Orthogonal Double Covers of Complete Bipartite Graphs by Symmetric Starters

by
R. A. El-Shanawany ${ }^{\text {a }}$, M. Sh. Higazy ${ }^{\text {a }}$, R. Scapellato ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Physics and Engineering Mathematics, Faculty Of Electronic Engineering, Minufiya University, Minuf, Egypt.
${ }^{\mathrm{b}}$ Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.

Abstract

Let H be a graph on n vertices and \mathcal{G} a collection of n subgraphs of H, one for each vertex. Then \mathcal{G} is an orthogonal double cover (ODC) of H if every edge of H occurs in exactly two members of \mathcal{G} and any two members of \mathcal{G} share exactly an edge whenever the corresponding vertices are adjacent in H. If all subgraphs in \mathcal{G} are isomorphic to a given graph G, then \mathcal{G} is said to be an ODC of H by G.

We construct the $O D C$ s of $H=K_{n, n}$ by $G=P_{m+1} \cup^{v} S_{n-m} \quad$ (union of a path P_{m+1}, and a star S_{n-m} where the center v of the star is a one of the path ends, $m=5,6,7,8,9,10)$. In all cases, G is a symmetric starter of the cyclic group of order n.

Keywords: Orthogonal double cover; ODC; Graph decompositions; Symmetric starter.
AMS Subject Classification: 05C70, 05B30

1. Introduction

An orthogonal double cover (ODC) of the complete graph K_{n} is a collection \mathcal{G} of n spanning subgraphs (called pages) such that
(i) every edge of K_{n} is an edge in exactly two of the pages,
(ii) any two pages share exactly one edge.

If all pages in \mathcal{G} are isomorphic to a given graph G then \mathcal{G} is said to be an ODC of K_{n} by G.

There is an extensive literature on $O D C s$ of K_{n} by G, see e.g. [2,4,6,8,9,10]. A survey on the topic is given in [5] .

Recently, this concept has been generalized replacing K_{n} by an arbitrary graph H as follows. Let H be an arbitrary graph with n vertices and let $\mathcal{G}=\left\{G_{0}, \ldots, G_{n-1}\right\}$ be a collection of n spanning subgraphs of H (called pages). \mathcal{G} is called an ODC of H if there exists a bijective mapping $\varphi: V(H) \rightarrow \mathcal{G}$ such that:
(i) every edge of H is contained in exactly two of the graphs G_{0}, \ldots, G_{n-1}.
(ii) for every choice of different vertices a, b of H,

$$
|E(\varphi(a)) \cap E(\varphi(b))|= \begin{cases}1 & \text { if }\{a, b\} \in E(H), \text { or } \\ 0 & \text { otherwise } .\end{cases}
$$

If all pages in \mathcal{G} are isomorphic to a given graph G, then \mathcal{G} is said to be an ODC of H by G. Note that in this case H is necessarily a regular graph of degree $|E(G)|$. Moreover, if H is not complete, G must be disconnected.

While in principle any regular graph H is worth considering (e.g., the remarkable case of hypercubes has been investigated in [7]), the choice of $H=K_{n, n}$ is quite natural, also in view of a technical motivation: ODCs in such graphs are of help in order to construct ODCs of K_{n} (see [1], p. 48).

An algebraic construction of ODCs via "symmetric starters" (see Section 2) has been exploited to get a complete classification of ODCs of $K_{n, n}$ by G for $n \leq 9$: a few exceptions apart, all graphs G are found this way (see [1], Table 1). This method has been applied in both [3] and [1] to detect some infinite classes of graphs G for which there is an ODC of $K_{n, n}$ by G.

In particular, let G be the graph $\left(P_{m+1} \cup^{v} S_{n-m}\right) \cup(n-1) K_{1}$, where \cup^{v} denotes the union of a path of length m and a $(n-m)$-star, attached by a vertex v that is both an end-vertex of P_{m+1} and the center of S_{n-m}, as shown in Figure 1.

For all m and n such that $2 \leq m \leq 6$ and $m \leq n$ it was established in [3] that there is an ODC of $K_{n, n}$ by G as described above.

Our goal here is to improve this result, by showing that the same is true for $2 \leq m \leq 10$ and $m \leq n$. Namely, we shall prove the following.

