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Abstract

We consider the class of operators

Lu =

q
∑

i,j=1

aij(x)XiXju

where X1, X2, ..., Xq are homogeneous left invariant Hörmander’s vector
fields on RN with respect to a structure of Carnot group, q ≤ N, the ma-
trix {aij} is symmetric and uniformly positive on Rq, the coefficients aij

belong to L∞ ∩ V LMOloc (Ω) (”vanishing logarithmic mean oscillation”)
with respect to the distance induced by the vector fields (in particular
they can be discontinuous), Ω is a bounded domain of RN . We prove
local estimates in BMOloc ∩ Lp of the kind:

‖XiXju‖BMO
p
loc

(Ω′) + ‖Xiu‖BMO
p
loc

(Ω′) ≤

≤ c
{

‖Lu‖
BMO

p
loc

(Ω) + ‖u‖
BMO

p
loc

(Ω)

}

for any Ω′
⋐ Ω, 1 < p < ∞.

Even in the uniformly elliptic case Xi = ∂xi , q = N our estimates
improve the known results.
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1 Introduction

Context and main result of the paper
Let X0, X1, ..., Xq be a system of smooth vector fields,

Xi =

N∑

j=1

bij (u) ∂uj

defined in the whole RN , and assume they satisfy Hörmander’s rank condition in
RN : the vector fields Xi, and their commutators [Xi, Xj ] , [Xk, [Xi, Xj ] , ] , ... up
to some fixed length span RN at any point. Then, a famous theorem proved by
Hörmander in 1967 (see [26]), states that the second order differential operator

L =

q∑

i=1

X2
i +X0 (1.1)

is hypoelliptic, that is u ∈ C∞ (Ω) whenever u is a distributional solution to
Lu = f in an open set Ω ⊂ RN with f ∈ C∞ (Ω). In 1975 Folland [23] studied
the class of Hörmander’s operators (1.1) which admits an underlying structure
of homogeneous group. This means that the vector fields Xi are left invariant
with respect to a Lie group operation in RN (which we think as “translations”)
and the operator L is homogeneous of degree 2 with respect to a one-parameter
family of Lie group automorphisms (which we think as “dilations”). Then,
Folland proved that there exists a global fundamental solution Γ for L, which
is translation invariant and homogeneous of degree 2 − Q with respect to the
dilations, where Q is the so called homogeneous dimension of the group. This
fact allows to apply the theory of singular integrals in homogeneous groups, and
derive from representation formulas suitable a priori estimates for the second
order derivatives XiXju (i, j = 1, 2, ..., q) or X0u (note that the “drift” vector
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field X0 has weight two in the operator L). Later, in [30], Rothschild and
Stein showed how the analysis of a general operator (1.1), also in absence of
an underlying structure of homogeneous group, can be performed by a suitable
technique of “lifting and approximation” which reduces the study of L to that
of an operator of the kind studied by Folland.

In the last decade, more general families of second order differential operators
modeled on Hörmander’s vector fields have been studied, namely operators of
the kinds

L =

q∑

i,j=1

aij (x)XiXj (1.2)

L =

q∑

i,j=1

aij (x)XiXj − ∂t (1.3)

L =

q∑

i,j=1

aij (x)XiXj +X0 (1.4)

where the matrix {aij (x)}
q
i,j=1 is symmetric positive definite, the coefficients

are bounded and satisfy suitable mild regularity assumptions, for instance they
belong to Hölder or VMO spaces defined with respect to the distance induced
by the vector fields. Since the aij ’s are not C∞, these operators are no longer
hypoelliptic. Nevertheless, a priori estimates on second order derivatives with
respect to the vector fields are a natural result which does not in principle
require smoothness of the coefficients. Namely, a priori estimates in Lp (with
coefficients aij in VMO∩L∞) have been proved in [7] for operators (1.2), in [6]
for operators (1.4) but in homogeneous groups, and in [13] for operators (1.4)
in the general case; a priori estimates in Cα spaces (with coefficients aij in C

α)
have been proved in [9] for operators (1.3), in [25] for operators (1.4) but in
homogeneous groups, and in [13] for operators (1.4) in the general case. See
also the recent monograph [10] for more results on these classes of operators
and for a larger bibliographic account.

A somewhat endpoint case of Lp estimates consists in BMO type estimates,
which is the issue that we address in this paper. We will prove, for operators
(1.2) in homogeneous groups, with coefficients aij = aji satisfying the condition

Λ|ξ|2 ≤

q∑

i,j=1

aij (x) ξiξj ≤ Λ−1|ξ|2 ∀ξ ∈ Rq, a.e. x ∈ Ω

and having “vanishing logarithmic mean oscillation” (V LMO) in a bounded
domain Ω, a priori estimates of the kind

q∑

i,j=1

‖XiXju‖BMOp
loc

(Ω′) +

q∑

i=1

‖Xju‖BMOp
loc

(Ω′)

≤ c
{
‖Lu‖BMOp

loc
(Ω) + ‖u‖BMOp

loc
(Ω)

}
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for any p ∈ (1,∞) ,Ω′
⋐ Ω (see Theorem 2.10 for the precise statement; also,

the precise meaning of these norms will be defined later). Let us stress that the
V LMO assumption allows some kind of discontinuity of the coefficients aij .

Comparison with the existing literature
Remarkably, this estimate appears to be new even in the nonvariational

uniformly elliptic case (q = n, Xi = ∂xi
for i = 1, 2, ..., n). Actually, a few pa-

pers are devoted to BMO estimates for the second derivatives of the solutions
to nonvariational uniformly elliptic equations: we can quote the old paper by
Peetre [29], establishing local BMO estimates for elliptic equations with uni-
formly continuous coefficients (with a continuity modulus o (1/ |log t|)), and the
more recent ones by Chang-Dafni-Stein [16], containing global BMO estimates
for the laplacian, and by Chang-Li [17], dealing with elliptic operators with
Dini-continuous coefficients. Elliptic equations in divergence form with V LMO
coefficients have been studied by Acquistapace [1], Huang [27] (in which also
some nondivergence form equation has studied), while BMO estimates for some
nonlinear equations have been established by Caffarelli-Huang [14].

For operators modeled on Hörmander vector fields and written in divergence
form, BMO estimates have been proved by Di Fazio-Fanciullo in [21], while
Bramanti-Brandolini in [8] have proved BMO type estimates in a scale of spaces
BMOφ for operators (1.2) built on general Hörmander’s vector fields, assuming
a certain modulus of continuity of the coefficients aij .

Problems and strategy
Although the continuity requirement on the coefficients asked in [8] is not a

strong one, it represents a significant difference with the Lp theory developed
in [6], [7] under the VMO assumption and with the BMO theory developed in
the present paper under the V LMO assumption.

The reason of this difference has its roots in the real variable machinery
which is applied to prove these estimates, namely suitable extensions of the
famous Lp estimate for the commutator of a Calderón-Zygmund operator with
the multiplication by a BMO function, proved by Coifman-Rochberg-Weiss in
[20], which was first applied to the proof of Lp a priori estimates for uniformly
elliptic operators with VMO coefficients by Chiarenza-Frasca-Longo in [18],
[19]. To put the real analysis problem into its context, let us recall some facts.
It is known that, under fairly broad assumptions, a singular integral operator
maps L∞ into BMO. Under much more stringent assumptions it can be proved
that it maps BMO into BMO. This was shown in [29] for convolution type
operators in RN , and in [8], in spaces of homogeneous type of finite measure, for
singular integrals satisfying a strong cancellation property. The multiplication
operator for a function a maps BMO into BMO provided a ∈ L∞ ∩ LMO
(where LMO stands for “logarithmic bounded mean oscillation”), as proved in
[31]. We also need a result stating that the commutator of a singular integral
operators with the multiplication for a maps BMO into BMO, with operator
norm bounded by the LMO seminorm of a. Actually, we want the operator
norm of the commutator to be small whenever a has small oscillation, but not

4



small absolute size. A result of this kind has been proved by Sun-Su in [33]
for singular integral operators of convolution type in RN , satisfying a strong
cancellation property. In this case, the commutator is proved to map BMO∩Lp

into itself (1 < p <∞) continuously, with operator norm bounded by the LMO
seminorm of a:

[[T, a] f ]BMO + ‖[T, a] f‖Lp ≤ c [a]LMO ([f ]BMO + ‖f‖Lp) .

This result is clever under several regards. First, it exploits the idea of bound-
ing the BMO∩Lp norm of the commutator with the analogous norm of f , and
not separately the BMO seminorm of the commutator with the BMO semi-
norm of f ; secondly, it relies on the very strong cancellation properties enjoyed
by classical Calderón-Zygmund convolution-type kernels. The present paper
starts from the idea of extending this commutator theorem to the context of
convolution-type singular integrals on homogeneous groups, which should be
useful to handle operators (1.2) in this context, in view of the results and tech-
niques of [23], [6], [8]. However, in contrast with the global, convolution nature
of our singular integrals, we are interested in the study of an operator (1.2) on
a bounded domain Ω; this means that we don’t want to assume the coefficients
aij defined on the whole RN , nor rely on an extension result for LMO in this
abstract context. Therefore, the commutator estimate that we prove has to be
established directly in a local form. This forces us to go through the whole
argument in [33] and reshape it on a new kind of local BMOloc (Ω1,Ω2) spaces,
defined averaging the function over the balls centered at points of some open
set Ω1 and contained in a larger open set Ω2 ⊆ Ω. This fact also serves another
scope, namely avoiding to handle the sets B ∩ Ω, which would require some
extra assumption on Ω in order to use the doubling condition. Moreover, it
would seem to us rather unnatural to express the assumption on the coefficients
aij in a form which involves their boundary behavior, since after all we are just
proving interior estimates. Under this respect, the present paper moves in the
spirit of the recent research about “local real analysis in locally homogeneous
spaces” carried out in [12].

Once the real analysis part of this research is set into its proper frame, one
can try to follow as close as possible the general line first drawn in [6]. In
doing so, another major problem arises, namely the necessity of getting some
new uniform upper bound related to the fundamental solution Γ (x0, u) of the
“frozen operator”

L0 =

q∑

i,j=1

aij (x0)XiXj.

Actually, to apply the real variable machinery to the concrete singular inte-
gral operators which appear in our representation formulas, we have to re-
sort to the technique of expansion of Γ (x0, ·) in spherical harmonics, first em-
ployed by Calderón-Zygmund in [15] and already used in all the aforementioned
papers dealing with Lp estimates for nonvariational operators structured on
Hörmander’s vector fields. To get a control on the coefficients of this expansion,
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we need some upper bound on the u-derivatives of any order of Γ (x0, u), say for
|u| = 1, uniform with respect to x0. In [6] the following estimate was proved:

sup
x∈Ω,‖u‖=1

∣∣∣∣∣

(
∂

∂u

)β
Γ (x;u)

∣∣∣∣∣ ≤ c (β) , (1.5)

for any multiindex β. In the present situation we also need a control on the
LMO norm, and not just the L∞ norm, of the coefficients of the expansion. To
get this, the bound (1.5) is not enough, and we need to establish the following:

sup
x1,x2∈Ω,|u|=1

∣∣∣∣∣

(
∂

∂u

)β
Γ (x1, u)−

(
∂

∂u

)β
Γ (x2, u)

∣∣∣∣∣ ≤ cβ ‖A (x1)−A (x2)‖

(1.6)
where ‖A (·)‖ is the matrix norm of the coefficients {aij}. To establish a bound
on the derivatives of any order of a fundamental solution, uniform with respect
to some parameter, is always a difficult task when, as happens for operators
structured on Hörmander’s vector fields, we cannot rely on any kind of explicit
formula for the fundamental solution. We will get the bound (1.6) in § 6,
adapting results and techniques contained in series of papers by Bonfiglioli-
Lanconelli-Uguzzoni (see [2], [3], [4]) in the context of Gaussian bounds for
operators (1.3). We point out that the reason why we did not consider in this
paper operators with drift X0 is only related to this part of the proof. Namely,
the papers [2], [3], [4] deal with operators (1.2) or (1.3), but not (1.4), therefore
proving (1.6) in presence of a drift would require a much deeper revision of the
techniques used in those papers, and perhaps a completely different approach.

Plan of the paper
Section 2 contains some known facts, the definition and basic properties of

local BMO-type spaces and the statement of our assumptions and main result.
In section 3 we write the representation formulas that we need for XiXju in

terms of Lu. These formulas involve singular integrals with “variable kernels”
and their commutators. By the classical technique of expansion in spherical
harmonics we rewrite these operators in series of singular integral operators of
convolution type. We state some uniform bound on the fundamental solution
of the frozen operator and show their use in proving suitable bounds on the
coefficients of the expansion in spherical harmonics. Section 4 contains the core
of the real analysis machinery: BMOloc estimates for singular integrals and
their commutators are established, first for convolution kernels and then in the
general case, together with a number of other useful results, in particular a local
version of the one stating that LMO∩L∞ multiplies BMO. Section 5 contains
the proof of our main result, in three steps: first, exploiting all the results of
the previous sections, we prove local estimates for functions with small compact
support; second, exploiting several techiques and results from [8], we prove local
estimates for functions with small noncompact support; third, we conclude the
proof of the result on any bounded domain. Finally, the Appendix contains the
proof of the uniform bound on the fundamental solution of the frozen operator.
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Although this bound is crucial in the paper, we have preferred postponing its
proof to the Appendix because the techniques employed there are completely
different from those of the previous sections.

Acknoledgement. We wish to thank Francesco Uguzzoni for useful talks
about the proof of Theorem 3.3.

2 Preliminaries

2.1 Carnot groups, vector fields and their metric

Here we recall a number of known definitions and facts about homogeneous
groups and left invariant vector fields. For the justification of our assertions,
further details and examples, we refer to [32, p. 618-622], [5, § 1.3], [23], [6].

We call Carnot group or stratified homogeneous group the space RN equipped
with a Lie group structure, (“translations”) together with a family of “dilations”
that are group automorphisms and are given by

D (λ) : (x1, . . . , xN ) 7→ (λω1x1, . . . , λ
ωNxN ) (2.1)

for λ > 0, where

(ω1, ..., ωN ) = (1, 1, ..., 1, 2, 2, ..., 2, ..., s, s, ..., s)

for some positive integer s. We denote by ◦ the translation, and assume that
the origin is the group identity and the Euclidean opposite is the group inverse.
We will denote by G the space RN with this structure of homogeneous group,
and we will write c(G) for a constant depending on the numbers N , ω1,. . . , ωN
and the group law ◦.

