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STABILITY AND QUALITATIVE PROPERTIES OF RADIAL SOLUTIONS OF

THE LANE-EMDEN-FOWLER EQUATION ON RIEMANNIAN MODELS

ELVISE BERCHIO, ALBERTO FERRERO, AND GABRIELE GRILLO

Abstract. We study existence, uniqueness and stability of radial solutions of the Lane-Emden-

Fowler equation −∆gu = |u|p−1u in a class of Riemannian models (M, g) of dimension n ≥ 3 which

includes the classical hyperbolic space Hn as well as manifolds with sectional curvatures unbounded

below. Sign properties and asymptotic behavior of solutions are influenced by the critical Sobolev

exponent while the so-called Joseph-Lundgren exponent is involved in the stability of solutions.

1. Introduction

We study the Lane-Emden-Fowler equation

(1.1) −∆gu = |u|p−1u on M,

where n ≥ 3 and p > 1, posed on a Riemannian model (M, g) , namely on a manifold admitting a

pole o and whose metric is given, in polar or spherical coordinates around o, by

(1.2) ds2 = dr2 + (ψ(r))2dΘ2, r > 0,Θ ∈ S
n−1

for a given function ψ satisfying appropriate conditions. We will denote by g this metric. Here dΘ2

denotes the canonical metric on the unit sphere S
n−1, r is by construction the Riemannian distance

between a point whose coordinates are (r,Θ) and o, the function ψ is smooth and positive on (0, R)

for some R ∈ (0,+∞]. In principle R can be finite and in such a case it identifies the cut locus of o

in M , but hereafter and without further comments we shall assume that R = +∞.

The additional assumptions we shall make later on ψ correspond to considering manifolds which have

infinite volume and, at least outside a compact set, have strictly negative sectional curvatures. Hence,

if such condition holds globally, we are dealing with special classes of Cartan-Hadamard manifolds.

The motivating example we have in mind is, therefore, the hyperbolic space H
n, in which some of

the problems that we shall study here in greater generality have been recently investigated. In fact,

the Riemannian model associated to the choice ψ(r) = sinh r in (1.2) is a well-known representation

of Hn.

In the seminal paper [22] among other results it is shown that, for p ∈
(
1, n+2

n−2

)
, there is a

unique strictly positive radial solution U of (1.1) belonging to the Sobolev space H1(Hn) := {u ∈
L2(Vg); ∇gu ∈ L2(Vg)}, where Vg is the Riemannian measure and ∇g the Riemannian gradient, and

U is radial in the sense that it depends only on r. This is in sharp contrast with the Euclidean case,

where no such solution exists, and is strongly related to the fact that the L2 spectrum of −∆g is

bounded away from zero, so that an L2-Poincaré inequality holds. The solution U is rapidly decaying

at infinity, but infinitely many other radial positive solutions exist. The precise asymptotics of such

slowly decaying solutions was given in [5] also for the case p ≥ n+2
n−2 , together with a classification of
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radial solutions in terms of their sign properties, further investigated in [1]. In fact, sign changing

solutions may also exist and are studied in [3, 5]: they can have finite or infinite H1
r norm, and their

asymptotics depend on which of the two cases holds. In [16], the critical case p = n+2
n−2 is investigated

in further details. See also [9] for other results concerning elliptic problems and [2] for semilinear

parabolic problems in H
n.

Our results aim at discussing the cases corresponding to the defining function ψ being everywhere

increasing and, moreover, such that l := lim infr→+∞
ψ′(r)
ψ(r) > 0 (which is Assumption (H3) in Section

2). While clearly the hyperbolic space satisfies such condition, Riemannian models which are asymp-

totically hyperbolic satisfy it as well and, more importantly, such a condition allows for unbounded

negative sectional curvatures: a typical example in which this can hold corresponds to the choice

ψ(r) = er
a

for a given a > 1 and r large, a case for which (see Section 1.1) sectional curvatures

in the radial direction diverge as −a2r2(a−1) as r → +∞. In addition it will be shown later that,

under the stated assumption, the L2 spectrum of −∆g is still bounded away from zero, whereas if

limr→+∞
ψ′(r)
ψ(r) = 0 then there is no gap in the L2 spectrum of −∆g. Hence, one hardly expects in

such situation to be able to construct a positive solution to the equation at hand. It is worth noticing

here that if the radial sectional curvature goes to zero as r → +∞ then necessarily limr→+∞
ψ′(r)
ψ(r) = 0

(see Lemma 4.1) and the previous comment applies, whatever the rate of decay of the curvatures is.

Hence, in this case no spectral gap is present and the expected picture is of Euclidean type, but we

shall not address this issue here.

Under the above mentioned assumptions on ψ, we prove in Theorem 2.2 existence of a finite energy

radial solution to (1.1) in the subcritical case p ∈
(
1, n+2

n−2

)
. Uniqueness of such solution holds under

a further technical condition on ψ, see Theorem 2.4. In the supercritical range p ≥ n+2
n−2 , we prove

in Theorem 2.7 that if a suitable power of the volume of geodesic balls is convex as a function of r,

all local radial solutions to (1.1) are everywhere positive and no solution to the Dirichlet problem on

geodesic balls exists. In particular, such results hold if ψ itself is convex.

In both subcritical and supercritical cases, we provide an exact description of the asymptotic be-

havior of positive radial solutions of (1.1). In Theorem 2.6 we show that, in the subcritical case,

solutions in the energy space H1(M) have a fast decay to zero which can be characterized explicitly

in terms of the function ψ. An interesting phenomenon occurs for solutions which do not belong to

H1(M): they admit a limit as r → +∞ which can be strictly positive or equal to zero depending on

the integrability at infinity of the function ψ/ψ′.

The same phenomenon occurs in the supercritical case as shown in Theorem 2.9.

The second part of this paper is devoted to stability of solutions. Here by stability we mean the

so-called linearized stability. Namely, we say that a solution u of (1.1) is stable if the quadratic

form associated with the linearized operator at u is nonnegative definite. Stability of solutions of

nonlinear equations in the whole euclidean space is a widely studied problem, especially in the case of

the Lane-Emden-Fowler equation and of the Gelfand equation−∆u = eu, see e.g. [8, 10, 11, 12, 13, 15]

and references therein. See also [6] for results on stability of the Lane-Emden-Fowler and Gelfand

equations in bounded domains.

In order to localize the instability of certain solutions we shall also study the stability of solutions

outside a compact set, see e.g. [10, 12, 13].

Since the cut locus of the pole o is empty by assumption, any Riemannian model M we are consid-

ering is diffeomorphic to R
n, and the main purpose of the present paper is to understand which is

the role of the curvature properties of M in determining stability of solutions of (1.1), in particular

when sectional curvatures are negative. We comment here that the existence of stable solutions to
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semilinear elliptic equations when Ricci curvature is positive has consequences on the structure of the

manifold itself (and on the solution as well), as shown recently in [14].

For completeness we first recall what happens when M is the n-dimensional euclidean space. From

[12], we know that no nontrivial stable solution (also nonradial) exists if n ≤ 10 or n ≥ 11 and

p < pc(n) = (n−2)2−4n+8
√
n−1

(n−2)(n−10) , where pc(n) >
n+2
n−2 is the so-called Joseph-Lundgren exponent, see

[20]. On the other hand, for n ≥ 11 and every p ≥ pc(n) there exists a positive radial stable solution,

see [12, 20].

Also we note that when n ≤ 10 or n ≥ 11 and p < pc(n), with p ̸= n+2
n−2 , the euclidean equation

admits no nontrivial solution which is stable outside a compact set. On the other hand, if p = n+2
n−2

then the euclidean equation admits solutions in H1(Rn) which are stable outside a compact set.

Among them there are the well-known one-parameter family of solutions of (1.1) which achieve the

best Sobolev constant in R
n.

As we said before, under suitable assumptions on ψ, a Poincaré type inequality holds. The validity

of this inequality is strictly related to the existence of stable solutions. In Theorems 2.11-2.12 we

prove that stable radial solutions of (1.1) always exist in any dimension and for any p > 1 provided

that their value at the origin is small enough.

This phenomenon is deeply in contrast with the euclidean case where the existence of nontrivial

radial stable solutions only depends on n and p but not on the value of the solution at the origin.

We also recall that, thanks to rescaling invariance properties of the Lane-Emden-Fowler equation,

in the euclidean case all nontrivial radial solutions may be represented as a one-parameter family of

rescaled functions. This property explains why there is no dependence of the stability on the value

at the origin.

The next step is to understand if radial stable solutions also exist for larger values at the origin.

Our main results on stability, Theorem 2.11-2.12, state that independently of the dimension n and of

the power p, the set S of the values at the origin for which the corresponding radial solution of (1.1)

is stable, is a closed interval containing 0. One may ask if this interval coincides with [0,+∞). In

Theorem 2.11 we show that, under the same assumptions on n and p for which in the euclidean case

we have nonexistence of nontrivial stable solutions, in our Riemannian model the set S is a bounded

closed interval.

This result, which shows instability of radial solutions with a large value at the origin, is based on

a blow-up argument which has as a limit problem the Lane-Emden-Fowler equation in the euclidean

space. This justifies the relationship between assumptions of Theorem 2.11 and the nonexistence

result of stable solutions in the euclidean case.

It is left as an open question to understand if the assumptions of Theorem 2.11 are also necessary

for boundedness of the set S.
Stability properties are strictly related to ordering of radial solutions of (1.1). Indeed in Theorem

2.14 we prove that radial solutions of (1.1) corresponding to values at the origin in the set S are

ordered.

Finally, in Theorem 2.15 we show that all radial solutions of (1.1) are stable outside compact sets

independently of n ≥ 3 and p > 1, provided that ψ/ψ′ ̸∈ L(0,∞).

This paper is organized as follows: in Section 2 we put the assumptions and the statements of the

main results while Sections 3-5 are devoted to the proofs.

1.1. Notation and preliminaries. The C2 smoothness of M around o implies that ψ must be

extendible to r = 0 with the extension, still denoted by ψ, satisfying ψ(0) = ψ′′(0) = 0, ψ′(0) = 1,

the prime indicating right derivative. In greater generality, a power series for ψ near r = 0 must
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contain only odd powers of r should one require additional smoothness at o, see e.g. [25], pp. 179-183,

and also [17].

The Riemannian Laplacian of a scalar function f on M is given, in the above coordinates, by

∆gf(r, θ1, . . . , θn−1) =
1

(ψ(r))n−1

∂

∂r

[
(ψ(r))n−1 ∂f

∂r
(r, θ1, . . . , θn−1)

]

+
1

(ψ(r))2
∆Sn−1f(r, θ1, . . . , θn−1),

where ∆Sn−1 is the Riemannian Laplacian on the unit sphere Sn−1. In particular, for radial functions,

namely functions depending only on r, one has

∆gf(r) =
1

(ψ(r))n−1

[
(ψ(r))n−1f ′(r)

]′
= f ′′(r) + (n− 1)

ψ′(r)

ψ(r)
f ′(r),

where from now on a prime will denote, for radial functions, derivative w.r.t. r. Notice that the

quantity (n−1)ψ
′(r)
ψ(r) has a geometrical meaning, namely it represents mean curvature of the geodesic

sphere of radius r in the radial direction. Let ωn be the volume of the n-dimensional unit sphere.

Then

S(r) = ωn(ψ(r))
n−1, V (r) =

∫ r

0

S(t) dt = ωn

∫ r

0

(ψ(t))n−1 dt

represent, respectively, the area of the geodesic sphere ∂B(o, r) and the volume of the geodesic ball

B(o, r). Moreover (see e.g. [4], [17]) one can show that

1

n− 1
Ric (∂r , ∂r) = Kπ(r) = −ψ

′′(r)

ψ(r)
,

where Ric (∂r , ∂r) is the Ricci tensor in the radial direction, and Kπ(r) denotes sectional curvatures

w.r.t planes containing ∂r. One shows also that the sectional curvatures w.r.t. planes orthogonal to

∂r is given by 1−(ψ′(r))2

(ψ(r))2 . Sectional curvatures equal -1 on the hyperbolic space, whereas they are

still negative, but growing in modulus when for example one has, for large r, ψ(r) = er
a

for some

a > 1, a case which can be covered by most of our results.

We consider radial solutions to the Lane-Emden-Fowler equation (1.1). Radial local solutions near

r = 0 to (1.1) with u(0) = α ̸= 0 exist, are unique and satisfy the Cauchy problem

(1.3)





− 1

(ψ(r))n−1

[
(ψ(r))n−1u′(r)

]′
= |u(r)|p−1u(r) (r > 0)

u(0) = α u′(0) = 0 .

For any r > 0, let us denote by uα(r) or by u(α, r) the unique solution of the Cauchy problem (1.3).

2. Assumptions and main results

Let ψ be the function defined in the introduction. Let us introduce the following assumptions on

ψ:

(H1) ψ ∈ C2([0,+∞)): ψ(0) = ψ′′(0) = 0 and ψ′(0) = 1 ;

(H2) ψ
′(r) ≥ 0 for every r > 0 ,

(H3) l := lim inf
r→+∞

ψ′(r)

ψ(r)
> 0 .

Assumption (H1) is necessary to make the geometric setting outlined in Section 1.1 consistent.

Assumptions (H2)−(H3) are sufficient conditions to guarantee positivity of bottom of the L2 spectrum

of −∆g in M , see Lemma 4.1. Throughout this paper we denote the bottom of the L2 spectrum of
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−∆g by λ1(M). Under assumptions (H1)− (H3) one can show easily that every solution of (1.3) is

global.

Proposition 2.1. Let p > 1 and assume that ψ satisfies assumptions (H1) − (H3). Then, for any

α ̸= 0 the local solution to (1.3) may be continued for all r > 0, lim
r→+∞

u′(r) = 0 and lim
r→+∞

u(r) exists

and is finite. In particular (1.1) admits infinitely many nontrivial radial solutions.

