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Abstract

We consider the problem of choosing the best design for stiffening trusses of plates, such as bridges. We

suggest to cover the plate with regular hexagons which fit side to side. We show that this design has some

important advantages when compared with alternative designs.

1 Introduction

The instability of certain bridges is still an unsolved problem. Classical mathematical theories such as [3]

turned out to be too poor to describe the complex behavior of bridges, especially under the solicitation of strong

and prolonged winds. Together with some colleagues, in [2, 9, 10] we have shown that most of the commonly

adopted mathematical models fail and we could exhibit a phenomenon of self-excited oscillations in some

semilinear fourth order ODE’s. Moreover, this phenomenon is also visible in some fourth order PDE’s arising

from elasticity. We refer to [7] for a survey of the existing theories and for some historical events concerning

the failure of bridges.

The purpose of the present paper is to suggest a new design for stiffening trusses to be put under the roadway

of a bridge. In fact, our suggestion can be adapted to any structure having an horizontal plate to be sustained

and to any kind of planking or scaffolding. Mathematically speaking, the problem consists in strengthening

a plate Ω ⊂ R
2 with some trusses, identified with a line γ ⊂ Ω. The truss is chosen to be the union of

polygons P fitting side to side. The only regular polygons satisfying this property are equilateral triangles,

squares and regular hexagons. Since most of the existing trusses are the union of isosceles right triangles (half

squares cut along the diagonal) we also consider these shapes. We will show that regular hexagons have better

performances from several different points of view.

Assuming that the surface X of the plate and the length L of the stiffening truss are given in advance, we first

determine the number and the size of the polygons needed to cover the plate Ω. It turns out that the hexagonal

covering has smallest segment of trusses (sides of the polygon), therefore being more resistant to moments of

applied loads; recall that, for a given force, the moment is proportional to the distance from the fulcrum. Then

we measure distances from uncovered points. As far as the minimal distance is involved, the four considered

shapes perform equivalently; on one hand, this shows that symmetry plays an important role, on the other hand

this claims a deeper analysis of the distances which should also take into account distance from all the points

of the boundary. We introduce the average mean squared distance, a function of the L2-norm of distances from

the boundary. We prove that hexagonal trusses perform better also from this point of view since they minimize

this value among the considered classes of polygons.

A further point of view comes from elasticity. We consider each polygon of the stiffening truss to be a simply

supported elastic plate. Then, according to the linear theory of elasticity by von Kármán [18] (see also [13]),

we can compute the elastic energy of the plate when it is subject to a constant load. This gives a measure of the

static performances of each polygon. With the already computed optimal number of polygons, we are able to
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determine the total elastic energy of the plate Ω. It turns out that, again, hexagonal trusses perform better since

they minimize the stored elastic energy.

Hence, our results suggest to cover plates as in Figure 1. This pattern may be repeated a number of times

Figure 1: Optimal shape for stiffening trusses.

according to the given constraints (length and width of the plate).

This paper is organized as follows. In next section we describe in detail how to compute the parameters

used to measure the performances of polygonal stiffening trusses and we state our main results. The results are

stated by comparing the same parameter within the four classes of polygons, whereas in Section 3 the proofs

are given by computing all the parameters for each considered polygon. Special mention deserves the result

about the elastic performance, Theorem 4 stated in the next section. Due to the lack of explicit solutions, a

full theoretical proof of this result is out of reach and, therefore, we take advantage of some numerics; this

procedure is described in detail in Section 4. Finally, in Section 5 we draw some conclusions, summarizing and

discussing all the results obtained.

2 Performances of polygonal stiffening trusses

We wish to reinforce a plate Ω of area X (computed in square meters, |Ω| = X m2) with a truss γ ⊂ Ω of

total length L (computed in meters, |γ| = L m). Here γ is sought as a line in the plane which consists of a

finite number of segments representing the sides of isosceles right triangles or equilateral triangles or squares

or regular hexagons. We denote, respectively, by Θ, T , S, H these four classes of polygons and we assume that

the stiffening truss gives rise to a design of several polygons all from the same class and all fitting side to side.

By this we mean that the intersection between the closure of two polygons is either empty or one side or one

vertex, see Figure 2.

Figure 2: Polygonal shapes for stiffening trusses.

The model we have in mind is the roadway of a bridge and, therefore, the plate is a long and thin rectangle

and L is very large when compared to |∂Ω|, L ≫ |∂Ω|, so that one may neglect the contribution of ∂Ω. To be

slightly more precise, we assume that L ≈ 100|∂Ω| in such a way that the percentage of mistake is around 1%.

This gives a reliable feeling on the behavior of plates reinforced with polygonal trusses.

We cover this plate with many small identical polygons P having one of the above described shapes and

fitting side to side. The surface X of the plate and the length L of the truss determine both the number of the

polygons P needed to cover the plate and their size. With a simple computation we obtain:

Theorem 1. Let Ω ⊂ R
2 be a planar plate of area |Ω| = X strengthened with a truss γ ⊂ Ω of total length

|γ| = L with L ≫ |∂Ω|. Assume that γ is the union of closed polygonal lines whose interior are all equal
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polygons P belonging to one of the above families, P ∈ T ∪S∪H∪Θ. Assume that P has the sizes determined

by X and L. Then the maximal length ℓmax(P ) of one side of each polygon is given by

P Θ T S H

ℓmax(P ) 2(1 +
√
2) ≈ 4.83 2

√
3 ≈ 3.46 2 2

√
3

3 ≈ 1.15

The quantities in this table should be multiplied by X/L and their unit of measure are meters.

Moreover, for any such shape, the number N(P ) of polygons needed to cover Ω is given by

P Θ T S H

N(P ) (3− 2
√
2) L2

X

√
3
9

L2

X
1
4

L2

X

√
3
6

L2

X

In Theorem 1 we speak about maximal length of one side because for right triangles Θ the sides are not all

equal; it is clear that for regular polygons in T ∪P ∪H the maximal length is just the length of any side. For the

second statement, what we call the number of polygons needs not be an integer, this depends on X and L; its

integer part gives the “true” number of polygons, although the shape of Ω could force these polygons to be cut

in a sophisticated way. Hence, the number N(P ) should be read as the approximation of a large integer number.