We say that a differential operator Y on RN is homogeneous of degree β > 0
if

Y (f (D (λ) x)) = λβ (Y f) (D (λ)x)

for every test function f , λ > 0, x ∈ RN . Also, we say that a function f is
homogeneous of degree α ∈ R if

f (D (λ)x) = λα f (x) ∀λ > 0, x ∈ RN .

Clearly, if Y is a differential operator homogeneous of degree β and f is a
homogeneous function of degree α, then Y f is homogeneous of degree α− β.

Let us consider now the Lie algebra ℓ associated to the group G, that is,
the Lie algebra of left-invariant vector fields, with the Lie bracket given by the
commutator of vector fields

[X,Y ] = XY − Y X.

We can fix a basis X1, . . . , XN in ℓ choosing Xi as the left invariant vector field
which agrees with ∂xi

at the origin. It turns out that Xi is homogeneous of
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degree ωi. In particular, let X1, X2, ..., Xq be the elements of the basis which
are homogeneous of degree 1. The Lie algebra ℓ turns out to be nilpotent and
stratified:

ℓ =
s⊕
i=1

Vi with [V1, Vj ] = Vj+1 for j ≤ s− 1, [V1, Vj ] = {0} otherwise;

V1 = span (X1, X2, ..., Xq) .

The number s is called the step of the Lie algebra. We also say that the vector
fields X1, X2, ..., Xq satisfy Hörmander’s condition at step s.

Let us introduce the control distance d induced by the vector fields. This
is a concept which can be defined for any system of Hörmander’s vector fields
(even in absence of a group structure) but which possesses more properties in
Carnot groups.

Definition 2.1 For any δ > 0, x, y ∈ RN , let Cδ (x, y) be the class of absolutely
continuous mappings ϕ : [0, 1] → Ω which satisfy

ϕ′(t) =

q∑

i=1

ai(t) (Xi)ϕ(t) a.e. t ∈ (0, 1)

with |ai(t)| ≤ δ for i = 1, ..., q, ϕ (0) = x, ϕ (1) = y. We define

d(x, y) = inf {δ > 0 : Cδ (x, y) 6= ∅} .

Note that the finiteness of d (x, y) for any two points x, y ∈ Ω is not a trivial
fact, but depends on a connectivity result known as “Chow’s theorem”; it can
be proved that d is actually a distance in RN , finite for any couple of points.
Moreover:

Proposition 2.2 The distance d is translation invariant and 1-homogeneous
for dilations on the group.

This fact is probably known, but we are unable to give a precise reference,
so we will prove it.
Proof. Let B (x, r) be the d-ball of center x and radius r. Let us prove that

y ∈ B (x, r) =⇒ x−1 ◦ y ∈ B (0, r)

y ∈ B (0, r) =⇒ D (λ) y ∈ B (0, λr) .

Let y ∈ B (x, r) , then for every δ < r there exists ϕ ∈ Cδ (x, y). Let

ϕx (t) = x−1 ◦ ϕ (t) ,

and let us show that ϕx ∈ Cδ
(
0, x−1 ◦ y

)
. Clearly ϕx (0) = 0 and ϕx (1) =

x−1◦y. Moreover, let Jx denote the Jacobian matrix of the function y 7→ x−1◦y,

8



then

ϕ′
x(t) = Jx (ϕ (t)) · ϕ′ (t) = Jx (ϕ (t)) ·

q∑

i=0

ai(t) (Xi)ϕ(t)

=

q∑

i=0

ai(t)Jx (ϕ (t)) · (Xi)ϕ(t) =

q∑

i=0

ai(t) (Xi)x−1◦ϕ(t) =

q∑

i=0

ai(t) (Xi)ϕx(t)

where the up to last identity follows by the translation invariance of the Xi’s
(see [5, Prop. 1.2.3 p.14]). So the first assertion is proved.

Let now y ∈ B (0, r) , then for every δ < r there exists ϕ ∈ Cδ (0, y). Let

ϕλ (t) = D (λ)ϕ (t) .

Then ϕλ (0) = 0;ϕλ (1) = D (λ) y. Recall that

Xi =

N∑

j=1

bij (u) ∂uj

with bij homogeneous of degree ωj − 1, for i = 1, 2, ..., q. Hence

bij (ϕλ (t)) = λαj−1bij (ϕ (t))

and

ϕ′
λ(t)j = λωjϕ′

j (t) = λωj

q∑

i=1

ai(t)bij (ϕ (t)) =

=

q∑

i=0

λai(t)bij (ϕλ (t))

with
|λai(t)| ≤ λδ,

which shows that ϕλ ∈ Cλδ (x, y). Since this holds for any δ < r, we conclude
y ∈ B (0, λr).

We can also define in RN a homogeneous norm ‖·‖ as follows. For any
x ∈ RN , x 6= 0, set

‖x‖ = ρ⇔

∣∣∣∣D
(

1

ρ

)
x

∣∣∣∣ = 1,

where |·| denotes the Euclidean norm; also, let ‖0‖ = 0. Then:
‖D(λ)x‖ = λ ‖x‖ for every x ∈ RN , λ > 0;
the set {x ∈ RN : ‖x‖ = 1} coincides with the euclidean unit sphere

∑
N ;

the function x 7→ ‖x‖ is smooth outside the origin;
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there exists c(G) ≥ 1 such that for every x, y ∈ RN

‖x ◦ y‖ ≤ c(‖x‖+ ‖y‖) and
∥∥x−1

∥∥ = ‖x‖ ;

1

c
|y| ≤ ‖y‖ ≤ c |y|

1/s
if ‖y‖ ≤ 1,

hence the function
ρ(x, y) =

∥∥y−1 ◦ x
∥∥ (2.2)

is a quasidistance, that is:

ρ (x, y) ≥ 0 and ρ (x, y) = 0 if and only if x = y;

ρ (y, x) = ρ (x, y)

ρ (x, y) ≤ c (ρ (x, z) + ρ (z, y))

for every x, y, z ∈ RN and some positive constant c(G) ≥ 1. If we define the
ρ-balls as

Bρ (x, r) =
{
y ∈ RN : ρ (x, y) < r

}
,

then Bρ (0, r) = D (r)Bρ (0, 1). The Lebesgue measure in RN is the Haar
measure of G, hence

|Bρ(x, r)| = |Bρ(0, 1)| r
Q ∀x ∈ RN , r > 0,

where
Q = ω1 + . . .+ ωN

(with ωi as in (2.1)) is the homogeneous dimension of RN .
A consequence of the Prop. 2.2 is that the function d (x, 0) is another homo-

geneous norm in the sense of Folland (see [23]), equivalent to the function ‖x‖
defined above. In particular, d and ρ are globally equivalent.

2.2 Function spaces defined by local mean oscillations

Throughout the following, we will assume that X1, X2, ..., Xq is a system of left
invariant homogeneous Hörmander’s vector fields on a Carnot group in RN , as
described in § 2.1, and d is the control distance induced by the vector fields in
RN .

Let Ω be a bounded open connected subset of RN . In the following defini-
tions, the balls are always taken with respect to the distance d.

Definition 2.3 (BMOp spaces) For p ∈ [1,∞) we say that f ∈ BMOp (Ω) if

‖f‖BMOp(Ω) = [f ]BMO(Ω) + ‖f‖Lp(Ω) <∞

with

[f ]BMO(Ω) = sup
x∈Ω,r>0

1

|B (x, r) ∩ Ω|

∫

B(x,r)∩Ω

∣∣f (y)− fB(x,r)∩Ω

∣∣ dy

where fA = 1
|A|

∫
f .
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Definition 2.4 (Local BMO spaces) Let f ∈ L1
loc (Ω). We say that f ∈

BMOloc (Ω) if

[f ]BMOloc(Ω) = sup
B(x,r)⊂Ω

1

|B (x, r) |

∫

B(x,r)

|f(y)− fB(x,r)|dy < +∞.

Note that the requirement B (x, r) ⊂ Ω is meaningful because the distance d is
defined in the whole RN .

Let f ∈ L1
loc (Ω) and Ω1 ⋐ Ω2 ⊆ Ω. We say that f ∈ BMOloc (Ω1,Ω2) if

[f ]BMOloc(Ω1,Ω2)
= sup

x∈Ω1,B(x,r)⊂Ω2

1

|B (x, r) |

∫

B(x,r)

|f(y)− fB(x,r)|dy < +∞ .

Note that f ∈ BMOloc (Ω) if and only if f ∈ BMOloc (Ω1,Ω) for any Ω1 ⋐

Ω.
Moreover, for any Ω1 ⋐ Ω2 ⊆ Ω we have the following inclusions

BMOloc (Ω) ⊂ BMOloc (Ω1,Ω2)

with
[f ]BMOloc(Ω1,Ω2)

≤ [f ]BMOloc(Ω) ,

and
BMOloc (Ω2) ⊂ BMOloc (Ω1,Ω2) ⊂ BMOloc (Ω1)

with
[f ]BMOloc(Ω1)

≤ [f ]BMOloc(Ω1,Ω2)
≤ [f ]BMOloc(Ω2)

.

Definition 2.5 (Local LMO spaces) Let Ω1 ⋐ Ω2 ⊆ Ω. We say that f ∈
LMOloc (Ω1,Ω2) if

[f ]LMOloc(Ω1,Ω2)
=

= sup
x∈Ω1,B(x,r)⊂Ω2

1 + log diamΩ2

r

|B (x, r) |

∫

B(x,r)

|f(y)− fB(x,r)|dy < +∞.

Analogously we define the space LMOloc (Ω) taking the sup over all the balls
B (x, r) ⊂ Ω.

We say that f ∈ V LMOloc (Ω) if f ∈ LMOloc (Ω) and

ηf (r) = sup
B(x,ρ)⊂Ω,ρ≤r

1 + log diamΩ
ρ

|B (x, ρ) |

∫

B(x,ρ)

|f(y)− fB(x,ρ)|dy → 0 for r → 0.

Let x ∈ Ω, 0 < r1 < r2 such that B (x, r2) ⊂ Ω. Then

V LMOloc (Ω) ⊂ LMOloc (B (x, r1) , B (x, r2))

with
[f ]LMOloc(B(x,r1),B(x,r2))

≤ ηf (2r2) . (2.3)
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Definition 2.6 (Local BMOp spaces) Let p ∈ (1,∞) and Ω1 ⋐ Ω2 ⊆ Ω.
We say that f ∈ BMOploc (Ω1,Ω2) if

‖f‖BMOp
loc

(Ω1,Ω2)
≡ ‖f‖Lp(Ω2)

+ [f ]BMOloc(Ω1,Ω2)
<∞.

Also, we say that f ∈ BMOploc (Ω1) if

‖f‖BMOp
loc

(Ω1)
≡ ‖f‖Lp(Ω1)

+ [f ]BMOloc(Ω1)
<∞.

We have

BMOploc (Ω2) ⊂ BMOploc (Ω1,Ω2) ⊂ BMOploc (Ω1) .

Let us note that the spaces BMOloc (Ω1,Ω2), BMOploc (Ω1,Ω2) and so on,
are increasing with respect to both Ω1 and Ω2. The following fact, which will
be useful several times, says that for compactly supported functions also an
inclusion in the reverse order holds, in some sense.

We will often use BMOploc (Ω1,Ω2) spaces with Ω1,Ω2 two concentric balls;
just to shorten notations, we will set

BMOloc (B (x,R1;R2)) ≡ BMOloc (B (x,R1) , B (x,R2)) .

Lemma 2.7 Let f ∈ BMOploc (B (x,R;KR)) for some K > 3, with sprtf ⊂
B (x,R). Then

[f ]BMOloc(B(x,R;KR)) ≤ 2

(
[f ]BMOloc(B(x,R;3R)) +

1

|B (x,R)|
1/p

‖f‖Lp(B(x,R))

)
.

Proof. Let us consider a ball B (x0, r) with x0 ∈ B (x,R) and B (x0, r) ⊂
B (x,KR) .

If B (x0, r) ⊂ B (x, 3R) , then obviously

1

|B (x0, r) |

∫

B(x0,r)

|f(y)− fB(x0,r)|dy ≤ [f ]BMOloc(B(x,R;3R)) ,

so let us assume B (x0, r)  B (x, 3R). This means that B (x0, r) ⊃ B (x,R),
hence for any c ∈ R

1

|B (x0, r) |

∫

B(x0,r)

|f(y)− fB(x0,r)|dy ≤
2

|B (x0, r) |

∫

B(x0,r)

|f(y)− c|dy

=
2

|B (x0, r) |

(∫

B(x,R)

|f(y)− c|dy + |c| |B (x0, r) \B (x,R)|

)

≤
2

|B (x,R) |

∫

B(x,R)

|f(y)− c|dy + 2 |c|
|B (x0, r) \B (x,R)|

|B (x0, r) |

12



choosing c = fB(x,R)

≤
2

|B (x,R) |

∫

B(x,R)

|f(y)− fB(x,R)|dy + 2
∣∣fB(x,R)

∣∣

≤ 2

(
[f ]BMOloc(B(x,R;3R)) +

1

|B (x,R)|
1/p

‖f‖Lp(B(x,R))

)
.

In the sequel we will need the following proposition that gives us a compar-
ison between local and global BMOp spaces.

Proposition 2.8 Let s > 0, p ∈ [1,∞) and x ∈ RN be fixed.
(a) If f ∈ BMOploc (B (x, s; 3s)), then f ∈ BMOp (B (x, s)) with

‖f‖BMOp(B(x,s)) ≤ c ‖f‖BMOp
loc

(B(x,s;3s))

for some constant c = c (G).
(b) If f ∈ BMOp (B (x,R)) for some R > s and sprtf ⊂ B (x, s), then the func-

tion f̃ obtained extending f to zero outside B (x,R) belongs to BMOploc (B (x, s; 3s)),
with ∥∥∥f̃

∥∥∥
BMOp

loc
(B(x,s;3s))

≤ ‖f‖BMOp(B(x,R)) +
c

(R− s)
Q/p

‖f‖Lp(B(x,s))

with c = c (G, p).

Proof. (a) Pick x ∈ B (x, s) and r > 0 such that B (x, r) ⊂ B (x, 3s). Then,
for a constant c to be chosen later,

1

|B (x, r) ∩B (x, s)|

∫

B(x,r)∩B(x,s)

|f (y)− c| dy

≤
1

c1 |B (x, r)|

∫

B(x,r)

|f (y)− c| dy

because
|B (x, r) ∩B (x, s)| ≥ c1 |B (x, r)|

by the regularity of metric balls (see Lemma 4.2 in [8]), since r is bounded
(being B (x, r) ⊂ B (x, 3s)). From the proof in [8, Lemma 4.2] one reads that c1
is a constant only depending on the doubling constant, that is on G. Choosing
now c = fB(x,r) we get

1

|B (x, r) ∩B (x, s)|

∫

B(x,r)∩B(x,s)

|f (y)− c| ≤
1

c1
[f ]BMOloc(B(x,s;3s)) .

