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Piazza di Porta S. Donato 5, 40126 Bologna, Italy

giovanni.cupini@unibo.it, ermanno.lanconelli@unibo.it

Enrico Priola

Dip. di Matematica, Università di Torino
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Abstract

We consider a class of degenerate Ornstein-Uhlenbeck operators in R
N ,

of the kind

A ≡

p0
∑

i,j=1

aij (x) ∂
2
xixj

+

N
∑

i,j=1

bijxi∂xj

where (aij) is symmetric uniformly positive definite on R
p0 (p0 ≤ N), with

uniformly continuous and bounded entries, and (bij) is a constant matrix
such that the frozen operator Ax0

corresponding to aij (x0) is hypoelliptic.
For this class of operators we prove global Lp estimates (1 < p < ∞) of
the kind:
∥

∥

∥
∂
2
xixj

u
∥

∥

∥

Lp(RN)
≤ c

{

‖Au‖
Lp(RN) + ‖u‖

Lp(RN)

}

for i, j = 1, 2, ..., p0.

∗Keywords: Ornstein-Uhlenbeck operators. Global Lp estimates. Hypoelliptic operators.
Singular integrals. Nondoubling spaces. Mathematics subject classification (2000):
Primary 35H10. Secondary 35B45 - 35K70 - 42B20.
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We obtain the previous estimates as a byproduct of the following one,
which is of interest in its own:

∥

∥

∥
∂
2
xixj

u
∥

∥

∥

Lp(ST )
≤ c

{

‖Lu‖
Lp(ST ) + ‖u‖

Lp(ST )

}

for any u ∈ C∞

0 (ST ) , where ST is the strip R
N × [−T, T ], T small, and

L is the Kolmogorov-Fokker-Planck operator

L ≡

p0
∑

i,j=1

aij (x, t) ∂
2
xixj

+
N
∑

i,j=1

bijxi∂xj − ∂t

with uniformly continuous and bounded aij ’s.

1 Introduction

Let us consider the following kind of Ornstein-Uhlenbeck operators:

A =

p0∑

i,j=1

aij (x) ∂
2
xixj

+

N∑

i,j=1

bijxi∂xj , (1.1)

where:
A0 = (aij (x))

p0

i,j=1 is a p0 × p0 (p0 ≤ N) symmetric, bounded and uniformly
positive definite matrix:

1

Λ
|ξ|2 ≤

p0∑

i,j=1

aij (x) ξiξj ≤ Λ |ξ|2 (1.2)

for all ξ ∈ R
p0 , x ∈ R

N and for some constant Λ ≥ 1;
the entries aij are supposed to be uniformly continuous functions on R

N ,
with a modulus of continuity

ω (r) = max
i,j=1,...,p0

sup
x,y∈R

N

|x−y|≤r

|aij (x)− aij (y)| ; (1.3)

the constant matrix B = (bij)
N
i,j=1 has the following structure:

B =




∗ B1 0 . . . 0
∗ ∗ B2 . . . 0
...

...
...

. . .
...

∗ ∗ ∗ . . . Br

∗ ∗ ∗ . . . ∗




(1.4)

where Bj is a pj−1×pj block with rank pj , j = 1, 2, ..., r, p0 ≥ p1 ≥ ... ≥ pr ≥ 1,
p0 + p1 + ...+ pr = N and the symbols ∗ denote completely arbitrary blocks.

If the aij ’s are constant, the above assumptions imply that the operator A
is hypoelliptic (although degenerate, as soon as p0 < N), see [12]. If the aij ’s
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are just uniformly continuous, A is a nonvariational degenerate elliptic operator
with continuous coefficients, structured on a hypoelliptic operator. For this class
of operators, we shall prove the following global Lp estimates:

Theorem 1.1 For every p ∈ (1,∞) there exists a constant c > 0, depending on
p,N, p0, the matrix B, the number Λ in (1.2) and the modulus ω in (1.3) such
that for every u ∈ C∞

0

(
R

N
)
one has:

p0∑

i,j=1

∥∥∥∂2xixj
u
∥∥∥
Lp(RN )

≤ c
{
‖Au‖Lp(RN ) + ‖u‖Lp(RN )

}
, (1.5)

∥∥∥∥∥∥

N∑

i,j=1

bijxi∂xj
u

∥∥∥∥∥∥
Lp(RN )

≤ c
{
‖Au‖Lp(RN ) + ‖u‖Lp(RN )

}
. (1.6)

In [4] we have proved this result in the case of constant coefficients aij . Here
we show that exploiting results and techniques contained in [4], together with a
careful inspection of the quantitative dependence of some bounds proved in [12]
and [9], we can get Theorem 1.1. The striking feature of our result is twofold.
On the one side, the merely uniform continuity of the coefficients aij(x); on the
other side the lack of a Lie group structure making translation invariant the
frozen operator

Ax0
=

p0∑

i,j=1

aij (x0) ∂
2
xixj

+

N∑

i,j=1

bijxi∂xj
, x0 ∈ R

N .