Theorem 1 shows that a truss composed of hexagons has the minimal length of each segment truss. This gives

better performances to the truss because shorter segments improve the performance to load solicitations due to

a smaller moment of the force acting on it.

Once the sizes are determined, we introduce several further parameters in order to measure the performance

of the truss. For any point M ∈ P we consider the distance function from M to the boundary ∂P and we

denote it by d(M,∂P ); we emphasize that this function is, in fact, the minimal distance from a point to the

truss:

d(M,∂P ) = min
A∈∂P

d(M,A) = min
A∈γ

d(M,A) .

Then we define the inradius I(P ) as the radius of the largest disk contained in P ; this represents the maximal

distance from the truss to a point of P and is analytically defined by

I(P ) = max
M∈P

d(M,∂P ) = ‖d(·, ∂P )‖L∞(P ) .

This number is a further parameter characterizing the polygon P : the larger is I(P ) the weaker is the stiffening

truss. We also consider the average distance d(P ) from points of P to trusses which can be defined by

d(P ) =
1

|P |

∫

P
d(M,∂P ) dM =

1

|P |‖d(·, ∂P )‖L1(P ) .

Moreover, the variance of the distance to γ is given by

V (P ) =

∫

Ω

(

d(M,γ)− d(P )
)2

dM (1)

and measures how heterogeneous is the distance function from the truss γ. It is clear that the larger is V (P ),
the weaker appears the structure since it has larger gaps between “weak” and “strong” points. In fact, for the

four above considered shapes, these three parameters are identical.

Theorem 2. Let Ω ⊂ R
2 be a planar plate of area |Ω| = X strengthened with a truss γ ⊂ Ω of total length

|γ| = L with L ≫ |∂Ω|. Assume that γ is the union of closed polygonal lines whose interior are all equal

polygons P belonging to one of the above families, P ∈ T ∪S∪H∪Θ. Assume that P has the sizes determined

by Theorem 1. Let I(P ), d(P ), V (P ) be as just defined. Then, for any such shape, we have

I(P ) =
X

L
, d(P ) =

1

3

X

L
, V (P ) =

1

18

X3

L2
.
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Theorem 2 may appear surprising, none of the four considered shapes performs better than the others, at least

from a first analysis of the distance to the boundary. We do not know how general this result can be, which

other shapes enjoy this property. For sure, it does not hold for rectangles (see Section 5.1) and, presumably, for

any irregular polygon. Most probably it merely holds for circumscribed domains which fit side to side.

Since from the minimal distance point of view, the four polygonal shapes are completely equivalent, we

introduce a further parameter going deeper into distances from the boundary; it does not only take into account

the minimal distance from M ∈ P to ∂P but also the distance from M to any point in ∂P . In Figure 3 the

Figure 3: A point having the same minimal distance from two different boundaries.

point M has the same (minimal) distance from the boundaries of the large white rectangle R and the small grey

rectangle r. However, by the maximum principle applied to problem (3) below, if a load f is put in M then the

simply supported plate r will be deformed less than the plate R. So, for every point M ∈ P we first define the

mean squared distance by

δ(M) =
1

|∂P |

(
∫

∂P
d(M,A)2 dA

)1/2

and then we define the average mean squared distance of the polygon P by

∆(P ) =
1

|P |

∫

P

1

|∂P |2
∫

∂P
d(M,A)2 dAdM =

1

|P |‖δ‖
2
L2(P ) . (2)

In Section 5.2 we explain the meaning of this new measure for performances of trusses. Here, we state

Theorem 3. Let Ω ⊂ R
2 be a planar plate of area |Ω| = X strengthened with a truss γ ⊂ Ω of total length

|γ| = L with L ≫ |∂Ω|. Assume that γ is the union of closed polygonal lines whose interior are all equal

polygons P belonging to one of the above families, P ∈ T ∪S∪H∪Θ. Assume that P has the sizes determined

by Theorem 1. Then, for any such shape, the average mean squared distance ∆(P ) is given by

P Θ T S H

∆(P ) 1
3 ≈ 0.333

√
3
6 ≈ 0.289 1

4 = 0.25 5
√
3

36 ≈ 0.241

The quantities in this table should be multiplied by X/L and their unit of measure are meters.

We believe that any Lp-norm (for 1 ≤ p < ∞) would give the same qualitative answer. More precisely, for

any such p one could consider the mean value of the p-th power of the distance

1

|P |

∫

P

1

|∂P |p
∫

∂P
d(M,A)p dAdM

and, presumably, obtain a result similar to Theorem 3 with hexagons having the best performance.

Finally, we study the different trusses from the point of view of elasticity. For small vertical displacements,

the elastic performances of simply supported plates can be computed by using the linear theory by von Kármán

[18], see also [8, 11] for a modern approach and for further historical references. Adopting this theory, the
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vertical deformation u of a simply supported planar elastic plate Ω ⊂ R
2 subject to an external force (load)

f ∈ L2(Ω) is described by the equation







∆2u = f in Ω

u = ∆u = 0 on ∂Ω .
(3)

Note that (3) may be written as a system of two second order equations







−∆v = f in Ω

v = 0 on ∂Ω ,







−∆u = v in Ω

u = 0 on ∂Ω .
(4)

It is well-known that (3) admits a unique solution u ∈ H := H2 ∩H1
0 (Ω) which may also be obtained as the

unique minimizer of the convex functional

J(u) =

∫

Ω

( |∆u|2
2

− f u

)

u ∈ H .

Then the elastic energy of the deformed plate under the solicitation f is given by

Ef (Ω) = −2min
u∈H

J(u) = −2J(u) =

∫

Ω
|∆u|2

where the last equality is obtained by multiplying (3) by u and integrating by parts over Ω.