If, on the other hand, x ∈ B (x, s) but B (x, r)  B (x, 3s), this means that
B (x, r) ⊃ B (x, s), hence

1

|B (x, r) ∩B (x, s)|

∫

B(x,r)∩B(x,s)

|f (y)− c| dy

=
1

|B (x, s)|

∫

B(x,s)

|f (y)− c| dy ≤ [f ]BMOloc(B(x,s;3s))

13



(choosing c = fB(x,s)).
(b) Pick x ∈ B (x, s) and r > 0 such that B (x, r) ⊂ B (x, 3s). Then

1

|B (x, r)|

∫

B(x,r)

∣∣∣f̃ (y)− c
∣∣∣ dy

=
1

|B (x, r)|

{∫

B(x,r)∩B(x,R)

|f (y)− c| dy +

∫

B(x,r)\B(x,R)

|c| dy

}

choosing c = fB(x,r)∩B(x,R)

=
1

|B (x, r)|

{∫

B(x,r)∩B(x,R)

∣∣f (y)− fB(x,r)∩B(x,R)

∣∣ dy +
∣∣fB(x,r)∩B(x,R)

∣∣ |B (x, r) \B (x,R)|

}

≡ I + II.

Now,

I ≤
1

|B (x, r) ∩B (x,R)|

∫

B(x,r)∩B(x,R)

∣∣f (y)− fB(x,r)∩B(x,R)

∣∣ dy

≤ [f ]BMO(B(x,R)) .

On the other hand,

II =
∣∣fB(x,r)∩B(x,R)

∣∣ |B (x, r) \B (x,R)|

|B (x, r)|
.

The term II does not vanish only if B (x, r) contains a point outside B (x,R)
(otherwise |B (x, r) \B (x,R)| = 0). Since x ∈ B (x, s), this implies r > R −
s and

|B (x, r) ∩B (x,R)| ≥ c (R− s)
Q
.

Then, by Hölder inequality

II ≤
∣∣fB(x,r)∩B(x,R)

∣∣ ≤
(

1

|B (x, r) ∩B (x,R)|

∫

B(x,r)∩B(x,R)

|f (y)|
p
dy

)1/p

≤
c

(R− s)
Q/p

‖f‖Lp(B(x,R))

Then

[f̃ ]BMOloc(B(x,s;3s)) ≤ [f ]BMO(B(x,R)) +
c

(R − s)
Q/p

‖f‖Lp(B(x,s)) (2.4)

from which (b) follows.

Definition 2.9 (Sobolev and BMO Sobolev spaces) We say that u ∈ S2,p (Ω)
if

‖u‖S2,p(Ω) ≡

q∑

i,j=1

‖XiXju‖Lp(Ω) +

q∑

i=1

‖Xiu‖Lp(Ω) + ‖u‖Lp(Ω) <∞,
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where the derivatives Xiu are defined in the usual weak (distributional) sense.
We say that u ∈ S2,p,∗

loc (Ω) if

‖u‖S2,p,∗
loc

(Ω) ≡

≡

q∑

i,j=1

‖XiXju‖BMOp
loc

(Ω) +

q∑

i=1

‖Xiu‖BMOp
loc

(Ω) + ‖u‖BMOp
loc

(Ω) <∞.

We say that u ∈ S2,p,∗ (Ω) if

‖u‖S2,p,∗(Ω) ≡

≡

q∑

i,j=1

‖XiXju‖BMOp(Ω) +

q∑

i=1

‖Xiu‖BMOp(Ω) + ‖u‖BMOp(Ω) <∞.

Analogously, for Ω1 ⋐ Ω2 ⊆ Ω, we can define the spaces S2,p,∗
loc (Ω1,Ω2), replac-

ing BMOp (Ω) norms with BMOploc (Ω1,Ω2).

2.3 Assumptions and main results

We now keep the assumptions stated at beginning of § 2.2 about the vector
fields X1, X2, ..., Xq, the domain Ω ⊂ RN and the distance d. Let us consider
operators of the form

Lu ≡

q∑

i,j=1

aij (x)XiXju (2.5)

where aij = aji satisfy the “ellipticity condition”:

Λ|ξ|2 ≤

q∑

i,j=1

aij (x) ξiξj ≤ Λ−1|ξ|2 ∀ξ ∈ Rq, x ∈ Ω.

Moreover
aij ∈ V LMOloc (Ω) ∩ L

∞ (Ω) .

We also assume that the homogeneous dimension (see § 2.1) is Q ≥ 3. This
fact (necessary to apply Folland’s results in [23]) simply rules out the case of
uniformly elliptic equations in two variables. We stress the fact that, instead,
uniformly elliptic operators in n ≥ 3 variables are covered by the present theory.
Our main result is the following:

Theorem 2.10 Under the above assumptions, for any Ω1 ⋐ Ω2 ⋐ Ω, 1 < p <
∞ we have

‖u‖S2,p,∗
loc

(Ω1,Ω2)
≤ c

{
‖Lu‖BMOp

loc
(Ω2,Ω) + ‖u‖BMOp

loc
(Ω2,Ω)

}

for any u ∈ S2,p,∗
loc (Ω). The constant c only depends on the group G, the num-

bers p and Λ, the V LMOloc moduli of the coefficients, Ω1,Ω2. The previous
inequality also implies the following

‖u‖S2,p,∗(Ω1)
≤ c

{
‖Lu‖BMOp

loc
(Ω) + ‖u‖BMOp

loc
(Ω)

}
.
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We will also prove a similar local estimate stated for “standard” BMOp

spaces, see Theorem 5.3.

3 Representation formulas and reduction to sin-

gular integrals of convolution type

In order to state suitable representation formulas for the operator L in (2.5), we
proceed as follows. For any x0 ∈ Ω, let us “freeze” at x0 the coefficients aij(x),
and consider

L0 =

q∑

i,j=1

aij(x0)XiXj.

As shown in [6], this operator can be rewritten as a sum of squares of Hör-
mander’s vector fields; in particular, it is hypoelliptic. Moreover, L0 is left
invariant, homogeneous of degree 2, and coincides with its formal transpose;
hence Folland’s theory in [23] applies, and assures the existence of a (2−Q)-
homogeneous fundamental solution, smooth outside the pole. Let us denote it
by Γ (x0; ·), to indicate its dependence on the frozen coefficients aij (x0). Also,
set for i, j = 1, . . . , q,

Γij (x0;u) = XiXj [Γ (x0; ·)] (u) .

The next theorem summarizes the basic properties of Γ (x0; ·) that we will need
in the following. All of them are due to Folland [23, Thm. 2.1 and Corollary
2.8] or Folland-Stein [24, Proposition 8.5] (see also [6]).

Theorem 3.1 Assume that the homogeneous dimension of G is Q ≥ 3. For
every x0 ∈ Ω the operator L0 has a unique fundamental solution Γ (x0; ·) such
that:

(a) Γ (x0; ·) ∈ C∞
(
RN \ {0}

)
;

(b) Γ (x0; ·) is homogeneous of degree (2 −Q);
(c) for every test function f and every v ∈ RN ,

f(v) =

∫

RN

Γ
(
x0 ; u

−1 ◦ v
)
L0f(u) du;

moreover, for every i, j = 1, . . . , q, there exist constants αij(x0) such that

XiXj f(v) = P.V.

∫

RN

Γij
(
x0; u

−1 ◦ v
)
L0f(u)du + αij(x0) · L0f(v); (3.1)

(d) Γij (x0 ; ·) ∈ C∞
(
RN \ {0}

)
;

(e) Γij (x0 ; ·) is homogeneous of degree −Q;
(f) for every R > r > 0,

∫

r<d(0,x)<R

Γij (x0; x) dx =

∫

d(0,x)=1

Γij (x0; x) dσ(x) = 0.
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Here and in the following,

P.V.

∫
(...) dy = lim

ε→0

∫

d(x,y)>ε

(...) dy = lim
ε→0

∫

ρ(x,y)>ε

(...) dy.

The cancellation properties stated at point (f) still hold with d(0, x) replaced
with ‖x‖.

A second fundamental result we need contains a bound on the derivatives of
Γ, uniform with respect to x0, and is proved in [6, Thm. 12]:

Theorem 3.2 For every multi-index β, there exists a constant c = c(β,G,Λ)
such that

sup
‖u‖=1

x∈Ω

∣∣∣∣∣

(
∂

∂u

)β
Γij (x ; u)

∣∣∣∣∣ ≤ c,

for any i, j = 1, . . . , q; moreover, for the αij’s appearing in (3.1), the uniform
bound

sup
x∈Ω

|αij(x)| ≤ c2 (3.2)

holds for some constant c2 = c2 (G,Λ).

The above theorem will be useful but not sufficient for our aims. In § 6 we
will also prove the following uniform bound:

Theorem 3.3 For any nonnegative integer p, there exists a constant cΛ,p such
that for any x1, x2, y ∈ RN we have:

∣∣Xi1Xi2 ...XipΓ (x1, y)−Xi1Xi2 ...XipΓ (x2, y)
∣∣ (3.3)

≤ cΛ,p ‖A (x1)−A (x2)‖ ‖y‖
2−Q−p

where the differential operators Xij (ij ∈ {1, 2, ..., q}) act on the y-variable and
A = {aij}

q
i,j=1.

Here ‖y‖ is the homogeneous norm in G, while ‖A (x1)−A (x2)‖ denotes
the usual matrix norm in R2q.

By the representation formula (3.1), writing L0 = L + (L0 − L) and then
letting x be equal to x0, we get the following:

Theorem 3.4 Let u ∈ C∞
0 (Ω). Then, for i, j = 1, . . . , q and every x ∈ Ω

XiXju (x) = P.V.

∫

Ω

Γij
(
x; y−1 ◦ x

)





q∑

h,k=1

[ahk(x)− ahk(y)] XhXk u(y) +

(3.4)

+Lu(y)
}
dy + αij(x) · Lu(x).

The previous formula still holds, for a.e. x, if u = vφ with v ∈ S2,p (Ω) and
φ ∈ C∞

0 (Ω).
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In order to rewrite the above formula in a more compact form, let us intro-
duce the following singular integral operators:

Kijf (x) = P.V.

∫

Ω

Γij
(
x; y−1 ◦ x

)
f (y) dy. (3.5)

Moreover, for an operator K and a function a ∈ L∞ (Ω), define the commutator

C[K, a] (f) = K (af)− a ·K (f) . (3.6)

Then (3.4) becomes

XiXj u = Kij (Lu)−

q∑

h,k=1

C [Kij , ahk] (XhXk u) + αij · Lu (3.7)

for any u ∈ C∞
0 (Ω) , i, j = 1, . . . , q.

Next, we are going to expand the “variable kernel” Γij (x;u) in series of
spherical harmonics. At this point it is more convenient to use the ρ-balls
(defined by the quasidistance (2.2)), which have the property that Bρ (0, r) =
D (r)BE (0, 1), where BE stands for the Euclidean ball.

Let us denote by
{Ykm (y)} k=1,...,gm

m=0,1,...,∞

a complete orthonormal system of L2 (ΣN ) consisting in spherical harmonics;
here m is the degree of the harmonic homogeneous polynomial Ykm, and gm the
dimension of the space of harmonic homogeneous polynomial of degree m in N
variables. Then, as in [6], for any fixed x ∈ Ω, y ∈ ΣN , we can expand:

Γij (x; y) =

∞∑

m=1

gm∑

k=1

ckmij (x)
Ykm (y′)

‖y‖
Q

for i, j = 1, . . . , q

where y′ = D
(
‖y‖−1

)
y, so that y′ ∈ ΣN .

We explicitly note that for m = 0 the coefficients in the above expansion are
zero, because of the vanishing property of Γij (x; ·). Also, note that the integral
of Ykm (y) over ΣN , for m ≥ 1, is zero. Then

Kij (f) (x) =

∞∑

m=1

gm∑

k=1

ckmij (x)Tkmf(x) (3.8)

with

Tkmf(x) = P.V.

∫
Hkm(y−1 ◦ x) f(y) dy

Hkm (x) =
Ykm (x′)

‖x‖
Q

. (3.9)
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We will use the following bounds about spherical harmonics:

gm ≤ c(N) ·mN−2 for every m = 1, 2, . . . (3.10)
∣∣∣∣∣

(
∂

∂x

)β
Ykm(x)

∣∣∣∣∣ ≤ c(N) ·m(N−2

2
+|β|) for x ∈ ΣN , k = 1, . . . , gm,m = 1, 2, . . . .

(3.11)

Moreover, if f ∈ C∞(ΣN ) and if f(x) ∼
∑

k,m bkm Ykm(x) is the Fourier
expansion of f(x) with respect to {Ykm}, that is

bkm =

∫

ΣN

f(x)Ykm(x) dσ(x)

then, for every positive integer n there exists cn such that

|bkm| ≤ cn ·m−2n sup
|β|=2n

x∈ΣN

∣∣∣∣∣

(
∂

∂x

)β
f(x)

∣∣∣∣∣ . (3.12)

In view of Theorem 3.2, we get by (3.12) the following bound on the coefficients
ckmij (x) appearing in the expansion (3.8): for every positive integer n there
exists a constant c = c(n,G,Λ) such that

sup
x∈Ω

∣∣ckmij (x)
∣∣ ≤ c(n,G,Λ) ·m−2n (3.13)

for every m = 1, 2, . . . ; k = 1, . . . , gm; i, j = 1, . . . , q.
We will also need a bound on the LMOloc seminorm of these coefficients

and the functions αij :

Theorem 3.5 For every n > 0 there exists cn > 0 such that
[
ckmij

]
LMOloc(B(x,R1;R2))

≤ cn ·m−2n · [A]LMOloc(B(x,R1;R2))

for any k,m, i, j, R1 < R2 (with cn independent of R1, R2). We have set

[A]LMOloc(B(x,R1;R2))
= sup

h,l
[ahl]LMOloc(B(x,R1;R2))

.