Since the proof of Proposition 2.1 can be achieved following the lines of that of [5, Lemma 4.1], we

omit it. The same proof does not work if l = 0 in (H3). However, if ψ satisfies

(2.1) ∃β, β′ > 0 :
β

r
≤ ψ′(r)

ψ(r)
≤ β′ ∀r ≥ r0

for some r0 > 0 one may repeat the proof of [24, Theorem 5] to show that lim
r→+∞

u(r) = 0 =

lim
r→+∞

u′(r). Clearly, (2.1) includes the euclidean case ψ(r) = r but does not hold if, for instance,

ψ(r) = log(r).

The results concerning existence and qualitative behavior of solutions of (1.1) are strongly influenced

by the range in which the power p varies. In the sequel we distinguish the subcritical case 1 < p <

2∗ − 1 = n+2
n−2 and the supercritical case p ≥ n+2

n−2 .

• The subcritical case. Let start with the following existence result of a radial H1(M)-solution

of (1.1):

Theorem 2.2. Let 1 < p < n+2
n−2 and ψ satisfy assumptions (H1) − (H3). Then (1.1) admits a

positive radial solution u ∈ H1(M).

One may wonder if (1.1) admits a unique radial solution belonging to H1(M). This happens in the

hyperbolic space, i.e. ψ(r) = sinh(r), see [22]. In order to guarantee uniqueness of radial H1(M)-

solutions, we introduce a supplementary condition on the function ψ. To this purpose we recall from

[21] the following definition:

Definition 2.3. A function G : (0,+∞) → R differentiable, satisfies the Λ−property if there exists

0 ≤ r1 ≤ +∞ such that G′ ≥ 0 in (0, r1) and G
′ ≤ 0 in (r1,+∞) with G′ ̸≡ 0.

Note that the definition includes the cases in which G is always nondecreasing or nonincreasing in

[0,+∞). We are ready to state the following uniqueness result:

Theorem 2.4. Let 1 < p < n+2
n−2 . Assume that ψ satisfies (H1)− (H2) and that there exists

(2.2) lim
r→+∞

ψ′(r)

ψ(r)
= lim
r→+∞

ψ′′(r)

ψ′(r)
= l ∈ (0,+∞] .

Furthermore, set δ := 2(n−1)
p+3 and let the function

G(r) := δ ψδ(p−1)−2(r)
[
(δ + 2− n) (ψ′(r))

2 − ψ′′(r)ψ(r)
]

(r > 0)

satisfy the Λ−property.

Finally, if l = +∞ assume that ψ satisfies the extra condition

(2.3)
ψ′(r)

ψ(r)
= o(ψδ(r)) ,

ψ′′(r)

ψ′(r)
= o(ψδ(r)) as r → +∞ .

Then, problem (1.3) admits a unique positive solution U belonging to H1(M). Moreover, every

solution to (1.3) with 0 < α < U(0) is of one sign, while any solution to (1.3) with α > U(0) is

sign-changing.
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Concerning the validity of the Λ−property for the function G defined in Theorem 2.4 we observe

that it is satisfied when ψ(r) = sinh(r), i.e. M = H
n. For more general function ψ we state the

following

Proposition 2.5. If ψ satisfies assumptions (H1)− (H3), and in addition ψ is four times differen-

tiable with ψ′′′(r) > 0 and
(
ψ′(r)
ψ′′′(r)

)′
≤ 0 for every r > 0, then the function G defined in Theorem 2.4

satisfies the Λ−property for every 2n+1
2n−3 ≤ p < n+2

n−2 .

By Proposition 2.5, it follows that if ψ(r) = rer
2γ

then the corresponding function G satisfies the

Λ−property for every γ ≥ 1.

Concerning condition (2.3), we observe that it holds, for instance, if ψ
′(r)
ψ(r) = P (r) eventually, where

P is a nonconstant polynomial.

Finally we state a result dealing with the asymptotic behavior of radial positive solutions of (1.1).

Theorem 2.6. Let n ≥ 3 and 1 < p < n+2
n−2 . Suppose that ψ satisfies assumptions (H1)− (H2) and

(2.4) lim
r→+∞

ψ′(r)

ψ(r)
= l ∈ (0,+∞] .

Finally in the case l = +∞ assume the supplementary condition

(2.5)

[
log

(
ψ′(r)

ψ(r)

)]′
= O(1) as r → +∞ .

Let u be a radial positive solution of (1.1).

(i) If u ∈ H1(M) then there exists L ∈ (−∞, 0) such that

lim
r→+∞

ψn−1(r)u′(r) = L .

Moreover

lim
r→+∞

ψn−1(r)u(r) =
|L|

(n− 1)l
if l < +∞ ,

and

lim
r→+∞

u(r)
∫ +∞
r

ψ1−n(s) ds
= |L| if l = +∞ .

(ii) If u ̸∈ H1(M) and ψ
ψ′

∈ L1(0,∞) then

lim
r→+∞

u(r) ∈ (0,+∞) .

(iii) If u ̸∈ H1(M) and ψ
ψ′

̸∈ L1(0,∞) then u vanishes at infinity with the following rate

lim
r→+∞

(∫ r

0

ψ(s)

ψ′(s)
ds

)1/(p−1)

u(r) =

(
n− 1

p− 1

)1/(p−1)

.

In particular when l < +∞ we have

lim
r→+∞

r1/(p−1)u(r) =

(
l(n− 1)

p− 1

)1/(p−1)

.

• The supercritical case. Throughout this paper let us denote by BR the geodesic ball centered

at o of radius R, i.e.

BR := {(r, θ1, . . . , θn−1) : 0 < r < R and θ1, . . . , θn−1 ∈ S
n−1} .
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Theorem 2.7. Let p ≥ n+2
n−2 and ψ satisfy assumptions (H1)− (H2). If p = n+2

n−2 assume furthermore

that ψ is three times differentiable near 0 with ψ′′(0) = 0 and ψ′′′(0) > 0. Finally, let the function

A(r) :=

(∫ r

0

(ψ(s))n−1 ds

) p−1
2(p+1)

= c [VolB(o, r)]
p−1

2(p+1)

be convex on [0,+∞). Then any solution u(r) to (1.3) does not change sign for all r ∈ [0,+∞). In

particular, the Dirichlet problem
{

−∆gu = |u|p−1u in Br
u = 0 on ∂Br

with 0 < r < +∞ has no nontrivial radial solutions.

Concerning the convexity of the function A defined in Theorem 2.7 we state the following

Proposition 2.8. Assume that ψ satisfies (H1) − (H2). Let A be the function defined in Theorem

2.7. Then we have:

(i) if ψ is convex, then A is also convex;

(ii) if ψ is such that (2.4) holds with l < +∞, then A is eventually convex at +∞;

(iii) if ψ is such that (2.4) holds with l = +∞ and (2.5) is satisfied, then A is eventually convex

at +∞.

From Proposition 2.8 it follows that the assumptions of Theorem 2.7 are satisfied either by the

hyperbolic model (see [5]) or by models having unbounded negative sectional curvatures such as

ψ(r) = rer
2γ

with γ ≥ 0.

Similarly to the subcritical case, for the asymptotic behavior of radial positive solutions of (1.1) we

have

Theorem 2.9. Let n ≥ 3 and p ≥ n+2
n−2 . Suppose that ψ satisfies assumptions (H1)− (H2), (2.4) and

that the function A = A(r) defined in Theorem 2.7 is convex. Finally in the case l = +∞ we also

assume (2.5). Let u be a radial (positive) solution of (1.1).

(i) If ψ
ψ′

∈ L1(0,∞) then

lim
r→+∞

u(r) ∈ (0,+∞) .

(ii) If ψ
ψ′

̸∈ L1(0,∞) then u vanishes at infinity with the following rate

lim
r→+∞

(∫ r

0

ψ(s)

ψ′(s)
ds

)1/(p−1)

u(r) =

(
n− 1

p− 1

)1/(p−1)

.

In particular when l < +∞ we have

lim
r→+∞

r1/(p−1)u(r) =

(
l(n− 1)

p− 1

)1/(p−1)

.

• Stability of radial solutions of (1.1). We start by explaining what we mean by stability

and stability outside a compact set, see also [15].

Definition 2.10. A solution u ∈ C2(M) to (1.1) is stable if

(2.6)

∫

M

|∇gφ|2g dVg − p

∫

M

|u|p−1φ2 dVg ≥ 0 ∀φ ∈ C∞
c (M).



8 ELVISE BERCHIO, ALBERTO FERRERO, AND GABRIELE GRILLO

A solution u ∈ C2(M) to (1.1) is stable outside the compact set K if

(2.7)

∫

M\K
|∇gφ|2g dVg − p

∫

M\K
|u|p−1φ2 dVg ≥ 0 ∀φ ∈ C∞

c (M \K).

For any n ≥ 11, let pc(n) =
(n−2)2−4n+8

√
n−1

(n−2)(n−10) be the Joseph-Lundgren exponent. We can now state

the first result concerning stability of radial solutions of (1.1).

Theorem 2.11. Let 3 ≤ n ≤ 10 and p > 1 or n ≥ 11 and 1 < p < pc(n). Assume that ψ satisfies

(H1) − (H3). For any α ≥ 0 denote by uα the unique solution of (1.3). There exists α0 ∈ (0,+∞)

such that

(i) if α ∈ [0, α0] then uα is stable;

(ii) if α > α0 then uα is unstable.

Furthermore we also have α0 ≥
(
p−1λ1(M)

)1/(p−1)
. The inequality is strict if one of the following

alternatives hold

(2.8) lim sup
r→+∞

ψ′(r)

ψ(r)
< +∞ or l = +∞ in (H3) and ψ satisfies (2.5) and ψ/ψ′ ̸∈ L1(0,∞) .

By comparing Theorem 2.11 with the stability result in the euclidean case, one sees that the existence

of stable solutions in dimension n ≤ 10 or in dimension n ≥ 11 but with p < pc(n), seems to be strictly

related to the validity of the Poincaré inequality (see Table 1 and Table 2 below). Indeed the existence

of the positive number α0 introduced in Theorem 2.11 comes from the the positivity of the bottom of

the L2 spectrum λ1(M) of −∆g in M as one can see from the estimate α0 >
(
p−1λ1(M)

)1/(p−1)
, see

also Lemma 4.1. On the contrary, in the euclidean case the Poincaré inequality in R
n does not hold

and, if n ≤ 10 or n ≥ 11 but p < pc(n), all nontrivial solutions of the Lane-Emden-Fowler equation

are unstable.

We observe that the assumptions on the dimension n and on the power p in Theorem 2.11 are

at least sufficient to show the existence of the switch between stability for small values of α and

instability for large values of α but it is not clear if they are also necessary. As a partial result we

state the validity of the following alternatives:

Theorem 2.12. Let n ≥ 11 and p ≥ pc(n). Assume that ψ satisfies (H1) − (H3). For any α ≥ 0

denote by uα the unique solution of (1.3). There exists α0 ∈ (0,+∞] such that either α0 = +∞ and

uα is stable for any α ≥ 0 or α0 < +∞ and uα is stable for any α ∈ [0, α0] and unstable for any

α > α0.

Concerning stability of solutions in the energy space, we state the following

Proposition 2.13. Let n ≥ 3 and p > 1. Assume that ψ satisfies (H1) − (H3). Let u be a radial

stable solution of (1.1). If u ∈ L2(M) then u ≡ 0.

Stability properties of solutions are related to ordering and intersection properties of radial solutions

of (1.1):

Theorem 2.14. Let n ≥ 3 and p > 1. Assume that ψ satisfies (H1) − (H3). Let α, β ≥ 0 and let

uα, uβ be the corresponding solutions of (1.3). If uα and uβ are stable then they do not intersect.

In particular stable solutions are strictly positive (or strictly negative) and if α0 ∈ (0,+∞] is as in

Theorems 2.11-2.12 then all solutions in the set {uα : α ∈ [0, α0)} are ordered.

We conclude the section by dealing with stability outside a compact set.
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Theorem 2.15. Let n ≥ 3 and p > 1. Assume that ψ satisfies (H1)−(H3). Then any radial solution

of (1.1) is stable outside a compact set provided that (2.8) holds.

Differently from the euclidean case, see Table 1 below, Theorem 2.15 states that under assumptions

(H1)− (H3) and (2.8), all solutions of (1.3) are stable outside a compact independently of the value

of the power p. We note that assumption (2.8) assures that solutions of (1.3) vanish as r → +∞ (see

Proposition 2.1, formula (2.1), Theorems 2.6 and 2.9). Hence, the difference from the euclidean case

once more comes from the fact that, under assumptions (H1)− (H3), the bottom of the L2 spectrum

of −∆g in M is strictly positive.

n ≤ 10 or (n ≥ 11 and p < pc(n)) n ≥ 11 and p ≥ pc(n)

uα stable ∀ α ̸= 0 NO YES

uα unstable ∀ α ̸= 0 YES NO

uα stable outside a compact ∀ α NO if p ̸= n+2
n−2 YES if p = n+2

n−2 YES

Table 1. Stability of solutions uα to (1.3) when ψ(r) = r (Euclidean case).

n ≤ 10 or (n ≥ 11 and p < pc(n)) n ≥ 11 and p ≥ pc(n)

uα stable ∀ 0 < |α| ≤ α0 YES YES if |α| < α0

uα unstable ∀ |α| > α0 YES ?

uα stable outside a compact ∀ α YES if (2.8) holds YES if (2.8) holds

Table 2. Stability of solutions uα to (1.3) for ψ satisfying (H1)− (H3).