As in [4], we overcome this last difficulty by considering the operator A as
the stationary counterpart of the corresponding evolution operator A− ∂t and
looking for the estimates (1.5) and (1.6) as a consequence of analogous estimates
for A− ∂t on a suitable strip ST = R

N × [−T, T ].
There exists a quite extensive literature related to global Lp estimates for

non-degenerate elliptic and parabolic equations on the whole space with un-
bounded lower order coefficients and variable coefficients aij . The considered
Lp-spaces are defined with respect to Lebesgue measure or with respect to an
invariant measure which has also a probabilistic interpretation (see, for instance,
[6], [7], [8], [10], [11], [14], [16] and the references therein).

On the other hand, to the best of our knowledge, only the papers [2], [3]
and [5] deal with Lp estimates for classes of degenerate operators with both un-
bounded first order coefficients and bounded variable coefficients aij . However,
we want to stress that the estimates there proved are only of local type.

We also mention that global Lp estimates like (1.5) are crucial in establishing
weak uniqueness theorems for associated stochastic differential equations, see
[15] and the references therein. Finally, a priori estimates in non-isotropic Hölder
spaces for operators like (1.1) with Hölder continuous aij were proved by A.
Lunardi in [13].
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2 Notations and preliminary results

The operator L

Let us introduce the evolution operator

Lu(z) =

p0∑

i,j=1

aij (z) ∂
2
xixj

u(z) +

N∑

i,j=1

bijxi∂xju(z)− ∂tu(z)

=

p0∑

i,j=1

aij (z) ∂
2
xixj

u(z) + 〈x,B∇u(z)〉 − ∂tu(z) (2.1)

with z = (x, t) in R
N+1, where now the coefficients aij possibly depend also on

t. When the aij ’s are time independent, we get L = A− ∂t. Let

A(z) =

[
A0(z) 0
0 0

]

be an N×N matrix where A0(z) = (aij (z))
p0

i,j=1 is a p0×p0 (p0 ≤ N) symmetric
and uniformly positive definite matrix for all z, satisfying

1

Λ
|ξ|2 ≤

p0∑

i,j=1

aij (z) ξiξj ≤ Λ |ξ|2 (2.2)

for all ξ ∈ R
p0 and for some constant Λ ≥ 1.

Moreover, we assume that the functions aij are uniformly continuous in
R

N+1 with modulus of continuity

ω (r) = max
i,j=1,...,p0

sup
z1,z2∈R

N+1

|z1−z2|≤r

|aij (z1)− aij (z2)| . (2.3)

The operator Lz0

For a fixed z0 ∈ R
N+1 we consider the operator Lz0 that differs from L only for

the coefficients aij ’s, that now are constant coefficients:

Lz0u(z) =

p0∑

i,j=1

aij (z0) ∂
2
xixj

u(z) + 〈x,B∇u(z)〉 − ∂tu(z),

where, as above, z = (x, t).
This operator is hypoelliptic; actually it can be proved (see [12]) that this

fact is equivalent to the validity of the condition C(z0; t) > 0 for every t > 0,
where

C (z0; t) =

∫ t

0

E (s)A (z0)E
T (s) ds, where E (s) = exp

(
−sBT

)
.
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Moreover, it is proved in [12] that Lz0 is left-invariant with respect to the com-
position law

(x, t) ◦ (ξ, τ) = (ξ + E (τ)x, t+ τ) .

Note that
(ξ, τ)

−1
= (−E (−τ) ξ,−τ) .

We explicitly note that such a composition law is independent of z0, since only
the matrix B is involved.

The operator Lz0 has a fundamental solution Γ(z0; ·, ·),

Γ (z0; z, ζ) = γ
(
z0; ζ

−1 ◦ z
)
for z, ζ ∈ R

N+1,

with

γ (z0; z) =

{
0 for t ≤ 0

(4π)−N/2√
detC(z0;t)

exp
(
− 1

4

〈
C−1 (z0; t)x, x

〉
− tTrB

)
for t > 0

where z = (x, t).

The operator Kz0

By principal part of Lz0 we mean the operator

Kz0 =

p0∑

i,j=1

aij (z0) ∂
2
xixj

+ 〈x,B0∇〉 − ∂t,

where the matrix in the drift term is now B0, obtained by annihilating every ∗
block in (1.4):

B0 =




0 B1 0 . . . 0
0 0 B2 . . . 0
...

...
...

. . .
...

0 0 0 . . . Br

0 0 0 . . . 0



.

The fundamental solution of the principal part operator Kz0 is Γ0 (z0; z, ζ) =
γ0

(
z0; ζ

−1 ◦ z
)
; namely, for t > 0

γ0 (z0; z) =
(4π)

−N/2

√
detC0 (z0; t)

exp

(
−1

4

〈
C−1

0 (z0; t)x, x
〉)

with

C0 (z0; t) =

∫ t

0

E0 (s)A(z0)E
T
0 (s) ds, where E0 (s) = exp

(
−sBT

0

)
. (2.4)
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Homogeneous dimension, norm and distance

For every λ > 0, let us define the matrix of dilations on R
N ,

D (λ) = diag
(
λIp0

, λ3Ip1
, ..., λ2r+1Ipr

)

where Ipj denotes the pj × pj identity matrix, and the matrix of dilations on
R

N+1,
δ (λ) =

(
D(λ), λ2

)
= diag

(
λIp0

, λ3Ip1
, ..., λ2r+1Ipr

, λ2
)
.

