0257 0.1361 0.3072 0.7238 1.1943 1.8453
0.1 0.005 0.0379 0.1543 0.3481 0.8113 1.2589 1.8552
0.1 0.001 0.0545 0.1664 0.3761 0.8438 1.2771 1.8743
0.1 0 0.0649 0.1988 0.4733 0.8692 1.4450 1.9174
0.01 0.01 0.2027 0.4427 0.9364 1.6249 2.3478 3.4454
0.01 0.005 0.4256 0.6821 0.9717 1.6285 2.3940 3.5861
0.01 0.001 0.5263 0.7030 1.0277 1.8462 3.0124 5.8325
0.01 0 0.5287 0.8204 1.1833 1.9236 4.9104 8.7569

Table 6: Average (up) and standard deviation (down) of the number of transactions. Param-
eters: r = 0.02, µ = 0.06, σ = 0.4, and γ = 0.3. Initial portfolio: B0 = 20, S0 = 0. Number
of simulations equal to 500 000.

• the Merton strategy (Mer): it is the optimal strategy without transaction
costs. The expected utility of the final position is given by the closed
formula

E [U(L(B(T ), S(T )))] =
Bγ

0

γ
exp

(

γ(r +
(µ− r)2

2σ2(1− γ)
)T

)

• the optimal strategy (Opt): in this case we have E [U(L(B(T ), S(T )))] =
V (B0, 0, T ). To obtain the average number of transactions we couple the
Monte Carlo simulation with the numerical solution, as described above

• the Merton strategy with transaction costs: the agent recalibrates his port-
folio moving to the Merton’s line when the distance between his portfolio
and the line itself is bigger than 5% (MTC(5%)) or 10% (MTC(10%)) of
his wealth
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c T RF Mer Opt MTC(5%) MTC(10%) Bar(1%)

Certainty Equivalent
0.01 3 21.236 21.696 21.482 21.393 21.473 21.445
0.01 5 22.103 22.906 22.747 22.539 22.651 22.520
0.01 10 24.427 26.236 26.014 25.687 25.889 25.481
0.005 3 21.236 21.696 21.531 21.480 21.511 21.435
0.005 5 22.103 22.906 22.789 22.626 22.722 22.506
0.005 10 24.427 26.236 26.058 25.778 25.979 25.470
0 3 21.236 21.696 21.629 21.553 21.624 21.431
0 5 22.103 22.906 22.816 22.685 22.801 22.487
0 10 24.427 26.236 26.099 25.885 26.081 25.439

Average Number of transactions
0.01 3 0 ∞ 2.21 13.42 5.44 5.23
0.01 5 0 ∞ 3.00 18.87 7.44 6.14
0.01 10 0 ∞ 4.60 29.14 11.76 7.78
0.005 3 0 ∞ 2.51 13.43 5.44 5.33
0.005 5 0 ∞ 3.05 18.87 7.45 6.25
0.005 10 0 ∞ 4.84 29.14 11.77 7.83
0 3 0 ∞ 2.78 13.43 5.45 5.44
0 5 0 ∞ 3.51 18.87 7.46 6.37
0 10 0 ∞ 5.62 29.15 11.81 8.13

Table 7: Comparison of different strategies: certainty equivalent and average number of trans-
actions. Parameters: K = 0.01, r = 0.02, µ = 0.06, σ = 0.4, and γ = 0.3. Initial portfolio:
B0 = 20, S0 = 0. Number of simulations equal to 500 000.

• the barrier strategy (Bar(1%)): here we assume that the no-transaction re-
gion is a time-independent cone delimited by two barriers passing through
the origin. The agent recalibrates his portfolio only when his position
touches one of the two barriers and he makes the minimal transactions
necessary to stay inside the cone. We have fixed the barriers as follows:
they define the biggest cone which remains included at time t = 0 in the
optimal transaction region that we have computed numerically. To avoid
unbounded transaction costs, due the fixed component K, we assumed
that the portfolio is recalibrated towards the lower/upper barrier only if
it falls below/above the barrier by more than the 1% of the agent’s wealth.