3. Proof of the results in the supercritical case

3.1. Proof of Theorem 2.7. Let u be a nontrivial solution of (1.3), up to replace u with −u, we
may assume α > 0. For r ≥ 0, we set

P (r) :=

[
(p+ 1)

∫ r

0

(ψ(s))n−1 ds

](
(u′(r))2

2
+

|u(r)|p+1

p+ 1

)
+ (ψ(r))n−1u(r)u′(r) .

Then, for u solving (1.3) we get

P ′(r) =

[
p+ 3

2
(ψ(r))n−1 − (n− 1)(p+ 1)

ψ′(r)

ψ(r)

∫ r

0

(ψ(s))n−1 ds

]
(u′(r))2 := K(r)(u′(r))2,

the latter equality being meant as a definition of K(r). We notice that, as r ↓ 0, the known

asymptotics of ψ(r) as r → 0 implies that K(r) ∼ rn−1[(n + 2) − (n − 2)p]/(2n) if p > n+2
n−2 and

K(r) ∼ rn+1[−2(n − 1)/(n2 − 4)]ψ′′′(0), if p = n+2
n−2 , where we exploit the assumptions ψ′′(0) = 0

and ψ′′′(0) > 0.

This clearly shows that, in such range of p, K(r) < 0 for r sufficiently small, and hence that

P ′(r) < 0 for the same values of r. The strict inequality follows from the fact that u′(r) ̸= 0 for

r ∈ (0, ε) for a suitable ε > 0, a fact which holds since u is different from zero in a right neighborhood

of zero and by (1.3) we have

u′(r) = − 1

(ψ(r))n−1

∫ r

0

(ψ(s))n−1|u(s)|p−1u(s) ds .
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Hence, since P (0) = 0, we have proven that P (r) < 0 in a sufficiently small right neighborhood

of zero. We claim that K(r) ≤ 0 for any r > 0 which implies P nonincreasing in (0,+∞); being

P (r) < 0 for r > 0 small enough this yields P (r) < 0 for any r > 0.

Let us prove the claim. Let Ψ(r) :=
∫ r
0
(ψ(s))n−1 ds. One computes

Ψ′′(r)

Ψ′(r)
= (n− 1)

ψ′(r)

ψ(r)
.

Hence, requiring that K(r) ≤ 0 is equivalent to ask that

Ψ′′(r)

Ψ′(r)
≥ p+ 3

2(p+ 1)

Ψ′(r)

Ψ(r)
,

where we have used the fact that Ψ(r) > 0 for all r ∈ (0,∞). Recall that, by construction, Ψ′(r) > 0

for all r > 0. Setting ap =
p+3

2(p+1) we can then rewrite the latter formula as

[
log

(
Ψ′(r)

(Ψ(r))ap

)]′
≥ 0.

or equivalently, setting cp = 1− ap =
p−1

2(p+1) , as

[
log
(
((Ψ(r))cp)

′)]′ ≥ 0.

The latter condition is clearly equivalent to [(Ψ(r))cp ]
′′ ≥ 0, namely to the fact that (Ψ(r))cp is

convex (recall that ψ is at least C2). This completes the proof of the claim. Since u(0) > 0, if we

assume that there exists ρ > 0 such that u(ρ) = 0 then we have u′(ρ) < 0 and hence P (ρ) > 0, a

contradiction.

3.2. Proof of Proposition 2.8. A simple computation yields that A(r) is convex if and only if the

function h(r) := 2(n−1)(p+1)ψ′(r)
∫ r
0
ψn−1(s) ds− (p+3)ψn(r) is positive in (0,+∞). This readily

follows if ψ is a convex function too. Indeed, we have h(0) = 0 and

h′(r) = (p(n− 2)− (n+ 2))ψ′(r)ψn−1(r) + 2(n− 1)(p+ 1)ψ′′(r)

∫ r

0

(ψ(s))n−1 ds .

Hence, statement (i) follows.

Then we turn to the proofs of (ii) and (iii). First we claim that

(3.1) lim
r→+∞

(n− 1)ψ′(r)

∫ r
0
ψn−1(s) ds

ψn(r)
= 1 .

By this,

lim
r→+∞

h(r) = lim
r→+∞

ψn(r)

[
2(n− 1)(p+ 1)ψ′(r)

∫ r
0
ψn−1(s) ds

ψn(r)
− (p+ 3)

]
= +∞

and we conclude.

Next we prove (3.1). If lim
r→+∞

ψ′(r)

ψ(r)
= l for some 0 < l < +∞, the claim readily follows by the

l’Hôpital rule. Indeed, we have

lim
r→+∞

∫ r
0
ψn−1(s) ds

ψn−1(r)
= lim
r→+∞

ψ(r)

(n− 1)ψ′(r)
=

1

(n− 1)l
.

Let now l = +∞. Again, by the l’Hôpital rule we deduce

lim
r→+∞

(n− 1)ψ′(r)

∫ r
0
ψn−1(s) ds

ψn(r)
= (n− 1) lim

r→+∞

[
ψ′(r)
ψ(r)

∫ r
0
ψn−1(s) ds

]′

[ψn−1(r)]′
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= 1 + lim
r→+∞

[
log

(
ψ′(r)

ψ(r)

)]′ ∫ r
0
ψn−1(s) ds

ψn−1(r)
.

Then, since
∫ r
0
ψn−1(s) ds = o(ψn−1(r)) as r → +∞, (3.1) holds for every function ψ such that[

log
(
ψ′(r)
ψ(r)

)]′
remains bounded.

3.3. Proof of Theorem 2.9. We start with the following estimate from below on solutions of (1.3):

Lemma 3.1. Let the assumptions of Theorem 2.9 hold and u be a positive solution to (1.3). There

exist no strictly positive constants C, β such that u(r) ≤ C(ψ(r))−β for all r ≥ 0.

Proof. Assume by contradiction that there exist C, β such that u(r) ≤ C(ψ(r))−β for all r ≥ 0. It is

not restrictive assuming that β < (n− 1)/p.

After integration in (0, r) we get

u′(r) ≥ −Cp(ψ(r))1−n
∫ r

0

(ψ(s))n−1−βp ds for any r > 0 .

Integrating now in (r,+∞) we obtain

u(r) ≤ Cp
∫ +∞

r

(
(ψ(s))1−n

∫ s

0

(ψ(t))n−1−βp dt

)
ds for any r > 0 .

Then, by (2.4) we have

u(r) = O((ψ(r))−βp) as r → +∞ .

Iterating this procedure as in the proof of [5, Lemma 5.2] we deduce that for any ε > 0 there exists

Cε > 0 such that

(3.2) u(r) ≤ Cε(ψ(r))
−(n−1−ε) for any r > 0 .

The next purpose is to obtain a lower bound on u in order to reach a contradiction with (3.2).

Let now P = P (r) be the function defined in the proof of Theorem 2.7. Since we are assuming

A = A(r) convex, by the proof of Proposition 2.8 we deduce that P is negative and nonincreasing in

(0,+∞).

Therefore ∫ r
0
(ψ(s))n−1 ds

(ψ(r))n−1

(
(u′(r))2

2
+

(u(r))p+1

p+ 1

)
+
u(r)u′(r)

p+ 1
< 0 for any r > 0 .

In particular we obtain

(3.3) u′(r) +
2(ψ(r))n−1

(p+ 1)
∫ r
0
(ψ(s))n−1 ds

u(r) > 0 for any r > 0 .

By (3.1) we deduce that

(ψ(r))n−1

∫ r
0
(ψ(s))n−1 ds

∼ (n− 1)
ψ′(r)

ψ(r)
as r → +∞

and hence for any ε > 0 there exists rε > 0 such that

u′(r) +
2(n− 1 + ε)

p+ 1

ψ′(r)

ψ(r)
u(r) > 0 for any r > rε

and after integration it follows that there exists C > 0 such that

u(r) > C(ψ(r))−
2(n−1+ε)

p+1 for any r > rε .

Since p > 1, this contradicts (3.2) and completes the proof of the lemma. �
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Next we prove

Lemma 3.2. Let the assumptions of Theorem 2.9 hold and u be a positive solution to (1.3). Then

u′(r)

u(r)
= o

(
ψ′(r)

ψ(r)

)
as r → +∞ .

Proof. As a first step, we may exclude the case in which

(3.4) lim sup
r→+∞

u′(r)

u(r)

ψ(r)

ψ′(r)
< 0

since otherwise we would have

u′(r)

u(r)
< −C1

ψ′(r)

ψ(r)
for any r > r

for some C1 > 0 and r > 0, and after integration it follows

u(r) < C2(ψ(r))
−C1 for any r > r

for some constant C2 > 0, in contradiction with Lemma 3.1. Now it is sufficient to prove existence

of the limit in (3.4).

Suppose by contradiction that such a limit does not exist. For simplicity, here we consider only the

case l = +∞ since the case l finite can be treated exactly as in [5, Lemma 5.3]. Let rm → +∞ be

the sequence of local maxima and minima points for u′(r)
u(r)

ψ(r)
ψ′(r) . Then for any m we have

u′′(rm)u(rm)− (u′(rm))2 = u(rm)u′(rm)

[
log

(
ψ′(rm)

ψ(rm)

)]′

By (1.3), (3.1), (3.3) and p > 1, it follows that

u′(rm) > − (u(rm))p+1

u(rm)

{
(n− 1)ψ

′(rm)
ψ(rm) − 2

p+1
(ψ(rm))n−1

∫
rm
0

(ψ(s))n−1ds
+
[
log
(
ψ′(rm)
ψ(rm)

)]′} .

By (3.1), the fact that l = +∞ and that
[
log
(
ψ′(rm)
ψ(rm)

)]′
is bounded we obtain

u′(rm) > − (u(rm))p

(n−1)(p−1)
p+1

ψ′(rm)
ψ(rm) + o

(
ψ′(rm)
ψ(rm)

) .

This shows that u′(rm)
u(rm)

ψ(rm)
ψ′(rm) → 0 as m→ +∞ and by the definition of {rm} we infer

lim
r→+∞

u′(r)

u(r)

ψ(r)

ψ′(r)
= 0 ,

a contradiction. This completes the proof of the lemma. �

Lemma 3.3. Let the assumptions of Theorem 2.9 hold and u be a positive solution to (1.3). Then

(3.5) lim
r→+∞

u′(r)

up(r)

ψ′(r)

ψ(r)
= − 1

n− 1
.

Proof. We omit the proof in the case l finite since it is completely similar to the proof obtained in [5,

Section 5]. Let l = +∞. First we prove the existence of the limit in (3.5). Suppose by contradiction
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that the limit in (3.5) does not exist. Then there exists a sequence rm → +∞ of local maxima and

minima points for the function u′(r)
up(r)

ψ′(r)
ψ(r) . Then we have

u′′(rm)u(rm) = p(u′(rm))2 − u(rm)u′(rm)

[
log

(
ψ′(rm)

ψ(rm)

)]′
.

Inserting this identity in (1.3) multiplied by u we obtain

u′(rm) = − up(rm)

(n− 1)ψ
′(rm)
ψ(rm) + pu

′(rm)
u(rm) −

[
log
(
ψ′(rm)
ψ(rm)

)]′ .

Therefore we have

u′(rm)

up(rm)

ψ′(rm)

ψ(rm)
= −

{
n− 1 + p

u′(rm)

u(rm)

ψ(rm)

ψ′(rm)
− ψ(rm)

ψ′(rm)

[
log

(
ψ′(rm)

ψ(rm)

)]′}−1

.

By Lemma 3.2, the fact that l = +∞ and that (2.5) holds true, we obtain

lim
m→+∞

u′(rm)

up(rm)

ψ′(rm)

ψ(rm)
= − 1

n− 1
.

By definition of the sequence {rm}, this gives the existence of the limit in (3.5), a contradiction. It

remains to compute explicitly the limit in (3.5).

By (1.3) we obtain

u′′(r)

u′(r)

ψ(r)

ψ′(r)
+ n− 1 +

up(r)

u′(r)

ψ(r)

ψ′(r)
= 0

and hence there exists the limit

(3.6) lim
r→+∞

u′′(r)

u′(r)

ψ(r)

ψ′(r)
= 1− n− lim

r→+∞
up(r)

u′(r)

ψ(r)

ψ′(r)
.

On the other hand, by de l’Hôpital rule and Lemma 3.2 we have

0 = lim
r→+∞

u′(r)

u(r)

ψ(r)

ψ′(r)
= lim
r→+∞

[u′(r)ψ(r)(ψ′(r))−1]′

u′(r)

= lim
r→+∞

ψ(r)

ψ′(r)

{
u′′(r)

u′(r)
−
[
log

(
ψ′(r)

ψ(r)

)]′}
= lim
r→+∞

ψ(r)

ψ′(r)

u′′(r)

u′(r)
.

Combining this with (3.6) we arrive to the conclusion of the proof. �

End of the proof of Theorem 2.9. Using (3.5) we have that for any ε > 0 there exists rε > 0 such

that

u1−p(rε) +

(
p− 1

n− 1
− ε

)∫ r

rε

ψ(s)

ψ′(s)
ds < u1−p(r) < u1−p(rε) +

(
p− 1

n− 1
+ ε

)∫ r

rε

ψ(s)

ψ′(s)
ds .

If the function ψ
ψ′

is integrable in a neighborhood of infinity then limr→+∞ u(r) > 0. If ψ
ψ′

is not

integrable in a neighborhood of infinity then u vanishes at infinity and

lim
r→+∞

(∫ r

rε

ψ(s)

ψ′(s)
ds

)1/(p−1)

u(r) =

(
n− 1

p− 1

)1/(p−1)

.