Note that
det (D (λ)) = λQ, det (δ (λ)) = λQ+2

with Q = p0 + 3p1 + ...+ (2r + 1) pr; Q and Q+ 2 are called the homogeneous
dimension of RN and R

N+1, respectively. The operator Kz0 is homogeneous of
degree two with respect to these dilations.

There is a natural homogeneous norm in R
N+1, induced by these dilations:

‖(x, t)‖ =
N∑

j=1

|xj |1/qj + |t|1/2 ,

where qj are positive integers such that D (λ) = diag (λq1 , ..., λqN ) . Clearly, we
have

‖δ (λ) z‖ = λ ‖z‖ for every λ > 0, z ∈ R
N+1.

A key geometrical object is the local quasisymmetric quasidistance d. Namely,

d (z, ζ) =
∥∥ζ−1 ◦ z

∥∥ .

Note that the homogeneous norm involved in the definition of d is related to the
principal part operator Kz0 , while the group law ◦ is related to the original op-
erator Lz0 . Hence this function d is not a usual quasidistance on a homogeneous
group. The function d (z, ζ) satisfies the quasisymmetric and quasitriangle in-
equalities only for d (z, ζ) bounded (see Lemma 2.1 in [9]); this happens for
instance on a fixed d-ball Bρ(z), where

Bρ(z) =
{
ζ ∈ R

N+1 : d (z, ζ) < ρ
}
.

3 Estimates on a strip for evolution operators

Let ST be the strip R
N × [−T, T ]. We use c to denote constants that may vary

from line to line.
Our main result in this section is the following:

Theorem 3.1 Let L be as in (2.1), with the matrix B satisfying (1.4) and with
uniformly continuous coefficients aij satisfying (2.2).

6



For every p ∈ (1,∞) there exist constants c, T > 0 depending on p,N, p0, the
matrix B, the number Λ in (2.2), c also depending on the modulus of continuity
ω in (2.3) such that

p0∑

i,j=1

∥∥∥∂2xixj
u
∥∥∥
Lp(ST )

≤ c
{
‖Lu‖Lp(ST ) + ‖u‖Lp(ST )

}
(3.1)

for every u ∈ C∞
0 (ST ).

¿From Theorem 3.1 one obtains Theorem 1.1 proceeding as follows.

Proof of Theorem 1.1. If u : RN → R is a C∞
0 function, we define

U (x, t) = u (x)ψ (t) ,

where
ψ ∈ C∞

0 (R)

is a cutoff function with sprtψ ⊂ [−T, T ],
∫ T

−T
ψ (t) dt > 0. Then (3.1) ap-

plied to U gives (1.5) for u. Moreover, inequality (1.6) immediately follows by
difference.

The crucial step toward the proof of Theorem 3.1 is a local estimate con-
tained in the following:

Proposition 3.2 There exist constants c, r0 such that for every z0 ∈ ST , r ≤
r0, u ∈ C∞

0 (Br (z0)), we have

p0∑

i,j=1

∥∥∥∂2xixj
u
∥∥∥
Lp(Br(z0))

≤ c ‖Lu‖Lp(Br(z0))
. (3.2)

Proof. Let z0 ∈ ST and ρ0 ∈ (0, T ] be fixed and choose a cutoff function
η ∈ C∞

0

(
R

N+1
)
such that

η (z) = 1 for ‖z‖ ≤ ρ0/2;

η (z) = 0 for ‖z‖ ≥ ρ0.

Then, by [9, Proposition 2.11] and (25) in [4], we have, for every u ∈ C∞
0 (Br (z0)) ,

∂2xixj
u =− PV

(
Lz0u ∗

(
η∂2xixj

γ (z0; ·)
))

− Lz0u ∗
(
(1− η) ∂2xixj

γ (z0; ·)
)

+ cij (z0)Lz0u

≡− PV (Lz0u ∗ k0 (z0; ·))− Lz0u ∗ k∞ (z0; ·) + cij (z0)Lz0u (3.3)

having set:
k0 (z0; ·) = η∂2xixj

γ (z0; ·)
k∞ (z0; ·) = (1− η) ∂2xixj

γ (z0; ·)
(3.4)
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and

cij(z0) = −
∫

‖ζ‖=1

∂xi
γ0(z0; ζ)νj(ζ) dσ(ζ),

where νj denotes the j-th component of the exterior normal ν to the boundary
of {‖ζ‖ < 1}. In (3.3) ∗ denotes the convolution with respect to the composition
law ◦.

Writing

Lz0u (z) = (Lz0 − L)u (z) + Lu (z)

=

p0∑

i,j=1

(aij (z0)− aij (z)) ∂
2
xixj

u (z) + Lu (z)

we get, by (3.3),

∂2xixj
u =− PV (Lu ∗ k0 (z0; ·))− PV




p0∑

h,k=1

(ahk (z0)− ahk (·)) ∂2xhxk
u ∗ k0 (z0; ·)




− Lu ∗ k∞ (z0; ·)−
p0∑

h,k=1

(ahk (z0)− ahk (·)) ∂2xhxk
u ∗ k∞ (z0; ·)

+ cij (z0)Lu+ cij (z0)

p0∑

h,k=1

(ahk (z0)− ahk (·)) ∂2xhxk
u

=I1 + I2 + J1 + J2 +A1 +A2. (3.5)

We now split the remaining part of the proof into several steps.