For each of the last three strategies we have simulated 500 000 possible sce-
narios, and thus 500 000 possible values of B(T ) and S(T ), computing the mean
value of U(L(B(T ), S(T )) and the average number of transactions. To make a
more readable comparison among the different policies, in Table 7, besides the
average number of transactions, we have shown the certainty equivalent of the
utility of the final positions, that is U−1(E [U(L(B(T ), S(T )))]). As expected,
if we do not consider the Merton (Mer) strategy, without transaction costs, the
optimal strategy is the best one, i.e., the one with the highest certainty equiv-
alent. It is also the policy with the lowest average number of interventions.
We also notice that the optimal strategy and the MTC(10%) one are close,
while the Bar(1%) strategy is the worst one, despite a low number of trans-
actions. Notice that the Bar(1%) strategy is similar to the trading strategy
which has been proven optimal for portfolio optimization problems with only
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c = 0.1 c = 0.001
γ TR (%) Av Std CE TR (%) Av Std CE

T = 1
0.1 0.704 0 0 20.404 0.820 2.022 0.068 20.434
0.2 0.702 0 0 20.404 0.810 2.016 0.056 20.454
0.3 0.670 0 0 20.404 0.806 2.004 0.070 20.476
0.4 0.639 0 0 20.404 0.789 2.002 0.039 20.506
0.5 0.586 0 0 20.404 0.758 2.002 0.047 20.543
0.6 0.517 0 0 20.404 0.728 2.001 0.037 20.590
0.7 0.434 0 0 20.404 0.685 2.000 0.006 20.677

T = 5
0.1 0.715 2.003 0.037 22.182 0.837 4.923 4.292 22.590
0.2 0.708 2.003 0.034 22.191 0.832 3.342 1.056 22.665
0.3 0.687 2.002 0.046 22.194 0.822 3.250 1.027 22.791
0.4 0.658 2.003 0.042 22.195 0.811 3.141 1.007 22.924
0.5 0.611 2.002 0.048 22.195 0.794 3.038 1.000 23.116
0.6 0.565 2.002 0.055 22.200 0.770 2.945 0.926 23.404
0.7 0.499 2.002 0.059 22.203 0.745 2.366 0.942 23.892

T = 10
0.1 0.727 4.059 1.073 24.643 0.839 6.578 4.191 25.638
0.2 0.723 3.705 1.124 24.664 0.836 5.980 2.003 25.775
0.3 0.705 3.025 0.957 24.683 0.826 5.515 1.846 26.074
0.4 0.673 2.553 0.986 24.718 0.815 5.012 1.998 26.345
0.5 0.632 2.519 0.837 24.790 0.803 4.596 1.790 26.774
0.6 0.591 2.444 0.774 24.932 0.785 4.211 1.674 27.400
0.7 0.544 2.207 0.854 25.139 0.764 4.023 1.948 28.335

Table 8: Sensitivity with respect to γ considering a fixed transaction cost K = 0.01: trans-
action region at t = 0 (TR), average (Av) and standard deviation (Std) of the number of
transactions, and certainty equivalent for the optimal strategy with transaction costs (CE).
Other parameters: r = 0.02, µ = 0.06, and σ = 0.4. Initial portfolio: B0 = 20, S0 = 0.
Number of simulations equal to 500 000.

proportional transaction costs (see Davis and Norman, 1990; Dumas and Lu-
ciano, 1991; Fleming and Soner, 1993; Liu and Loewenstein, 2002). Thus trying
to use this kind of policy in the presence of a fixed cost K different from zero
clearly becomes unprofitable (and the results are even worse if we decrease the
1% level). We also notice that this strategy results in a lower utility when the
proportional cost c approaches to zero. This rather surprising effect depends
on the increased number of transactions due to a smaller no-transaction region
(cone), and thus on the increased fixed transaction costs.

Finally, in order to understand how the risk aversion index 1− γ influences
the agent’s behavior, in Table 8 we report the average number of transactions
for agents who use our optimal policy with different values of γ. We have
considered K = 0.01, and c = 0.1 or c = 0.001 (the other parameters are the
same considered in this section). We notice that, increasing γ, i.e., considering
less risk-averse investors, both the percentage of the transaction region and the
average number of transactions decrease. This is due to the fact that a more
risk-averse agent prefers to pay higher transaction costs to maintain his portfolio
into a less risky position.
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Appendix A. Proof of Theorem 4

In this appendix we prove the weak comparison principle, adapting to our
problem the techniques in (Akian et al., 2001; Barles, 1994; Ly Vath et al., 2007;
Oksendal and Sulem, 2002) and giving all the necessary preliminary definitions
and results. To prove comparison results for second-order equations is useful
to give equivalent definitions of viscosity solutions in terms of parabolic second
order super and subdifferentials (see Crandall et al., 1992). We will denote by
S2 the set of all 2× 2 symmetric matrices and, when it is convenient, by x the
couple (B,S) ∈ Ω.
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Definition 3. 1) The set of parabolic second order superdifferentials of a func-
tion u : Q → R at the point (t, x) ∈ Q is defined by

D+(1,2)u(t, x) =
{

(q, p, A) ∈ R× R
2 × S2 :

lim sup
(h,y)→0

(t+h,x+y)∈Q

u(t+ h, x+ y)− u(t, x)− qh− py − 1
2Ay · y

|h|+ |y|2
≤ 0















(A.1)

2) A triplet (q, p, A) ∈ R × R2 × S2 belongs to D
+(1,2)

u(t, x), the closure of
D+(1,2)u(t, x), if there exists a sequence (tm, xm) converging to (t, x), and an-
other sequence

(qm, pm, Am) ∈ D+(1,2)u(tm, xm)

converging to (q, p, A) as m tends to infinity.

