Orthogonal Double Covers of Complete Bipartite Graphs by Symmetric Starters

by R. A. El-Shanawany^a, M. Sh. Higazy^a, R. Scapellato^b

^a Department of Physics and Engineering Mathematics, Faculty Of Electronic Engineering, Minufiya University, Minuf, Egypt.
^b Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.

Abstract

Let *H* be a graph on *n* vertices and \mathcal{G} a collection of *n* subgraphs of *H*, one for each vertex. Then \mathcal{G} is an orthogonal double cover (ODC) of *H* if every edge of *H* occurs in exactly two members of \mathcal{G} and any two members of \mathcal{G} share exactly an edge whenever the corresponding vertices are adjacent in *H*. If all subgraphs in \mathcal{G} are isomorphic to a given graph *G*, then \mathcal{G} is said to be an ODC of *H* by *G*.

We construct the *ODCs* of $H = K_{n,n}$ by $G = P_{m+1} \cup^{v} S_{n-m}$ (union of a path P_{m+1} , and a star S_{n-m} where the center v of the star is a one of the path ends, m = 5, 6, 7, 8, 9, 10). In all cases, G is a symmetric starter of the cyclic group of order n.

Keywords: Orthogonal double cover; ODC; Graph decompositions; Symmetric starter. AMS Subject Classification: 05C70, 05B30

1. Introduction

An orthogonal double cover (ODC) of the complete graph K_n is a collection \mathcal{G} of *n* spanning subgraphs (called *pages*) such that

(i) every edge of K_n is an edge in exactly two of the pages,

(ii) any two pages share exactly one edge.

If all pages in \mathcal{G} are isomorphic to a given graph G then \mathcal{G} is said to be an ODC of K_n by G.

There is an extensive literature on *ODCs* of K_n by *G*, see e.g. [2,4,6,8,9,10]. A survey on the topic is given in [5].

Recently, this concept has been generalized replacing K_n by an arbitrary graph H as follows. Let H be an arbitrary graph with n vertices and let $\mathcal{G} = \{G_0, \dots, G_{n-1}\}$ be a collection of n spanning subgraphs of H (called pages). \mathcal{G} is called an ODC of H if there exists a bijective mapping $\varphi: V(H) \to \mathcal{G}$ such that:

(i) every edge of H is contained in exactly two of the graphs $G_0, ..., G_{n-1}$.

(ii) for every choice of different vertices a, b of H,

$$|E(\varphi(a)) \cap E(\varphi(b))| = \begin{cases} 1 & \text{if } \{a,b\} \in E(H), \text{ or} \\ 0 & \text{otherwise.} \end{cases}$$

If all pages in \mathcal{G} are isomorphic to a given graph G, then \mathcal{G} is said to be an ODC of H by G. Note that in this case H is necessarily a regular graph of degree |E(G)|. Moreover, if H is not complete, G must be disconnected.

While in principle any regular graph H is worth considering (e.g., the remarkable case of hypercubes has been investigated in [7]), the choice of $H = K_{n,n}$ is quite natural, also in view of a technical motivation: ODCs in such graphs are of help in order to construct ODCs of K_n (see [1], p. 48).

An algebraic construction of ODCs via "symmetric starters" (see Section 2) has been exploited to get a complete classification of ODCs of $K_{n,n}$ by G for $n \le 9$: a few exceptions apart, all graphs G are found this way (see [1], Table 1). This method has been applied in both [3] and [1] to detect some infinite classes of graphs G for which there is an ODC of $K_{n,n}$ by G.

In particular, let G be the graph $(P_{m+1} \cup^{v} S_{n-m}) \cup (n-1)K_1$, where \cup^{v} denotes the union of a path of length m and a (n-m)-star, attached by a vertex v that is both an end-vertex of P_{m+1} and the center of S_{n-m} , as shown in Figure 1.

For all *m* and *n* such that $2 \le m \le 6$ and $m \le n$ it was established in [3] that there is an ODC of $K_{n,n}$ by *G* as described above.

Our goal here is to improve this result, by showing that the same is true for $2 \le m \le 10$ and $m \le n$. Namely, we shall prove the following.