Theorem 1.1. Let n and m be integers such that $2 \leq m \leq 10$ and $m \leq n$. Then there is an $O D C$ of $K_{n, n}$ by $G=\left(P_{m+1} \cup^{v} S_{n-m}\right) \cup(n-1) K_{1}$.

Figure 1: The graph $P_{4} \cup^{v} S_{4}$.

Clearly, the above G is a subgraph of $K_{n, n}$ if and only if $m \leq n$. Besides, for $m=1$ we have $P_{2} \cup^{v} S_{n-1}=S_{n}$, a trivial case. This explains the inequalities appearing in the above statement of Theorem 1.1.

Preliminaries are to be exposed in Section 2, while Section 3 will contain the results that lead to the proof of Theorem 1.1.

2. ODC of $K_{n, n}$ by symmetric starters

All graphs here are finite, simple and undirected. For all integers $n \geq 2$, we will denote by P_{n} the path of length $n-1$ and by S_{n} the n-star (that is, the complete bipartite graph $K_{1, n}$). Moreover, K_{1} is the graph consisting of only one vertex.

Let $\Gamma=\left\{\gamma_{0}, \ldots, \gamma_{n-1}\right\}$ be an (additive) abelian group of order n. The vertices of $K_{n, n}$ will be labeled by the elements of $\Gamma \times \mathbb{Z}_{2}$. Namely, for $(v, i) \in \Gamma \times \mathbb{Z}_{2}$ we will write v_{i} for the corresponding vertex and define $\left\{w_{i}, u_{j}\right\} \in E\left(K_{n, n}\right)$ if and only if $i \neq j$, for all $w, u \in \Gamma$ and $i, j \in \mathbb{Z}_{2}$.

Let G be a spanning subgraph of $K_{n, n}$ and let $a \in \Gamma$. Then the graph G with $E(G+a)=\{(u+a, v+a):(u, v) \in E(G)\}$ is called the a-translate of G. The length of an edge $e=(u, v) \in E(G)$ is defined by $d(e)=v-u$. As an example, Figure 2 shows the edges of $G_{0_{0}}$ labeled by their lengths.
G is called a half starter with respect to Γ if $|E(G)|=n$ and the lengths of all edges in G are pairwise mutually different, i.e. $\{d(e): e \in E(G)\}=\Gamma$. The following three results were established in [1].

Figure 2: $O D C$ of $K_{3,3}$ by $G=P_{4}$ with $\Gamma=\mathbb{Z}_{3}$.

Theorem 2.1. If G is a half starter, then the union of all translates of G forms an edge decomposition of $K_{n, n}$, i.e. $\bigcup_{a \in \Gamma} E(G+a)=E\left(K_{n, n}\right)$.

Here, the half starter will be represented by the vector: $v(G)=\left(v_{\gamma_{0}}, v_{\gamma_{1}}, \ldots, v_{\gamma_{n-1}}\right)$. Where $v_{\gamma_{i}} \in \Gamma$ and $\left(v_{\gamma_{i}}\right)_{0}$ is the unique vertex $\left(\left(v_{\gamma_{i}}, 0\right) \in \Gamma \times\{0\}\right)$ that belongs to the unique edge of length γ_{i}. For example, in Figure 2 the graph $G_{0_{0}}$ is a half starter with respect to \mathbb{Z}_{3} represented by $(0,1,1)$ (e.g. $\left\{1_{0}, 2_{1}\right\}$ is the unique edge of length 1 , thus $v_{1}=1$).

Two half starter vectors $v\left(G_{0}\right)$ and $v\left(G_{1}\right)$ are said to be orthogonal if $\left\{v_{\gamma}\left(G_{0}\right)-v_{\gamma}\left(G_{1}\right): \gamma \in \Gamma\right\}=\Gamma$.

Theorem 2.2. If two half starters $v\left(G_{0}\right)$ and $v\left(G_{1}\right)$ are orthogonal, then $G=\left\{G_{a, i}:(a, i) \in \Gamma \times \mathbb{Z}_{2}\right\}$ with $G_{a, i}=G_{i}+a$ is an $O D C$ of $K_{n, n}$.