The set D−(1,2)u(t, x) of parabolic second order subdifferentials of u : Q →
R at (t, x) ∈ Q is defined in a symmetric way using the lim inf and the ≥

inequality in (A.1) and the definition of its closure D
−(1,2)

u(t, x) is analogous

to the definition of D
+(1,2)

u(t, x).

Definition 4. Given O ⊂ Ω, a locally bounded function u : Q → R+ is called
a viscosity subsolution (resp. supersolution) of (8) in [0, T )×O if

min

{

−q − rBp1 − µSp2 −
1

2
σ2S2A22, u

∗(t, x)−Mu∗(t, x)

}

≤ 0

(resp. u∗ and ≥ 0)

for all (t, x) ∈ [0, T ) × O, (q, p, A =

[

A11 A12

A21 A22

]

) ∈ D
+(1,2)

u∗(t, x) (resp.

D
−(1,2)

u∗(t, x)).

In order to prove the weak comparison principle it is useful to obtain strict
viscosity supersolutions of (8) in Q = [0, T )× Ω.

Lemma 9. Fix δ′ > δ = γ
(

r + (µ−r)2

2σ2(1−γ)

)

and consider the smooth perturbation

function g(t, B, S) = eδ
′(T−t)(B + S)γ . Let v ∈ LSC(Q) be a viscosity superso-

lution of (8) in Q. Then for any ε > 0 the lsc function vε = v + ǫg is a strict
viscosity supersolution of (8) in any compact set G ⊂ Q. This means that for
any compact G ⊂ Q there exists a constant ρ > 0, depending on G, such that

min

{

−q − rBp1 − µSp2 −
1

2
σ2S2A22, vε −Mvε

}

≥ ερ

for all (t, B, S) ∈ G, ǫ > 0 and (q, p, A) ∈ D
−(1,2)

vǫ(t, B, S).

Proof. From the definition (7) we have, for ǫ > 0,

Mv + ǫMg ≥ Mvε
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and thus
vε −Mvε ≥ v −Mv + ǫ(g −Mg) . (A.2)

Since v is a supersolution it holds v − Mv ≥ 0. Moreover from (7) and the
definition of g it follows

g(t, B, S)−Mg (t, B, S) ≥

{

eδ
′(T−t) [(B + S)γ − (B + S − k)γ ] if (B,S) ∈ ̥

1 if (B,S) /∈ ̥ .

Hence for any compact G ⊂ Q there exists ρ1 > 0 such that g −Mg ≥ ρ1 for
(t, B, S) ∈ G. Combining this with (A.2) we obtain vε −Mvε ≥ ερ1 in G. We
consider now −∂g

∂t
− Lg. We have

−
∂g

∂t
−Lg = eδ

′(T−t)(B+S)γ
[

δ′ − γ
rB + µS

B + S
−

1

2
γ(γ − 1)σ2 S2

(B + S)2

]

(A.3)

and, setting S
B+S

= α, B
B+S

= (1 − α), it is not difficult to see that δ′ >

γ
(

r + (µ−r)2

2σ2(1−γ)

)

is sufficient to get −∂g
∂t

−Lg > 0, when B + S > 0. Therefore

for any compact G ⊂ Q there exists ρ2 > 0 such that −∂g
∂t

− Lg ≥ ρ2 for all
(t, B, S) ∈ G. Since v is already a supersolution of (8), we obtain that

−q − rBp1 − µSp2 −
1

2
σ2S2A22 ≥ ǫρ2

for all (t, B, S) ∈ G and (q, p, A) ∈ D
−(1,2)

vǫ(t, B, S). Therefore vǫ is a strict
viscosity supersolution of (8) in any compact set G ⊂ Q.