Of particular interest is the situation when f ≡ 1 (constant load). This gives a reliable measure of the elastic

energy storing capacity of the plate per unit load. In this situation, the elastic energy is homogeneous of degree

6 under dilations:

E(αΩ) = α6E(Ω) ∀α > 0 . (5)

Moreover, in view of (4), when f ≡ 1 the elastic energy becomes

E(Ω) =
∫

Ω
|∆u|2 =

∫

Ω
v2 (6)

where v ∈ H1
0 (Ω) is the unique solution to the torsion problem







−∆v = 1 in Ω

v = 0 on ∂Ω .
(7)

Except for some particular shapes, equation (7) is not explicitly solvable. However, with the help of some

numerics we obtain

Theorem 4. (Partially numerical results) Let Ω ⊂ R
2 be a planar plate of area |Ω| = X strengthened with

a truss γ ⊂ Ω of total length |γ| = L with L ≫ |∂Ω|. Assume that γ is the union of closed polygonal lines

whose interior are all equal polygons P belonging to one of the above families, P ∈ T ∪ S ∪H ∪Θ. Assume

that P has the sizes determined by Theorem 1. Then, for any such shape, the total elastic energy of the plate Ω
under the action of a unitary load is given by

P Θ T S H

E(P ) ≈ 0.034 9
280 ≈ 0.032 ≈ 0.027 ≈ 0.024

The quantities in this table should be multiplied by X5/L4.

Hence, also from this point of view regular hexagons perform better than the other shapes.

5



3 Proof of Theorems 1 – 2 – 3

For each of the four shapes P considered we fix the length of one side and we determine several characteristic

parameters:

- their perimeter |∂P |;
- their area |P |;
- their inradius I(P ) (the maximal distance from a point in P and the boundary ∂P );

- the number N(P ) of polygons P needed to cover a plate Ω with area X (computed in square meters,

|Ω| = Xm2) and with total length of the truss L (computed in meters, |γ| = Lm);

- the average distance of their points from the boundary d(P );
- the size of the N(P ) polygons, in particular ℓmax(P );
- the variance of the distance V (P ) as defined in (1);

- the average mean squared distance ∆(P ) as defined in (2).

These parameters enable us to compute the performances of the trusses having the shape considered. In order

to determine N(P ) and the size of P we need to solve the following equation

N(P ) =
X

|P | =
2L

|∂P | . (8)

The factor 2 in the right hand side of (8) is needed since each side of any polygon P is also the side of an

adjacent polygon, so the contribution of each polygon to the truss γ is |∂P |/2.

Another parameter requiring some work is the average distance d. Since the distance function to ∂P is the

simplest example of web function (see [6]) we may use the piercing function defined in [4] and compute d
according to [5, Lemma 4]. Given an arbitrary convex planar domain K, for a.e. y ∈ ∂K the outer unit normal

is well-defined and will be denoted by ny. For all x ∈ K let d(x, ∂K) denote its distance from the boundary

∂K, and define its projection on the boundary Π(x) ∈ ∂K such that |x−Π(x)| = d(x, ∂K); note that Π(x) is

uniquely determined for a.e. x ∈ K. The piercing function is defined as

λK(y) := sup{k ≥ 0 : Π(y − kny) = y} for a.e. y ∈ ∂K. (9)

We clearly have 0 ≤ λK(y) ≤ I(K) on ∂K. Moreover, the function λK is Lipschitz continuous on ∂K
whereas Π is Lipschitz continuous on K.

A relatively simple way to compute integrals of functions of the distance dP over a convex polygon P is

given in [5, Lemma 4] which states

Lemma 5. Let P be a convex polygon of inradius I(P ), and let g : [0, I(P )] → R be a Lipschitz continuous

function such that g(0) = 0. Then

∫

∂P
g(λP (y)) dy =

∫

P
g′
(

d(x, ∂P )
)

dx .

In particular, by taking g(s) = sq we have

∫

P
d(x, ∂P )q−1 dx =

1

q

∫

∂P
λP (y)

q dy . (10)

For the computation of the integrals of the distance, we make use of (10) with q = 2 and q = 3. To this end,

we need to clarify how to determine λP ; this is quite simple since our polygons are all circumscribed to some

disk, more involved is the general case, see [4]. Put one of the sides of the polygon on a segment Σ of equal

length on the x axis in the (x, y)-plane so that P lies in the half space y > 0. Construct the inner bisecting lines

of the two vertices of P at the endpoints of Σ and stop them when they intersect. We obtain a triangle having

the side Σ on the x axis and the remaining two sides being the graph of a piecewise affine function defined on

Σ. This is the graph of λP for the points belonging to the segment Σ.
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Concerning the variance of the distance within each polygon P , we will proceed as follows:

∫

P
d(x, ∂P )2 dx− 2d(P )

∫

P
d(x, ∂P ) dx+ |P | d(P )2 =

∫

P
d(x, ∂P )2 dx− |P | d(P )2 ; (11)

then, recalling the definition in (1) and the number of polygons in (8), we obtain the total variance as

V (P ) = N(P )

(
∫

P
d(x, ∂P )2 dx− |P | d(P )2

)

. (12)

Finally, for the average mean squared distance

∆(P ) =
1

|P |

∫

P

1

|∂P |2
∫

∂P
d(M,A)2 dAdM =

1

|P | · |∂P |2
∫

P

∫

∂P
d(M,A)2 dAdM

we will simplify computations by exploiting the symmetry properties of each polygon P . We are now ready to

determine the characteristic values of the considered convex polygons.

3.1 Isosceles right triangles

Consider an isosceles right triangle Θℓ whose hypothenuse has length 2ℓ. Then

|∂Θℓ| = 2(1 +
√
2)ℓ , |Θℓ| = ℓ2 , I(Θℓ) = (

√
2− 1) ℓ . (13)

Hence, by using (8) we obtain

N(Θℓ) =
X

ℓ2
=

L

(1 +
√
2)ℓ

=⇒ ℓ = (1 +
√
2)

X

L
=⇒ N(Θℓ) = (3− 2

√
2)

L2

X
. (14)

In the plane (x, y) put first the hypothenuse h on the axis y = 0 with −ℓ < x < ℓ so that Θℓ lies in the half

plane y > 0. For any x ∈ (−ℓ, ℓ) we have

λΘℓ
(x) = min

{

(
√
2− 1)(ℓ− x), (

√
2− 1)(ℓ+ x)

}

.