Also,
[αij ]LMOloc(B(x,R1;R2))

≤ c [A]LMOloc(B(x,R1;R2))
. (3.14)

For the proof of the above Theorem we need the following:

Lemma 3.6 With the above notation, we have:

αij (x) = −

∫

ΣN

XjΓ (x, y)

n∑

k=1

bik(y)νk dσ(y)

where ν = (ν1, ν2, , ...νn) is the outer normal to ΣN (hence νk = yk, but this is
irrelevant) and Xi =

∑n
k=1 bk(y)∂yk .
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Proof. We follow an argument in [22, proof of Proposition 2.11]. Let η be
a cutoff function such that 0 ≤ η ≤ 1, η (y) = 1 for ‖y‖ ≥ 1, η (y) = 0 for
‖y‖ ≤ 1/2, and let ηε (y) = η (D (1/ (ε)) y) . Reasoning like in the quoted proof,
it is enough to show that

Aεij (x0, x) ≡

∫

‖y−1◦x‖<ε

Xi

[
ηε
(
y−1 ◦ x

)
XjΓ

(
x0, y

−1 ◦ x
)]
dy →

→ −

∫

ΣN

XjΓ (x0, y)

n∑

k=1

bk(y)νk dσ(y)

for ε → 0. Namely, αij (x) = limε→0 A
ε
ij (x, x). Actually the frozen point x0 is

irrelevant in this calculation, so we will drop it, writing Aεij (x) ,Γ (y) , etc. We
can write:

Aεij (x) =

∫

‖y−1◦x‖<ε

[Xiηε ·XjΓ + ηε ·XiXjΓ]
(
y−1 ◦ x

)
dy =

=

∫

‖y‖<ε

[Xiηε ·XjΓ + ηε ·XiXjΓ] (y) dy.

Then, since Xi [ηε (y)] = Xi [η (D (1/ε) y)] = 1
ε (Xiη) (D (1/ε) y) and Γ is 2−Q-

homogeneous, the change of variables y = D (ε)w gives

Aεij (x) =

∫

‖w‖<1

[Xiη ·XjΓ + η ·XiXjΓ] (w) dw =

∫

‖w‖<1

Xi [η ·XjΓ] (w) dw.

Next, we apply the divergence theorem, recalling thatXif (w) =
∑n

k=1 bik(w)∂wk
f (w) =∑n

k=1 ∂wk
[bikf ] (w) . Then, letting νk be the k-th component of the outer normal

at the surface ‖w‖ = 1,

Aεij (x) = −

∫

‖w‖=1

[
ηXjΓ

n∑

k=1

bikνk

]
(w) dσ (w) = −

∫

‖w‖=1

[
XjΓ

n∑

k=1

bikνk

]
(w) dσ (w) ,

which gives the desired result.

Proof of Theorem 3.5 from Theorem 3.3. First of all, since the vector
fields X1, ..., Xq satisfy Hörmander’s condition, any derivative Dβ

yΓij (x, y) can
be expressed as a linear combination of derivatives Xi1Xi2 ...XipΓ (x, y), for p
large enough. Therefore, (3.3) implies also the following

∣∣Dβ
yΓij (x1, y)−Dβ

yΓij (x2, y)
∣∣ ≤ cΛ,β ‖A (x1)−A (x2)‖ ‖y‖

2−Q−c(β) . (3.15)

Then, let Br be any ball centered at some point of B (x,R1) and contained in
B (x,R2). Since

ckmij (x) =

∫

ΣN

Γij (x, y) Ykm(y) dσ(y),
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we can write:

ckmij (x)−
(
ckmij

)
Br

=

∫

ΣN

[
Γij (x, y)−

(
1

|Br|

∫

Br

Γij (x, y) dx

)]
Ykm(y)dσ(y)

≡

∫

ΣN

gij (x, y)Ykm(y)dσ(y).

Then, by (3.12), we know that for every positive integer n there exists cn such
that

∣∣∣ckmij (x)−
(
ckmij

)
Br

∣∣∣ ≤ cn ·m−2n sup
|β|=2n, y∈ΣN

∣∣∣∣∣

(
∂

∂y

)β
gij (x, y)

∣∣∣∣∣

= cn ·m−2n sup
|β|=2n, y∈ΣN

∣∣∣∣D
β
yΓij (x, y)−

1

|Br|

∫

Br

Dβ
yΓij (u, y)du

∣∣∣∣ . (3.16)

By (3.15) we have:

1

|Br|

∫

Br

∣∣∣∣D
β
yΓij (x, y)−

1

|Br|

∫

Br

Dβ
yΓij (u, y)du

∣∣∣∣ dx

=
1

|Br|

∫

Br

∣∣∣∣
1

|Br|

∫

Br

[
Dβ
yΓij (x, y)−Dβ

yΓij (u, y)
]
du

∣∣∣∣ dx

≤
1

|Br|

∫

Br

1

|Br|

∫

Br

∣∣Dβ
yΓij (x, y)−Dβ

yΓij (u, y)
∣∣ dudx

≤ cΛ,β ‖y‖
2−Q−c(β) 1

|Br|

∫

Br

1

|Br|

∫

Br

‖A (x)−A (u)‖ dudx

≤ 2cΛ,β ‖y‖
2−Q−c(β) 1

|Br|

∫

Br

∥∥∥∥A (x)−
1

|Br|

∫

Br

A (u)du

∥∥∥∥ dx

(where ‖·‖ inside the last integral just denotes the matrix norm). Therefore by
(3.16) we have:

1

|Br|

∫

Br

∣∣∣ckmij (x)−
(
ckmij

)
Br

∣∣∣ dx ≤ cn·m
−2n·

1

|Br|

∫

Br

∥∥∥∥A (x) −
1

|Br|

∫

Br

A (u) du

∥∥∥∥ dx,

and [
ckmij

]
LMO

≤ cr ·m
−2r · [A]LMO .

Next, we prove (3.14). By Lemma 3.6 we can write

αij (x)− (αij)Br
= −

∫

ΣN

[
Γj (x, y)−

1

|Br|

∫

Br

Γj (w, y) dw

] n∑

k=1

bik(y)νk dσ(y)
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so that, by (3.3),

∣∣∣αij (x) − (αij)Br

∣∣∣ ≤ c

∫

ΣN

∣∣∣∣Γj (x, y)−
1

|Br|

∫

Br

Γj (w, y) dw

∣∣∣∣ dσ(y) ≤

≤ c

∫

ΣN

∣∣∣∣
1

|Br|

∫

Br

[Γj (x, y)− Γj (w, y)] dw

∣∣∣∣ dσ(y) ≤

≤ c

∫

ΣN

1

|Br|

∫

Br

|Γj (x, y)− Γj (w, y)| dw dσ(y) ≤

≤ c

∫

ΣN

1

|Br|

∫

Br

‖A (x)−A (w)‖ ‖y‖1−Q dw dσ(y) =

= c
1

|Br|

∫

Br

‖A (x)−A (w)‖ dw

and

1

|Br|

∫

Br

∣∣∣αij (x)− (αij)Br

∣∣∣ dx ≤ c
1

|Br|

∫

Br

1

|Br|

∫

Br

‖A (x) −A (w)‖ dwdx ≤

as before

≤ c
1

|Br|

∫

Br

∥∥∥∥A (x)−
1

|Br|

∫

Br

A (·)

∥∥∥∥ dx,

which gives the desired bound on LMO norm of αij in terms of that of the
matrix A.

4 Singular integral estimates

The main object of this section is to prove the following two theorems, which
will be the key tool in order to derive our local BMOp estimates from the
representation formula (3.7).

Theorem 4.1 (Singular integral estimate) If Kij are the singular integral
operators defined in (3.5), then for any p ∈ (1,∞) there exists C > 0 such that:

[Kijf ]BMOloc(B(x,R;3R)) ≤ C
(
1 + [A]LMOloc(Ω)

)
·

·

(
[f ]BMOloc(B(x,R;3R)) +

‖f‖Lp(B(x,R))

|B(x,R)|1/p

)

for any ball B (x, 3R) ⊂ Ω, f ∈ BMOploc (B (x,R; 3R)) with sprtf ⊂ B (x,R).
The number C depends on p,G,Λ.

Theorem 4.2 (Local commutator estimate) Let b ∈ LMOloc(Ω), Kij as
before, and C [Kij , b] the commutator, defined as in (3.6). Then for any p ∈
(1,∞) there exists a constant C and two absolute constants K > H > 3, such
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that for any R > 0 with B (x,KR) ⊂ Ω, any f ∈ BMOploc (B (x,R; 3R)) with
sprtf ⊂ B (x,R),

[C [Kij , b] f ]BMOloc(B(x,R;3R)) ≤ C
(
1 + [A]LMOloc(Ω)

)
[b]LMOloc(B(x,HR;KR))·

·

{
[f ]BMOloc(B(x,R;3R)) +

1

|B (x,R)|
1/p

‖f‖Lp(B(x,R))

}
.

The number C depends on p,G,Λ, but not on f, b, R. This means in particular
that, if b ∈ V LMOloc(Ω), then for any ε > 0 there exists R > 0 such that

C[b]LMOloc(B(x,HR;KR)) < ε.

The above two theorems will be derived exploiting the expansion in spher-
ical harmonics and the bounds on the corresponding coefficients discussed in
the previous section, applying similar theorems regarding singular integrals of
convolution type (modeled on spherical harmonics), and a multiplication theo-
rem (see next Theorem 4.3). Therefore the plan of this section is the following:
after establishing some basic estimates regarding BMO type norms (§ 4.1), and
particularly the aforementioned multiplication theorem, we will state and prove
singular integral estimates for convolution kernels (§ 4.2) and then we will prove
Theorems 4.1 and 4.2 (§ 4.3).

4.1 Preliminary real analysis estimates

Throughout the following, we will need a localized version of two well-known
facts, namely a multiplication theorem and John-Nirenberg theorem.

Theorem 4.3 There exists an absolute constantK > 3 such that if f ∈ BMOploc (B (x,R;KR))
for some 1 < p < ∞, and ψ ∈ L∞ ∩ LMOloc (B (x,R; 3R)), then ψf ∈
BMOploc (B (x,R; 3R)) and

[fψ]BMOloc(B(x,R;3R)) ≤ C
(
‖ψ‖L∞(B(x,3R)) + [ψ]LMOloc(B(x,R;3R))

)
·

·

(
[f ]BMOloc(B(x,R;KR)) +

‖f‖Lp(B(x,KR))

|B(x,R)|1/p

)
,

with C = C (G) .

Proof. Let n be a positive integer such that 2nr < 3R ≤ 2n+1r. We set
Bk = B(x0, 2

kr), with k = 0, 1, ..., n. Since
∫
Bρ

|f − fBρ
|dx ≤ 2

∫
Bt

|f − fBt
|dx

for ρ < t, we have that for f ∈ BMOploc (B (x,R; 13R)), B(x0, r) ⊂ B(x, 3R),
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x0 ∈ B(x,R)

|fB(x0,r)| ≤

n∑

k=0

|fBk
− fBk+1

|+ |fBn+1
|

≤

n∑

k=0

1

|Bk|

∫

Bk+1

|f(x)− fBk+1
|dx+

c

|B(x,R)|1/p
‖f‖Lp(B(x,7R))

≤
2Q

log 2

n∑

k=0

∫ 2k+2r

2k+1r

ds

s

1

|Bk+1|

∫

Bk+1

|f(x)− fBk+1
|dx+

c

|B(x,R)|1/p
‖f‖Lp(B(x,7R))

≤ c

n∑

k=0

∫ 2k+2r

2k+1r

( s

2k+1r

)Q 1

|B (x0, s) |

∫

B(x0,s)

|f(x)− fB(x0,s)|dx
ds

s
+

c

|B(x,R)|1/p
‖f‖Lp(B(x,7R))

≤ c

∫ 2n+2r

2r

ds

s
[f ]BMOloc(B(x,R;13R)) +

c

|B(x,R)|1/p
‖f‖Lp(B(x,7R))

≤ c log
3R

r
[f ]BMOloc(B(x,R;13R)) +

c

|B (x,R)|
1/p

‖f‖Lp(B(x,7R)). (4.1)

Then (see also Lemma 2.4 in [8])

1

|B(x0, r)|

∫

B(x0,r)

|ψf − (ψf)B(x0,r)|dx

≤

∣∣∣∣∣
1

|B(x0, r)|

∫

B(x0,r)

|ψf − (ψf)B(x0,r)|dx−
|fB(x0,r)|

|B(x0, r)|

∫

B(x0,r)

|ψ − (ψ)B(x0,r)|dx

∣∣∣∣∣

+
|fB(x0,r)|

|B(x0, r)|

∫

B(x0,r)

|ψ − (ψ)B(x0,r)|dx

≤
2

|B(x0, r)|

∫

B(x0,r)

|ψ||f − (f)B(x0,r)|dx

+ c

{
log

3R

r
[f ]BMOloc(B(x,R;13R)) +

1

|B (x,R) |1/p
‖f‖Lp(B(x,7R))

}
·

·
1

|B(x0, r)|

∫

B(x0,r)

|ψ − (ψ)B(x0,r)|dx

≤ c‖ψ‖L∞ [f ]BMOloc(B(x,R;3R)) + c [ψ]LMOloc(B(x,R;3R)) [f ]BMOloc(B(x,R;13R))

+ c [ψ]LMOloc(B(x,R;3R))

‖f‖Lp(B(x,7R))

|B(x,R)|1/p
.

From Theorem 4.3 we can derive also the following (see also Lemma 4.12 in
[8]):

Corollary 4.4 Let ψ ∈ C1 (B (x,R)) such that, for some t < s < R, ψ = 1
in B (x, t), ψ = 0 outside B (x, s) , ψ ≤ 1 and |Dψ| ≤ c/ (s− t). Then for any
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f ∈ BMOloc (B (x,R;KR)) one has

[fψ]BMOloc(B(x,R;3R)) ≤
C

(s− t)

(
[f ]BMOloc(B(x,R;KR)) +

‖f‖Lp(B(x,KR))

|B(x,R)|1/p

)
.

The proof of the following John-Nirenberg Theorem is similar to the proof
of Theorem A in [28].

Theorem 4.5 There exist positive constants c1,c2 and α > 1 such that for any
f ∈ BMOloc(B(x,R;αR)), any ball B(x0, r) ⊂ B(x, 3R) with x0 ∈ B(x,R),
and ∀λ > 0, we have

|{x ∈ B : |f(x)− fB| > λ}| ≤ c1 exp(−c2λ/[f ]BMOloc(B(x,R;αR)))|B| .

In a standard way it is also possible to prove

Corollary 4.6 Let f ∈ BMOloc(B(x,R;αR)) and 1 < p < +∞. Then there
exists a constant c = c(p) such that

sup
x∈B(x,R),B(x,r)⊂B(x,3R)

(
1

|B (x, r) |

∫

B(x,r)

|f(y)− fB(x,r)|
pdy

)1/p

≤

≤ c[f ]BMOloc(B(x,R;αR))

with α > 1 as in the previous theorem.