Step 1. Lp-estimate of A1 and A2.
We obviously have

‖A1‖Lp(Br(z0)) ≤ |cij(z0)|‖Lu‖Lp(Br(z0)).

On the other hand, by Theorem 4.1 and Remark 4.2 in Appendix, there exists
an absolute constant c such that

|cij(z0)| ≤
∫

‖ζ‖=1

|∂xi
γ0(z0; ζ)| dσ(ζ) ≤ c

∫

‖ζ‖=1

1

‖ζ‖Q+1
dσ(ζ).

Therefore
‖A1‖Lp(Br(z0)) ≤ c‖Lu‖Lp(Br(z0)). (3.6)

Analogously, using the uniform continuity of the coefficients aij ’s, we get

‖A2‖Lp(Br(z0)) ≤ c ω(r)

p0∑

h,k=1

‖∂2xhxk
u‖Lp(Br(z0)). (3.7)

Step 2. Lp-estimate of J1 and J2.
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Without loss of generality we can assume Br(z0) ⊆ S2T for every z0 ∈ ST .
Then

‖J1‖Lp(Br(z0)) ≤ c

∫

S2T

|k∞(z0; ζ)| dζ ‖Lu‖Lp(Br(z0)),

where the presence of the constant c depends on the fact that our group is not
unimodular. On the other hand, just proceeding as in [4], pages 799-800, and
using the estimates in Appendix (see Proposition 4.6) we get

∫

S2T

|k∞(z0; ζ)| dζ ≤ c,

where c is independent of z0 ∈ ST . Therefore

‖J1‖Lp(Br(z0)) ≤ c‖Lu‖Lp(Br(z0)). (3.8)

Analogously, using the uniform continuity of the aij ’s, we get

‖J2‖Lp(Br(z0)) ≤ cω(r)

p0∑

h,k=1

‖∂2xhxk
u‖Lp(Br(z0)). (3.9)

Step 3. Lp-estimate of I1 and I2.
To estimate the Lp-norm of I1 and I2, we can use Theorem 3.3, getting:

‖I1‖Lp(Br(z0)) + ‖I2‖Lp(Br(z0))

≤ c




‖Lu‖Lp(Br(z0)) +

∥∥∥∥∥∥

p0∑

h,k=1

[ahk (z0)− ahk (·)] ∂2xhxk
u

∥∥∥∥∥∥
Lp(Br(z0))





≤ c



‖Lu‖Lp(Br(z0))

+ ω (r)

p0∑

h,k=1

∥∥∂2xhxk
u
∥∥
Lp(Br(z0))



 (3.10)

with c independent of r and z0.

Step 4. Conclusion.
By (3.5) and the estimates (3.6)-(3.10) in the previous steps, we get

p0∑

i,j=1

∥∥∥∂2xixj
u
∥∥∥
Lp(Br(z0))

≤ c



‖Lu‖Lp(Br(z0))

+ ω (r)

p0∑

h,k=1

∥∥∂2xhxk
u
∥∥
Lp(Br(z0))





with c independent of r and z0.
We now fix once and for all r0 small enough so that cω (r0) < 1, getting

p0∑

i,j=1

∥∥∥∂2xixj
u
∥∥∥
Lp(Br(z0))

≤ c ‖Lu‖Lp(Br(z0))

for every u ∈ C∞
0 (Br(z0)) with r ≤ r0, with c, r0 independent of u and z0 ∈ ST .
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Next, we have to prove the following crucial ingredient which has been used
in the previous proof:

Theorem 3.3 Let k0(z0; ·) be the singular kernel defined in (3.4). For every
p ∈ (1,∞) there exists a positive constant c, independent of z0, such that

‖PV (f ∗ k0(z0; ·))‖Lp(Br(z0)) ≤ c‖f‖Lp(Br(z0)) (3.11)

for every f ∈ C∞
0 (Br(z0)), z0 ∈ ST and r > 0 such that Br(z0) ⊆ S2T .

Proof. This theorem is analogous to Theorem 22 in [4], the novelty being the
uniformity of the bound with respect to the point z0 in the kernel k0(z0; ·). As
in [4], this theorem follows applying the abstract result contained in [1, Thm 3].
Without recalling the general setting of nondoubling spaces considered in [1],
here we just list, for convenience of the reader, the assumptions that need to
be checked on our kernel, in order to derive Theorem 3.3 from [1, Thm 3]. The
constant c in (3.11) will depend only on the constants involved in the following
bounds.

Let
k(z0;w

−1 ◦ z) = a (z) k0(z0;w
−1 ◦ z)b (w)

where a, b ∈ C∞
0

(
R

N+1
)
with sprt a, sprt b ⊂ Br (z0). Then the required prop-

erties are the following:

∣∣k(z0;w−1 ◦ z)
∣∣+

∣∣k(z0; z−1 ◦ w)
∣∣ ≤ c

‖w−1 ◦ z‖Q+2
(3.12)

for every z0 ∈ ST , z, w ∈ S2T such that
∥∥w−1 ◦ z

∥∥ ≤ 1;
∣∣k(z0;w−1 ◦ z)− k(z0;w

−1 ◦ z)
∣∣+ (3.13)

∣∣k(z0; z−1 ◦ w)− k(z0; z
−1 ◦ w)