Theorem 1.1. Let *n* and *m* be integers such that $2 \le m \le 10$ and $m \le n$. Then there is an ODC of $K_{n,n}$ by $G = (P_{m+1} \cup^{v} S_{n-m}) \cup (n-1)K_{1}$.

Figure 1: The graph $P_4 \cup^{v} S_4$.

Clearly, the above G is a subgraph of $K_{n,n}$ if and only if $m \le n$. Besides, for m = 1 we have $P_2 \cup^{\nu} S_{n-1} = S_n$, a trivial case. This explains the inequalities appearing in the above statement of Theorem 1.1.

Preliminaries are to be exposed in Section 2, while Section 3 will contain the results that lead to the proof of Theorem 1.1.

2. ODC of K_{n,n} by symmetric starters

All graphs here are finite, simple and undirected. For all integers $n \ge 2$, we will denote by P_n the path of length n-1 and by S_n the *n*-star (that is, the complete bipartite graph $K_{1,n}$). Moreover, K_1 is the graph consisting of only one vertex.

Let $\Gamma = \{\gamma_0, ..., \gamma_{n-1}\}$ be an (additive) abelian group of order *n*. The vertices of $K_{n,n}$ will be labeled by the elements of $\Gamma \times \mathbb{Z}_2$. Namely, for $(v,i) \in \Gamma \times \mathbb{Z}_2$ we will write v_i for the corresponding vertex and define $\{w_i, u_j\} \in E(K_{n,n})$ if and only if $i \neq j$, for all $w, u \in \Gamma$ and $i, j \in \mathbb{Z}_2$.

Let G be a spanning subgraph of $K_{n,n}$ and let $a \in \Gamma$. Then the graph G with $E(G+a) = \{(u+a,v+a): (u,v) \in E(G)\}$ is called the *a-translate* of G. The length of an edge $e = (u,v) \in E(G)$ is defined by d(e) = v - u. As an example, Figure 2 shows the edges of $G_{0,n}$ labeled by their lengths.

G is called a half starter with respect to Γ if |E(G)| = n and the lengths of all edges in *G* are pairwise mutually different, i.e. $\{d(e) : e \in E(G)\} = \Gamma$. The following three results were established in [1].

Figure 2: *ODC* of $K_{3,3}$ by $G = P_4$ with $\Gamma = \mathbb{Z}_3$.

Theorem 2.1. If G is a half starter, then the union of all translates of G forms an edge decomposition of $K_{n,n}$, i.e. $\bigcup_{a \in \Gamma} E(G+a) = E(K_{n,n})$.

Here, the half starter will be represented by the vector: $v(G) = (v_{\gamma_0}, v_{\gamma_1}, ..., v_{\gamma_{n-1}})$. Where $v_{\gamma_i} \in \Gamma$ and $(v_{\gamma_i})_0$ is the unique vertex $((v_{\gamma_i}, 0) \in \Gamma \times \{0\})$ that belongs to the unique edge of length γ_i . For example, in Figure 2 the graph G_{0_0} is a half starter with respect to \mathbb{Z}_3 represented by (0,1,1) (e.g. $\{1_0,2_1\}$ is the unique edge of length 1, thus $v_1 = 1$).

Two half starter vectors $v(G_0)$ and $v(G_1)$ are said to be orthogonal if $\{v_{\gamma}(G_0) - v_{\gamma}(G_1) : \gamma \in \Gamma\} = \Gamma$.

Theorem 2.2. If two half starters $v(G_0)$ and $v(G_1)$ are orthogonal, then $G = \{G_{a,i} : (a,i) \in \Gamma \times \mathbb{Z}_2\}$ with $G_{a,i} = G_i + a$ is an ODC of $K_{n,n}$.

The subgraph G_s of $K_{n,n}$ with $E(G_s) = \{\{u_0, v_1\} : \{v_0, u_1\} \in E(G)\}$ is called the symmetric graph of G. Note that if G is a half starter, then G_s is also a half starter.

A half starter G is called a symmetric starter with respect Γ if v(G) and $v(G_s)$ are orthogonal.