For symmetry reasons, we only need to compute the contribution of λΘℓ
on the interval (0, ℓ) and to multiply

it by 2 since there are 2 identical right triangles which compose the lower part of Θℓ, see the first picture in

Figure 4. This gives

∫

h
λΘℓ

(x)2 dx = 2(
√
2− 1)2

∫ ℓ

0
(ℓ− x)2 dx =

2(
√
2− 1)2

3
ℓ3 . (15)

Figure 4: Contributions of the piercing function in Θℓ.
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Then put one of the legs on the axis y = 0 with 0 < x <
√
2ℓ so that Θℓ lies in the half plane y > 0, see the

second picture in Figure 4. In view of tan π
8 =

√
2− 1, for any x ∈ (0,

√
2ℓ) we have

λΘℓ
(x) = min

{

(
√
2− 1)x,

√
2ℓ− x

}

.

Since we have 2 legs c1 and c2, we double the contribution of λΘℓ
on the interval (0,

√
2ℓ). This gives

∫

c1∪c2
λΘℓ

(x)2 dx = 2

{

(
√
2− 1)2

∫ ℓ

0
x2 dx+

∫

√
2ℓ

ℓ
(
√
2ℓ− x)2 dx

}

=
2
√
2(
√
2− 1)2

3
ℓ3 . (16)

By adding (15)-(16) and by using (10) with q = 2 we obtain

∫

Θℓ

d(M,∂Θℓ) dM =

√
2− 1

3
ℓ3 .

With the value of ℓ determined in (14) we can compute, in terms of X and L, the maximal and the average

distance of points inside Θℓ from the boundary ∂Θℓ:

I(Θℓ) =
X

L
, d(Θℓ) =

1

|Θℓ|

∫

Θℓ

d(M,∂Θℓ) dM =

√
2− 1

3
ℓ =

1

3

X

L
. (17)

Let us now compute the variance of the distance within each triangle. By using (10) with q = 3 and by

arguing as above we get

∫

Θℓ

d(M,∂Θℓ)
2 dM =

2

3
(
√
2− 1)3

∫ ℓ

0
(ℓ− x)3 dx+

2

3

{

(
√
2− 1)3

∫ ℓ

0
x3 dx+

∫

√
2ℓ

ℓ
(
√
2ℓ− x)3 dx

}

=
3− 2

√
2

6
ℓ4 .

Hence, by (17) and (11),

∫

Θℓ

(

d(M,∂Θℓ)− d(Θℓ)
)2

dM =
3− 2

√
2

6
ℓ4 − 3− 2

√
2

9
ℓ4 =

3− 2
√
2

18
ℓ4 .

By using the number of triangles and their optimal side length determined in (14), by (12) we find

V (Θ) =
1

18

X3

L2
.

Let now Θℓ be the isosceles right triangle delimited by the lines y = 0, x = 0, y =
√
2ℓ− x. Then the three

sides of Θℓ have the parametric representations

r1(t) = (t, 0) , r2(t) = (0, t) , r3(t) = (t, λ− t) , (0 ≤ t ≤ λ)

where we have set λ =
√
2 ℓ. For all M(x, y) ∈ Tℓ, we have

∫

∂Θℓ

d(M,σ)2 dσ =
3
∑

i=1

∫ λ

0
d(M, ri(t))

2 dt

and, for symmetry reasons, we have

∆(Θℓ) =
1

|Θℓ| · |∂Θℓ|2
∫

Θℓ

∫

∂Θℓ

d(M,A)2 dAdM
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=
1

4(1 +
√
2)2 ℓ4

∫

Θℓ

∫ λ

0
[2d(M, r1(t))

2 + d(M, r3(t))] dt dM , (18)

where we used (13). Note first that

∫ λ

0
d(M, r1(t))

2 dt =

∫ λ

0
[(t− x)2 + y2] dt =

1

3
λ3 + λ(x2 + y2)− λ2x .

This quantity has to be integrated over Θℓ:

∫

Θℓ

[

1

3
λ3 + λ(x2 + y2)− λ2x

]

dydx

=
1

3
λ3 |Θℓ|+ λ

∫ λ

0

∫ λ−x

0
[x2 + y2 − λx] dy dx =

λ5

6
=

2
√
2

3
ℓ5 . (19)

Then we rotate Θℓ in order to have the hypothenuse r3 coinciding with the segment [−ℓ, ℓ]× {0} and with Θℓ

being contained in the half plane y > 0; we compute

∫

r3

d(M,σ)2 dσ =
2

3
ℓ3 + 2ℓ(x2 + y2) .

This quantity has to be integrated over Θℓ and, by symmetry reasons, we obtain

∫

Θℓ

[

2

3
ℓ3 + 2ℓ(x2 + y2)

]

dydx

=
2

3
ℓ3 |Θℓ|+ 4ℓ

∫ ℓ

0

∫ ℓ−x

0
[x2 + y2] dy dx =

4

3
ℓ5 . (20)

By inserting (19)-(20) into (18) we obtain

∆(Θℓ) =
1

4(1 +
√
2)2 ℓ4

(

4
√
2

3
ℓ5 +

4

3
ℓ5

)

=
ℓ

3(
√
2 + 1)

=
1

3

X

L

where we used (14).

3.2 Equilateral triangles

Consider an equilateral triangle Tℓ whose sides have length ℓ. Then

|∂Tℓ| = 3ℓ , |Tℓ| =
√
3

4
ℓ2 , I(Tℓ) =

√
3

6
ℓ .

Hence, by using (8) we obtain

N(Tℓ) =
4X√
3ℓ2

=
2L

3ℓ
=⇒ ℓ = 2

√
3
X

L
=⇒ N(Tℓ) =

√
3

9

L2

X
. (21)

In the plane (x, y) put one side of Tℓ on the axis y = 0 with − ℓ
2 < x < ℓ

2 so that Tℓ lies in the half plane

y > 0. For any x ∈ (− ℓ
2 ,

ℓ
2) we have

λTℓ
(x) = min

{

1√
3

( ℓ

2
− x
)

,
1√
3

( ℓ

2
+ x
)

}

.
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For symmetry reasons, we only need to compute the contribution of λTℓ
on the interval (0, ℓ/2) and to multiply

it by 6 since there are 6 identical right triangles which compose Tℓ. Hence, by using (10) with q = 2 we obtain
∫

Tℓ

d(M,∂Tℓ) dM =

∫ ℓ/2

0

( ℓ

2
− x
)2

dx =
1

24
ℓ3 .