∣∣ ≤ c
‖z−1 ◦ z‖

‖w−1 ◦ z‖Q+3

for every z0 ∈ ST , z, z, w ∈ S2T such that ‖z−1 ◦ z‖ ≤ M‖w−1 ◦ z‖ and∥∥w−1 ◦ z
∥∥ ≤ 1;

∣∣∣∣∣

∫

r1≤‖ζ−1◦z‖≤r2

k(z0; ζ
−1 ◦ z) dζ

∣∣∣∣∣+
∣∣∣∣∣

∫

r1≤‖ζ−1◦z‖≤r2

k(z0; z
−1 ◦ ζ) dζ

∣∣∣∣∣ ≤ c (3.14)

for every r1, r2 with 0 < r1 < r2 and for all z ∈ S2T and z0 ∈ ST ;

h (z0, ·)− h∗ (z0, ·) ∈ Cγ (Br(z0)) (3.15)

for some positive γ, where

h (z0, z) = lim
r→0

∫

r≤‖ζ−1◦z‖
k(z0; ζ

−1 ◦ z) dζ; (3.16)

h∗ (z0, z) = lim
r→0

∫

r≤‖ζ−1◦z‖
k(z0; z

−1 ◦ ζ) dζ. (3.17)
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Now: estimates (3.12) and (3.13) follow from Theorem 4.1 and Remark 4.2
contained in the Appendix.

Let us prove (3.14). Actually, we will bound the first integral, the bound on
the second being analogous. Moreover, we actually prove the following

∣∣∣∣∣

∫

r1≤‖ζ−1◦z‖≤r2

k0(z0; ζ
−1 ◦ z) dζ

∣∣∣∣∣ ≤ c, (3.18)

which implies the analogous bound on k by the same argument contained in
[4, Prop. 18]. To show (3.18), we proceed as in [4], page 803. Without loss of
generality we assume r2 ≤ ρ0, where ρ0 is the positive constant introduced at
the beginning of the proof of Proposition 3.2; in fact, k0(z0;w) = 0 for ‖w‖ > ρ0.

We have:
∫

r1≤‖ζ−1◦z‖≤r2

k0(z0; ζ
−1 ◦ z) dζ = A(z0; r1, r2) +B(z0; r1, r2),

where

A(z0; r1, r2) =

∫

r1≤‖w‖≤r2

η(w)∂2xixj
γ(z0;w) dw

and

B(z0; r1, r2) =

∫

r1≤‖w‖≤r2

η(w)∂2xixj
γ(z0;w)

(
eτTr(B) − 1

)
dw, w = (ξ, τ).

Then, by (4.3)

B(z0; r1, r2) ≤ c

∫

r1≤‖w‖≤r2

1

‖w‖Q dw ≤ c

∫

‖w‖≤ρ0

1

‖w‖Q dw

with c independent of z0 ∈ ST . Moreover, if r2 ≤ ρ0

2 , then integrating by parts

A(z0; r1, r2) =

∫

‖w‖=r2

∂xiγ(z0;w)νj dσ(w)−
∫

‖w‖=r1

∂xiγ(z0;w)νj dσ(w)

=: I(z0; r2)− I(z0; r1).

Now we estimate I(z0; ρ) by proceeding as in [9], page 1280. We have

I(z0; ρ) =

∫

‖ζ‖=1

∂xiγρ(z0; ζ)νj dσ(ζ)

=

∫

‖ζ‖=1

(∂xiγρ(z0; ζ)− ∂xiγ0(z0; ζ)) νj dσ(ζ)

+

∫

‖ζ‖=1

∂xiγ0(z0; ζ)νj dσ(ζ)

where γρ(z0; ·) is defined as in [9], (2.24).
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The last integrand can be estimated by a constant independent of z0 ∈ ST ,
thanks to (4.2) and Remark 4.2. On the other hand, from (2.45) in [9] we get,
for a suitable c independent of z0 ∈ ST :

∣∣∣∣∣

∫

‖ζ‖=1

(∂xiγρ(z0; ζ)− ∂xiγ0(z0; ζ)) νj dσ(ζ)

∣∣∣∣∣ ≤ c ρ

∫

‖ζ‖=1

1√
τ
γ(ζ) dσ(ζ),

ζ = (x, τ), where γ is the fundamental solution with pole at the origin of

µ

p0∑

i=1

∂2xi
+ 〈x,B0∇〉 − ∂t

for a suitable µ > 0 independent of z0 ∈ ST . Note that the last integral is an
absolute constant.

Suppose now ρ0

2 ≤ r2 ≤ ρ0. Then we can write

A (z0; r1, r2) ≤
∣∣∣∣∣

∫

r1<‖w‖<ρ0/2

k0 (z0;w) dw

∣∣∣∣∣+
∣∣∣∣∣

∫

ρ0/2<‖w‖<r2

k0 (z0;w) dw

∣∣∣∣∣ .