�

Now it is sufficient to prove the weak comparison principle between a viscos-
ity subsolution u and a strict viscosity supersolution vε = v + ǫ f , for all ǫ > 0,
because u ≤ v in Q\R will follow in the limit ǫ ↓ 0. We show the result first

reasoning in Q
+
. Let u and v be as in theorem 4. We redefine the supersolution

v on ∂∗Q+ by

v(t, B, S) = lim inf
(t′,B′,S′)∈Q+

(t′,B′,S′)→(t,B,S)

v(t′, B′, S′) ∀ (t, B, S) ∈ ∂∗Q+, (A.4)

and we still denote v this function. Now we consider the difference u − vǫ in

Q
+
, and we argue by contradiction supposing that

m ≡ sup
(t,B,S)∈Q

+

u− vǫ > 0 . (A.5)

Since u−vǫ is u.s.c, Q
+
is compact and the boundary conditions (13) hold true,

the maximumm is attained in some point (t0, x0) ∈ {[0, T )× {Ω+ ∪ ∂1Ω
+}} \ {0}.

To obtain a contradiction we apply the Ishii’s technique redoubling the variables
and penalizing this doubling (see Barles, 1994; Crandall et al., 1992). First sup-
pose (t0, x0) ∈ Q+ and consider the test functions for i ≥ 1

Φi(t, x, x
′) = u(t, x)− vǫ(t, x

′)− ϕi(t, x, x
′),

where

ϕi(t, x, x
′) = |t− t0|

2
+ |x− x0|

4
+

i

2
|x− x′| .
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As Φi(t, x, x
′) is usc in Q

+
, there exists (t̂i, x̂i, x̂

′
i) ∈ Q

+
such that

mi = sup
(t,x,x′)∈[0,T ]×Ω

+
×Ω

+

Φi(t, x, x
′) = Φi(t̂i, x̂i, x̂

′
i), (A.6)

and, at least for a subsequence, (t̂i, x̂i, x̂
′
i) converges to some (t̂0, x̂0, x̂

′
0) ∈ Q

+
.

By definition we have

m ≤ mi ≤ u(t̂i, x̂i)− vǫ(t̂i, x̂
′
i),

and it is not difficult to show that, sending i to infinity, we obtain






t̂0 = t0, x0 = x̂0 = x̂′
0

mi −→ m
i
2 |x̂i − x̂′

i| → 0.
(A.7)

Therefore we can apply Ishii’s lemma to the interior maximum (t̂i, x̂i, x̂
′
i) ∈

[0, T ) × Ω+ × Ω+ of Φi (see Crandall et al., 1992, Theorem 8.3). There exist
q, q′ ∈ R, p, p′ ∈ R2 and A,A′ ∈ S2 such that

(q, p, A) ∈ D
+(1,2)

u(t̂i, x̂i) and (q′, p′, A′) ∈ D
−(1,2)

vǫ(t̂i, x̂i),

where






q − q′ = ∂ϕi

∂t
(t̂i, x̂i, x̂

′
i) = 2(t̂i − t0)

p = ∂ϕi

∂x
(t̂i, x̂i, x̂

′
i) = 4(x̂i − x0) |x̂i − x0|

2
+ i(x̂i − x̂′

i)

p′ = −∂ϕi

∂x′ (t̂i, x̂i, x̂
′
i) = i(x̂i − x̂′

i),

(A.8)

and A, A′ are such that

[

A 0
0 A′

]

≤
∂2ϕi

∂x∂x′
(t̂i, x̂i, x̂

′
i) +

1

i

(

∂2ϕi

∂x∂x′
(t̂i, x̂i, x̂

′
i)

)2

. (A.9)

The subsolution property of u in (t̂i, x̂i) and the strict supersolution property
of vǫ in (t̂i, x̂

′
i), imply that

min

{

−q − rB̂ip1 − µŜip2 −
1

2
σ2Ŝ2

i A22, u(t̂i, x̂i)−Mu(t̂i, x̂i)

}

≤ 0 (A.10)

min

{

−q′ − rB̂′
ip

′
1 − µŜ′

ip
′
2 −

1

2
σ2Ŝ′2

i A′
22, zε(t̂i, x̂

′
i)−Mzε(t̂i, x̂

′
i)

}

≥ ερ.(A.11)

If u(t̂i, x̂i)−Mu(t̂i, x̂i) ≤ 0 in (A.10), then, combining with zε(t̂i, x̂
′
i)−Mzε(t̂i, x̂

′
i) ≥

ερ due to (A.11), we obtain

mi ≤ u(t̂i, x̂i)− vǫ(t̂i, x̂
′
i) ≤ Mu(t̂i, x̂i)−Mzε(t̂i, x̂

′
i)− ερ .

Using Lemma 2 and (A.7), when i goes to infinity, we have

m ≤ Mu(t0, x0)−Mzε(t0, x0)− ερ .