Theorem 2.3. Let *n* be a positive integer and let *G* be a half starter represented by $v(G) = (v_{\gamma_0}, v_{\gamma_1}, ..., v_{\gamma_{n-1}})$. Then *G* is symmetric starter if and only if

$$\{v_{\gamma} - v_{-\gamma} + \gamma : \gamma \in \Gamma\} = \Gamma.$$

3. The main results

In view of Section 2, all we need is to find suitable symmetric starters for the cases under studyEach of these will be dealt with in a lemma.

Lemma 3.1. For all integers $n \ge 5$ the vector v(G) = (0, 2, 0, 2, 2, 2, ..., 2, 2, 2, 4, 4) is a symmetric starter of \mathbb{Z}_n , isomorphic to $(P_6 \cup^{(2,0)} S_{n-5}) \cup (n-1)K_1$.

Proof. For any integer $i \in \mathbb{Z}_n$, we can define the vector v(G) = (0, 2, 0, 2, 2, 2, ..., 2, 2, 2, 4, 4) as follows.

$$v_i(G) = \begin{cases} 0 & i = 0, 2, \text{ or} \\ 4 & i = n-2, n-1, \text{ or} \\ 2 & \text{ otherwise.} \end{cases}$$

Therefore we find

$$v_{-i}(G) = \begin{cases} 0 & i = 0, n-2, \text{ or} \\ 4 & i = 1, 2, \text{ or} \\ 2 & \text{ otherwise.} \end{cases}$$

Then we have

$$v_i(G) - v_{-i}(G) + i = \begin{cases} 0 & i = 0, \text{ or} \\ n-1 & i = 1, \text{ or} \\ n-2 & i = 2, \text{ or} \\ 1 & i = n-1, \text{ or} \\ 2 & i = n-2, \text{ or} \\ i & \text{ otherwise.} \end{cases}$$

It is easily checked that $\{v_i(G) - v_{-i}(G) + i : i \in \mathbb{Z}_n\} = \mathbb{Z}_n$, hence it is a symmetric starter by Theorem 2.3. \Box

Figure 3: A symmetric starter of \mathbb{Z}_n for an ODC of $K_{n,n}$ by $(P_6 \cup^{(2,0)} S_{n-5}) \cup (n-1)K_1$.

From Figure 3, and for $i \in \mathbb{Z}_n$, the i^{th} graph isomorphic to the symmetric starter $(P_6 \cup^{(2,0)} S_{n-5}) \cup (n-1)K_1$ has the edges:

$$E(G_i) = \{i_1, i_0, (i+2)_1, (i+4)_0, (i+3)_1, (i+2)_0\} \cup \{\{(i+2)_0, (i+j)_1\} : 5 \le j \le n-1\}$$

Lemma 3.2. For all integers $n \ge 6$ the vector v(G) = (2, n-1, 0, n-4, n-5, n-6, ..., 6, 5, 4, 3, 2, 0, n-1) is a symmetric starter of \mathbb{Z}_n isomorphic to $(P_7 \cup^{(n-1,1)} S_{n-6}) \cup (n-1)K_1$.

Proof. For any integer $i \in \mathbb{Z}_n$, we can define the vector

$$v(G) = (2, n-1, 0, n-4, n-5, n-6, \dots, 6, 5, 4, 3, 2, 0, n-1)$$
 as follows.

$$v_i(G) = \begin{cases} 2 & i = 0, \text{ or} \\ n-1 & i = 1, n-1, \text{ or} \\ 0 & i = 2, n-2, \text{ or} \\ n-i-1 & \text{ otherwise.} \end{cases}$$

Therefore we find

$$v_{-i}(G) = \begin{cases} 2 & i = 0, \text{ or} \\ n-1 & i = 1, n-1, \text{ or} \\ 0 & i = 2, n-2, \text{ or} \\ i-1 & \text{ otherwise.} \end{cases}$$

Then we have

$$v_i(G) - v_{-i}(G) + i = \begin{cases} 0 & i = 0, \text{ or} \\ i & i = 1, 2, n-2, n-1, \text{ or} \\ -i & \text{otherwise.} \end{cases}$$

It is easily checked that $\{v_i(G) - v_{-i}(G) + i : i \in \mathbb{Z}_n\} = \mathbb{Z}_n$, hence it is a symmetric starter by Theorem 2.3.