The subgraph G_{s} of $K_{n, n}$ with $E\left(G_{s}\right)=\left\{\left\{u_{0}, v_{1}\right\}:\left\{v_{0}, u_{1}\right\} \in E(G)\right\}$ is called the symmetric graph of G. Note that if G is a half starter, then G_{s} is also a half starter .

A half starter G is called a symmetric starter with respect Γ if $v(G)$ and $v\left(G_{s}\right)$ are orthogonal.

Theorem 2.3. Let n be a positive integer and let G be a half starter represented by $v(G)=\left(v_{\gamma_{0}}, v_{\gamma_{1}}, \ldots, v_{\gamma_{n-1}}\right)$. Then G is symmetric starter if and only if

$$
\left\{v_{\gamma}-v_{-\gamma}+\gamma: \gamma \in \Gamma\right\}=\Gamma .
$$

3. The main results

In view of Section 2, all we need is to find suitable symmetric starters for the cases under studyEach of these will be dealt with in a lemma.

Lemma 3.1. For all integers $n \geq 5$ the vector $v(G)=(0,2,0,2,2,2, \ldots, 2,2,2,4,4)$ is a symmetric starter of \mathbb{Z}_{n}, isomorphic to $\left(P_{6} \cup^{(2,0)} S_{n-5}\right) \cup(n-1) K_{1}$.

Proof. For any integer $i \in \mathbb{Z}_{n}$, we can define the vector $v(G)=(0,2,0,2,2,2, \ldots, 2,2,2,4,4)$ as follows.

$$
v_{i}(G)= \begin{cases}0 & i=0,2, \text { or } \\ 4 & i=n-2, n-1, \text { or } \\ 2 & \text { otherwise }\end{cases}
$$

Therefore we find

$$
v_{-i}(G)= \begin{cases}0 & i=0, n-2, \text { or } \\ 4 & i=1,2, \text { or } \\ 2 & \text { otherwise }\end{cases}
$$

Then we have

$$
v_{i}(G)-v_{-i}(G)+i= \begin{cases}0 & i=0, \text { or } \\ n-1 & i=1, \text { or } \\ n-2 & i=2, \text { or } \\ 1 & i=n-1, \text { or } \\ 2 & i=n-2, \text { or } \\ i & \text { otherwise. }\end{cases}
$$

It is easily checked that $\left\{v_{i}(G)-v_{-i}(G)+i: i \in \mathbb{Z}_{n}\right\}=\mathbb{Z}_{n}$, hence it is a symmetric starter by Theorem 2.3.

Figure 3: A symmetric starter of \mathbb{Z}_{n} for an ODC of $K_{n, n}$ by $\left(P_{6} \cup^{(2,0)} S_{n-5}\right) \cup(n-1) K_{1}$.

From Figure 3, and for $i \in \mathbb{Z}_{n}$, the $i^{\text {th }}$ graph isomorphic to the symmetric starter $\left(P_{6} \cup^{(2,0)} S_{n-5}\right) \cup(n-1) K_{1}$ has the edges:

$$
E\left(G_{i}\right)=\left\{i_{1}, i_{0},(i+2)_{1},(i+4)_{0},(i+3)_{1},(i+2)_{0}\right\} \cup\left\{\left\{(i+2)_{0},(i+j)_{1}\right\}: 5 \leq j \leq n-1\right\} .
$$

Lemma 3.2. For all integers $n \geq 6$ the vector
$v(G)=(2, n-1,0, n-4, n-5, n-6, \ldots, 6,5,4,3,2,0, n-1)$ is a symmetric starter of \mathbb{Z}_{n} isomorphic to $\left(P_{7} \cup^{(n-1,1)} S_{n-6}\right) \cup(n-1) K_{1}$.

Proof. For any integer $i \in \mathbb{Z}_{n}$, we can define the vector

$$
v(G)=(2, n-1,0, n-4, n-5, n-6, \ldots, 6,5,4,3,2,0, n-1) \text { as follows. }
$$

$$
v_{i}(G)= \begin{cases}2 & i=0, \text { or } \\ n-1 & i=1, n-1, \text { or } \\ 0 & i=2, n-2, \text { or } \\ n-i-1 & \text { otherwise } .\end{cases}
$$

Therefore we find

$$
v_{-i}(G)= \begin{cases}2 & i=0, \text { or } \\ n-1 & i=1, n-1, \text { or } \\ 0 & i=2, n-2, \text { or } \\ i-1 & \text { otherwise }\end{cases}
$$

Then we have

$$
v_{i}(G)-v_{-i}(G)+i= \begin{cases}0 & i=0, \text { or } \\ i & i=1,2, n-2, n-1, \text { or } \\ -i & \text { otherwise }\end{cases}
$$

It is easily checked that $\left\{v_{i}(G)-v_{-i}(G)+i: i \in \mathbb{Z}_{n}\right\}=\mathbb{Z}_{n}$, hence it is a symmetric starter by Theorem 2.3.