The first term can be bounded as above, while the second one is bounded by

∫

ρ0/2≤‖w‖≤ρ0

c ‖w‖−(2+Q)
dw

with c independent of z0, see (4.3). This completes the proof of (3.18).
Finally, let us prove the Hölder continuity of the function

h (z0, ·)− h∗ (z0, ·)

defined in (3.16)-(3.17).1

h (z0, z) = lim
r→0

a (z)

∫

r≤‖ζ−1◦z‖
k0(z0; ζ

−1 ◦ z)b (ζ) dζ =

= lim
r→0

a (z)

∫

r≤‖w‖
k0(z0;w)b

(
z ◦ w−1

)
eτTr(B)dw

= a (z)

∫

‖w‖≤ρ0

k0(z0;w)
[
b
(
z ◦ w−1

)
− b (z)

]
eτTr(B)dw+

+ a (z) b (z)

∫

‖w‖≤ρ0

k0(z0;w)
[
eτTr(B) − 1

]
dw

+ lim
r→0

a (z) b (z)

∫

r≤‖w‖
k0(z0;w)dw

= h1 (z0, z) + h2 (z0, z) + h3 (z0, z) .

1We take this opportunity to notice that in [4] this check has not been explicitly done.
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Now:
h3 (z0, z) = a (z) b (z) c (z0)

with a (·), b (·) smooth and c (z0) uniformly bounded in z0 by the previous bound
(3.18). Also,

h2 (z0, z) = a (z) b (z) c1 (z0)

with c (z0) uniformly bounded in z0 by the same argument used above to bound
B(z0; r1, r2). Let us come to h1 (z0, z). If Z is any right-invariant differential
operator, then

Zh1 (z0, z) = Za (z)

∫

‖w‖≤ρ0

k0(z0;w)
[
b
(
z ◦ w−1

)
− b (z)

]
eτTr(B)dw

+ a (z)

∫

‖w‖≤ρ0

k0(z0;w)
[
Zb

(
z ◦ w−1

)
− Zb (z)

]
eτTr(B)dw,

hence

|Zh1 (z0, z)| ≤ c

∫

‖w‖≤ρ0

|k0(z0;w)| |w| dw ≤ c.

Since this procedure can be iterated, we get an upper bound on any derivative
of the kind |Z1Z2...Zkh1 (z0, z)|, hence (since the commutators of suitable right
invariant vector fields span R

N+1) also on |∇h1 (z0, z)|. Therefore the function
h1 (z0, ·) is Lipschitz continuous, uniformly with respect to z0. The function
h∗ (z0, ·) can be handled similarly. This completes the proof of the conditions
which are sufficient to apply [1, Thm 3] and deduce (3.11), with a constant c
independent of z0.

In order to deduce Theorem 3.1 from Proposition 3.2, we now need to recall
a covering lemma, see Lemma 21 in [4] (note that this result is not standard
since our space is not globally doubling):

Lemma 3.4 For every r0 > 0 and K > 1 there exist r ∈ (0, r0), a positive
integer M and a sequence of points {zi}∞i=1 ⊂ ST such that:

ST ⊂
∞⋃

i=1

Br (zi) ; (3.19)

∞∑

i=1

χBKr(zi) (z) ≤M ∀z ∈ ST . (3.20)

Proof of Theorem 3.1. Let us apply the previous lemma with r0 as in
Proposition 3.2; for a fixed r ∈ (0, r0), with r/2 satisfying (3.19), (3.20). Pick
A ∈ C∞

0 (Br (0)) , A = 1 in Br/2 (0) , 0 ≤ A ≤ 1 and let ak (z) = A
(
z−1
k ◦ z

)
.

Let now u ∈ C∞
0 (ST ). By (3.19) we can write

∥∥∥∂2xixj
u
∥∥∥
p

Lp(ST )
≤

∞∑

k=1

∥∥∥∂2xixj
u
∥∥∥
p

Lp(Br/2(zk))
=

∞∑

k=1

∥∥∥∂2xixj
(aku)

∥∥∥
p

Lp(Br/2(zk))

≤
∞∑

k=1

∥∥∥∂2xixj
(aku)

∥∥∥
p

Lp(Br(zk))
. (3.21)
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On the other hand, by (3.2) we have
∥∥∥∂2xixj

(aku)
∥∥∥
Lp(Br(zk))

≤ c ‖L (aku)‖Lp(Br(zk))

≤ c



‖akLu‖Lp(Br(zk))

+ 2

p0∑

l,m=1

‖∂xl
ak∂xm

u‖Lp(Br(zk))
+ ‖uLak‖Lp(Br(zk))



 .

(3.22)

By recalling that the operators ∂xl
, l = 1, ..., p0, and Y0 :=

∑N
i,j=1 bijxi∂xj are

left invariant with respect to the group law ◦, we have

sup
z∈Br(zk)

|∂xl
ak (z)| = sup

z∈Br(0)

|∂xl
A (z)| ≤ c, l = 1, ..., p0,

sup
z∈Br(zk)

|Y0ak (z)| = sup
z∈Br(0)

|Y0A(z)| ≤ c

and

sup
z∈Br(zk)

∣∣∣∂2xixj
ak (z)

∣∣∣ = sup
z∈Br(0)

∣∣∣∂2xixj
A (z)

∣∣∣ ≤ c, i, j = 1, 2, ..., p0.