With the value of ℓ determined in (21) we can compute, in terms of X and L, the maximal and the average

distance of points inside Tℓ from the boundary ∂Tℓ:

I(Tℓ) =
X

L
, d(Tℓ) =

1

|Tℓ|

∫

Tℓ

d(M,∂Tℓ) dM =

√
3

18
ℓ =

1

3

X

L
. (22)

Let us now compute the variance of the distance within each triangle. By using (10) with q = 3 and by

arguing as above we get
∫

Tℓ

d(M,∂Tℓ)
2 dM =

1

3

∫

∂Tℓ

λTℓ
(y)3 dy =

2
√
3

9

∫ ℓ/2

0

( ℓ

2
− x
)3

dx =

√
3

288
ℓ4 .

Hence, by (22) and (11),
∫

Tℓ

(

d(M,∂Tℓ)− d(Tℓ)
)2

dM =

√
3

288
ℓ4 −

√
3

432
ℓ4 =

√
3

864
ℓ4 .

By using the number of triangles and their optimal side length determined in (21), by (12) we find

V (T ) =
1

18

X3

L2
.

Let now Tℓ be the equilateral triangle delimited by the lines y = 0, y =
√
3(x + ℓ

2), y =
√
3( ℓ2 − x). Then

the basis of Tℓ has the parametric representation

r1(t) =

(

t− ℓ

2
, 0

)

(0 ≤ t ≤ ℓ)

while the remaining two sides have parametric representations ri = ri(t) for i = 2, 3 and 0 ≤ t ≤ ℓ. For all

M(x, y) ∈ Tℓ, we have
∫

∂Tℓ

d(M,σ)2 dσ =

3
∑

i=1

∫ ℓ

0
d(M, ri(t))

2 dt

and, for symmetry reasons, we have

∆(Tℓ) =
1

|Tℓ| · |∂Tℓ|2
∫

Tℓ

∫

∂Tℓ

d(M,A)2 dAdM =
4
√
3

9 ℓ4

∫

Tℓ

∫ ℓ

0
d(M, r1(t))

2 dt dM , (23)

the number 4
√
3

9 ℓ4
being obtained by multiplying by 3 the inverse of the measures.

For simplicity, we put λ = ℓ/2; then, since the integrand is even,
∫ ℓ

0
d(M, r1(t))

2 dt = 2

∫ λ

0
[t2 + x2 + y2] dt =

2

3
λ3 + 2λ(x2 + y2) .

This quantity has to be integrated over Tℓ; by symmetry we may only integrate over half of Tℓ, the part in the

half plane x > 0:
∫

Tℓ

[

2

3
λ3 + 2λ(x2 + y2)

]

dy dx

=
2

3
λ3 |Tℓ|+ 4λ

∫ λ

0

∫

√
3(λ−x)

0
[x2 + y2] dy dx =

√
3

16
ℓ5 .

By inserting this into (23) and recalling (21) we obtain

∆(Tℓ) =
1

12
ℓ =

√
3

6

X

L
≈ 0.289

X

L
.
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3.3 Squares

Consider a square Sℓ whose sides have length ℓ. Then

|∂Sℓ| = 4ℓ , |Sℓ| = ℓ2 , I(Sℓ) =
ℓ

2
.

Hence, by using (8), we obtain

N(Sℓ) =
X

ℓ2
=

L

2ℓ
=⇒ ℓ = 2

X

L
=⇒ N(Sℓ) =

1

4

L2

X
. (24)

In the plane (x, y) assume that Sℓ = (0, ℓ)2; then, for any x ∈ (0, ℓ), we have

λSℓ
(x) = min {x, ℓ− x} .

For symmetry reasons, we only need to compute the contribution of λSℓ
on the interval (0, ℓ/2) and to multiply

it by 8 since there are 8 identical right triangles which compose Sℓ. Hence, by using (10) with q = 2 we obtain

∫

Sℓ

d(M,∂Sℓ) dM = 4

∫ ℓ/2

0
x2 dx =

1

6
ℓ3 .

With the value of ℓ determined in (24) we can compute, in terms of X and L, the maximal and the average

distance of points inside Sℓ from the boundary ∂Sℓ:

I(Sℓ) =
X

L
, d(Sℓ) =

1

|Sℓ|

∫

Sℓ

d(M,∂Sℓ) dM =
1

6
ℓ =

1

3

X

L
. (25)

Let us now compute the variance of the distance within each square. By using (10) with q = 3 and by arguing

as above we get

∫

Sℓ

d(M,∂Sℓ)
2 dM =

1

3

∫

∂Sℓ

λSℓ
(y)3 dy =

8

3

∫ ℓ/2

0
x3 dx =

1

24
ℓ4 .

Hence, by (25) and (11),

∫

Sℓ

(

d(M,∂Sℓ)− d(Sℓ)
)2

dM =
1

24
ℓ4 − 1

36
ℓ4 =

1

72
ℓ4 .

By using the number of triangles and their optimal side length determined in (21), by (12) we find

V (S) =
1

18

X3

L2
.

Consider again Sℓ = (0, ℓ)2 and let ri = ri(t) be the parametric representations of the 4 sides of Sℓ with

t ∈ (0, ℓ). For all M(x, y) ∈ Sℓ, we have

∫

∂Sℓ

d(M,σ)2 dσ =
4
∑

i=1

∫ ℓ

0
d(M, ri(t))

2 dt

and, for symmetry reasons, we have

∆(Sℓ) =
1

|Sℓ| · |∂Sℓ|2
∫

Sℓ

∫

∂Sℓ

d(M,A)2 dAdM =
1

4 ℓ4

∫

Sℓ

∫ ℓ

0
d(M, r1(t))

2 dt dM , (26)

the number 1
4 ℓ4

being obtained by multiplying by 4 the inverse of the measures 1
16 ℓ4

.
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With no loss of generality we may take r1(t) = (t, 0) for 0 ≤ t ≤ ℓ so that

∫ ℓ

0
d(M, r1(t))

2 dt =

∫ ℓ

0
[(t− x)2 + y2] dt = ℓy2 + ℓx2 − ℓ2x+

ℓ3

3
.