Figure 4: A symmetric starter of \mathbb{Z}_n for an ODC of $K_{n,n}$ by $(P_7 \cup^{(n-1,1)} S_{n-6}) \cup (n-1)K_1$

From Figure 4, and for all $i \in \mathbb{Z}_n$, the i^{th} graph isomorphic to the symmetric starter $(P_7 \cup^{(n-1,1)} S_{n-6}) \cup (n-1)K_1$ has the edges:

$$E(G) = \{i_{1,}(i+n-1)_{0}, (i+n-2)_{1}, i_{0}, (i+2)_{1}, (i+2)_{0}, (i+n-1)_{1}\} \cup \{\{(i+j)_{0}, (i+n-1)_{1}\} : 3 \le j \le n-4\}.$$

Lemma 3.3. For all integers $n \ge 7$ the vector v(G) = (0,1,2,0,2,2,2,...,2,2,2,6,6,1)is a symmetric starter of \mathbb{Z}_n isomorphic to $(P_8 \cup^{(2,0)} S_{n-7}) \cup (n-1)K_1$.

Proof. For any integer $i \in \mathbb{Z}_n$, we can define the vector

v(G) = (0,1,2,0,2,2,2,...,2,2,2,6,6,1) as follows.

$$v_i(G) = \begin{cases} 0 & i = 0, 3, \text{ or} \\ 1 & i = 1, n-1, \text{ or} \\ 6 & i = n-3, n-2, \text{ or} \\ 2 & \text{otherwise.} \end{cases}$$

Therefore we find

$$v_{-i}(G) = \begin{cases} 0 & i = 0, n - 3, \text{ or} \\ 1 & i = 1, n - 1, \text{ or} \\ 6 & i = 2, 3, \text{ or} \\ 2 & \text{ otherwise.} \end{cases}$$

Then we have

$$v_i(G) - v_{-i}(G) + i = \begin{cases} -i & i = 2, 3, n-2, n-3, \text{ or} \\ i & \text{otherwise.} \end{cases}$$

It is easily checked that $\{v_i(G) - v_{-i}(G) + i : i \in \mathbb{Z}_n\} = \mathbb{Z}_n$ hence it is a symmetric starter by Theorem 2.3. \Box

Figure 5: A symmetric starter of \mathbb{Z}_n for an ODC of $K_{n,n}$ by $(P_8 \cup^{(2,0)} S_{n-7}) \cup (n-1)K_1$.

From Figure 5, and for all $i \in \mathbb{Z}_n$, the i^{th} graph isomorphic to the symmetric starter $(P_8 \cup^{(2,0)} S_{n-7}) \cup (n-1)K_1$ has the edges:

$$E(G) = \{(i+2)_{1,}(i+1)_{0}, i_{1}, i_{0}, (i+3)_{1}, (i+6)_{0}, (i+4)_{1}, (i+2)_{0}\} \cup \{\{(i+2)_{0}, (i+j)_{1}\} : 6 \le j \le n-2\}.$$

Lemma 3.4. For all integers $n \ge 8$ the vector v(G) = (0,4,0,3,2,2,2,2,...,2,2,2,3,4,6) is a symmetric starter of \mathbb{Z}_n isomorphic to $(P_9 \cup^{(2,0)} S_{n-8}) \cup (n-1)K_1$.

Proof. For any integer $i \in \mathbb{Z}_n$, we can define the vector

v(G) = (0,4,0,3,2,2,2,2,...,2,2,2,3,4,6) as follows.

$$v_i(G) = \begin{cases} 0 & i = 0, 2, \text{ or} \\ 4 & i = 1, n-2, \text{ or} \\ 3 & i = 3, n-3, \text{ or} \\ 6 & i = n-1, \text{ or} \\ 2 & \text{ otherwise.} \end{cases}$$

Therefore we find

$$v_{-i}(G) = \begin{cases} 0 & i = 0, n-2, \text{ or} \\ 4 & i = 2, n-1, \text{ or} \\ 3 & i = 3, n-3, \text{ or} \\ 6 & i = 1, \text{ or} \\ 2 & \text{ otherwise.} \end{cases}$$