This completes the proof of the theorem.
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4. Proof of the results in the subcritical case

4.1. Proof of Theorem 2.2. By standard arguments we deduce that the bottom of the L2 spectrum

of −∆g in M admits the following variational characterization:

(4.1) λ1(M) := inf
ϕ∈C∞

c (M)\{0}

∫
M

|∇gφ|2g dVg∫
M
φ2 dVg

.

We start by proving the positivity of λ1(M), and by observing that if instead ψ′/ψ tends to zero,

such positivity is false.

Lemma 4.1. Let n ≥ 3 and assume that ψ satisfies assumptions (H1)− (H3). Then λ1(M) > 0. If

instead (H3) does not hold and one has in addition ψ′(r)/ψ(r) → 0 as r → +∞, then λ1(M) = 0.

In particular, the latter fact holds if the radial mean curvature at r, or the radial sectional curvature

at r, tend to zero as r → +∞.

Proof. Let λ1(BR) be the infimum of the functional in (4.1) with test functions in C∞
c (BR), namely

λ1(BR) is the first eigenvalue of the Laplace-Beltrami operator on BR under the Dirichlet boundary

condition. From [18] we recall the estimate

(4.2) λ1(BR) ≥
1

4F (R)
,

where F (R) := sup
0<r<R

HR(r) for any R ∈ (0,+∞) and

HR(r) :=

[(∫ r

0

(ψ(s))n−1 ds

)(∫ R

r

(ψ(s))1−n ds

)]
.

Since the map R 7→ λ1(BR) is decreasing and λ1(M) = lim
R→+∞

λ1(BR), one has

λ1(M) ≥ lim
R→+∞

1

4F (R)
.

In particular, the claim can be proved by showing that F (R) stays bounded.

We have that lim
r→R−

HR(r) = 0 and, by applying twice the l’Hôpital rule, that

lim
r→0+

HR(r) = lim
r→0+

(∫ r
0
(ψ(s))n−1 ds

(ψ(r))n−1

)2

= lim
r→0+

(
ψ(r)

(n− 1)ψ′(r)

)2

= 0 .

On the other hand, for 0 < r < R, we have

H ′
R(r) = (ψ(r))n−1

(∫ R

r

(ψ(s))1−n ds

)
− (ψ(r))1−n

(∫ r

0

(ψ(s))n−1 ds

)
.

Since lim
r→0+

HR(r) = lim
r→R−

HR(r) = 0 and HR(r) > 0 for any r ∈ (0, R), then HR admits a local

maximum point r0 ∈ (0, R). This yields,

HR(r) ≤ HR(r0) =

(∫ r0
0

(ψ(s))n−1 ds

(ψ(r0))n−1

)2

for every r ∈ (0, R) .

Then, condition (H3) assures the boundedness of the latter quotient and, in turn, proves the claim.

To see this, note that (H2)− (H3) yield lim
r→+∞

ψ(r) = +∞. In particular, by the Cauchy Theorem

lim sup
r→+∞

∫ r
0
(ψ(s))n−1 ds

(ψ(r))n−1
≤ lim sup

r→+∞

ψ(r)

(n− 1)ψ′(r)
< +∞ .
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To prove the second part of the statement, we notice that, denoting by V (r) the volume of the

geodesic balls of radius r centered at o, we have by l’Hôpital rule, since the last limit below exists:

lim
r→+∞

V ′(r)

V (r)
= lim
r→+∞

(ψ(r))n−1

∫ r
0
(ψ(s))n−1 ds

= (n− 1) lim
r→+∞

ψ′(r)

ψ(r)
= 0.

Hence for all ε > 0 there is rε such that 0 ≤ V ′(r)/V (r) = (log V (r))
′ ≤ ε for all r ≥ rε. Integrating

between rε and r we easily get that

lim
r→+∞

log(ψ(r))

r
= 0.

By a classical result of Brooks (see [7]) this implies that λ1(M) = 0. We mention by the sake of

completeness that the same conclusion can be obtained by verifying that the necessary and sufficient

condition (4.3) for the validity of the Poincaré-Sobolev type inequality below, is not satisfied when

p = 1 under the running assumptions.

The fact that the claim holds when the radial mean curvature at r tends to zero when r → +∞ is

obvious from its expression given in Section 1.1. The radial sectional curvature at r tends to zero

when r → +∞ if and only if ψ′′(r)/ψ(r) → 0. This implies that ψ′(r)/ψ(r) → 0 as well. In fact,

if ψ′(r)/ψ(r) has a limit, l’Hôpital rule implies that it must be zero, as claimed. Should ψ′(r)/ψ(r)

not have a limit, it must have a sequence of stationary points rk → +∞ as k → +∞, so that

ψ′′(rk)/ψ′(rk) = ψ′(rk)/ψ(rk), so that in particular ψ′′(rk) ̸= 0. Hence

ψ′(rk)

ψ(rk)
=
ψ′′(rk)

ψ(rk)

ψ′(rk)

ψ′′(rk)
=
ψ′′(rk)

ψ(rk)

ψ(rk)

ψ′(rk)
, or

(
ψ′(rk)

ψ(rk)

)2

=
ψ′′(rk)

ψ(rk)

which tends to zero by assumption if k → +∞, contradiction. �

Next we show the validity of a Sobolev embedding for the space H1
r (M) of radial functions in

H1(M).

Lemma 4.2. Let n ≥ 3 and assume that ψ satisfies (H1)− (H3). If 1 < p ≤ n+2
n−2 then the embedding

H1
r (M) ⊂ Lp+1(M) is continuous and if 1 < p < n+2

n−2 then the embedding is also compact.

Proof. Following [23], we define ACR(0,+∞) the set of all functions absolutely continuous on every

compact subinterval [a, b] ⊂ (0,+∞) which tend to zero as r → +∞. Then, according to [23, Theorem

6.2], the inequality

(4.3)

(∫ +∞

0

|u(r)|p+1ψn−1(r) dr

) 2
p+1

≤ Cn,p

∫ +∞

0

(u′(r))2ψn−1(r) dr for all u ∈ ACR(0,+∞) ,

holds for some Cn,p > 0, if and only if

sup
0<x<+∞

fn,p(x) := sup
0<x<+∞

(∫ x

0

ψn−1(r) dr

) 1
p+1
(∫ +∞

x

ψ1−n(r) dr

) 1
2

< +∞ .

The known asymptotics for ψ as x→ 0+ yield

(4.4) fn,p(x) ∼
1

n1/(p+1)(n− 2)1/2
x

n+2−p(n−2)
2(p+1) as x→ 0+,

where the integrability of ψ1−n(r) in (x,+∞) comes from (H3).

On the other hand, we claim that

(4.5) lim sup
x→+∞

(∫ x

0

ψn−1(r) dr

)(∫ +∞

x

ψ1−n(r) dr

)
< +∞
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from which we easily conclude that for p > 1

lim
x→+∞

fn,p(x) = lim
x→+∞

(∫ x

0

ψn−1(r) dr

) 1
p+1− 1

2
(∫ x

0

ψn−1(r) dr

) 1
2
(∫ +∞

x

ψ1−n(r) dr

) 1
2

= 0 .

To prove (4.5), we first note that (H2)− (H3) and the Cauchy’s Theorem yield

lim sup
x→+∞

∫ x
0
ψn−1(r) dr

(ψ(x))n−1
≤ lim sup

x→+∞

ψ(x)

(n− 1)ψ′(x)
< +∞ .

and

lim sup
x→+∞

∫ +∞
x

ψ1−n(r) dr

(ψ(x))1−n
≤ lim sup

x→+∞

ψ(x)

(n− 1)ψ′(x)
< +∞ .

Then,

lim sup
x→+∞

(∫ x

0

ψn−1(r) dr

)(∫ +∞

x

ψ1−n(r) dr

)

= lim sup
x→+∞

(∫ x
0
ψn−1(r) dr

(ψ(x))n−1

)(∫ +∞
x

ψ1−n(r) dr

(ψ(x))1−n

)
< +∞ .

Let us denote by C∞
c,r(M) the space of radial functions in C∞

c (M). By (4.3),(4.4), (4.5) we deduce

that if 1 < p ≤ n+2
n−2 then

∥φ∥2Lp+1(M) ≤ Cn,p

∫

M

|∇gφ|2g dVg ,

for any function φ ∈ C∞
c,r(M).

Therefore, by density of C∞
c,r(M) in H1

r (M) (see [19, Theorem 3.1]) we obtain the continuous

embedding H1
r (M) ⊂ Lp+1(M) for 1 < p ≤ n+2

n−2 . On the other hand [23, Theorem 7.4] yields that

the same embedding is compact if and only if lim
x→0+

fn,p(x) = 0 = lim
x→+∞

fn,p(x). This condition is

satisfied when 1 < p < n+2
n−2 . �

End of the proof of Theorem 2.2. The existence of a nonnegative minimizer to

(4.6) inf
v∈H1

r (M)\{0}

∫
M

|∇gv|2g dVg
(∫
M

|v|p+1 dVg
) 2

p+1

,

follows in a standard way by Lemmas 4.1-4.2. Up to a constant multiplier a nonnegative minimizer u

of (4.6) is actually a radial solution of (1.1) and hence a nonnegative solution of (1.3). Furthermore

u(r) > 0 for any r > 0 by local uniqueness for a Cauchy problem.

4.2. Proof of Theorem 2.4. The proof follows the line of [22, Theorem 1.3] where the case ψ(r) =

sinh(r) is dealt. Hence, in the sequel we will only quote which are the main differences.

First we have uniqueness for Dirichlet problems on bounded domains.

Lemma 4.3. Let 1 < p < n+2
n−2 and ψ satisfy assumptions (H1)−(H2). Furthermore, let G as defined

in Theorem 2.4 satisfying the Λ−property as required there. Then the Dirichlet problem

(4.7)





− 1

(ψ(r))n−1

[
(ψ(r))n−1v′(r)

]′
= |v(r)|p−1v(r) r ∈ (0, R)

v′(0) = 0 v(R) = 0 .

has at most one positive solution.
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Proof. The proof follows plainly the lines of [22, Proposition 4.4]. The main difference is that the

auxiliary energy considered there, here has to be replaced by

Ev̂(r) :=
1

2
(ψ(r))δ(p−1)(v̂′(r))2 +

|v̂(r)|p+1

p+ 1
+

1

2
G(r)(v̂(r))2 ,

where δ and G are as in the statement of Theorem 2.4 and v̂(r) := ψδ(r)v(r). See also [21] where

this substitution was originally introduced. In particular, if v solves (4.7) then v̂ solves

ψδ(p−1)(r) v̂′′(r) +
1

2
(ψδ(p−1)(r))′ v̂′(r) +G(r) v̂(r) + v̂p(r) = 0 (r > 0)

and
d

dr
Ev̂(r) =

1

2
G′(r)(v̂(r))2 .

We have G(r) ∼ δ(δ+2− n)rδ(p−1)−2 as r → 0+, where δ+2− n < 0 and δ(p− 1)− 2 < 0. Namely,

G(r) → −∞ for r → 0+. This, combined with the assumptions required on G yields that either

G′(r) ≥ 0 for every r > 0 or there exists r1 > 0 such that G′(r1) = 0, G′(r) ≥ 0 for every r ∈ (0, r1)

and G′(r) ≤ 0 for every r > r1. Then, all the arguments of [22, Proposition 4.4] work. See also the

proof of Lemma 4.8 below. �

Let u ∈ H1(M) be a positive radial solution of (1.1) as given in Theorem 2.2 (possibly not unique).

The next two lemmas show that every solution v to (1.3) with 0 < v(0) < u(0), is necessarily of one

sign. Furthermore, v intersects u exactly once. First, by exploiting Lemma 4.3, we have

Lemma 4.4. Let 1 < p < n+2
n−2 and ψ satisfy assumptions (H1)−(H3). Furthermore, let G as defined

in Theorem 2.4 satisfying the Λ−property as required there. If u and v are two solutions to (1.3) with

u(r) > 0 for every r ≥ 0 and 0 < v(0) < u(0), then v(r) > 0 for every r ≥ 0.

The proof of Lemma 4.4 is the same of [22, Lemma 4.1 and Corollary 4.6]. The main tools exploited

there are uniqueness for Dirichlet problems on bounded domains and the Poincaré-Sobolev inequality

in the hyperbolic space. In our case, they are given, respectively, by Lemma 4.3 and by Lemmas

4.1-4.2.

On the other hand, exactly as in [22, Corollary 4.6], one shows

Lemma 4.5. Let 1 < p < n+2
n−2 and ψ satisfy assumptions (H1)− (H3). Let u and v be two positive

solutions to (1.3) with 0 < v(0) < u(0). If u ∈ H1(M), then u− v has exactly one zero.

Next we discuss the asymptotic behavior and uniqueness of radial ground states.

Lemma 4.6. Assume that ψ satisfies assumptions (H1) − (H2) and (2.2) holds. Furthermore, let

u ∈ H1(M) be a positive solution to (1.3) with p > 1. If l < +∞ in (2.2), then

(4.8) lim
r→+∞

log(u(r))

r
= −(n− 1)l = lim

r→+∞
log |u′(r)|

r

and

(4.9) lim
r→+∞

u′(r)

u(r)
= −(n− 1)l .

If l = +∞ in (2.2), we have

(4.10) lim
r→+∞

log(u(r))

r
= lim
r→+∞

log |u′(r)|
r

= −∞ , lim
r→+∞

u′(r)

u(r)
= −∞ ,
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and

(4.11) lim
r→+∞

log |u′(r)|
log(ψ(r))

= −(n− 1) .

Proof. We omit the proof in the case l < +∞ since it can be deduced by arguing as in [22, Lemma

3.4]. Suppose now that l = +∞. For every k > 0 there exists rk > 0 such that

u′′(r) + (n− 1)ku′(r) +
1

k
u(r) ≥ 0 for all r ≥ rk .