We now state and prove some further preliminary results which will be useful
in the next subsection.

Lemma 4.7 Let f ∈ BMOloc (B (x,R; 5R)) and B = B(x0, r) ⊂ B (x, 3R) ,
x0 ∈ B (x,R). Then ∀β > 0

∫

B(x,R)\B(x0,2r)

|f(y)− fB|

d(x0, y)Q+β
dy ≤

C

rβ
[f ]BMOloc(B(x,R;5R)),

where C depends only on Q and β.

Proof. Set Bk = B(x0, 2
kr), k = 0, 1, 2, .., n, with 2nr ≤ 2R < 2n+1r.

∣∣fBk+1
− fBk

∣∣ =
∣∣∣∣

1

|Bk|

∫

Bk

(f − fBk+1
)dy

∣∣∣∣

≤
2Q

|Bk+1|

∫

Bk+1

|f(y)− fBk+1
|dy ≤ 2Q[f ]BMOloc(B(x,R;5R)) ,

from which ∣∣fBk+1
− fB0

∣∣ ≤ (k + 1)2Q[f ]BMOloc(B(x,R;5R)) . (4.2)
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Then
∫

B(x,R)\B(x0,2r)

|f(y)− fB|

d(x0, y)Q+β
dy ≤

∫

B(x0,2n+1r)\B(x0,2r)

|f(y)− fB|

d(x0, y)Q+β
dy

=

n∑

k=1

∫

Bk+1\Bk

|f(y)− fB|

d(x0, y)Q+β
dy ≤

n∑

k=1

∫

Bk+1

|f(y)− fB|

(r2k)Q+β
dy

≤

n∑

k=1

c

(r2k)β
1

|Bk+1|

∫

Bk+1

|f(y)− fB|dy (4.3)

≤
n∑

k=1

c

(r2k)β
([f ]BMOloc(B(x,R;5R)) + |fBk+1

− fB|)

by (4.2)

≤

+∞∑

k=1

c

(r2k)β
(2 + k)[f ]BMOloc(B(x,R;5R)) ≤

c

rβ
[f ]BMOloc(B(x,R;5R)).

Lemma 4.8 Let f be in LMOloc (B (x,R; 5R)) and B = B(x0, r) ⊂ B (x, 3R) ,
x0 ∈ B (x,R). Then ∀β > 0

∫

B(x,R)\B(x0,2r)

|f(y)− fB|

d(x0, y)Q+β
dy ≤

C

rβ
(
1 + log 5R

r

) [f ]LMOloc(B(x,R;5R)),

where C depends only on Q and β.

Proof. The proof is similar to that of (4.1). With the same notation, we have

∣∣fBk+1
− fBk

∣∣ ≤ 2Q

log 10R
2k+1r

[f ]LMOloc(B(x,R;5R)) =
c

n− k + 1
[f ]LMOloc(B(x,R;5R))

from which

∣∣fBk+1
− fB0

∣∣ ≤ c
k + 1

n− k + 1
[f ]LMOloc(B(x,R;5R)) .

Then (4.3) gives, recalling that 2nr ≤ 2R < 2n+1r
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∫

B(x,R)\B(x0,2r)

|f(y)− fB|

d(x0, y)Q+β
dy ≤

≤
n∑

k=1

c

(r2k)β

(
1

|Bk+1|

∫

Bk+1

|f(y)− fBk+1
|dy + |fBk+1

− fB0
|

)

≤

n∑

k=1

c

(r2k)β

(
1

1 + log
(
5R
2kr

) + k + 1

n− k + 1

)
[f ]LMOloc(B(x,R;5R))

≤
c

rβ
[f ]LMOloc(B(x,R;5R))

n∑

k=1

1

2kβ

(
k + 2

n− k + 1

)

≤
c

rβ
(
1 + log

(
5R
r

)) [f ]LMOloc(B(x,R;5R))

n∑

k=1

n+ 1

2kβ

(
k + 2

n− k + 1

)

≤
C

rβ
(
1 + log 5R

r

) [f ]LMOloc(B(x,R;5R))

since
n∑

k=1

n+ 1

2kβ

(
k + 2

n− k + 1

)
=

n∑

k=1

k + 2

2kβ

(
1 +

k

n− k + 1

)

≤

∞∑

k=1

(k + 2) (k + 1)

2kβ
= cβ.

4.2 Estimates for singular integrals of convolution type

In this section we prove the BMO-type estimates for singular integrals and their
commutators. Here we deal with the convolution kernels Hkm defined in (3.9).
The explicit form of the kernel is not important; it will be enough to point out
the relevant properties which we will use. So, let

k (x, y) = k0
(
y−1 ◦ x

)

be one of our singular integral kernels, defined in the whole RN . The following
properties hold true (see [6, Prop. 1]):

|k(x, y)| ≤
A

d (x, y)Q
∀x, y ∈ RN (4.4)

|k(x, y)− k(x0, y)|+ |k(y, x)− k(y, x0)| ≤ B
d(x0, x)

d(x0, y)Q+1
(4.5)

for any x0, x, y ∈ RN with d(x0, y) ≥ 2d(x0, x).
∫

r1<d(x,y)<r2

k (x, y) dy = 0 =

∫

r1<d(x,y)<r2

k (y, x) dy
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for any 0 < r1 < r2 <∞.
The last property requires some comments. It is known that the integral of

Ykm (y) over ΣN , for m ≥ 1, is zero. This also implies that
∫

r1<ρ(x,y)<r2

k (x, y) dy = 0 =

∫

r1<ρ(x,y)<r2

k (y, x) dy

for any 0 < r1 < r2 < ∞, since Bρ (0, r) = D (r)Bρ (0, 1) = D (r)BE (0, 1). It
is less obvious that this vanishing property still holds with respect to d-balls.
However, this is true in view of the homogeneity of d (see Proposition 2.2), that
is a homogeneous norm.

Let now

Tf (x) = P.V.

∫

RN

k (x, y) f (y) dy.

All the quantitative estimates that we will prove in this section on the operator
T will depend on k only through the numbers A,B in (4.4)-(4.5). We will show
in the next section how to quantify this dependence in the case of our concrete
kernels Hkm.

Throughout this section, let B (x,R) be a fixed d-ball such that B (x,KR) ⊂
Ω for some largeK > 0 which will be chosen later. We are interested in studying
Tf (x) and its commutator for sprtf ⊂ B (x,R) and x ∈ B (x, 3R) , hence for
d (x, y) < 4R. So, let ψ (x, y) = ψ0

(
y−1 ◦ x

)
be a cutoff function such that

B (0, 4R) ≺ ψ0 ≺ B (0, 5R) .

Hence for sprtf ⊂ B (x,R) and x ∈ B (x, 3R),

Tf (x) =

∫

RN

k (x, y) f (y) dy =

∫

RN

k (x, y)ψ (x, y) f (y)dy ≡ T̃ f (x) .

We will also let
k̃ (x, y) = k (x, y)ψ (x, y) .

Note that for any x ∈ B (x, 3R) , g ∈ L1
loc

(
RN
)
we have

T̃ g (x) =

∫

B(x,8R)

k (x, y)ψ (x, y) g (y)dy.

Note that the cancellation property
∫

r1<d(x,y)<r2

k (x, y) dy = 0 ∀r1 < r2

implies that ∫

r1<d(x,y)<r2

k (x, y)ψ (x, y) dy = 0 ∀r1 < r2

and so
T̃ (c) = 0 in B (x, 3R) , for any constant c. (4.6)
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Now, for b ∈ LMOloc (B (x,R;KR)), f ∈ C∞
0 (B (x,R)) , x ∈ B (x, 3R)

Tbf (x) = [T, b] (f) (x) = T (bf) (x)− b (x) Tf (x)

=

∫

RN

k (x, y) [b (y)− b (x)] f (y)dy

=
[
T̃ , b

]
(f) (x) ≡ T̃bf (x) .

Note that for x ∈ B (x, 3R) and g ∈ L1
loc

(
RN
)
we have

[
T̃ , b

]
(g) (x) =

∫

B(x,8R)

k (x, y)ψ (x, y) [b (y)− b (x)] g (y) dy

which is meaningful provided b is defined in B (x, 8R) (hence, we will pick K ≥
8).

The aim of the previous definitions is the following: on the one hand, we
want to define a “local” commutator, without the necessity of extending the
function b to the whole space RN ; but, on the other hand, we need to preserve
the strong cancellation property (4.6), which will be essential in the sequel.

Theorem 4.9 Let T be a singular integral operator as before. There exists an
absolute constant K > 3 such that for any ball B (x,KR) ⊂ Ω we have

[Tf ]BMOloc(B(x,R;3R)) ≤ c[f ]BMOloc(B(x,R;KR));

[Tf ]LMOloc(B(x,R;3R)) ≤ c[f ]LMOloc(B(x,R;KR))

for any f ∈ BMOloc (B (x,R;KR)) (or LMOloc, respectively) with sprtf ⊂
B (x,R), some constant c independent of R and f .

We recall that the singular integral operator T and the commutator Tb are
continuous in Lp (see [7] and [11]). Moreover we note that in [8] a general
continuity result for singular integral operators on the scale of spaces BMOφ
has been proved, which in particular applies to BMO and LMO. However,
the bounds we need here are formulated in terms of local BMO and LMO
spaces; moreover, the strong cancellation property we can rely on makes it easy
to present a short self-contained proof.

Proof. We are going to prove the second inequality; the proof of the first follows
by the same reasoning, just dropping all the “log” functions.

Let B = B (x0, r) ⊂ B (x, 3R) with x0 ∈ B (x,R). Since sprtf ⊂ B (x,R)

for x ∈ B (x, 3R) T̃ f (x) = Tf (x) , so in the following we will always handle T̃ f
instead of Tf . Let us split

f(x) = f2B +(f(x)− f2B)χ2B(x) + (f(x)− f2B)χ(2B)c(x) = f1 + f2(x) + f3(x).
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By (4.6), T̃ f1 = 0, hence for any c ∈ R

1 + log 6R
r |

|B|

∫

B

∣∣∣T̃ f(x)− (T̃ f)B

∣∣∣ dx

≤ 2
1 + log 6R

r

|B|

∫

B

∣∣∣T̃ f(x)− c
∣∣∣ dx

≤ 2
1 + log 6R

r

|B|

(∫

B

∣∣∣T̃ f2(x)
∣∣∣ dx +

∫

B

∣∣∣T̃ f3(x) − c
∣∣∣ dx
)

≡ I + II.

By Hölder and John-Nirenberg inequalities and the L2 continuity of T̃ we
have

I ≤ 2

(
1 + log

6R

r

)(
1

|B|

∫

B

|T̃ f2(x)|
2

)1/2

≤ c

(
1 + log

6R

r

)(
1

|B|

∫

Rn

|f2(x)|
2dx

)1/2

≤ c

(
1 + log

12R

2r

)(
1

|2B|

∫

2B

|f(x)− f2B|
2dx

)1/2

≤ c[f ]LMOloc(B(x,R;6R)).

To bound II, pick x∗ ∈ B such that T̃ f3(x
∗) < +∞ (this is true for a.e.

x∗ ∈ B since T̃ f3 ∈ L2 (B)) and choose c = T̃ f3(x
∗). Then for any x ∈ B, by

(4.6) we can write, by 4.5,

∣∣∣T̃ f3(x) − T̃ f3(x
∗)
∣∣∣ =

∣∣∣∣
∫ [

k̃(x, y)− k̃(x∗, y)
]
f3(y)dy

∣∣∣∣

=

∣∣∣∣∣

∫

B(x,8R)\B(x0,2r)

[
k̃(x, y)− k̃(x∗, y)

]
[f(y)− f2B] dy

∣∣∣∣∣

≤ c

∫

B(x,8R)\B(x0,2r)

d(x, x∗)

d(x∗, y)Q+1
|f(y)− f2B|dy

≤ cr

∫

B(x,8R)\B(x0,2r)

|f(y)− f2B|

d(x0, y)Q+1
dy.

Applying Lemma 4.8 with β = 1 we get
∫

B(x,8R)\B(x0,2r)

|f(y)− fB|

d(x0, y)Q+1
dy ≤

C

r
(
1 + log 3R

r

) [f ]LMOloc(B(x,R;KR))

for some large constant K (independent of R), hence

II ≤ c[f ]LMOloc(B(x,R;KR))

and we are done.
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Remark 4.10 In the previous theorem the number 3 has nothing special: we
will also need, in the following, a modified version of the previous estimate:
given a constant K > 3 there exists a constant K ′ > K such that for any ball
B (x,K ′R) ⊂ Ω we have

[Tf ]BMOloc(B(x,R;KR)) ≤ c[f ]BMOloc(B(x,R;K′R));

[Tf ]LMOloc(B(x,R;3R)) ≤ c[f ]LMOloc(B(x,R;KR))

for any f ∈ BMOloc (B (x,R;K ′R)) (or LMOloc, respectively) with sprtf ⊂
B (x,R) .

Theorem 4.11 Let b ∈ LMOloc(Ω), then for any p ∈ (1,∞) there exists
a constant C such that for any R > 0 such that B (x,KR) ⊂ Ω, any f ∈
BMOploc (B (x,R; 3R)) with sprtf ⊂ B (x,R),

[Tbf ]BMOloc(B(x,R;3R)) ≤ C[b]LMOloc(B(x,4R;KR))·

·

{
[f ]BMOloc(B(x,R;3R)) +

1

|B (x,R)|
1/p

‖f‖Lp(B(x,R))

}
. (4.7)

The number C depends on p and the constants of the singular kernel of T , but
not on f, b, R. This means in particular that, if b ∈ V LMOloc(Ω), then for any
ε > 0 there exists R > 0 such that

C[b]LMOloc(B(x,4R;KR)) < ε.

Remark 4.12 Again, the absolute constant 3 appearing in the previous esti-
mates is not so important: replacing 3 with a larger number simply causes the
constants K and 4 be replaced by larger constants.

Also, note that by [12, Thm. 7.1],

‖Tbf‖Lp(B(x,3R)) ≤ C[b]LMOloc(B(x,4R;KR)) ‖f‖Lp(B(x,3R)) (4.8)

which, coupled with the above theorem, gives, for a function f supported in
B (x,R),

‖Tbf‖BMOp
loc

(B(x,R;3R)) ≤ C[b]LMOloc(B(x,4R;KR))·

·

{
[f ]BMOloc(B(x,R;3R)) +

(
1 +

1

|B (x,R)|
1/p

)
‖f‖Lp(B(x,R))

}
.