Since by Remark 1, F (x0) is compact, if it is not empty, and u is usc, then there
exists x′

0 such that Mu(t0, x0) = u(t0, x
′
0) and we obtain a contradiction using

the definitions of m and M

m ≤ u(t0, x
′
0)− zε(t0, x

′
0)− ερ ≤ m− ερ .
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Therefore it must be −q − rB̂ip1 − µŜip2 − 1
2σ

2Ŝ2
i A22 ≤ 0 in (A.10), and,

combining with −q′ − rB̂′
ip

′
1 − µŜ′

ip
′
2 −

1
2σ

2Ŝ′2
i A′

22 ≥ ερ of (A.11), we obtain

−(q − q′)− r(B̂ip1 − B̂′
ip

′
1)− µ(Ŝip2 − Ŝ′

ip
′
2)−

1

2
σ2(Ŝ2

i A22 − Ŝ′2
i A′

22) ≤ −ερ .

(A.12)
By (A.7) and (A.8), as i goes to infinity, (q − q′), (B̂ip1 − B̂′

ip
′
1), (Ŝip2 − Ŝ′

ip
′
2)

converge to zero. Moreover by (A.9) it follows

(Ŝ2
i A22 − Ŝ′2

i A′
22) ≤ βi, (A.13)

where

βi = si

[

∂2ϕi

∂x∂x′
(t̂i, x̂i, x̂

′
i) +

1

i

(

∂2ϕi

∂x∂x′
(t̂i, x̂i, x̂

′
i)

)2
]

sTi , (A.14)

with si = [0, Ŝi, 0, Ŝ
′
i]. We have

∂2ϕi

∂x∂x′
(t̂i, x̂i, x̂

′
i) =

[

iI2 +Qi −iI2
−iI2 iI2

]

, (A.15)

where Qi = 8 |x̂i − x0|
2
I2 + 8(x̂i − x0)(x̂i − x0)

T and I2 is the (2× 2) identity
matrix. Substituting (A.15) into (A.14), after some computations we obtain

βi = 3i(Ŝi − Ŝ′
i)

2 + si

([

3Qi −Qi

−Qi 0

]

+
1

i

[

Q2
i 0
0 0

])

sTi . (A.16)

By (A.7) and (A.16), βi also converges to zero as i goes to infinity and therefore
(A.12) and (A.13) lead to another contradiction when i → ∞. Therefore we
have shown that the maximizer (t0, x0) of (A.5) cannot belong to Q+. The
more difficult case ,when we suppose the maximizer (t0, x0) is on the border
{[0, T )× ∂1Ω

+} \ {0} , can be faced as in (Ly Vath et al., 2007; Oksendal and
Sulem, 2002) using a technique proposed in Barles (1994) which assumes some
regularity of the boundary. Specifically if we denote by d(x) the distance from
x to ∂Ω+, this distance must be twice continuously differentiable in a neighbor-
hood of x0. It can be shown as in Ly Vath et al. (2007) that this regularity is
satisfied on the border {[0, T )× ∂1Ω

+} \ {0} . By (A.4) there exists a sequence
(ti, xi) in Q+ converging to (t0, x0). Define αi = |ti − t0|, γi = |xi − x0| and
consider, as in Ly Vath et al. (2007), the test functions for i ≥ 1

Φi(t, t
′, x, x′) = u(t, x)− vǫ(t

′, x′)− ϕi(t, t
′, x, x′), (A.17)

where

ϕi(t, t
′, x, x′) = |t− t0|

2
+ |x− x0|

4
+

|t− t′|2

2αi

+
|x− x′|2

2γi
+

(

d(x′)

d(xi)
− 1

)4

.

It is not difficult to show that in the maximizer (t̂i, t̂
′
i, x̂i, x̂

′
i) of Φi, the point

x̂′
i always verifies d(x̂

′
i) > 0. Therefore we can still use the strict supersolution

property of vǫ in (t̂′i, x̂
′
i). Applying Ishii’s lemma to the point (t̂i, t̂

′
i, x̂i, x̂

′
i) and

repeating the preceding arguments with the test functions (A.17) we obtain
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again, by contradiction, that it must be m ≥ 0. Finally to get u ≤ v also in
Q−\R it is sufficient to redefine the subsolution u on ∂∗Q− by

v(t, B, S) = lim sup
(t′,B′,S′)∈Q−

(t′,B′,S′)→(t,B,S)

v(t′, B′, S′) ∀ (t, B, S) ∈ ∂∗Q− (A.18)

and to repeat the same proof of Q
+
in Q

−
.
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