Namely, (
e−λ−(k)rz(r)

)′
≥ 0 for all r ≥ rk ,

where z := u′ − λ+(k)u and λ±(k) :=
−(n−1)k±

√
(n−1)2k2−4/k

2 . Then, two integrations in [τ, r], with

rk ≤ τ ≤ r, yield

u(r) ≥ Bk(τ) e
λ+(k)r − Ak(τ)

λ+(k)− λ−(k)
eλ−(k)r for all r ≥ rk ,

where Ak(τ) := e−λ−(k)τz(τ) and Bk(τ) := u(τ)e−λ+(k)τ + Ak(τ)
λ+(k)−λ−(k) e

−(λ+(k)−λ−(k))τ . We claim

that Bk(τ) ≤ 0 for τ ≥ rk. Otherwise, Bk(τ) > 0 eventually. We recall that

B′
k(τ) =

A′
k(τ)

λ+(k)− λ−(k)
e−(λ+(k)−λ−(k))τ ≥ 0 for any τ ≥ rk .

Here and in the sequel Ck denotes a positive constant sufficiently large which may vary from line

to line. Then, u(r) ≥ Bk(τ) e
λ+(k)r + o(eλ+(k)r) as r → +∞. But this, combined with (2.2), yields∫ +∞

0
ψn−1(r)u2(r) dr ≥ Ck

∫ +∞
rk

e
√

(n−1)2k2−4/k r dr for some Ck > 0 and contradicts the fact that

u ∈ H1(M). Hence, Bk(τ) ≤ 0 for τ ≥ rk and we conclude that

(4.12) u′(τ) ≤ λ−(k)u(τ) for all τ ≥ rk .

Then,

lim sup
r→+∞

u′(r)

u(r)
≤ λ−(k), lim sup

r→+∞

log(u(r))

r
≤ λ−(k) for every k > 0

and the first and the third limit in (4.10) follow since lim
k→+∞

λ−(k) = −∞. On the other hand, by

(1.3), the third limit in (4.10), the fact that lim
r→+∞

u(r) = 0 and that l = +∞, we have

lim
r→+∞

u′′(r)

u′(r)

ψ(r)

ψ′(r)
= lim
r→+∞

(
−(n− 1)− up(r)

u′(r)

ψ(r)

ψ′(r)

)
= 1− n .

By this, the second limit in (4.10) and (4.11) easily follow from the l’Hôpital rule. �

Lemma 4.7. Let n ≥ 3 and 1 < p < n+2
n−2 . Assume that ψ satisfies (H1)− (H3). Then for any radial

positive solution u ∈ H1(M) of (1.1), there exists L ∈ (−∞, 0) such that

(4.13) lim
r→+∞

ψn−1(r)u′(r) = L .

Moreover

(4.14) lim
r→+∞

ψn−1(r)u(r) =
|L|

(n− 1)l
if l < +∞ ,

and

(4.15) lim
r→+∞

u(r)
∫ +∞
r

ψ1−n(s) ds
= |L| if l = +∞ .
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Proof. The existence and the negativity of the limit in (4.13) simply follows by (1.3). It remains to

prove that L > −∞. If l < +∞ from (4.8) the bound

u(r) ≤ Cδe
−((n−1)l−δ)r for all r ≥ 0 ,

holds for every δ > 0. By this, (2.2) and (1.3), we deduce that

(ψn−1(r)u′(r))′ ≥ −C(ε, δ)e−[((n−1)l−δ)p−(l+ε)(n−1)]r for all r ≥ 0 ,

for every ε > 0 and δ > 0, where C(ε, δ) > 0. Next we fix ε = l(p−1)
2 and we assume δ = δ(ε) to be

such that δp < l(p−1)(n−1)
2 . Then, an integration in [0, r] yields

ψn−1(r)u′(r) ≥ C[e−[
l(p−1)(n−1)

2 −δp]r − 1] .

Namely,

ψn−1(r)u′(r) ≥ −C for all r ≥ 0

and L > −∞.

Next we assume l = +∞. From (4.10) we know that for every ε > 0 there exists Rε > 0 such that

log |u′(r)| ≤ −((n− 1)− ε) logψ(r) for all r ≥ Rε .

Furthermore, from (4.12), for every k > 0 there exists rk > 0 such that

log u(r) ≤ log |u′(r)| − log |λ−(k)| for all r ≥ rk ,

where lim
k→+∞

λ−(k) = −∞. Fix ε = (p−1)(n−1)
2p in order to obtain after integration

u(r) ≤ Cψ−(n−1)(p+1)/2p(r) for all r ≥ 0 ,

for some C > 0. By this and integrating the equation in [0, r], we conclude that

ψn−1(r)u′(r) ≥ −Cp
∫ r

0

ψ−(n−1)(p−1)/2(s) ds ≥ −K ,

for some finite K and for all r ≥ 0. Hence, again we infer that L > −∞. �

Lemma 4.8. Let 1 < p < n+2
n−2 . Assume that ψ satisfies the assumptions of Theorem 2.4.

Then (1.1) admits a unique radial positive solution U ∈ H1(M).

Proof. We follow the proof of [22, Theorem 1.3]. By contradiction, assume that u and v are two

positive solutions to (1.3) such that u, v ∈ H1(M) and v(0) < u(0). By Lemma 4.5, u and v intersect

exactly once at r0.

We claim that γ(r) := v(r)/u(r) is strictly increasing in (0,+∞). From the equation we know that

[(ψ(r))n−1(v′(r)u(r)− v(r)u′(r))]′ = (ψ(r))n−1u(r)v(r)((u(r))p−1 − (v(r))p−1) .

Hence,

[(ψ(r))n−1(v′(r)u(r)− v(r)u′(r))]′(r0 − r) > 0 ∀r ̸= r0 .

By (4.13) and the fact that lim
r→+∞

u(r) = lim
r→+∞

v(r) = 0, we deduce that

(4.16) lim
r→+∞

(ψ(r))n−1(v′(r)u(r)− v(r)u′(r)) = 0 .

Hence, v′(r)u(r)− v(r)u′(r) > 0 for r > 0 and γ′(r) > 0.

Now, we set û(r) := (ψ(r))δu(r) and v̂(r) := (ψ(r))δv(r), where δ is as in the statement of Theorem

2.4. Then, for Ev̂ as in the proof of Lemma 4.3, for any 0 < ε < R and r ∈ (0, R), we get

(4.17) Ev̂(R)− γ2(r)Eû(R) = Ev̂(ε)− γ2(r)Eû(ε) +
1

2

∫ R

ε

G′(s)[(v̂(s))2 − γ2(r)(û(s))2] ds .
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Since G(r) → −∞ as r → 0+ (see the proof of Lemma 4.3), by assumption we have that either G′ ≥ 0

in (0,+∞) or there exists r1 > 0 such that G′(r1) = 0, G′ ≥ 0 in (0, r1) and G
′ ≤ 0 in (r1,+∞). We

claim that

(4.18) Ev̂(R) → 0 and Eû(R) → 0 as R→ +∞ .

We now show that with the help of (4.18) we arrive to the conclusion of the proof.

If G′ does not change sign, take r = ε in (4.17). Letting ε→ 0+ we get

Ev̂(R)− γ2(0)Eû(R) =
1

2

∫ R

0

G′(s)[(v̂(s))2 − γ2(0)(û(s))2] ds > 0 .

Letting R→ +∞, (4.18) leads to a contradiction.

If G′ changes sign, take r = r1 in (4.17). Letting ε→ 0+, we get

Ev̂(R)− γ2(r1)Eû(R)

=
1

2

∫ r1

0

G′(s)[(v̂(s))2 − γ2(r1)(û(s))
2] ds+

1

2

∫ R

r1

G′(s)[(v̂(s))2 − γ2(r1)(û(s))
2] ds < 0 .

Letting R→ +∞, (4.18) leads again to a contradiction.

It remaind to prove (4.18). First we note that, from (4.14) and (4.15), if l < +∞ we have

ψδ(r)v(r) ∼ |L|
(n− 1)l

ψ− (p+1)δ
2 (r) as r → +∞

and if l = +∞ we have

ψδ(r)v(r) ∼ |L|ψδ(r)
∫ +∞

r

ψ1−n(s) ds as r → +∞ .

Hence, in both the cases we conclude that v̂(r) → 0 as r → +∞. Then we consider

G(r)(v̂(r))2 = δ(δ + 2− n)ψδ(p+1)(r)

(
ψ′(r)

ψ(r)

)2

v2(r)− δψδ(p+1)(r)
ψ′(r)

ψ(r)

ψ′′(r)

ψ′(r)
v2(r) .

If l < +∞ (2.2) and (4.14) give

G(r)(v̂(r))2 ∼ δ(δ + 1− n)|L|2
(n− 1)2

ψ−2δ(r) as r → +∞

and |G(r)|(v̂(r))2 → 0 as r → +∞. If l = +∞, (4.12) and (4.13) give

ψδ(p+1)(r)

(
ψ′(r)

ψ(r)

)2

v2(r) ≤
[
ψ

δ(p+1)
2 (r)

ψ′(r)

ψ(r)

|v′(r)|
|λ−(k)|

]2
∼
[ |L|ψ−δ(r)

|λ−(k)|
ψ′(r)

ψ(r)

]2
,

as r → +∞. Hence, by (2.3), ψδ(p+1)(r)
(
ψ′(r)
ψ(r)

)2
v2(r) → 0 as r → +∞. Similarly,

ψδ(p+1)(r)ψ
′(r)
ψ(r)

ψ′′(r)
ψ′(r) v

2(r) → 0 as r → +∞ and, in turn, |G(r)|(v̂(r))2 → 0 as r → +∞.

Finally, we compute

ψδ(p−1)(r)(v̂′(r))2

= δ2ψδ(p+1)(r)

(
ψ′(r)

ψ(r)

)2

v2(r) + 2δψδ(p+1)(r)
ψ′(r)

ψ(r)
v(r)v′(r) + ψδ(p+1)(r)(v′(r))2 .

If l < +∞ (2.2), (4.13) and (4.14) give

ψδ(p−1)(r)(v̂′(r))2 ∼ L2

(
δ2

(n− 1)2
− 2δ

n− 1
+ 1

)
ψ−2δ(r) as r → +∞ .

Namely, ψδ(p−1)(r)(v̂′(r))2 → 0 as r → +∞. When l = +∞, the same conclusion can be reached by

exploiting (2.3), (4.12) and (4.13) as shown above. The limits so far proved yield (4.18). �
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When α is large, the same proof of [5, Lemma 7.1] gives

Lemma 4.9. Let ψ satisfy assumptions (H1)− (H2). Furthermore, let u be a solution to (1.3) with

1 < p < n+2
n−2 and α > α0 sufficiently large. Then u changes sign.

Finally, following the proofs of [5, Lemmas 7.2, 7.3, 7.4, 7.5], we conclude.

Lemma 4.10. Let 1 < p < n+2
n−2 , ψ satisfy the assumptions of Theorem 2.4 and U be the unique

ground state as given in Lemma 4.8. Then, any solution to (1.3) with α > U(0) is sign-changing.

The proof of Theorem 2.4 now follows from Lemmas 4.8-4.10.

4.3. Proof of Proposition 2.5. Note that G′(r) = δψδ(p−1)−3(r)h(r), where

h(r) := (δ(p− 1)− 2)(δ + 2− n)(ψ′(r))3 − ψ′′′(r)ψ2(r) + (δ(3− p) + 5− 2n)ψ′(r)ψ′′(r)ψ(r) .

Clearly, h(0) = (δ(p − 1) − 2)(δ + 2 − n) > 0 for every 1 < p < n+2
n−2 . We prove that h′(r̄) < 0 for

every r̄ > 0 such that h(r̄) = 0, then h admits at most one zero and the Λ−property follows.

For such r̄, a few computations yield

h′(r̄) = Ap,n(ψ
′(r̄))2ψ′′(r̄) +Bp,nψ(r̄)ψ

′(r̄)ψ′′′(r̄) + ψ2(r̄)

(
ψ′′(r̄)ψ′′′(r̄)

ψ′(r̄)
− ψiv(r̄)

)
,

Ap,n = 2δ2(p− 1) + δ((3− 2n)p+ 2n− 5) + 2n− 3

=
−(2n− 3)2p2 + 6(2n− 3)p+ 4n2 − 8n− 5

(p+ 3)2
< 0 for every p ≥ 2n+ 1

2n− 3

and Bp,n := δ(3− p) + 3− 2n < 0 for every p > 1. Note that 2n+1
2n−3 ∈ (1, n+2

n−2 ).

Summing up, if ψ satisfies assumptions (H1) − (H3), ψ
′′(0) = 0, ψ′′′(r) > 0 and

(
ψ′(r)
ψ′′′(r)

)′
≤ 0 for

every r > 0, then G satisfies the Λ−property for every 2n+1
2n−3 ≤ p < n+2

n−2 .

4.4. Proof of Theorem 2.6. The statement of (i) is contained in Lemma 4.7.

Lemma 4.11. Let the assumptions of Theorem 2.6 hold and let u ̸∈ H1(M) be a positive solution to

(1.3). There exist no strictly positive constants C, β such that u(r) ≤ C(ψ(r))−β for all r ≥ 0.

Proof. Suppose by contradiction that there exist C, β > 0 such that u(r) ≤ C(ψ(r))−β for all r > 0.

Proceeding exactly as in the proof of Lemma 3.1 we arrive to the estimate (3.2). Integrating (1.3)

and exploiting (3.2), we infer u′(r) ≥ −C(ψ(r))1−n and any r > 0, for some constant C > 0. This

shows that u′ ∈ L2(M). Another integration then yields u(r) ≤ C
∫ +∞
r

(ψ(s))1−nds for any r > 0

and, in turn, by (H3) we obtain u(r) = O((ψ(r))1−n) as r → +∞. This implies u ∈ L2(M). We have

shown that u ∈ H1(M), a contradiction. The proof of the lemma is complete. �

Lemma 4.12. Let the assumptions of Theorem 2.6 hold and let u ̸∈ H1(M) be a positive solution to

(1.3). Let P = P (r) be defined as in the proof of Theorem 2.7. Then P (r) admits a limit as r → +∞.