Proof of Theorem 4.11. Since we want to bound Tbf (x) for f supported
in B (x,R) and x ∈ B (x, 3R), as remarked at the beginning of this section we
have

Tbf (x) = T̃bf (x) ,

hence from now on we will work with T̃b.
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Let B = B (x0, r) ⊂ B (x, 3R) with x0 ∈ B (x,R), and let us split, like in
the proof of Theorem 4.9:

f(x) = f2B +(f(x)− f2B)χ2B(x) + (f(x)− f2B)χ(2B)c(x) = f1 + f2 (x) + f3 (x)

from which

T̃bf − (T̃bf)B = (T̃bf1 − (T̃bf1)B) + (T̃bf2 − (T̃bf2)B)+

+(T̃bf3 − (T̃bf3)B) = I + II + III .

Then, since f1 is constant, we have T̃ f1 = 0 (see (4.6)), hence

I = T̃ (bf1)− f1(T̃ b)B = f1(T̃ b− (T̃ b)B)

hence by (4.1) and Theorem 4.9 we have

1

|B|

∫

B

|I|dx =
|f2B|

|B|

∫

B

|T̃ b− (T̃ b)B|dx

≤ c

{
log

3R

r
[f ]BMOloc(B(x,R;13R)) +

1

|B (x,R)|
1/p

‖f‖Lp(B(x,R))

}
·

·
1

|B|

∫

B

|T̃ b− (T̃ b)B|dx

≤ c

{
log 3R

r

1 + log 6R
r

[f ]BMOloc(B(x,R;13R)) +
1

|B (x,R)|1/p
‖f‖Lp(B(x,R))

}
·

·
1 + log 6R

r

|B|

∫

B

|T̃ b− (T̃ b)B|dx

≤ c[T̃ b]LMOloc(B(x,R,3R))

{
[f ]BMOloc(B(x,R;13R)) +

1

|B (x,R)|
1/p

‖f‖Lp(B(x,R))

}

≤ c[b]LMOloc(B(x,R,KR))

{
[f ]BMOloc(B(x,R;13R)) +

1

|B (x,R)|
1/p

‖f‖Lp(B(x,R))

}
.

(4.9)

Now we consider

1

|B|

∫

B

|II|dx =
1

|B|

∫

B

|T̃bf2 − (T̃bf2)B|dx

≤
2

|B|

∫

B

|T̃bf2|dx ≤ 2|B|−1/2‖T̃bf2‖L2(B(x0,r))

by Hölder inequality. Next, we apply the L2 boundedness of T̃b. The local
continuity result on the commutator of T̃b in Lp proved in [12, Thm. 7.1]
implies that

‖T̃bf2‖L2(B(x,3R)) ≤ c[b]BMOloc(B(x,4R;KR))‖f2‖L2(B(x,3R))
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for some absolute constant K > 4, with c independent of R. Hence, since
B (x0, r) ⊂ B (x, 3R) ,

1

|B|

∫

B

|II|dx ≤

≤ c|B|−1/2[b]BMOloc(B(x,4R;KR))‖f2‖L2(B(x0,2r))

= c[b]BMOloc(B(x,4R;KR))

(
1

|2B|

∫

2B

|f(x)− f2B|
2dx

)1/2

≤ c[b]BMOloc(B(x,4R;KR))[f ]BMOloc(B(x,R;KR)) (4.10)

where we have used also Corollary 4.6.
Last, we come to

III = T̃ (bf3)(x)− b(x)T̃ f3(x) −
1

|B|

∫

B

(T̃bf3)(z)dz =

= T̃ ((b− bB) f3)− (b − bB) T̃ f3+

−

(
1

|B|

∫

B

T̃ ((b − bB)f3)(z)dz −
1

|B|

∫

B

(b(z)− bB)T̃ f3(z)dz

)

= −(b(x)− bB)(T̃ f3(x) − T̃ f3(x0))− (b(x)− bB)T̃ f3(x0)+

+
1

|B|

∫

B

(b(z)− bB)(T̃ f3(z)− T̃ f3(x0))dz+

−
1

|B|

∫

B

[T̃ ((b − bB)f3)(z)− T̃ ((b− bB)f3)(x)]dz

≡ III1 + III2 + III3 + III4 .

First, we want to bound, for x ∈ B,

∣∣∣T̃ f3(x)− T̃ f3(x0)
∣∣∣ =

∣∣∣∣∣

∫

Rn\2B

(k̃(x, y)− k̃(x0, y)(f(y)− f2B)dy

∣∣∣∣∣ ≤

≤ c

∫

B(x,7R)\B(x0,2r)

d(x0.x)

d(x0, y)Q+1
|f(y)− f2B|dy

= c

∫

B(x,R)\B(x0,2r)

d(x0, x)

d(x0, y)Q+1
|f(y)− f2B|dy+

+ c

∫

B(x,7R)\(B(x,R)∪B(x0,2r))

d(x0, x)

d(x0, y)Q+1
|f(y)− f2B|dy

≡ I + II

By Lemma 4.7, with β = 1

I ≤ cr

(∫

B(x,R)\B(x0,2r)

|f(y)− fB|

d(x0, y)Q+1
dy +

∫

B(x,R)\B(x0,2r)

|fB − f2B|

d(x0, y)Q+1
dy

)

≤ cr

{
1

r
[f ]BMOloc(B(x,R;5R)) +

1

r
|fB − f2B|

}
≤ c[f ]BMOloc(B(x,R;5R)).
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Since sprtf ⊂ B (x,R) ,

II = c|f2B|

∫

B(x,7R)\(B(x,R)∪B(x0,2r))

d(x0, x)

d(x0, y)Q+1
dy ≤ c|f2B|

by (4.1)

≤ c log
3R

r
[f ]BMOloc(B(x,R;13R)) +

c

|B (x,R)|
1/p

‖f‖Lp(B(x,R)).

Therefore
∣∣∣T̃ f3(x)− T̃ f3(x0)

∣∣∣ ≤ c

(
1 + log

3R

r

)
[f ]BMOloc(B(x,R;13R)) +

+
c

|B (x,R)|
1/p

‖f‖Lp(B(x,R))

which implies

1

|B|

∫

B

|III1| dx ≤
1

|B|

∫

B

|b(x)− bB| dx· (4.11)

·

{
c

(
1 + log

3R

r

)
[f ]BMOloc(B(x,R;13R)) +

c

|B (x,R)|1/p
‖f‖Lp(B(x,R))

}

≤ c [f ]BMOloc(B(x,R;13R)) [b]LMOloc(B(x,R;3R))+

+
c

|B (x,R)|
1/p

‖f‖Lp(B(x,R))[b]BMOloc(B(x,R;3R)).

and

1

|B|

∫

B

|III3|dx ≤ c [f ]BMOloc(B(x,R;13R)) [b]LMOloc(B(x,R;3R)) (4.12)

+
c

|B (x,R)|
1/p

‖f‖Lp(B(x,R))[b]BMOloc(B(x,R;3R)).

In order to bound III2, we now start proving that T̃ f3(x0) exists and satisfies
the estimate

∣∣∣T̃ f3(x0)
∣∣∣ ≤ c

(
1 + log

(
4R

r

))
[f ]BMOloc(B(x,R;5R)) . (4.13)

Indeed, let j = 1, 2, ..., n with 2nr < 7R ≤ 2n+1r, Bj = B
(
x0, 2

jr
)
. Then (here

we have to modify the technique previously used, to exploit the cancellation
property of the kernel k̃)

∣∣∣T̃ f3(x0)
∣∣∣ =

∣∣∣∣∣

∫

B(x,6R)\B(x0,2r)

k̃(x0, y)(f(y)− f2B)dy

∣∣∣∣∣ =

=

∣∣∣∣∣

∫

B(x0,2n+1r)\B(x0,2r)

(...) dy −

∫

B(x0,2n+1r)\B(x,6R)

(...) dy

∣∣∣∣∣ ≡ |A− B| .
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|A| ≤
n∑

j=1

∣∣∣∣∣

∫

Bj+1\Bj

k̃(x0, y)(f(y)− f2B)dy

∣∣∣∣∣ =
n∑

j=1

∣∣∣∣∣

∫

Bj+1\Bj

k̃(x0, y)(f(y)− fBj+1
)dy

∣∣∣∣∣

by the cancellation property of k̃

≤ c

n∑

j=1

∫

Bj+1\Bj

1

d(x0, y)Q
|f(y)− fBj+1

|dy

≤ c

n∑

j=1

1

|Bj+1|

∫

Bj+1

|f(y)− fBj+1
|dy

≤ cn[f ]BMOloc(B(x,R;5R)) ≤ c

(
1 + log

(
4R

r

))
[f ]BMOloc(B(x,R;5R)).

On the other hand,

|B| ≤

∫

B(x0,2n+1r)\B(x,6R)

∣∣∣k̃(x0, y)(f(y)− f2B)
∣∣∣ dy

≤
c

RQ

∫

B(x0,2n+1r)

|f(y)− f2B)| dy ≤
c

|Bn+1|

∫

Bn+1

|f(y)− f2B)| dy (4.14)

≤
c

|Bn+1|

∫

Bn+1

∣∣f(y)− fBn+1
+ fBn+1

− fBn
+ · · · − f2B

∣∣ dy

≤
c

|Bn+1|

∫

Bn+1

∣∣f(y)− fBn+1

∣∣ dy +
n∑

j=2

∣∣fBj+1
− fBj

∣∣

≤ cn[f ]BMOloc(B(x,R;5R)) ≤ c

(
1 + log

(
4R

r

))
[f ]BMOloc(B(x,R;5R)),

hence (4.13) is proved. Therefore

1

|B|

∫

B

|III2|dx ≤ c log

(
4R

r

)
[f ]BMOloc(B(x,R;5R))

1

|B|

∫

B

|b(x)− bB|dx (4.15)

≤ c[f ]BMOloc(B(x,R;5R))[b]LMOloc(B(x,R;3R)) .

Now we want to bound, ∀x, y ∈ B,
∣∣∣T̃ ((b− bB)f3)(x) − T̃ ((b − bB)f3)(y)

∣∣∣ (4.16)

≤

∫

B(x,8R)\B(x0,2r)

|k̃(x, z)− k̃(y, z)||b(z)− bB||f(z)− f2B| dz

≤ c

∫

B(x,8R)\B(x0,2r)

d(x, y)

d(x0, z)Q+1
|b(z)− bB||f(z)− f2B|dz

≤ cr

∫

B(x,8R)\B(x0,2r)

1

d(x0, z)Q+1
|b(z)− bB||f(z)− f2B|dz.

Let Bj = B
(
x0, 2

jr
)
, let n be such that 2nr < 9R ≤ 2n+1r. Then
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∣∣∣T̃ ((b − bB)f3)(x) − T̃ ((b− bB)f3)(y)
∣∣∣

≤ cr

n∑

j=1

∫

Bj+1\Bj

|b(z)− bB||f(z)− f2B|

d(x0, z)Q+1
dz

≤ cr

n∑

j=1

1

(2jr)Q+1

∫

Bj+1

|b(z)− bB||f(z)− f2B|dz

≤ c

n∑

j=1

1

2j|Bj+1|

(∫

Bj+1

|b(z)− bB|
2dz

)1/2(∫

Bj+1

|f(z)− f2B|
2dz

)1/2

≤ c

n∑

j=1

1

2j

(
1

|Bj+1|

∫

Bj+1

|b(z)− bB|
2dz

)1/2(
1

|Bj+1|

∫

Bj+1

|f(z)− f2B|
2dz

)1/2

.

We observe that, reasoning like in (4.14)

(
1

|Bj+1|

∫

Bj+1

|f(z)− f2B|
2dz

)1/2

(4.17)

≤ cj

(
1

|Bj+1|

∫

Bj+1

|f(z)− fBj+1
|2dz

)1/2

≤ cj[f ]BMOloc(B(x,R;19R)) ,

and in the same way

(
1

|Bj+1|

∫

Bj+1

|b(z)− bB|
2dz

)1/2

≤ c (j + 1) [b]BMOloc(B(x,R;19R)). (4.18)

Then, by (4.17) and (4.18), (4.16) gives

∣∣∣T̃ ((b− bB)f3)(x) − T̃ ((b − bB)f3)(y)
∣∣∣

≤ c
∞∑

j=1

1

2j
j (j + 1) [b]BMOloc(B(x,R;19R))[f ]BMOloc(B(x,R;19R))

≤ c[b]BMOloc(B(x,R;19R))[f ]BMOloc(B(x,R;19R)).

Hence

1

|B|

∫

B

|III4|dx ≤ c[b]BMOloc(B(x,R;19R))[f ]BMOloc(B(x,R;19R)). (4.19)
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From (4.9), (4.10), (4.11), (4.12), (4.15), and (4.19) we have

[T̃bf ]BMOloc(B(x,R;3R))

≤ c[b]LMOloc(B(x,R;KR))

{
[f ]BMOloc(B(x,R;13R)) +

c

|B (x,R)|
1/p

‖f‖Lp(B(x,R))

}

+ c[b]BMOloc(B(x,4R;KR))[f ]BMOloc(B(x,R;KR))+

+ c[b]LMOloc(B(x,R;3R)) [f ]BMOloc(B(x,R;13R)) +

+
c

|B (x,R)|
1/p

‖f‖Lp(B(x,R))[b]BMOloc(B(x,R;3R))+

+ c[b]LMOloc(B(x,R;3R))[f ]BMOloc(B(x,R;5R))+

+ c[b]BMOloc(B(x,R;19R))[f ]BMOloc(B(x,R;19R))

≤ c[b]LMOloc(B(x,4R;KR))

{
[f ]BMOloc(B(x,R;KR)) +

c

|B (x,R)|
1/p

‖f‖Lp(B(x,R))

}

by Lemma 2.7

≤ c[b]LMOloc(B(x,4R;KR)) ·

{
[f ]BMOloc(B(x,R;3R)) +

1

|B (x,R)|
1/p

‖f‖Lp(B(x,R))

}

and (4.7) is proved. The last assertion in the statement of the theorem then
follows by (2.3).

4.3 Estimates for singular integrals with variable kernels

Now we are ready to prove the two theorems stated at the beginning of this
section, regarding singular integrals with variable kernels and their commutator.