As a consequence
sup

z∈Br(zk)

|Lak (z)| ≤ c

with c independent of k. Hence (3.22) gives

∥∥∥∂2xixj
(aku)

∥∥∥
Lp(Br(zk))

≤ c



‖Lu‖Lp(Br(zk))

+ 2

p0∑

l,m=1

‖∂xm
u‖Lp(Br(zk))

+ ‖u‖Lp(Br(zk))



 ,

c independent of k. Inserting the last inequality in (3.21) and recalling (3.20)
we get

∥∥∥∂2xixj
u
∥∥∥
p

Lp(ST )
≤ c

∞∑

k=1

{
‖Lu‖pLp(Br(zk))

+

p0∑

m=1

‖∂xm
u‖pLp(Br(zk))

+ ‖u‖pLp(Br(zk))

}

≤ cM

{
‖Lu‖pLp(ST ) +

p0∑

m=1

‖∂xm
u‖pLp(ST ) + ‖u‖pLp(ST )

}
.

This also gives

p0∑

i,j=1

∥∥∥∂2xixj
u
∥∥∥
Lp(ST )

≤ cM

{
‖Lu‖Lp(ST ) +

p0∑

m=1

‖∂xm
u‖Lp(ST ) + ‖u‖Lp(ST )

}

which, by the classical interpolation inequality

‖∂xm
u‖Lp(ST ) ≤ ε

∥∥∂2xmxm
u
∥∥
Lp(ST )

+
c

ε
‖u‖Lp(ST ) ,

yields (3.1). So we are done.
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4 Appendix: uniform bounds on the fundamen-

tal solution of Lz0

The aim of this section is to prove the following result, which has been exploited
in the proof of Proposition 3.2 and Theorem 3.3:

Theorem 4.1 There exists a positive constant c independent of z0 ∈ ST such
that

|γ(z0; ζ)| ≤
c

‖ζ‖Q , (4.1)

∣∣∂xj
γ(z0; ζ)

∣∣ ≤ c

‖ζ‖Q+1
j = 1, ..., p0, (4.2)

∣∣∣∂2xixj
γ(z0; ζ)

∣∣∣ ≤ c

‖ζ‖Q+2
i, j = 1, ..., p0, (4.3)

for every ζ ∈ S2T .
Morever, if H ⊂ R

N is a compact set there exist constants c′ and M , depending
on H but not on z0, such that

∣∣γ(z0;w−1 ◦ z)− γ(z0;w
−1 ◦ z̄)

∣∣ ≤ c′
‖z−1 ◦ z̄‖

‖w−1 ◦ z‖Q+1
,

∣∣∂xjγ(z0;w
−1 ◦ z)− ∂xjγ(z0;w

−1 ◦ z̄)
∣∣ ≤ c′

‖z−1 ◦ z̄‖
‖w−1 ◦ z‖Q+2

j = 1, ..., p0,

∣∣∣∂2xixj
γ(z0;w

−1 ◦ z)− ∂2xixj
γ(z0;w

−1 ◦ z̄)
∣∣∣ ≤ c′

‖z−1 ◦ z̄‖
‖w−1 ◦ z‖Q+3

i, j = 1, ..., p0,

(4.4)

for every z,z̄,w ∈ S2T such that ‖z−1 ◦ z̄‖ ≤ M‖w−1 ◦ z‖ and w−1 ◦ z ∈
H × [−2T, 2T ].
The previous estimates still hold replacing γ(z0; z) with γ(z0; z

−1).

Remark 4.2 The estimates of Theorem 4.1 obviously hold if we replace γ(z0; ·)
with γ0(z0; ·). In this case we can exploit the homogeneity of γ0 to obtain (4.1)–
(4.3) for every ζ in the strip R

N × [−1, 1].

The above theorem will follow by a careful inspection of several arguments
contained in [9] and [12]. We first need to establish several lemmas.

In the following, I denotes the N ×N matrix

I :=

[
Ip0

0
0 0

]

where Ip0
is the p0 × p0 identity matrix. Moreover, for every t > 0, C̃(t) is the

N ×N matrix defined as follows

C̃(t) =

∫ t

0

E0(s)IET
0 (s) ds (4.5)
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with E0(s) as in (2.4). Notice that C̃(t) > 0 for every t > 0, or, equivalently,
that the operator

p0∑

i=1

∂2xixi
u(z) + 〈x,B0∇u(z)〉 − ∂tu(z)

is hypoelliptic (see [12]).

The following preliminary lemma holds.

Lemma 4.3 The inequalities below hold true for all z0 ∈ R
N+1:

1

Λ
〈C̃(1)y, y〉 ≤ 〈C0(z0; 1)y, y〉 ≤ Λ〈C̃(1) y, y〉 ∀y ∈ R

N (4.6)

and
1

ΛN
det C̃(1) ≤ detC0(z0; 1) ≤ ΛN det C̃(1). (4.7)

Proof. We have that

1

Λ
I ≤ A(z0) ≤ ΛI for all z0 ∈ R

N+1.

Thus, (4.6) holds. Inequalities (4.7) are an easy consequence of (4.6).

Lemma 4.4 There exist M ≥ 1, T > 0 such that for every x ∈ R
N , z0 ∈ R

N+1,
t ∈ [0, T ] ,

1

M
〈C̃(t)x, x〉 ≤ 〈C(z0; t)x, x〉 ≤M〈C̃(t)x, x〉 (4.8)

and
1

M
det C̃(t) ≤ detC(z0; t) ≤M det C̃(t). (4.9)

Proof. It is a known fact (see [12, Proposition 2.3]) that

C0 (z0; t) = D(
√
t)C0 (z0; 1)D(

√
t)

C̃ (t) = D(
√
t)C̃ (1)D(

√
t), ∀ t > 0.