Proof. From the proof of Theorem 2.7 we recall that P ′(r) := K(r)(u′(r))2. Hence, by (3.1)

lim
r→+∞

K(r) = lim
r→+∞

(ψ(r))n−1

[
p+ 3

2
− (n− 1)(p+ 1)ψ′(r)

∫ r
0
(ψ(s))n−1 ds

(ψ(r))n

]
= −∞

and the statement follows. �

End of the proof of Theorem 2.6. Thanks to Lemma 4.12 we may put γ := limr→+∞ P (r). If γ < 0

then P is obviously eventually negative. In such a case we may proceed exactly as in the proof of

Theorem 2.9 and arrive to the estimates (ii) and (iii) of Theorem 2.6.
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Suppose now that γ ≥ 0. Since P is eventually nonincreasing then P is eventually nonnegative.

Therefore there exists r > 0 such that

(4.19) (u′(r))2 +
2

p+ 1

(ψ(r))n−1

∫ r
0
(ψ(s))n−1 ds

u(r)u′(r) +
2

p+ 1
(u(r))p+1 ≥ 0 for any r > r .

Suppose now that limr→+∞ u(r) = 0. Since l > 0 up to enlarging r, we have that

1

(p+ 1)2

(
(ψ(r))n−1

∫ r
0
(ψ(s))n−1 ds

)2

(u(r))2 − 2

p+ 1
(u(r))p+1 > 0 for any r > r .

Solving the second order equation in (4.19) with respect to u′(r), we arrive to the following alterna-

tives: either

u′(r) ≤ − 1

p+ 1

(ψ(r))n−1

∫ r
0
(ψ(s))n−1 ds

u(r)−


 1

(p+ 1)2

(
(ψ(r))n−1

∫ r
0
(ψ(s))n−1 ds

)2

(u(r))2 − 2

p+ 1
(u(r))p+1




1
2

or

u′(r) ≥ − 1

p+ 1

(ψ(r))n−1

∫ r
0
(ψ(s))n−1 ds

u(r) +


 1

(p+ 1)2

(
(ψ(r))n−1

∫ r
0
(ψ(s))n−1 ds

)2

(u(r))2 − 2

p+ 1
(u(r))p+1




1
2

.

The first alternative may be excluded since otherwise by (3.1) we would have

u′(r)

u(r)
≤ −n− 1− ε

p+ 1

ψ′(r)

ψ(r)
for any r > rε

for some ε ∈ (0, n−1) and rε > 0. Integration of this inequality provides a contradiction with Lemma

4.11.

Therefore the second alternative holds true. Proceeding similarly to the proof of [5, Theorem 2.3]

we then obtain

u′(r) ≥ −2(u(r))p
∫ r
0
ψn−1(s) ds

ψn−1(r)
.

Exploiting (3.1) and (2.4), this implies

lim
r→+∞

u′(r)

u(r)
= 0 .

In particular using again (2.4), this gives the validity of Lemma 3.2. Now one can follow exactly all

the steps of Theorem 2.9 and arrive to the proof of part (iii) if ψ
ψ′

̸∈ L1(0,∞).

Otherwise we arrive to a contradiction with the fact that u vanishes at infinity. This gives the proof

of part (ii). We recall that the existence of limr→+∞ u(r) and the fact that it is finite follows from

Proposition 2.1.

5. Stability

5.1. Proof of Theorems 2.11-2.12. We start with a simpler characterization of stability for radial

solutions of (1.1).

Lemma 5.1. Let ψ satisfy (H1) − (H3) and let u be a radial solution of (1.1). Then u is stable if

and only if

(5.1)

∫ +∞

0

(χ′(r))2 ψn−1(r) dr − p

∫ +∞

0

|u(r)|p−1χ2(r)ψn−1(r) dr ≥ 0 ,

for every radial function χ ∈ C∞
c (M).
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Proof. Clearly stability of any solution u of (1.1) is equivalent to

(5.2)

∫

Sn−1

∫ +∞

0

[(φr(r,Θ))2 + |∇Sn−1φ(r,Θ)|2 ψ−2(r)]ψn−1(r) dr dΘ

−p
∫

Sn−1

∫ +∞

0

|u(r,Θ)|p−1φ2(r,Θ)ψn−1(r) dr dΘ ≥ 0 ∀φ ∈ C∞
c (M).

In particular if u is radial then (5.1) follows immediately. On the other hand if assume (5.1) we

obtain
∫

Sn−1

∫ +∞

0

[(φr(r,Θ))2 + |∇Sn−1φ(r,Θ)|2 ψ−2(r)]ψn−1(r) dr dΘ(5.3)

≥
∫

Sn−1

∫ +∞

0

(χ′
Θ(r))

2 ψn−1(r) dr dΘ ≥
∫

Sn−1

p

∫ +∞

0

|u(r)|p−1χ2
Θ(r)ψ

n−1(r) dr dΘ

= p

∫

Sn−1

∫ +∞

0

|u(r)|p−1φ2(r,Θ)ψn−1(r) dr dΘ ,

where we have settled χΘ(r) := φ(r,Θ). �

From the next two lemmas it follows that any solution (1.3) with α > 0 small enough is stable.

Lemma 5.2. Let ψ satisfy assumptions (H1) − (H3) and let uα be a solution of (1.3) with α > 0.

Then |uα(r)| ≤ α for any r ∈ [0,+∞).

Proof. Let Fα(r) =
1
2 |u′α(r)|2+ 1

p+1 |uα(r)|p+1 be the Lyapunov function corresponding to the solution

uα. From (1.3) one gets that Fα is nonincreasing in [0,+∞) and hence for any r > 0

1

p+ 1
αp+1 = Fα(0) ≥ Fα(r) ≥

1

p+ 1
|uα(r)|p+1 .

This completes the proof. �

Lemma 5.3. Let ψ satisfy assumptions (H1)− (H3). Furthermore, let uα be a solution to (1.3) with

|α| ≤
(
λ1(M)
p

)1/(p−1)

. Then, uα is stable.

Proof. For simplicity, let α > 0. By Lemma 5.2 |uα(r)| ≤ α for every r ≥ 0. The statement follows

by combining (4.1) with (2.6). �

Next, under suitable assumptions, we show that stable solutions cannot be sign-changing.

Lemma 5.4. Let ψ satisfy assumptions (H1)− (H2). Then, any stable solution to (1.3) has constant

sign.

Proof. By contradiction, let u be a stable solution to (1.3) such that u(R) = 0 for some R > 0. Next,

we set vR(r) := u(r)χ[0,R](r) ∈ H1
0 (BR), where χ[0,R](r) denotes the characteristic function of the set

[0, R] and BR is the geodesic ball of center o and radius R. Standard density arguments yield that

vR is a valid test function in (5.2), namely

(5.4)

∫ +∞

0

(v′R(r))
2 ψn−1(r) dr − p

∫ +∞

0

|u(r)|p−1(vR(r))
2 ψn−1(r) dr ≥ 0 .

On the other hand, multiplying the equation in (1.3) by vR(r)ψ
n−1(r) and integrating, we get

∫ +∞

0

(v′R(r))
2 ψn−1(r) dr =

∫ +∞

0

|u(r)|p−1u vR(r)ψ
n−1(r) dr .
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Recalling the definition of vR, this yields
∫ +∞

0

(v′R(r))
2 ψn−1(r) dr − p

∫ +∞

0

|u(r)|p−1(vR(r))
2 ψn−1(r) dr

= (1− p)

∫ R

0

|u(r)|p+1 ψn−1(r) dr < 0 .

The above inequality contradicts (5.4) and concludes the proof. �

Next we exploit well-know results for the euclidean case to deduce the following lemma.

Lemma 5.5. Let ψ satisfy assumptions (H1) − (H2). Let n ≤ 10 and p > 1 or n ≥ 11 and

1 < p < pc(n) =
(n−2)2−4n+8

√
n−1

(n−2)(n−10) . Then there exists α > 0 such that for any α > α, the solution uα
of (1.3) is unstable.

Proof. We argue by contradiction. Let uλ be a stable solution to (1.3) with α = λ2/(p−1). As in [5,

Lemma 7.1], we define

vλ(s) = λ−2/(p−1)uλ

( s
λ

)
.

Hence, vλ(0) = 1 and vλ satisfies

v′′λ(s) +
n− 1

s

ψ′(s/λ)

ψ(s/λ)

s

λ
v′λ(s) + |vλ(s)|p−1vλ(s) = 0 .

By (H1) and Ascoli-Arzelà Theorem we have that vλ → v in C1([0, S]) as λ→ +∞, for any 0 < S <

+∞, where v solves the equation

v′′(s) +
n− 1

s
v′(s) + |v(s)|p−1v(s) = 0 , v(0) = 1 .

On the other hand, by assumption uλ is stable and from (5.2) we have
∫ +∞

0

(χ′(r))2 (ψ(r))n−1 dr − p λ2
∫ +∞

0

|vλ(λr)|p−1χ2(r) (ψ(r))n−1 dr ≥ 0 ,

for every radial function χ ∈ C∞
c (M). Next, we set ηλ(r) := η(rλ) ∈ C∞

c (M), for some η ∈ C∞
c (M)

radial. Choosing ηλ as test function in the above inequality and performing the change of variable

s = λr, we deduce
∫ +∞

0

(η′(s))2
(
ψ
( s
λ

))n−1

ds− p

∫ +∞

0

|vλ(s)|p−1η2(s)
(
ψ
( s
λ

))n−1

ds ≥ 0 ,

for every radial function η ∈ C∞
c (M). Let us fix S ≥ 0 in such a way that supp η ⊂ BS . By Lagramge

Theorem, for every s ∈ [0, S] there exist 0 < ξ < s
λ and 0 < |σ| < |ψ′′(ξ)|

2
s
λ such that

(5.5)
(
ψ
( s
λ

))n−1

=
( s
λ

)n−1

+ g(ξ, σ)
( s
λ

)n
as λ→ +∞ ,

where g(ξ, σ) = (n− 1) (1 + σ)
n−2 ψ′′(ξ)

2 . This yields
∫ +∞

0

(η′(s))2 sn−1 ds+

∫ +∞

0

(η′(s))2
g(ξ, σ)

λ
sn ds

−p
∫ +∞

0

|vλ(s)|p−1η2(s) sn−1 ds− p

∫ +∞

0

|vλ(s)|p−1η2(s)
g(ξ, σ)

λ
sn ds ≥ 0 .

Hence, as λ→ +∞, we conclude that
∫ +∞

0

(η′(s))2 sn−1 ds− p

∫ +∞

0

|v(s)|p−1η2(s) sn−1 ds ≥ 0 ,
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for every radial function η ∈ C∞
c (M) or, equivalently, for every radial function η ∈ C∞

c (Rn). Namely,

v is a stable solution to the euclidean equation. Since, by assumption, n ≤ 10 and p > 1 or n ≥ 11

and 1 < p < pc(n) =
(n−2)2−4n+8

√
n−1

(n−2)(n−10) , this contradicts [12, Theorem 1]. �

Let us introduce some notations which will be used in the sequel. For any r > 0, let us denote

by vα(r) the derivative with respect to the initial value α, i.e. v(α, r) := ∂u
∂α (α, r). We will show in

Lemma 5.6 that the function vα is well-defined. For any α > β let us define

ζαβ := sup{r ∈ (0,∞) : uα(s) > uβ(s) for any s ∈ (0, r)} ∈ (0,+∞] .

When ζα,β < +∞ then ζα,β is the first zero of uα − uβ .

Lemma 5.6. Let ψ a function satisfying (H1)− (H3). Let a, b, R ∈ R be such that b > a > 0, R > 0

and uα(r) > 0 for any r ∈ [0, R] and α ∈ [a, b]. Then for any r ∈ [0, R], the map α 7→ u(α, r) is

differentiable in [a, b] and moreover for any α0 ∈ [a, b]

(5.6) lim
α→α0

sup
r∈[0,R]

∣∣∣∣
∂u

∂α
(α, r)− ∂u

∂α
(α0, r)

∣∣∣∣ = 0 .

Furthermore for any α ∈ [a, b] the function vα(r) :=
∂u
∂α (α, r), r ∈ [0, R], is a radial solution of the

equation

−∆gvα = p|uα|p−1vα in BR .

Proof. For any r ∈ [0, R] and α ∈ [a, b] let us define

w(r) =
uα(r)− uα0(r)

α− α0
− vα0(r) and z(r) = w′(r)

where by vα0 we mean the unique solution of the Cauchy problem

(5.7)




v′′(r) + (n− 1)

ψ′(r)

ψ(r)
v′(r) = −p|uα(r)|p−1v(r)

v(0) = 1 v′(0) = 0

corresponding to α = α0. With this notation the following identity holds

z′(r) + (n− 1)
ψ′(r)

ψ(r)
z(r) = −

( |uα(r)|p−1uα(r)− |uα0(r)|p−1uα0(r)

α− α0
− p|uα0(r)|p−1vα0(r)

)
.