This quantity has to be integrated over Sℓ:

∫

Sℓ

[

ℓy2 + ℓx2 − ℓ2x+
ℓ3

3

]

dx dy =
ℓ5

2
.

By replacing into (26) and by recalling (24), we then obtain

∆(Sℓ) =
ℓ

8
=

1

4

X

L
.

3.4 Hexagons

Consider a regular hexagon Hℓ whose sides have length ℓ. Then

|∂Hℓ| = 6ℓ , |Hℓ| =
3
√
3

2
ℓ2 , I(Hℓ) =

√
3

2
ℓ .

Hence, by using (8) we obtain

N(Hℓ) =
2X

3
√
3ℓ2

=
L

3ℓ
=⇒ ℓ =

2
√
3

3

X

L
=⇒ N(Hℓ) =

√
3

6

L2

X
. (27)

In the plane (x, y) put one side of Hℓ on the axis y = 0 with − ℓ
2 < x < ℓ

2 so that Hℓ lies in the half plane

y > 0. For any x ∈ (− ℓ
2 ,

ℓ
2) we have

λHℓ
(x) = min

{√
3
( ℓ

2
− x
)

,
√
3
( ℓ

2
+ x
)

}

.

For symmetry reasons, we only need to compute the contribution of λHℓ
on the interval (0, ℓ/2) and to multiply

it by 12 since there are 12 identical right triangles which compose Hℓ. Hence, by using (10) with q = 2 we

obtain
∫

Hℓ

d(M,∂Hℓ) dM = 18

∫ ℓ/2

0

( ℓ

2
− x
)2

dx =
3

4
ℓ3 .

With the value of ℓ determined in (27) we can compute, in terms of X and L, the maximal and the average

distance of points inside Hℓ from the boundary ∂Hℓ:

I(Hℓ) =
X

L
, d(Hℓ) =

1

|Hℓ|

∫

Hℓ

d(M,∂Hℓ) dM =

√
3

6
ℓ =

1

3

X

L
. (28)

Let us now compute the variance of the distance within each hexagon. By using (10) with q = 3 and by

arguing as above we get

∫

Hℓ

d(M,∂Hℓ)
2 dM =

1

3

∫

∂Hℓ

λHℓ
(y)3 dy = 12

√
3

∫ ℓ/2

0

( ℓ

2
− x
)3

dx =
3
√
3

16
ℓ4 .

Hence, by (28) and (11),

∫

Hℓ

(

d(M,∂Hℓ)− d(Hℓ)
)2

dM =
3
√
3

16
ℓ4 −

√
3

8
ℓ4 =

√
3

16
ℓ4 .
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By using the number of triangles and their optimal side length determined in (21), by (12) we find

V (S) =
1

18

X3

L2
.

Consider again the regular hexagon Hℓ lying entirely in the half plane y > 0 and having one side coinciding

with the segment

r1(t) =

(

t− ℓ

2
, 0

)

, (0 ≤ t ≤ ℓ) ;

the remaining 5 sides have parametric representations ri = ri(t) for all i = 2, 3, 4, 5, 6 and for 0 ≤ t ≤ ℓ. For

all M(x, y) ∈ Hℓ, we have
∫

∂Hℓ

d(M,σ)2 dσ =

6
∑

i=1

∫ ℓ

0
d(M, ri(t))

2 dt

and, for symmetry reasons, we have

∆(Hℓ) =
1

|Hℓ| · |∂Hℓ|2
∫

Hℓ

∫

∂Hℓ

d(M,A)2 dAdM =

√
3

27 ℓ4

∫

Hℓ

∫ ℓ

0
d(M, r1(t))

2 dt dM , (29)

the number
√
3

27 ℓ4
being obtained by multiplying by 6 the inverse of the measures. For simplicity, we put

λ = ℓ/2; then, since the integrand is even,

∫ ℓ

0
d(M, r1(t))

2 dt = 2

∫ λ

0
[t2 + x2 + y2] dt =

2

3
λ3 + 2λ(x2 + y2) .

This quantity has to be integrated over Hℓ; by symmetry we may only integrate over half of Hℓ, the part in the

half plane x > 0:
∫

Hℓ

[

2

3
λ3 + 2λ(x2 + y2)

]

dydx

=
2

3
λ3 |Hℓ|+ 4λ

∫ λ

0

∫ 2
√
3λ

0
[x2 + y2] dy dx+ 4λ

∫ 2λ

λ

∫

√
3(3λ−x)

√
3(x−λ)

[x2 + y2] dy dx =
15
√
3

8
ℓ5 .

By inserting this into (29) and recalling (27) we obtain

∆(Hℓ) =
5

24
ℓ =

5
√
3

36

X

L
≈ 0.241

X

L
.

4 Elastic energy of polygons: numerical results and proof of Theorem 4

This section is divided into several subsections. In Subsection 4.1 we make a by-hand computation of the

value of E(T ); this may be used to evaluate the precision of our numerical results. In Subsection 4.2 we give

a theoretical proof (no numerics at all!) that regular hexagons perform better than equilateral triangles. In

Subsection 4.3 we explain our numerical procedure and we give the numerical results obtained for the four

shapes Θ ∪ T ∪ S ∪H .

4.1 Exact value for equilateral triangles

Consider the equilateral triangle T in the (x, y)-plane delimited by the three lines

y = 0 , y =
√
3(1− x) , y =

√
3(1 + x) ,
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so that its sides have length 2. When Ω = T it is well-known that the solution to the torsion problem (7) may

be obtained by multiplying the equations representing the three sides:

v(x, y) =
1

4
√
3
(y3 − 2

√
3 y2 − 3x2y + 3 y) .