Then we have

$$v_i(G) - v_{-i}(G) + i = \begin{cases} -i & i = 1, 2, n-2, n-1, \text{ or} \\ i & \text{otherwise.} \end{cases}$$

It is easily checked that $\{v_i(G) - v_{-i}(G) + i : i \in \mathbb{Z}_n\} = \mathbb{Z}_n$ hence it is a symmetric starter by Theorem 2.3. \Box

Figure 6: A symmetric starter of \mathbb{Z}_n for an ODC of $K_{n,n}$ by $(P_9 \cup^{(2,0)} S_{n-8}) \cup (n-1)K_1$.

From Figure 6, and for all $i \in \mathbb{Z}_n$, the i^{th} graph isomorphic to the symmetric starter $(P_9 \cup^{(2,0)} S_{n-8}) \cup (n-1)K_1$ has the edges:

$$E(G) = \{(i+6)_{0}, (i+5)_{1}, (i+4)_{0}, (i+2)_{1}, i_{0}, i_{1}, (i+3)_{0}, (i+6)_{1}, (i+2)_{0}\} \cup \{\{(i+2)_{0}, (i+j)_{1}\} : 7 \le j \le n-2\}.$$

Lemma 3.5. For all integers $n \ge 9$ the vector v(G) = (0,1,4,2,0,2,2,2,...,2,2,2,8,8,4,1) is a symmetric starter of \mathbb{Z}_n isomorphic to $(P_{10} \cup^{(2,0)} S_{n-9}) \cup (n-1)K_1$.

Proof. For any integer $i \in \mathbb{Z}_n$, we can define the vector

v(G) = (0,1,4,2,0,2,2,2,...,2,2,2,8,8,4,1) as follows.

$$v_i(G) = \begin{cases} 0 & i = 0, 4, \text{ or} \\ 1 & i = 1, n-1, \text{ or} \\ 4 & i = 2, n-2, \text{ or} \\ 8 & i = n-3, n-4, \text{ or} \\ 2 & \text{ otherwise.} \end{cases}$$

Therefore we find

$$v_{-i}(G) = \begin{cases} 0 & i = 0, n - 4, \text{ or} \\ 1 & i = 1, n - 1, \text{ or} \\ 4 & i = 2, n - 2, \text{ or} \\ 8 & i = 3, 4, \text{ or} \\ 2 & \text{ otherwise.} \end{cases}$$

Then we have

$$v_i(G) - v_{-i}(G) + i = \begin{cases} -i & i = 3, 4, n - 3, n - 4, \text{ or} \\ i & \text{otherwise.} \end{cases}$$

It is easily checked that $\{v_i(G) - v_{-i}(G) + i : i \in \mathbb{Z}_n\} = \mathbb{Z}_n$ hence it is a symmetric starter by Theorem 2.3. \Box

Figure 7: A symmetric starter of \mathbb{Z}_n for an ODC of $K_{n,n}$ by $(P_{10} \cup^{(2,0)} S_{n-9}) \cup (n-1)K_1$.

From Figure 7, and for all $i \in \mathbb{Z}_n$, the i^{th} graph isomorphic to the symmetric starter $(P_{10} \cup^{(2,0)} S_{n-9}) \cup (n-1)K_1$ has the edges:

$$E(G) = \{(i+6)_{1,}(i+4)_{0}, (i+2)_{1,}(i+1)_{0}, i_{1}, i_{0}, (i+4)_{1}, (i+8)_{0}, (i+5)_{1}, (i+2)_{0}\} \cup \{\{(i+2)_{0}, (i+j)_{1}\} : 7 \le j \le n-3\}.$$

Lemma 3.6. For all integers $n \ge 10$ the vector v(G) = (0,1,4,5,0,3,3,3,3,3,3,3,3,8,5,8,1) is a symmetric starter of \mathbb{Z}_n isomorphic to $(P_{11} \cup^{(3,0)} S_{n-10}) \cup (n-1)K_1$.