Then (4.6) implies

1

Λ
〈C̃(t)x, x〉 ≤ 〈C0(z0; t)x, x〉 ≤ Λ〈C̃(t)x, x〉. (4.10)

Therefore, to prove (4.8) it is enough to look for positive c1, c2 such that

c1 〈C0 (z0; t)x, x〉 (1 +O(t)) ≤ 〈C (z0; t)x, x〉
≤ c2 〈C0 (z0; t)x, x〉 (1 +O(t)) as t→ 0

(4.11)
with O(t) uniform w.r.t. z0.
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This follows using the arguments in [12, p. 46]. Indeed, set x = D
(

1√
t

)
y

we get

〈C (z0; t)x, x〉
〈C0 (z0; t)x, x〉

= 1 +
〈(C(z0; t)− C0(z0; t))x, x〉

〈C0(z0; t)x, x〉

= 1 +
〈D

(
1√
t

)
(C(z0; t)− C0(z0; t))D

(
1√
t

)
y, y〉

〈C0(z0; 1)y, y〉
.

Now, by the proof of Lemma 3.2 in [12] and a careful check of the block de-
composition of the matrices C(z0; t) and C0(z0; t), see Lemma 3.1 in [12], we
get

∥∥∥∥D
(

1√
t

)
(C(z0; t)− C0(z0; t))D

(
1√
t

)∥∥∥∥ ≤ ct as t→ 0+, (4.12)

uniformly w.r.t. z0. Thus, we get (4.11).
Let us now prove (4.9). By (4.10), we get

1

ΛN
det C̃(t) ≤ detC0(z0; t) ≤ ΛN det C̃(t).

Moreover, by (4.11) there exist positive constants c3, c4 such that

c3(1 +O(t)) detC0(z0; t) ≤ detC(z0; t) ≤ c4(1 +O(t)) detC0(z0; t)

as t goes to 0+, uniformly w.r.t. z0 ∈ R
N+1. Thus, (4.9) follows.

Now, we turn to prove estimates for C−1(z0; ·).

Lemma 4.5 The following inequalities hold:

(1) there exist M ≥ 1, T > 0 such that for every x ∈ R
N , z0 ∈ R

N+1,
t ∈ [0, T ] ,

1

M
〈C−1

0 (z0; t)x, x〉 ≤ 〈C−1(z0; t)x, x〉 ≤M〈C−1
0 (z0; t)x, x〉 (4.13)

(2) let λC̃ and ΛC̃ be the smallest and the largest eigenvalue of the symmetric

positive definite matrix C̃(1), respectively. Then

1

ΛΛC̃

∣∣∣∣D
(

1√
t

)
x

∣∣∣∣
2

≤ 〈C−1
0 (z0; t)x, x〉 ≤

Λ

λC̃

∣∣∣∣D
(

1√
t

)
x

∣∣∣∣
2

, (4.14)

for all x ∈ R
N and for all z0 ∈ R

N+1.
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Proof. The proof of (4.13) follows the lines of the proof of (3.10) in [12], using
(4.12) in place of (3.8) in [12].

As far as (4.14) it is concerned, we begin noticing that, see [12, p. 42],

C−1
0 (z0; t) = D

(
1√
t

)
C−1

0 (z0; 1)D

(
1√
t

)
, ∀ t > 0.

Thus we have

〈C−1
0 (z0; t)x, x〉 = 〈C−1

0 (z0; 1)D

(
1√
t

)
x,D

(
1√
t

)
x〉

≤ max
|y|=1

〈C−1
0 (z0; 1)y, y〉

∣∣∣∣D
(

1√
t

)
x

∣∣∣∣
2

=

∣∣∣D
(

1√
t

)
x
∣∣∣
2

min
|y|=1

〈C0(z0; 1)y, y〉
.

By (4.6)

min
|y|=1

〈C0(z0; 1)y, y〉 ≥
1

Λ
min
|y|=1

〈C̃(1)y, y〉 = λC̃
Λ

and the last inequality in (4.14) follows. Analogously the first one can be proved.

Collecting the results in Lemma 4.4 and Lemma 4.5 we easily get the fol-
lowing:

Proposition 4.6 Let C̃ be defined as in (4.5). There exist positive constants
T and m, depending only on the operator L, such that the following inequalities
hold for every t ∈ [−2T, 2T ], every z0 ∈ R

N+1 and every x ∈ R
N :

(a)
1

m
〈C̃(t)x, x〉 ≤ 〈C(z0; t)x, x〉 ≤ m〈C̃(t)x, x〉;

(b)
1

m
det C̃(t) ≤ detC(z0; t) ≤ m det C̃(t);

(c)
1

m

∣∣∣∣D
(

1√
t

)
x

∣∣∣∣
2

≤ 〈C−1(z0; t)x, x〉 ≤ m

∣∣∣∣D
(

1√
t

)
x

∣∣∣∣
2

.

The above estimates, together with the procedure in [9, proof of Proposition
2.7], imply the uniform bounds in Theorem 4.1 for γ(z0; z). To prove analogous
estimates for γ(z0; z

−1) and its derivatives, one can proceed in a similar way.
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