Then, according to (6) and by exploiting the symmetry properties of T and v, we have

E(T ) =
∫

T
v2 = 2

∫ 1

0

∫

√
3(1−x)

0
v(x, y) dy dx =

√
3

280
.

By (21) we know that the optimal side of the equilateral triangle Tℓ is ℓ = 2
√
3 X

L . By recalling (5) we then

obtain

E(Tℓ) = E
(√

3
X

L
T

)

=

(√
3
X

L

)6

E(T ) = 27
√
3

280

X6

L6
≈ 0.167

X6

L6
.

Finally, since by (21) we have N(Tℓ) =
√
3
9

L2

X , we infer that the total elastic energy E(T ) is given by

E(T ) = 9

280

X5

L4
≈ 0.032

X5

L4
. (30)

4.2 Theoretical proof that regular hexagons perform better than equilateral triangles

If Ω = DR, the disk of radius R centered at the origin, then (7) admits the unique solution

v(x, y) =
R2 − x2 − y2

4

and the elastic energy (6) is easily computed to be

E(BR) =
π

48
R6 .

Now take a regular hexagon Hℓ having sides of length ℓ. Then the inscribed disk has radius ρ1 =
√
3
2 ℓ and, by

the maximum principle for (7),

E(Hℓ) > E(Dρ1) =
9π

1024
ℓ6 .

Consider now the disk having the same measure as Hℓ; its radius ρ2 satisfies πρ22 = 3
√
3

2 ℓ2. By Talenti’s

comparison principle [16, Theorem 1] and by classical results in symmetrization theory, we have

E(Hℓ) < E(Dρ2) =
27
√
3

128π2
ℓ6 .

By taking into account the optimal length ℓ and the needed number of hexagons N(Hℓ) found in (27), we infer

that the total elastic energy E(H) satisfies the bounds

0.0189
X5

L4
≈ π

√
3

288

X5

L4
< E(H) <

1

4π2

X5

L4
≈ 0.0253

X5

L4
. (31)

This gives a purely theoretical proof that E(H) < E(T ), see (30).
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4.3 Numerical values for right triangles, squares and hexagons

If Ω = Sℓ = (0, ℓ)2 ⊂ R
2 (a square with sides of length ℓ in the (x, y)-plane) then, by separating variables,

one may find the “explicit” solution to (7):

v(x, y) = −x2

2
+ ℓ2

∞
∑

n=1

1− (−1)n

nπ sinh(nπ)
sinh

(nπx

ℓ

)

sin
(nπy

ℓ

)

+ℓ2
∞
∑

n=1

2(−1)n − 2− n2π2(−1)n

n3π3 sinh(nπ)
sin
(nπx

ℓ

)

[

sinh

(

nπ(ℓ− y)

ℓ

)

+ sinh
(nπy

ℓ

)

]

.

But, of course, the exact value of
∫

Sℓ
v2 cannot be computed by hand. In general, the torsion problem on

polygons is widely studied from several points of view [14, 15]. However, for right triangles and hexagons the

explicit solution to (7) is not known and we may only proceed numerically.

We used the PDE Toolbox of Matlab in order to have an approximation v0 of the solution v to (7). Once the

plot of v0 was performed we exported both the vector containing the values of v0 in the nodes of the mesh and

the mesh itself. With an ad-hoc program we computed the squared L2-norm of v0: we exploited the fact that

v20 is a polynomial of degree 2 on each triangle of the mesh and therefore its norm may be computed by taking

the average of its values in the three midpoints of the sides of the triangle. We tested the numerical results in

two different ways. First, we tried them in the case of equilateral triangles and disks where the solution to (7)

is explicitly known, see Sections 4.1 and 4.2. Second, we selected finer meshes to check if the results were

“stable”. In the below table we quote the results so obtained for a right triangle Θ√
2 having hypothenuse of

length 2
√
2, for a square S1 having side of length 1, for an hexagon H1 having side of length 1.

P Θ√
2 S1 H1

E(P ) 0.0079 0.0017 0.0348

These numbers have to be scaled according to the sizes found in Theorem 1, see (14)-(24)-(27); we obtain

E(Θℓ) ≈ 0.1955
X6

L6
E(Sℓ) ≈ 0.1088

X6

L6
E(Hℓ) ≈ 0.0825

X6

L6
.

In turn, these numbers have to be multiplied, respectively, by N(Θℓ)-N(Sℓ)-N(Hℓ), see again (14)-(24)-(27);

in such a way we obtain the values appearing in the Table in Theorem 4. In particular, we obtain E(H) ≈
0.024 X5

L4 which should be compared with (31).

5 Further remarks and conclusions

5.1 Performances of rectangles

Consider a rectangle Rℓ whose sides have length ℓ and γℓ with γ > 1. Then

|∂Rℓ| = 2(γ + 1)ℓ , |Rℓ| = γℓ2 , I(Rℓ) =
ℓ

2
.

Hence, by using (8), we obtain

N(Rℓ) =
X

γℓ2
=

L

(γ + 1)ℓ
=⇒ ℓ =

γ + 1

γ

X

L
=⇒ N(Rℓ) =

γ

(γ + 1)2
L2

X
. (32)

Hence, ℓmax(R) = (γ + 1)XL ; this number should be compared with the values in the second table of

Theorem 1. In particular, it appears that ℓmax is increasing with respect to the ratio between the two sides,
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Figure 5: Regions for piercing functions in a rectangle.

elongated rectangles have large ℓmax and, therefore, bad resistance to the moments of forces; this is the weak

point of rectangles.

Since Rℓ is not circumscribed to a disk, the piercing function is slightly more involved. For a detailed

description we refer to [4], here we explain how to proceed by referring to Figure 5.

In the plane (x, y) put the short side of Rℓ on the axis y = 0 with 0 < x < ℓ so that Rℓ lies in the half plane

y > 0. For any x ∈ (0, ℓ) we have

λRℓ
(x) = min {x, ℓ− x} .

For symmetry reasons, we only need to compute the contribution of λRℓ
on the interval (0, ℓ/2) and to multiply

it by 8 since the 8 identical grey right triangles which compose Rℓ give the same contribution, see Figure 5.