Proof of Theorem 4.1. Let f ∈ BMOloc (B (x,R; 3R)) with sprtf ⊂ B (x,R),
B (x, 3R) ⊂ Ω. By the expansion in spherical harmonics (3.8) and Theorem 4.3,

[Kijf ]BMOloc(B(x,R;3R)) ≤
∞∑

m=1

gm∑

k=1

[
ckmij Tkmf

]
BMOloc(B(x,R;3R))

≤ C

∞∑

m=1

gm∑

k=1

(∥∥ckmij
∥∥
L∞(B(x,3R))

+
[
ckmij

]
LMOloc(B(x,R;3R))

)
·

·

(
[Tkmf ]BMOloc(B(x,R,KR)) +

‖Tkmf‖Lp(B(x,KR))

|B(x,R)|1/p

)
.

We now apply Theorem 4.9 with Remark 4.10, getting

[Tkmf ]BMOloc(B(x,R;KR)) ≤ c (p,G, k,m) [f ]BMOloc(B(x,R;K′R))

‖Tkmf‖Lp(B(x,KR)) ≤ c (p,G, k,m) ‖f‖Lp(B(x,KR))
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where the constant c (p,G, k,m) depends on k,m only through the constants
A,B appearing in (4.4), (4.5) when the kernel is Hkm. In turn, these constants
are bounded in terms of

sup
|u|=1

|Hkm (u)|+ sup
|u|=1

|∇Hkm (u)| ≤ c(G) ·m
N
2 .

by (3.11). A standard linearity argument shows then that actually

c (p,G, k,m) ≤ c(p,G) ·m
N
2 .

Next, we use the bounds on the coefficients ckmij contained in (3.13) and Theorem
3.5. They assure that for any positive integer n there exists a constant c(n,G,Λ)
such that

∥∥ckmij
∥∥
L∞ +

[
ckmij

]
LMOloc(B(x,R;3R))

≤ c(n,G,Λ) ·m−2n
(
1 + [A]LMOloc(B(x,R;3R))

)

≤ c(n,G,Λ) ·m−2n
(
1 + [A]LMOloc(Ω)

)

where A = {aij}
q
i,j=1. Recalling also the bound (3.10) on the number gm, we

get

[Kijf ]BMOloc(B(x,R,3R)) ≤ C
∞∑

m=1

c(N)mN−2 · c(n,G,Λ)m−2n
(
1 + [A]LMOloc(Ω)

)
·

· c(p,G) ·m
N
2

(
[f ]BMOloc(B(x,R;K′R)) +

‖f‖Lp(B(x,R))

|B(x,R)|1/p

)

= c (G)
(
1 + [A]LMOloc(Ω)

)(
[f ]BMOloc(B(x,R;K′R)) +

‖f‖Lp(B(x,R))

|B(x,R)|1/p

)
·

·

∞∑

m=1

c(n,G,Λ)mN+N
2
−2−2n

= c (p,G,Λ)
(
1 + [A]LMOloc(Ω)

)(
[f ]BMOloc(B(x,R;K′R)) +

‖f‖Lp(B(x,R))

|B(x,R)|1/p

)

where we have finally fixed n large enough to make the series converge. So the
theorem is proved.

Proof of Theorem 4.2. The proof is similar to the previous one. We have:

[C [Kij , b] f ]BMOloc(B(x,R;3R)) ≤

∞∑

m=1

gm∑

k=1

[
ckmij C [Tkm, b] f

]
BMOloc(B(x,R;3R))

≤ C

∞∑

m=1

gm∑

k=1

(∥∥ckmij
∥∥
L∞(B(x,3R))

+
[
ckmij

]
LMOloc(B(x,R;3R))

)
·

·

(
[C [Tkm, b] f ]BMOloc(B(x,R;KR)) +

‖C [Tkm, b] f‖Lp(B(x,KR))

|B(x,R)|1/p

)
.
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Next, by Theorem 4.11 and Remark 4.12,

[C [Tkm, b] f ]BMOloc(B(x,R;KR)) ≤ c(p,G) ·m
N
2 [b]LMOlocB(x,HR,K′R)·

·

(
[f ]BMOloc(B(x,R;KR)) +

1

|B (x,R)|
1/p

‖f‖Lp(B(x,R))

)

while, by the commutator theorem on Lp (see (4.8)),

‖C [Tkm, b] f‖Lp(B(x,KR)) ≤ c(p,G) ·m
N
2 [b]LMOlocB(x,HR,K′R)‖f‖Lp(B(x,R))

Reasoning like in the previous proof we conclude

[C [Kij , b] f ]BMOloc(B(x,R;3R)) ≤ c(p,G,Λ)
(
1 + [A]LMOloc(Ω)

)
[b]LMOloc(B(x,HR;K′R))·

·

(
[f ]BMOloc(B(x,R;KR)) +

1

|B (x,R)|
1/p

‖f‖Lp(B(x,R))

)
,

which by Lemma 2.7 gives the result.

5 Local BMO
p estimates for second order deriva-

tives

In this section we will prove our main result. As already explained in the
introduction, the proof will proceed in three steps corresponding to the three
subsections.

5.1 Local estimates for functions with small compact sup-

port

Theorem 5.1 For every p ∈ (1,∞) there exist positive constants C,R0, de-
pending on the group G, the numbers p and Λ, and the V LMOloc moduli of
the coefficients ahk, and an absolute constant K ′, such that for every x ∈ Ω
with R ≤ R0 B (x,K ′R) ⊂ Ω and every u ∈ S2,p,∗

loc (B (x,R; 3R)) with sprtu ⊂
B (x,R) we have, for i, j = 1, 2, ..., q,

‖XiXj u‖BMOp

loc
(B(x,R;3R)) ≤ C

(
1 + [A]LMOloc(Ω)

)
·

·

{
‖Lu‖BMOp

loc
(B(x,R;3R)) +

‖Lu‖Lp(B(x,R))

|B(x,R)|1/p

}
.

Proof. Let us start from (3.7) for u ∈ S2,p,∗
loc (B (x,R; 3R)) and takeBMOloc (B (x,R; 3R))

seminorms of both sides:

[XiXj u]BMOloc(B(x,R;3R)) ≤ [Kij (Lu)]BMOloc(B(x,R;3R)) +

+

q∑

h,k=1

[C [Kij , ahk] (XhXk u)]BMOloc(B(x,R;3R)) + [αij · Lu]BMOloc(B(x,R;3R))
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by Theorems 4.1, 4.2, 4.3, Lemma 2.7, and the bounds (3.2), (3.14) on the αij ’s,

≤ C
(
1 + [A]LMOloc(Ω)

){
[Lu]BMOloc(B(x,R;3R)) +

‖Lu‖Lp(B(x,R))

|B(x,R)|1/p

+

q∑

h,k=1

[ahk]LMOloc(B(x,HR;KR))

(
[XhXk u]BMOloc(B(x,R;3R))

+
1

|B (x,R)|
1/p

‖XhXk u‖Lp(B(x,R))

)}
.

We now exploit the assumption ahk ∈ V LMOloc (Ω): for any ε > 0, by (2.3)
there exists R0 such that for any R ≤ R0

q∑

h,k=1

[ahk]LMOloc(B(x,HR;KR)) ≤ ε.

Choosing ε such that

C
(
1 + [A]LMOloc(Ω)

)
ε ≤

1

2

we get, for R ≤ R0, R0 depending on the V LMOloc moduli of the ahk’s,

q∑

i,j=1

[XiXj u]BMOloc(B(x,R;3R)) ≤ C
(
1 + [A]LMOloc(Ω)

)
·

·



[Lu]BMOloc(B(x,R;3R)) +

1

|B(x,R)|1/p



‖Lu‖Lp(B(x,R)) +

q∑

i,j=1

‖XiXj u‖Lp(B(x,R))







 .

Also exploiting the known Lp estimates on XhXk u (see [6]) we conclude:

q∑

i,j=1

‖XiXj u‖BMOp
loc

(B(x,R;3R)) ≤ C
(
1 + [A]LMOloc(Ω)

)
·

·

{
‖Lu‖BMOp

loc
(B(x,R;3R)) +

‖Lu‖Lp(B(x,R))

|B(x,R)|1/p

}
.

5.2 Local estimates for functions with noncompact sup-

port

To remove from our basic estimate in Theorem 5.1 the assumption of compact
support of the function u we need to use, as usual, cutoff functions and interpo-
lation inequalities to handle the norms of first order derivatives of u. However,
it turns out that the local norms of type BMOploc (B (x,R; 3R)) that have been
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useful to prove Theorem 5.1 are not adequate to establish interpolation inequal-
ities. Instead, we have to use to this aim the more standard BMOp (B (x,R))
norms, which also allows us to apply directly some results proved in [8]. We
have the following:

Theorem 5.2 For every p ∈ (1,∞) there exist positive constant C,R0, de-
pending on the group G, the numbers p and Λ, and the V LMOloc moduli of the
coefficients ahk, such that for every x ∈ Ω with B (x,R0) ⊂ Ω, every t, R′ with
R0/2 ≤ t < R′ ≤ R0, every u ∈ S2,p,∗ (B (x,R′))

‖u‖S2,p,∗(B(x,t)) ≤ C

(
1

(R′ − t)
γ′ + 1

)(
‖u‖BMOp(B(x,R′)) + ‖Lu‖BMOp(B(x,R′))

)
.

Proof. Fix four numbers R′ > R > s > t > 0 and a cutoff function φ ∈
C∞

0 (B (x,R′)) such that

B (x, t) ≺ φ ≺ B (x, s) .

Then for any function u ∈ S2,p,∗ (B (x,R′)) we have, by [8, Lemma 4.4, (ii)]:

‖XiXju‖BMOp(B(x,t)) = ‖XiXj (uφ)‖BMOp(B(x,t)) ≤ c ‖XiXj (uφ)‖BMOp(B(x,s))

by Proposition 2.8 (a) and applying Theorem 5.1 to φu on B (x, s; 3s):

≤ c ‖XiXj (uφ)‖BMOp
loc

(B(x,s;3s)) ≤ CA

{
‖L (uφ)‖BMOp

loc
(B(x,s;3s)) +

‖L (uφ) ‖Lp(B(x,s))

sQ/p

}

by (2.4)

≤ CA

{
[L (uφ)]BMO(B(x,R)) +

(
1

(R− s)
Q/p

+
1

sQ/p
+ 1

)
‖L (uφ)‖Lp(B(x,s))

}
.

Now, by our choice of φ and [8, Lemma 4.12]

[L (uφ)]BMO(B(x,R))

≤
c

s− t
[Lu]BMO(B(x,R)) +

c

(s− t)
2 [Xju]BMO(B(x,R)) +

c

(s− t)
3 [u]BMO(B(x,R))

Next, for R0

2 ≤ t < R, we pick s = (t+R) /2, hence

‖XiXju‖BMOp(B(x,t)) ≤ CA

{
c

R− t
[Lu]BMO(B(x,R)) +

c

(R− t)
2 [Xju]BMO(B(x,R))

+
c

(R − t)
3 [u]BMO(B(x,R)) +

(
1

(R − t)
Q/p

+
1

R
Q/p
0

+ 1

)
‖L (uφ)‖Lp(B(x,R))

}
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so that, adding to both sides ‖Xju‖BMOp(B(x,t))+‖u‖BMOp(B(x,t)) and exploit-

ing the estimates on ‖u‖S2,p(B(x,R)) which are known by [6] we can write

‖u‖S2,p,∗(B(x,t)) ≤ C

{
1

R− t
[Lu]BMO(B(x,R)) +

1

(R− t)
2 ‖Xju‖BMOp(B(x,R))

+
1

(R− t)
3 ‖u‖BMOp(B(x,R)) +

(
1

(R− t)
2+Q/p

+ 1

)[
‖Lu‖Lp(B(x,R)) + ‖u‖Lp(B(x,R))

]}
.

We can then apply the interpolation inequality for BMO seminorms proved
in [8, Thm 4.15] and the analogous interpolation inequality for Lp norms proved
in [6, Thm. 21]: choosing R′ > R such that R′ − R = R − t, for some α > 0
and any δ > 0 we have

‖Xju‖BMOp(B(x,R)) ≤ δ ‖XiXju‖BMOp(B(x,R′))+
c

δα (R′ −R)2α
‖u‖BMOp(B(x,R′)) .

Choosing δ = (R− t)2 ε, with ε to be chosen later, we get

‖u‖S2,p,∗(B(x,t)) ≤ C

{
1

R′ − t
[Lu]BMO(B(x,R′)) + ε ‖XiXju‖BMOp(B(x,R′))

+
c

εα (R′ − t)
2+4α ‖u‖BMOp(B(x,R′)) +

1

(R− t)
3 ‖u‖BMOp(B(x,R))

+

(
1

(R − t)
2+Q/p

+ 1

)[
‖Lu‖Lp(B(x,R)) + ‖u‖Lp(B(x,R))

]}
.

For ε small enough we then get

‖u‖S2,p,∗(B(x,t)) ≤
1

3
‖u‖S2,p,∗(B(x,R′))

+ C

(
1

(R′ − t)
γ + 1

)(
‖u‖BMOp(B(x,R′)) + ‖Lu‖BMOp(B(x,R′))

)

for some γ > 0 and any R′ > t > R0/2. Applying [8, Lemma 4.14] we finally get

‖u‖S2,p,∗(B(x,t)) ≤ C

(
1

(R′ − t)
γ + 1

)(
‖u‖BMOp(B(x,R′)) + ‖Lu‖BMOp(B(x,R′))

)
.

5.3 Interior estimates in a domain

Theorem 5.2, by the same techniques in [8, proof of Thm 4.8] immediately gives
the following:

Theorem 5.3 For any Ω′
⋐ Ω, with Ω,Ω′ regular domains (see below), every

p ∈ (1,∞) there exists a positive constant C depending on Ω, Ω′, the group G,
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the numbers p and Λ, the V LMOloc moduli of the coefficients ahk, such that for
every u ∈ S2,p,∗ (Ω)

‖u‖S2,p,∗(Ω′) ≤ C
(
‖u‖BMOp(Ω) + ‖Lu‖BMOp(Ω)

)
.

We recall that in [8] a domain Ω is called regular if it satisfies the property

|B (x, r) ∩ Ω| ≥ c |B (x, r)| (5.1)

for any x ∈ Ω, 0 < r <diamΩ. It is proved in [8, Lemma 4.2] that, in particular,
a metric ball is regular.

We are also interested in deriving from Theorem 5.2 a version of the above
estimates involving local BMO norms, which is our main result, stated in § 2.3,
and does not require assumption (5.1). Namely, we now come to the

Proof of Theorem 2.10. For fixed Ω1 ⋐ Ω2 ⋐ Ω, let R0 > R2 > 0 be two
numbers such that for any x ∈ Ω1 B (x,R2) ⊂ Ω2 and B (x,R0) ⊂ Ω.