Figure 4: A symmetric starter of \mathbb{Z}_{n} for an ODC of $K_{n, n}$ by $\left(P_{7} \cup^{(n-1,1)} S_{n-6}\right) \cup(n-1) K_{1}$

From Figure 4, and for all $i \in \mathbb{Z}_{n}$, the $i^{\text {th }}$ graph isomorphic to the symmetric starter $\left(P_{7} \cup^{(n-1,1)} S_{n-6}\right) \cup(n-1) K_{1}$ has the edges:

$$
\begin{aligned}
E(G)= & \left\{i_{1},(i+n-1)_{0},(i+n-2)_{1}, i_{0},(i+2)_{1},(i+2)_{0},(i+n-1)_{1}\right\} \cup \\
& \left\{\left\{(i+j)_{0},(i+n-1)_{1}\right\}: 3 \leq j \leq n-4\right\} .
\end{aligned}
$$

Lemma 3.3. For all integers $n \geq 7$ the vector $v(G)=(0,1,2,0,2,2,2, \ldots, 2,2,2,6,6,1)$ is a symmetric starter of \mathbb{Z}_{n} isomorphic to $\left(P_{8} \cup^{(2,0)} S_{n-7}\right) \cup(n-1) K_{1}$.

Proof. For any integer $i \in \mathbb{Z}_{n}$, we can define the vector $v(G)=(0,1,2,0,2,2,2, \ldots, 2,2,2,6,6,1)$ as follows.

$$
v_{i}(G)= \begin{cases}0 & i=0,3, \text { or } \\ 1 & i=1, n-1, \text { or } \\ 6 & i=n-3, n-2, \text { or } \\ 2 & \text { otherwise }\end{cases}
$$

Therefore we find

$$
v_{-i}(G)= \begin{cases}0 & i=0, n-3, \text { or } \\ 1 & i=1, n-1, \text { or } \\ 6 & i=2,3, \text { or } \\ 2 & \text { otherwise }\end{cases}
$$

Then we have

$$
v_{i}(G)-v_{-i}(G)+i= \begin{cases}-i & i=2,3, n-2, n-3, \text { or } \\ i & \text { otherwise. }\end{cases}
$$

It is easily checked that $\left\{v_{i}(G)-v_{-i}(G)+i: i \in \mathbb{Z}_{n}\right\}=\mathbb{Z}_{n}$ hence it is a symmetric starter by Theorem 2.3.

Figure 5: A symmetric starter of \mathbb{Z}_{n} for an ODC of $K_{n, n}$ by $\left(P_{8} \cup^{(2,0)} S_{n-7}\right) \cup(n-1) K_{1}$.

From Figure 5, and for all $i \in \mathbb{Z}_{n}$, the $i^{\text {th }}$ graph isomorphic to the symmetric starter $\left(P_{8} \cup^{(2,0)} S_{n-7}\right) \cup(n-1) K_{1}$ has the edges:

$$
\begin{aligned}
E(G)= & \left\{(i+2)_{1,}(i+1)_{0}, i_{1}, i_{0},(i+3)_{1},(i+6)_{0},(i+4)_{1},(i+2)_{0}\right\} \cup \\
& \left\{\left\{(i+2)_{0},(i+j)_{1}\right\}: 6 \leq j \leq n-2\right\} .
\end{aligned}
$$

Lemma 3.4. For all integers $n \geq 8$ the vector
$v(G)=(0,4,0,3,2,2,2,2, \ldots, 2,2,2,3,4,6)$ is a symmetric starter of \mathbb{Z}_{n} isomorphic to $\left(P_{9} \cup^{(2,0)} S_{n-8}\right) \cup(n-1) K_{1}$.