Proof. For any integer $i \in \mathbb{Z}_n$, we can define the vector

v(G) = (0,1,4,5,0,3,3,3,3,...,3,3,3,3,3,8,5,8,1) as follows.

$$v_i(G) = \begin{cases} 0 & i = 0, 4, \text{ or} \\ 1 & i = 1, n - 1, \text{ or} \\ 4 & i = 2, \text{ or} \\ 5 & i = 3, n - 3, \text{ or} \\ 8 & i = n - 2, n - 4, \text{ or} \\ 3 & \text{ otherwise.} \end{cases}$$

Therefore we find

$$v_{-i}(G) = \begin{cases} 0 & i = 0, n - 4, \text{ or} \\ 1 & i = 1, n - 1, \text{ or} \\ 4 & i = n - 2, \text{ or} \\ 5 & i = 3, n - 3, \text{ or} \\ 8 & i = 2, 4, \text{ or} \\ 3 & \text{ otherwise.} \end{cases}$$

Then we have

$$v_i(G) - v_{-i}(G) + i = \begin{cases} -i & i = 2, 4, n-2, n-4, \text{ or} \\ i & \text{otherwise.} \end{cases}$$

It is easily checked that $\{v_i(G) - v_{-i}(G) + i : i \in \mathbb{Z}_n\} = \mathbb{Z}_n$ hence it is a symmetric starter by Theorem 2.3. \Box

From Figure 8, and for all $i \in \Gamma$, the i^{th} graph isomorphic to the symmetric starter $(P_{11} \cup^{(3,0)} S_{n-10}) \cup (n-1)K_1$ has the edges: $E(G) = \{(i+4)_{0}, (i+6)_1, (i+8)_0, (i+4)_1, i_0, i_1, (i+1)_0, (i+2)_1, (i+5)_0, (i+8)_1, (i+3)_0\} \cup \{(i+3)_0, (i+j)_1\} : 9 \le j \le n-2\}.$

Figure 8: A symmetric starter of \mathbb{Z}_n for an ODC of $K_{n,n}$ by $(P_{11} \cup^{(3,0)} S_{n-10}) \cup (n-1)K_1$

Proof of Theorem 1.1. For $m \le 4$ the statement was already proved in [3]. For each $m \ge 5$, Lemmas 3.1 to 3.5 provide a symmetric starter of \mathbb{Z}_n with the appropriate graph *G*. In view of Theorem 2.2, the translates of *G* form an ODC of $K_{n,n}$.

Note that ODCs for cases n = 5 and n = 6 were found already in [3], but not via symmetric starters.

References

- R. El-Shanawany, H.-D.O.F. Gronau, and Martin Grüttmüller. Orthogonal double covers of K_{nn} by small graphs, Discrete Appl. Math., 138 (2004) 47-63.
- [2] R. El-Shanawany, Orthogonal double covers of complete bipartite graphs, Ph.D. Thesis, Universtät Rostock, 2002.
- [3] R. El-Shanawany, M. Sh. Higazy, Orthogonal double covers of complete bipartite graphs by certain graphs, Sci. Bull. Fac. Eng. Ain Shams Univ., 40 (March 31, 2005) No. 1.
- [4] B. Ganter, H.-D.O.F. Gronau, R. C. Mullin, On orthogonal double covers of K_n, Ars Combin., 37 (1994) 209-221.
- [5] H.-D.O.F. Gronau, S. Hartmann, M. Grüttmüller, U. Leck, V. Leck, On orthogonal double covers of graphs, Des. Codes Cryptogr., 27 (2002) 49-91.
- [6] H.-D.O.F. Gronau, R.C. Mullin, A. Rosa, Orthogonal double covers of complete graphs by trees, Graphs Combin., 13 (1997) 251 262.
- [7] S. Hartmann, U. Schumacher, Orthogonal double covers of general graphs, Discrete Appl. Math., 138 (2004) 107-116.
- [8] S. Hartmann, U. Leck, V. Leck, A conjecture on orthogonal double covers by paths, Congr. Numer., 140 (1999) 187-193.
- [9] U. Leck, V. Leck, Orthogonal double covers of complete graphs by trees of small diameter, Discrete Appl. Math., 95 (1999) 377-388.
- [10] V. Leck, Orthogonal Double Covers Of K_n , Ph.D. Thesis, Universtät Rostock, 2000.