Moreover, if we put the long side of Rℓ on the axis y = 0, we find the 2 white rectangles in Figure 5 which give

the same constant contribution in terms of the piercing function, λR(x) =
ℓ
2 . Summarizing, by using (10) with

q = 2 we obtain

∫

Rℓ

d(M,∂Rℓ) dM = 4

∫ ℓ/2

0
x2 dx+

∫ (γ−1)ℓ

0

ℓ2

4
dx =

3γ − 1

12
ℓ3 .

With the value of ℓ determined in (32) we compute, in terms of X and L, the maximal and the average

distance of points inside Rℓ from the boundary ∂Rℓ:

I(Rℓ) =
γ + 1

2γ

X

L
, d(Rℓ) =

1

|Rℓ|

∫

Rℓ

d(M,∂Rℓ) dM =
3γ − 1

12γ
ℓ =

(3γ − 1)(γ + 1)

12γ2
X

L
. (33)

Let us now compute the variance of the distance within each rectangle. By using (10) with q = 3 and by

arguing as above we get

∫

Rℓ

d(M,∂Rℓ)
2 dM =

1

3

∫

∂Rℓ

λRℓ
(y)3 dy =

8

3

∫ ℓ/2

0
x3 dx+

2

3

∫ (γ−1)ℓ

0

ℓ3

8
dx =

2γ − 1

24
ℓ4 .

Hence, by (33) and (11),
∫

Rℓ

(

d(M,∂Rℓ)− d(Rℓ)
)2

dM =
3γ2 − 1

144γ
ℓ4 .

Finally, by using the number of rectangles and their optimal side length determined in (32), by (12) we find

V (R) =
(γ + 1)2(3γ2 − 1)

144γ4
X3

L2
.

Concerning the average mean squared distance, by repeating the above computations, we find

∆(R) =
4γ3 − γ2 + 2γ + 1

12(γ + 1)2
ℓ =

4γ3 − γ2 + 2γ + 1

12γ(γ + 1)

X

L
;

we see that, again, ∆(R) is increasing with respect to the ratio γ between the two sides, yielding worse perfor-

mances.
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5.2 What is the average mean squared distance

Take the disk D of radius 1 and centered at the origin O. Then the mean squared distance from O to ∂D is

δ(O) = 1/
√
2π. Take now a point on the boundary, for instance A(1, 0). Then the mean squared distance from

A to ∂D may be computed as

δ(A) =
1

2π

(
∫ 2π

0
[(1− cos(t))2 + sin2(t)] dt

)1/2

=
1√
π
>

1√
2π

= δ(O).

Hence, A ∈ ∂D has mean distance from ∂D larger than the mean distance from the center O to ∂D.

Take a square S having sides of length 1. Then there are 8 half sides of S which have squared distance t2+ 1
4

from its barycenter B for t ∈ [0, 12 ]; hence, the mean squared distance from B to ∂S is given by

δ(B) =
1

4

(

8

∫ 1/2

0

[

t2 +
1

4

]

dt

)1/2

=

√
3

6
.

If we consider a vertex V , then the points on the 2 two adjacent sides of S have a squared distance t2 from V for

t ∈ [0, 1] while the points on the two opposite sides of S have a squared distance t2 + 1 from V for t ∈ [0, 1].
Summarizing, the mean squared distance from V to ∂S is

δ(V ) =
1

4

(
∫ 1

0
(4t2 + 2) dt

)1/2

=

√
30

12
>

√
3

6
= δ(B) .

Again, V ∈ ∂S has mean squared distance from ∂S larger than the mean squared distance from the barycenter

B to ∂S.

These two examples highlight the role of the mean squared distance. It evaluates how homogeneous are

distances from the boundary to points of the polygon: the barycenter of the polygon has a smaller value since

its distances from the boundary are “almost constant” while points close to the boundary have a larger value

since they are far away from other parts of the boundary. Hence, the mean squared distance should be seen as

a “measure of homogeneity” explaining how different can be the action of the same load put in different points

of the plate. But the purpose of ∆(P ) is not to analyze the competition between different points of the same

polygon; since it is the average of this homogeneity measure, it appears suitable for comparing performances

between different shapes. Basically, it gives an average of the homogeneity between different points; by com-

paring this average for different shapes one has an additional parameter measuring the performances. Larger

values of ∆(P ) give worse performances as can be easily understood by noticing the homogeneity with respect

to dilations: ∆(αP ) = α∆(P ) for all α > 0 and, of course, αP is weaker than P if α > 1.

5.3 Concluding remarks

We introduced several parameters in order to measure the performances of polygonal stiffening trusses for a

given plate Ω. It appears that hexagonal trusses perform better under different points of view. First of all, they

have the least largest sides among the polygons considered, see Theorem 1: this means that each segment of the

truss is more resistant to moments of forces due to applied loads. In particular, in order to solve the dilemma

between economy and stiffness (see [12]) one could use thinner trusses segments in case of hexagonal shapes.

Second, we proved that the minimal distance to the boundary and its variance are the same for all the shapes

considered, see Theorem 2. This suggested to introduce a new parameter measuring the effect of distances

from the boundary, what we called average mean squared distance, see the description in Section 5.2. Also for

this parameter, the best performances are obtained by hexagonal trusses, see Theorem 3. Finally, we measured

numerically the stored elastic energy for the shapes under observation; Theorem 4 states that hexagonal trusses

store the least energy.
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Although the first project of a suspension bridge is due to the Italian engineer Verantius around 1615, see [17]

and [12, p.16], the first suspension bridges were built only about two centuries later in Great Britain. Samuel

Brown (1776-1852) was an early pioneer of suspension bridge design and construction. He is best known for

the Union Bridge of 1820, the first vehicular suspension bridge in Britain. According to [1],

The invention of the suspension bridges by Sir Samuel Brown sprung from the sight of a spider’s web

hanging across the path of the inventor, observed on a morning’s walk, when his mind was occupied

with the idea of bridging the Tweed.

The results obtained in this paper suggest that

when thinking about how to strengthen a suspension bridge, one should observe a bee hive.
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