Pick t < min
(
R0

6 ,
R2

2

)
, then by Theorem 5.2 and Proposition 2.8 (a) we

have

‖u‖S2,p,∗(B(x,t)) ≤ C
(
‖u‖BMOp(B(x,2t)) + ‖Lu‖BMOp(B(x,2t))

)

≤ C
(
‖u‖BMOp

loc
(B(x,2t,6t)) + ‖Lu‖BMOp

loc
(B(x,2t,6t))

)

≤ C
(
‖u‖BMOp

loc
(Ω2,Ω) + ‖Lu‖BMOp

loc
(Ω2,Ω)

)
. (5.2)

Recall that the constant C in the above estimate depends on the domains but
not on x. Clearly, the norm ‖u‖S2,p(Ω2)

is bounded by a finite sum of N terms

of the kind ‖u‖S2,p(B(xi,t))
, and then is bounded by N times the right hand side

of (5.2). Next, to bound the terms

[XiXju]BMOloc(Ω1,Ω2)
+ [Xju]BMOloc(Ω1,Ω2)

+ [u]BMOloc(Ω1,Ω2)
,

take a ball B (x, r) centered at some x ∈ Ω1 and contained in Ω2. If r ≤ t (with
t as in (5.2)) then

1

|Br (x)|

∫

Br(x)

∣∣XiXju (y)−XiXjuBr(x)

∣∣ dy ≤ ‖u‖S2,p,∗(B(x,t))

≤ C
(
‖u‖BMOp

loc
(Ω2,Ω) + ‖Lu‖BMOp

loc
(Ω2,Ω)

)
.

If r > t (but B (x, r) ⊂ Ω2) then, exploiting the local S2,p estimates of [6],

1

|Br (x)|

∫

Br(x)

∣∣∣XiXju (y)− (XiXju)Br(x)

∣∣∣ dy ≤ 2
1

|Br (x)|

∫

Br(x)

|XiXju (y)| dy

≤ 2

(
1

|Br (x)|

∫

Br(x)

|XiXju (y)|
p
dy

)1/p

≤
c

tQ/p
‖XiXju‖Lp(Ω2)

≤
c

tQ/p

(
‖u‖Lp(Ω) + ‖Lu‖Lp(Ω)

)
≤

c

tQ/p

(
‖u‖BMOp

loc
(Ω2,Ω) + ‖Lu‖BMOp

loc
(Ω2,Ω)

)
.
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In any case

[XiXju]BMOloc(Ω1,Ω2)
≤ C

(
‖u‖BMOp

loc
(Ω2,Ω) + ‖Lu‖BMOp

loc
(Ω2,Ω)

)

Analogously we can bound [Xju]BMOloc(Ω1,Ω2)
+ [u]BMOloc(Ω1,Ω2)

. Exploiting

again the local S2,p estimates we conclude

‖u‖S2,p,∗
loc

(Ω1,Ω2)
≤ C

(
‖u‖BMOp

loc
(Ω2,Ω) + ‖Lu‖BMOp

loc
(Ω2,Ω)

)

and we are done.

6 Appendix. Uniform bounds on the oscillation

of the fundamental solution

The aim of this section is to prove Theorem 3.3, that we have exploited in §
3 to prove LMO uniform bounds on the coefficients ckmij which appear in the
spherical harmonics expansion of Γij . Let us recall its statement:

Theorem 3.4 For any nonnegative integer p, there exists a constant cΛ,p
such that for any x1, x2, y ∈ RN we have:
∣∣Xi1Xi2 ...XipΓ (x1, y)−Xi1Xi2 ...XipΓ (x2, y)

∣∣ ≤ cΛ,p ‖A (x1)−A (x2)‖ ‖y‖
2−Q−p

(6.1)
where the differential operators Xij act on the y-variable.

Let us recall again that ‖y‖ stands for the homogeneous norm in G while
‖A (x1)−A (x2)‖ stands for the usual matrix norm in R2q. Actually, the proof
of this theorem amounts to revising some results and techniques contained in
[2], [3] and [4]. Namely, the following fact is proved in [4, Corollary 7.13]:

Theorem 6.1 For any nonnegative integer p, there exists a positive constant
cΛ,p such that

∣∣Xi1Xi2 ...XipΓ (x1, y)−Xi1Xi2 ...XipΓ (x2, y)
∣∣ (6.2)

≤ cΛ,p ‖A (x1)−A (x2)‖
1/s ‖y‖2−Q−p

for every i1, ..., ip ∈ {1, 2, ..., q} , and for every y ∈ RN \ {0} , where the differ-
ential operators Xij act on the y-variable.

Recall that s is the maximum lenght of commutators required to span RN .
Comparing (6.2) with (6.1), one sees that what we need is to replace the ex-

ponent 1/s of the matrix norm on the right hand side of (6.2) with the exponent
1.

In order to prove Theorem 3.3, we will now revise the proof of Theorem 6.1
given in [4], which proceeds in four steps:

Step 1. The Authors assume G to a be a free Carnot group. Under this
assumption, they consider the evolution operator

HA = ∂t −
∑

aijXiXj
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where A = {aij} is a symmetric positive, constant, matrix, in a fixed “ellipticity
class” MΛ:

Λ|ξ|2 ≤

q∑

i,j=1

aijξiξj ≤ Λ−1|ξ|2 ∀ξ ∈ Rq.

For this operator HA they consider the fundamental solution (“heat kernel”)
hA (x, t) and prove the following estimate (see [3, Theorem 7.5]):

|hA1
(x, t)− hA2

(x, t)| ≤ cλ ‖A1 −A2‖
1/s t−Q/2 exp

(
−
‖x‖2

cΛt

)
(6.3)

for x ∈ RN , t > 0, any A1, A2 ∈ MΛ.
Step 2. Under the same assumptions, the Authors extend the previous bound

to the derivatives of hA, proving (see [3, Theorem 7.7]): for any nonnegative
integers p,m, there exist positive constants cλ and cλ,p,m such that

∣∣Xi1 ...Xip (∂t)
m
hA1

(x, t)−Xi1 ...Xip (∂t)
m
hA2

(x, t)
∣∣ ≤ (6.4)

≤ cΛ,p,m ‖A1 −A2‖
1/s

t−(Q+p+2m)/2 exp

(
−
‖x‖

2

cΛt

)

for x ∈ RN , t > 0, any i1, i2, ..., ip ∈ {1, 2, ..., q} , and any A1, A2 ∈ MΛ.
Step 3. The assumption that G is free in now removed, by a suitable “lifting

result” proved in [2] (see also [3, Theorem 8.3]), so that (6.4) is established for
any Carnot group.

Step 4. The Authors prove (see [3, Theorem 3.9]) that the function

ΓA (x) =

∫ +∞

0

hA (x, t) dt

is the fundamental solution to the stationary operator

LA = −
∑

aijXiXj.

Then, integrating in the t variable the estimate (6.4) they get

∣∣Xi1 ...XipΓA1
(x, t)−Xi1 ...XipΓA2

(x, t)
∣∣ ≤ cΛ,p,q ‖A1 −A2‖

1/s
‖y‖

2−Q−p

which is essentially (6.2).
We are going to show that the following refinement of (6.3) can be proved:

Proposition 6.2 Under the same assumptions and with the same notation of
Step 1, we have

|hA1
(x, t)− hA2

(x, t)| ≤ cΛ ‖A1 −A2‖ · t
−Q/2 exp

(
−
‖x‖

2

cΛt

)

for any x ∈ G, t > 0.
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(The improvement consists in the exponent 1 instead of 1/s, for ‖A1 −A2‖).
Before proving this proposition, we collect in the following theorem a number
of results proved in [2], that we will need.

Theorem 6.3 Let G be a free homogeneous Carnot group and let A ∈ MΛ.
Then there exists a Lie group automorphism TA of G, commuting with the di-
lations of G, such that

hA (x, t; ξ, τ) = JA (x) · hG (TA1
(x) , t;TA1

(ξ) , τ) (6.5)

where hG is the heat kernel for ∂t−
∑
X2
i on G , which is actually a convolution

kernel:

hG (TA1
(x) , t;TA1

(ξ) , τ) = hG

(
TA1

(ξ)
−1

◦ TA1
(x) , t− τ

)
(6.6)

and has the following homogeneity

hG
(
D (λ)x, λ2t

)
= t−QhG (x, t) for any λ > 0, (6.7)

while JA (x) = |detJTA
(x)|, where JTA

is the Jacobian of TA. Moreover JA (x)
turns out to be constant in x, and

(cΛ)
−1

≤ JA ≤ cΛ (6.8)

|JA1
− JA2

| ≤ cΛ ‖A1 −A2‖ (6.9)

(cΛ)
−1

‖x‖ ≤ ‖TA (x)‖ ≤ cΛ ‖x‖ (6.10)

|TA1
(x)− TA2

(x)| ≤ cΛ ‖A1 −A2‖ , (6.11)

for any x ∈ G, any A,A1, A2 ∈ MΛ.

Relations (6.5), (6.8), (6.9), (6.10) are (1.5), (2.19), (2.20), (2.21) in [2],
respectively (note that our symbol h corresponds to Γ in [2]); for (6.11), see the
last line in [2]; (6.6) and (6.7) are known properties of the heat kernel on Carnot
groups, see also [3].

Proof of Proposition 6.2. Here we somewhat revise the proof of [3, Theorem
7.5].

|hA1
(x, t)− hA2

(x, t)| = |JA1
hG (TA1

(x) , t)− JA2
hG (TA2

(x) , t)| ≤

≤ |JA1
− JA2

| |hG (TA1
(x) , t)|+ JA2

|hG (TA1
(x) , t)− hG (TA2

(x) , t)| ≡ I + II.
(6.12)

By (6.9), the Gaussian estimate for hG and (6.10):

I ≤ cΛ ‖A1 −A2‖ t
−Q/2 exp

(
−
‖TA1

(x)‖

ct

)
≤ cΛ ‖A1 −A2‖ t

−Q/2 exp

(
−
‖x‖

ct

)
,

(6.13)
while by (6.8)

II ≤ cΛ |hG (TA1
(x) , t)− hG (TA2

(x) , t)| . (6.14)

We now need the following
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Claim 6.4 There exists k > 0 such that if ‖x‖ = 1, then

|hG (TA1
(x) , t)− hG (TA2

(x) , t)| ≤ cΛ ‖A1 −A2‖ t
−Q/2−k exp

(
−

1

ct

)
.

(6.15)

Let us first show how we can conclude the proof using the claim, then we
will prove (6.15).

For any x ∈ G, let x = D‖x‖ (x
′) with ‖x′‖ = 1, and let us apply (6.15),

keeping in mind (6.7) and the fact that TA commutes with dilations:

TAi
(x) = TAi

(
D‖x‖ (x

′)
)
= D‖x‖ (TAi

(x′)) for i = 1, 2, hence

|hG (TA1
(x) , t)− hG (TA2

(x) , t)| =

=

∣∣∣∣∣hG

(
D‖x‖ (TA1

(x′)) , ‖x‖
2 t

‖x‖
2

)
− hG

(
D‖x‖ (TA2

(x′)) , ‖x‖
2 t

‖x‖
2

)∣∣∣∣∣ =

= ‖x‖−Q

∣∣∣∣∣hG

(
TA1

(x′) ,
t

‖x‖
2

)
− hG

(
TA2

(x′) ,
t

‖x‖
2

)∣∣∣∣∣ ≤

≤ ‖x‖
−Q

cΛ ‖A1 −A2‖

(
t

‖x‖
2

)−Q/2−k

exp

(
−
‖x‖

2

ct

)
=

= cΛ ‖A1 −A2‖ t
−Q/2

(
‖x‖

2

t

)k
exp

(
−
‖x‖

2

ct

)
≤

≤ cΛ ‖A1 −A2‖ t
−Q/2 exp

(
−
‖x‖

2

ct

)
,

possibly changing the constant c inside the exp. By (6.12), (6.13), (6.14) this
implies the result.

Let us now prove the Claim. We will bound the left hand side of (6.15) apply-
ing Lagrange theorem (in the standard form, instead of the Lagrange theorem
for vector fields which is applied in the proof of [3, Theorem 7.5]).

|hG (TA1
(x) , t)− hG (TA2

(x) , t)| ≤ |TA1
(x) − TA2

(x)| sup
y∈[TA1

(x),TA2
(x)]

|∇yhG (y, t)| .

(6.16)
Recalling (6.10), we now note that for some constants δ0, c0 ∈ (0, 1) we can say
that

if ‖x‖ = 1, y ∈ [TA1
(x) , TA2

(x)] and |TA1
(x) − TA2

(x)| ≤ δ0, then ‖y‖ ≥ c0.

We then distinguish two cases.
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Case 1. |TA1
(x)− TA2

(x)| ≤ δ0. Then we proceed from (6.16), expressing
Euclidean derivatives of hG in terms of the vector fields Xi’s and their commu-
tators, and exploiting Gaussian bounds for hG proved in [3, Theorem 5.3]

sup
y∈[TA1

(x),TA2
(x)]

|∇yhG (y, t)| ≤ (6.17)

≤ ct−Q/2−k · sup
y∈[TA1

(x),TA2
(x)]

exp

(
−
‖y‖

cΛt

)
≤ ct−Q/2−k exp

(
−

1

cΛt

)
.

By (6.16), (6.17) and (6.11) we get (6.15).
Case 2. |TA1

(x) − TA2
(x)| > δ0. We then apply (6.3) (that is the result

already proved in [3]):

|hG (TA1
(x) , t)− hG (TA2

(x) , t)| ≤ cΛ ‖A1 −A2‖
1/s

t−Q/2 exp

(
−

1

ct

)
≤

≤
c

δ0
|TA1

(x)− TA2
(x)| ‖A1 −A2‖

1/s t−Q/2 exp

(
−

1

ct

)
≤

by (6.11)

≤ c ‖A1 −A2‖
1+1/s

t−Q/2 exp

(
−

1

ct

)
≤ c ‖A1 −A2‖ t

−Q/2 exp

(
−

1

ct

)

since the matrix norm ‖A1 −A2‖ is always bounded in MΛ. Finally, the last
expression can be bound by

c ‖A1 −A2‖ t
−Q/2−k exp

(
−

1

ct

)
,

possibly changing the exponent inside the exp.
So the Claim is proved and the proof of the Proposition is complete.
Starting from the previous Proposition one can now proceed following word

by word the arguments of Steps 2, 3 and 4 in [3], concluding the proof of Theorem
3.3.
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