By elementary estimates and continuous dependence with respect to α, we deduce that there exist

δ > 0 and C > 0 such that for any δ ∈ (0, δ), α ∈ (α0 − δ, α0 + δ) ∩ [a, b] and r ∈ [0, R]
∣∣∣∣
|uα(r)|p−1uα(r)− |uα0(r)|p−1uα0(r)

α− α0
− p|uα0(r)|p−1vα0(r)

∣∣∣∣(5.8)

≤
∣∣∣∣
|uα(r)|p−1uα(r)− |uα0(r)|p−1uα0(r)

α− α0
− p|uα0(r)|p−1uα(r)− uα0(r)

α− α0

∣∣∣∣

+

∣∣∣∣p|uα0(r)|p−1uα(r)− uα0(r)

α− α0
− p|uα0(r)|p−1vα0(r)

∣∣∣∣

≤ C
(uα(r)− uα0(r))

2

α− α0
+ p|uα0(r)|p−1|w(r)| .

By continuous dependence, for any ε > 0 there exists δ ∈ (0, δ) such that for any α ∈ (α0 − δ, α0 +

δ) ∩ [a, b] and r ∈ [0, R] we have sup
r∈[0,R]

|uα(r)− uα0(r)| < ε and hence by (5.8) and the fact that
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uα0 ≤ α0 and vα0 ≤ 1, we also obtain
∣∣∣∣
|uα(r)|p−1uα(r)− |uα0(r)|p−1uα0(r)

α− α0
− p|uα0(r)|p−1vα0(r)

∣∣∣∣

≤ (pαp−1
0 + Cε)|w(r)|+ Cε for any r ∈ [0, R] and α ∈ (α0 − δ, α0 + δ) ∩ [a, b] .

Since w(0) = 0, by the previous inequality we also have
∣∣∣∣
|uα(r)|p−1uα(r)− |uα0(r)|p−1uα0(r)

α− α0
− p|uα0(r)|p−1vα0(r)

∣∣∣∣

≤ (pαp−1
0 + Cε)

∫ r

0

|z(s)|ds+ Cε for any r ∈ [0, R] and α ∈ (α0 − δ, α0 + δ) ∩ [a, b] .

Simple estimates then yield

|z(r)| ≤ K(pαp−1
0 + Cε)

∫ r

0

|z(s)|ds+KCε

for any r ∈ [0, R] and α ∈ (α0 − δ, α0 + δ) ∩ [a, b] where K := sup
r∈(0,R]

∫ r
0
ψn−1(s)ds

ψn−1(r)
. Standard

Gronwall-type estimates then yield lim
α→α0

sup
r∈[0,R]

|z(r)| = 0 and, in turn,

lim
α→α0

sup
r∈[0,R]

|w(r)| = 0 .

This proves the differentiability with respect to α of the map α 7→ u(α, r) and shows that the

derivative with respect to α is a solution of (5.7). The proof of (5.6) is a consequence of a standard

continuous dependence result for the Cauchy problem (5.7). �

Lemma 5.7. Let ψ satisfy (H1) − (H3). Let α1 > α2 ≥ α3 > α4 ≥ 0 be such that uα1(r) >

0, uα2(r) > 0, uα3(r) > 0, uα4(r) ≥ 0 for any r ∈ [0, R0) for some 0 < R0 ≤ +∞. If ζα3α4 ≤ R0 is the

first zero of uα3 − uα4 then ζα1α2 , the first zero of uα1 − uα2 , is finite and it satisfies ζα1α2 ≤ ζα3α4 .

Proof. The proof can be obtained proceeding exactly as in the proof of [5, Lemma 7.3]. �

We now show that λ1(Br) diverges as r → 0+.

Lemma 5.8. Let ψ satisfy (H1)− (H2). Then

lim
r→0+

λ1(Br) = +∞ .

Proof. By (H1)− (H2), for any r there exist 0 < C1 < C2 depending on r such that

C1r ≤ ψ(r) ≤ C2r for any r ∈ [0, r] .

Fix r and for any r ∈ [0, r] let us consider φ ∈ C∞
c (Br) and the quotient

∫
Br

|∇gφ|2gdVg∫
Br
φ2dVg

≥ min{Cn−1
1 , Cn−3

1 }
Cn−1

2

∫
BE

r
|∇φ̃(x)|2dx

∫
BE

r
φ̃2(x)dx

≥ min{Cn−1
1 , Cn−3

1 }
Cn−1

2

λ1(B
E
r )

where BEr ⊂ R
n denotes the euclidean ball of radius r centered at the origin, φ̃ ∈ C∞

c (BEr ) the

function defined by φ̃(x) = φ(|x|, x/|x|) for any x ∈ BEr and λ1(B
E
r ) the first eigenvalue of −∆ with

Dirichlet boundary conditions in the euclidean ball BEr . Since the previous inequality holds for any

φ ∈ C∞
c (Br) then

(5.9) λ1(Br) ≥
min{Cn−1

1 , Cn−3
1 }

Cn−1
2

λ1(B
E
r ) .
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It is well known that thanks to a rescaling argument one has limr→0+ λ1(B
E
r ) = +∞. Therefore

passing to the limit in (5.9) as r → 0+ we arrive to the conclusion of the proof. �

Lemma 5.9. Let ψ satisfy (H1)− (H3). Let α > β > 0 and let uα, uβ be the corresponding solutions

of (1.3). If uβ is unstable then uα is unstable.

Proof. We assume uα positive otherwise the statement follows by Lemma 5.4.

First suppose that uα and uβ have no intersection points. If they are both positive the conclusion

is obvious. If uβ changes sign, we reach a contradiction by Lemma 5.7 with α1 = α, α2 = α3 = β

and α4 = 0.

Next we assume that uα and uβ have at least one intersection point. Let ζαβ be the first zero of

the function uα − uβ . By (1.3) we deduce that u′α(ζαβ) < u′β(ζαβ) so that there exists δ > 0 such

that uα(r) < uβ(r) for any r ∈ (ζαβ , ζαβ + δ). By continuous dependence on the initial datum we

deduce that there exists α ∈ (β, α) such that for any γ ∈ [α, α] we have uγ(r) < uβ(r) for any

r ∈ (ζαβ + δ/2, ζαβ + δ).

By Lemma 5.7 we have that uα and uγ admit at least one intersection point and moreover

(5.10) ζαγ ≤ ζαβ < +∞ for any γ ∈ (α, α) .

Let us note that as above one can show that for any γ ∈ (α, α), uα < uγ in a arbitrarily right

neighborhood of ζαγ .

Let {γk} ⊂ [α, α) be a sequence such that γk ↑ α.
Then for any k there exists rk ∈ (ζαγk , ζαβ + 1) such that

u(α, rk)− u(γk, rk)

α− γk
< 0

and by Lagrange Theorem and Lemma 5.6 we deduce that there exists σk ∈ (γk, α) such that

vσk
(rk) = v(σk, rk) =

∂u

∂α
(σk, rk) =

u(α, rk)− u(γk, rk)

α− γk
< 0 .

On the other hand for any k, v(σk, 0) = 1 > 0 so that there exists ρk ∈ (0, rk) such that v(σk, ρk) = 0.

This shows that

(5.11)

{
−∆gvσk

= p|uσk
|p−1vσk

in Bρk

vσk
= 0 on ∂Bρk .

By the definitions of rk and ρk we easily deduce that

ρk ≤ ζαβ + 1 for any k ∈ N .

Multiplying both sides of the above equation by vσk
and integrating by parts we obtain

∫

Bρk

|∇gvσk
|2g dVg =

∫

Bρk

p|uσk
|p−1v2σk

dVg .

We want to show that the sequence {ρk} is also bounded away from zero. Since vσk
∈ H1

0 (Bρk) and

σk < α, by Lemma 5.2 we have

0 =

∫

Bρk

|∇gvσk
|2g dVg −

∫

Bρk

p|uσk
|p−1v2σk

dVg ≥ (λ1(Bρk)− pαp−1)

∫

Bρk

v2σk
dVg

and hence λ1(Bρk) ≤ pαp−1 for any k ∈ N. Therefore if we assume by contradiction that lim inf
k→+∞

ρk = 0

then by Lemma 5.8 lim sup
k→+∞

λ1(Bρk) = +∞, a contradiction.
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Then we may define ρ∞ = lim inf
k→+∞

ρk ∈ (0,+∞) and the sequence {wk} ⊂ H1(M)

wk(x) :=





vσk
(x)

∥vσk
∥H1(M)

if x ∈ Bρk

0 if x ∈M \Bρk .

Then for any k, wk satisfies problem (5.11) and
∫

M

|∇gwk|2g dVg −
∫

M

p|uσk
|p−1w2

k dVg = 0 .

Moreover {wk} is bounded in H1(M) and hence up to a subsequence we assume that there exists

w ∈ H1(M) such that wk ⇀ w weakly in H1(M).

Let φ ∈ C∞
c (Bρ∞) such that for any k large enough suppφ ⊂ Bρk . Then

∫

Bρ∞

⟨∇gwk,∇gφ⟩g dVg = p

∫

Bρ∞

|uσk
|p−1wkφdVg .

Passing to the limit as k → +∞ and taking into account that by compact embedding H1(Bρ∞) ⊂
L2(Bρ∞) wk → w strongly in L2(Bρ∞), and that by continuity from the initial data, uσk

→ uα
uniformly on compact sets, we obtain

(5.12)

∫

Bρ∞

⟨∇gw,∇gφ⟩g dVg = p

∫

Bρ∞

|uα|p−1wφdVg for any φ ∈ C∞
c (Bρ∞) .

By density, the previous identity holds for any φ ∈ H1
0 (Bρ∞).

We claim that w ∈ H1
0 (Bρ∞). Up to another subsequence we may assume that wk → w almost

everywhere in M with respect to the volume measure Vg. But up to a subsequence, ρk → ρ∞ so that

for almost every P ∈ M \ Bρ∞ , wk(P ) = 0 for any k large enough. This proves that w ≡ 0 almost

everywhere in M \Bρ∞ and since w ∈ H1(M) then w ∈ H1
0 (Bρ∞).

Since suppwk ⊆ Bζαβ+1 for any k, by compact embedding H1(Bζαβ+1) ⊂ L2(Bζαβ+1), we have

that wk → w in L2(M). Together with (5.12) and the fact that suppwk ⊂ Bρk , suppw ⊂ Bρ∞ , this

implies

lim
k→+∞

∫

M

|∇gwk|2g dVg = lim
k→+∞

∫

Bρk

|∇gwk|2g dVg = lim
k→+∞

∫

Bρk

p|uσk
|p−1w2

k dVg

= lim
k→+∞

∫

Bζαβ+1

p|uσk
|p−1w2

k dVg =

∫

Bζαβ+1

p|uα|p−1w2 dVg =

∫

Bρ∞

p|uα|p−1w2 dVg

=

∫

Bρ∞

|∇gw|2 dVg =
∫

M

|∇gw|2 dVg .

The last identity together with the weak convergence yields wk → w strongly inH1(M). In particular,

since ∥wk∥H1(M) = 1 for any k ∈ N, then ∥w∥H1(M) = 1 and hence w ̸≡ 0. Summarizing we have

found a nontrivial function w ∈ H1(M) satisfying
∫

M

|∇gw|2 dVg −
∫

M

p|uα|p−1w2 dVg = 0 .

Suppose now by contradiction that uα is stable. Then
∫

M

|∇gφ|2g dVg −
∫

M

p|uα|p−1φ2 dVg ≥ 0 for any φ ∈ C∞
c (M)

and by density the previous inequality holds for any φ ∈ H1(M).
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This means that w ∈ H1(M) is a minimizer of

inf
v∈H1(M)\{0}

∫
M

|∇gv|2g dVg∫
M
p|uα|p−1v2 dVg

.

In particular w ∈ H1(M) is a solution of the equation

−∆gw = p|uα|p−1w in M

and by standard regularity theory w ∈ C2(M). In particular w is a classical solution of the ordinary

differential equation

−w′′(r)− (n− 1)
ψ′(r)

ψ(r)
w′(r) = p|uα(r)|p−1w(r) (r > 0) .

But w(r) = 0 for any r > ρ∞ and hence by uniqueness of the Cauchy problem we infer w(r) = 0 for

any r > 0 so that w ≡ 0 in M , a contradiction. �

Next we define

α0 := sup{α ≥ 0 : uβ is stable for any β ∈ (0, α)} .
By Lemma 5.3 we know that α0 ∈ (0,+∞] and by Lemma 5.9 we have that uα is stable for any

α ∈ [0, α0) and it is unstable for any α > α0 whenever α0 < +∞. In the next lemma we prove that

the set

S := {α ≥ 0 : uα is stable}
is a closed interval.

Lemma 5.10. Let ψ satisfy (H1)− (H3). Then the set S is a closed interval.

Proof. We have just shown above that S is an interval. It remains to show that if α0 < +∞ then

α0 ∈ S. We prove that [0,+∞) \ S is open. Let α ∈ [0,+∞) \ S so that uα is unstable. Hence there

exists φ ∈ C∞
c (M) such that

(5.13)

∫

M

|∇gφ|2g dVg −
∫

M

p|uα|p−1φ2dVg < 0 .

We claim that there exists δ > 0 such that
∫

M

|∇gφ|2g dVg −
∫

M

p|uβ |p−1φ2dVg < 0

for any β ∈ (α− δ, α+ δ) or in other words [0,+∞) \ S is open.

Suppose by contradiction that there exists a sequence {αk} ⊂ [0,+∞) such that αk → α and

(5.14)

∫

M

|∇gφ|2g dVg −
∫

M

p|uαk
|p−1φ2dVg ≥ 0 .

Since the suppφ is compact by continuous dependence on the initial data we have that uαk
→ uα

uniformly in any compact set of M . Passing to the limit in (5.14) as k → +∞ we obtain
∫

M

|∇gφ|2g dVg −
∫

M

p|uα|p−1φ2dVg ≥ 0

in contradiction with (5.13). �

The estimate α0 ≥
(
p−1λ1(M)

)1/(p−1)
follows immediately from Lemma 5.3. It remains to prove

that the inequality is strict under some additional assumptions. First we prove the following
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Lemma 5.11. Let ψ satisfy (H1)− (H3) and (2.8). Then for any α > 0

Λ1(M,α) := inf
v∈H1(M)\{0}

∫
M

|∇gv|2g dVg∫
M
p|uα|p−1v2 dVg

admits a minimizer.

Proof. Let {vk} ⊂ H1(M) be a minimizing sequence for Λ1(M,α) such that
∫

M

p|uα|p−1v2k dVg = 1 .

Then {vk} is bounded in H1(M) and hence up to a subsequence there exists v ∈ H1(M) such that

vk ⇀ v weakly in H1(M). By compact embedding H1(Br) ⊂ L2(Br) we have that vk → v strongly

in L2(Br) for any r > 0.

By the assumptions of this lemma, combined with Proposition 2.1, formula (2.1), Theorems 2.6 and

2.9, we have that uα(r) → 0 as r → +∞. Hence for any ε > 0 we may choose Rε > 0 such that

p|uα(r)|p−1 < ε for any r > Rε. Hence we obtain
∣∣∣∣
∫

M

p|uα|p−1v2k dVg −
∫

M

p|uα|p−1v2 dVg

∣∣∣∣ ≤
∣∣∣∣∣

∫

BRε

p|uα|p−1v2k dVg −
∫

BRε

p|uα|p−1v2 dVg

∣∣∣∣∣

+

∣∣∣∣∣

∫

M\BRε

p|uα|p−1v2k dVg −
∫

M\BRε

p|uα|p−1v2 dVg

∣∣∣∣∣

≤
∣∣∣∣∣

∫

BRε

p|uα|p−1v2k dVg −
∫

BRε

p|uα|p−1v2 dVg

∣∣∣∣∣+
ε

λ1(M)
(∥vk∥2H1(M) + ∥v∥2H1(M)) .

Passing to the limit as k → +∞ we obtain

lim sup
k→+∞

∣∣∣∣
∫

M

p|uα|p−1v2k dVg −
∫

M

p|uα|p−1v2 dVg

∣∣∣∣ ≤
2Λ1(M,α)

λ1(M)
ε for any ε > 0 .

Hence,

lim
k→+∞

∫

M

p|uα|p−1v2k dVg =

∫

M

p|uα|p−1v2 dVg .

This shows that v ̸= 0 and that, by the lower semicontinuity of the H1(M)-norm, v is a minimizer

for Λ1(M,α). �

Lemma 5.12. Let ψ satisfy (H1)− (H3) and (2.8). Then α0 >
(
λ1(M)
p

) 1
p−1

.

Proof. Define α :=
(
λ1(M)
p

) 1
p−1

. We claim that Λ(M,α) > 1. To see this, by Lemma 5.11 we

introduce a minimizer w ∈ H1(M) of Λ(M,α). By Poincaré inequality and the fact that, by Lemma

5.2, uα ≤ α, we have

Λ1(M,α) =

∫
M

|∇gw|2g dVg∫
M
p|uα|p−1w2 dVg

≥
∫
M

|∇gw|2g dVg
λ1(M)

∫
M
w2 dVg

≥ 1 .

If assume by contradiction that Λ1(M,α) = 1 then the inequalities above are equalities and hence

w ∈ H1(M) is a minimizer for λ1(M). Hence, it solves the equation

−∆gw = λ1(M)w in M

and this contradicts the fact that w solves

−∆gw = Λ1(M,α)|uα|p−1w in M .
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This completes the proof of the claim. Let us consider a sequence {αk} such that αk ↓ α. We prove

that for any large k, Λ1(M,αk) > 1.

If we proceed by contradiction, we may assume that Λ1(M,αk) ≤ 1 for any large k.

Let {wk} ⊂ H1(M) be a sequence of minimizers for Λ1(M,αk) such that
∫
M
p|uαk

|p−1w2
k dVg = 1.

Then {wk} is bounded in H1(M) and up to a subsequence we may assume that there exists w ∈
H1(M) such that wk ⇀ w weakly in H1(M).

For any α > 0, consider the Lyapunov function

Fα(r) :=
1

2
|u′α(r)|2 +

1

p+ 1
|uα(r)|p+1 for any r > 0 .

For any ε > 0 let Rε > 0 be such that

Fα(Rε) < ε .

We recall that as in the proof of Lemma 5.11 we have lim
r→+∞

uα(r) = lim
r→+∞

u′α(r) = 0, for any α > 0.

Since uαk
(r) → uα(r) and u

′
αk

(r) → u′α(r) for any r > 0, there exists k such that

Fαk
(Rε) < ε for any k > k .

But we know that for any α > 0 the function Fα is nonincreasing and hence

Fαk
(r) < ε for any r ≥ Rε , for any k > k ,

so that

p|uαk
(r)|p−1 ≤ p[(p+ 1)ε]

p−1
p+1 for any r ≥ Rε , for any k > k .

Therefore
∣∣∣∣
∫

M

p|uαk
|p−1w2

k dVg −
∫

M

p|uα|p−1w2 dVg

∣∣∣∣ ≤
∣∣∣∣∣

∫

BRε

p|uαk
|p−1w2

k dVg −
∫

BRε

p|uα|p−1w2
k dVg

∣∣∣∣∣

+

∣∣∣∣∣

∫

BRε

p|uα|p−1w2
k dVg −

∫

BRε

p|uα|p−1w2 dVg

∣∣∣∣∣

+

∣∣∣∣∣

∫

M\BRε

p|uαk
|p−1w2

k dVg −
∫

M\BRε

p|uα|p−1w2 dVg

∣∣∣∣∣

≤ sup
BRε

|p|uαk
|p−1 − p|uα|p−1|

∫

BRε

w2
k dVg +

∣∣∣∣∣

∫

BRε

p|uα|p−1w2
k dVg −

∫

BRε

p|uα|p−1w2 dVg

∣∣∣∣∣

+ p[(p+ 1)ε]
p−1
p+1

∫

M\BRε

w2
k dVg + p[(p+ 1)ε]

p−1
p+1

∫

M\BRε

w2 dVg .

By strong convergence wk → w in L2(BRε
), uniform convergence uαk

→ uα in BRε
, Poincaré

inequality, weak lower semicontinuity of the H1(M)-norm and the fact that Λ(M,αk) ≤ 1, we obtain

lim sup
k→+∞

∣∣∣∣
∫

M

p|uαk
|p−1w2

k dVg −
∫

M

p|uα|p−1w2 dVg

∣∣∣∣ ≤
2

λ1(M)
p[(p+ 1)ε]

p−1
p+1 for any ε > 0 .

This proves that

lim
k→+∞

∫

M

p|uαk
|p−1w2

k dVg =

∫

M

p|uα|p−1w2 dVg .

Therefore using again the weak lower semicontinuity of the H1(M)-norm, we obtain

1 < Λ1(M,α) ≤
∫
M

|∇gw|2g dVg∫
M
p|uα|p−1w2 dVg

≤ lim inf
k→+∞

∫
M

|∇gwk|2g dVg∫
M
p|uαk

|p−1w2
k dVg

= lim inf
k→+∞

Λ1(M,αk) ,

a contradiction. This proves that Λ1(M,αk) > 1 for any large k.
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In particular for any large k and any φ ∈ C∞
c (M) we have

∫

M

|∇gφ|2g dVg ≥ Λ1(M,αk)

∫

M

p|uαk
|p−1φ2 dVg ≥

∫

M

p|uαk
|p−1φ2 dVg .

We found a sequence of values αk > α such that uαk
is stable. This completes the proof of the

lemma. �

textitEnd of the proof of Theorems 2.11-2.12. The proof of Theorem 2.11 simply follows by com-

bining Lemma 5.10 with Lemma 5.3 and Lemma 5.5. The estimate from below on α0 follows from

Lemma 5.12.

5.2. Proof of Theorem 2.14. Let α, β ∈ S with α > β. We want to prove that uα(r) > uβ(r) > 0

for any r > 0. Suppose by contradiction that there exists r > 0 such that uα(r) < uβ(r). By

Lagrange Theorem and Lemma 5.6 we deduce that there exists σ ∈ (β, α) such that

vσ(r) = v(σ, r) =
∂u

∂α
(σ, r) =

u(α, r)− u(β, r)

α− β
< 0

and proceeding as in the proof of Lemma 5.9 we find ρ ∈ (0, r) such that
{
−∆gvσ = p|uσ|p−1vσ in Bρ

vσ = 0 on ∂Bρ .

Testing the above problem with vσ ∈ H1
0 (Bρ), we obtain

∫

Bρ

|∇gvσ|2g dVg −
∫

Bρ

p|uσ|p−1v2σ dVg = 0 .

Next we define wσ ∈ H1(M) as the trivial extension of vσ outside Bρ in such a way that
∫

M

|∇gwσ|2g dVg −
∫

M

p|uσ|p−1w2
σ dVg = 0 .

But σ ∈ [0, α0] and hence by Lemma 5.10 uσ is stable. Therefore wσ is a minimizer of the problem

inf
v∈H1(M)\{0}

∫
M

|∇gv|2g dVg∫
M
p|uσ|p−1v2 dVg

and proceeding as in the proof of Lemma 5.9 we arrive to a contradiction.

5.3. Proof of Theorem 2.15. By Lemma 4.1 we have λ1(M) > 0. By Proposition 2.1, (2.1),

Theorem 2.6 and Theorem 2.9 we get the existence of R > 0 such that p|u(r)|p−1 ≤ λ1(M) for every

r > R. Let now BR be the geodesic ball of radius R centered at o. From what just remarked and

(4.1), inequality (5.2) holds for every ψ ∈ C∞
c (M \K) and for every compact K such that BR ⊂ K.

In particular, u is stable outside a compact set.

5.4. Proof of Proposition 2.13. Since u is stable, from (5.2) we have

(5.15)

∫ +∞

0

(χ′(r))2 ψn−1(r)dr − p

∫ +∞

0

|u(r)|p−1χ2(r)ψn−1(r) dr ≥ 0 ,

for every radial function χ ∈ C∞
c (M).

Inequality (5.15) holds for every χ ∈ H1 ∩ L∞(M) with compact support in M . Next, we choose

χ(r) = u(r)η(r) with η ∈ C1
c (0,+∞) in (5.15) and we get

∫ +∞

0

(u′(r))2(η(r))2 ψn−1(r) dr +

∫ +∞

0

(u(r))2(η′(r))2 ψn−1(r) dr
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+

∫ +∞

0

u′(r)u(r)(η2(r))′ ψn−1(r) dr ≥ p

∫ +∞

0

|u(r)|p+1η2(r)ψn−1(r) dr .

An integration by parts and (1.3) yield

(5.16)

∫ +∞

0

(u(r))2(η′(r))2 ψn−1(r) dr ≥ (p− 1)

∫ +∞

0

|u(r)|p+1η2(r)ψn−1(r) dr ,

for every radial function η ∈ C∞
c (M).

For R > 0, let now ηR(r) = η(r/R), where η(r) ∈ C1([0,+∞)) is such that η(r) = 1 for 0 ≤ r < 1

and η(r) = 0 for r ≥ 2. Taking ηR as test function in (5.16), we get

∥η′∥L∞(1,2)

R2

∫ 2R

R

(u(r))2 ψn−1(r) dr ≥ (p− 1)

∫ 2R

0

|u(r)|p+1η2(r/R)ψn−1(r) dr

≥ (p− 1)

∫ R

0

|u(r)|p+1 ψn−1(r) dr .

As R→ +∞, recalling that
∫ +∞
0

(u(r))2 ψn−1(r) dr < +∞, we finally conclude that
∫ +∞

0

|u(r)|p+1 ψn−1(r) dr = 0 .

Hence, u ≡ 0 in (0,+∞).
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8. X. Cabré, A. Capella, On the stability of radial solutions of semilinear elliptic equations in all of Rn, C. R. Acad.

Paris, Ser I 338, (2004), 769-774.

9. D. Castorina, I. Fabbri, G. Mancini, K. Sandeep, Hardy-Sobolev extremals, hyperbolic symmetry and scalar cur-

vature equations, J. Diff. Eq. 246, (2009), 1187-1206.

10. E. N. Dancer, A. Farina, On the classification of solutions of −∆u = eu on RN : stability outside a compact set

and applications, Proc. Amer. Math. Soc. 137 (2009), 1333-1338.

11. L. Dupaigne, A. Farina, Stable solutions of −∆u = f(u) in RN , J. Eur. Math. Soc. (JEMS) 12 (2010), 855-882.

12. A. Farina, On the classification of solutions of the Lane-Emden equation on unbounded domains of RN , J. Math.

Pures et Appl. 87, (2007), 537-561.

13. A. Farina, Stable solutions of −∆u = eu on RN , C. R. Math. Acad. Sci. Paris 345, (2007), 63-66.

14. A. Farina, L. Mari, E. Valdinoci, Splitting theorems, symmetry results and overdetermined problems for Riemann-

ian manifolds, preprint arXiv:1210.5720 (2012)

15. A. Farina, Y. Sire, E. Valdinoci, Stable solutions of elliptic equations on riemannian manifolds, to appear in

Journal of Geometric Analysis.

16. D. Ganguly, K.Sandeep, Sign changing solutions of the Brezis-Nirenberg problem in the hyperbolic space, preprint

arXiv:1209.5674, 2012.

17. R.E. Green, H. Wu, Function theory on manifolds which possess a pole, LNM 699, Springer, Berlin, 1979.

18. A. Grigor’yan, Isoperimetric inequalities and capacities on Riemannian manifolds. The Maz’ya anniversary col-

lection, Vol. 1 (Rostock, 1998), 139-153, Oper. Theory Adv. Appl., 109, Birkhäuser, Basel, 1999.
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