Proof. For any integer $i \in \mathbb{Z}_{n}$, we can define the vector $v(G)=(0,4,0,3,2,2,2,2, \ldots, 2,2,2,3,4,6)$ as follows.

$$
v_{i}(G)= \begin{cases}0 & i=0,2, \text { or } \\ 4 & i=1, n-2, \text { or } \\ 3 & i=3, n-3, \text { or } \\ 6 & i=n-1, \text { or } \\ 2 & \text { otherwise }\end{cases}
$$

Therefore we find

$$
v_{-i}(G)= \begin{cases}0 & i=0, n-2, \text { or } \\ 4 & i=2, n-1, \text { or } \\ 3 & i=3, n-3, \text { or } \\ 6 & i=1, \text { or } \\ 2 & \text { otherwise }\end{cases}
$$

Then we have

$$
v_{i}(G)-v_{-i}(G)+i= \begin{cases}-i & i=1,2, n-2, n-1, \text { or } \\ i & \text { otherwise }\end{cases}
$$

It is easily checked that $\left\{v_{i}(G)-v_{-i}(G)+i: i \in \mathbb{Z}_{n}\right\}=\mathbb{Z}_{n}$ hence it is a symmetric starter by Theorem 2.3.

Figure 6: A symmetric starter of \mathbb{Z}_{n} for an ODC of $K_{n, n}$ by $\left(P_{9} \cup^{(2,0)} S_{n-8}\right) \cup(n-1) K_{1}$.

From Figure 6, and for all $i \in \mathbb{Z}_{n}$, the $i^{\text {th }}$ graph isomorphic to the symmetric starter $\left(P_{9} \cup^{(2,0)} S_{n-8}\right) \cup(n-1) K_{1}$ has the edges:

$$
\begin{aligned}
E(G)= & \left\{(i+6)_{0,}(i+5)_{1},(i+4)_{0},(i+2)_{1}, i_{0}, i_{1},(i+3)_{0},(i+6)_{1},(i+2)_{0}\right\} \cup \\
& \left\{\left\{(i+2)_{0},(i+j)_{1}\right\}: 7 \leq j \leq n-2\right\} .
\end{aligned}
$$

Lemma 3.5. For all integers $n \geq 9$ the vector
$v(G)=(0,1,4,2,0,2,2,2, \ldots, 2,2,2,8,8,4,1)$ is a symmetric starter of \mathbb{Z}_{n} isomorphic to $\left(P_{10} \cup^{(2,0)} S_{n-9}\right) \cup(n-1) K_{1}$.

Proof. For any integer $i \in \mathbb{Z}_{n}$, we can define the vector $v(G)=(0,1,4,2,0,2,2,2, \ldots, 2,2,2,8,8,4,1)$ as follows.

$$
v_{i}(G)= \begin{cases}0 & i=0,4, \text { or } \\ 1 & i=1, n-1, \text { or } \\ 4 & i=2, n-2, \text { or } \\ 8 & i=n-3, n-4, \text { or } \\ 2 & \text { otherwise }\end{cases}
$$

Therefore we find

$$
v_{-i}(G)= \begin{cases}0 & i=0, n-4, \text { or } \\ 1 & i=1, n-1, \text { or } \\ 4 & i=2, n-2, \text { or } \\ 8 & i=3,4, \text { or } \\ 2 & \text { otherwise }\end{cases}
$$

Then we have

$$
v_{i}(G)-v_{-i}(G)+i= \begin{cases}-i & i=3,4, n-3, n-4, \text { or } \\ i & \text { otherwise } .\end{cases}
$$

It is easily checked that $\left\{v_{i}(G)-v_{-i}(G)+i: i \in \mathbb{Z}_{n}\right\}=\mathbb{Z}_{n}$ hence it is a symmetric starter by Theorem 2.3.

Figure 7: A symmetric starter of \mathbb{Z}_{n} for an ODC of $K_{n, n}$ by $\left(P_{10} \cup^{(2,0)} S_{n-9}\right) \cup(n-1) K_{1}$.

From Figure 7, and for all $i \in \mathbb{Z}_{n}$, the $i^{\text {th }}$ graph isomorphic to the symmetric starter $\left(P_{10} \cup^{(2,0)} S_{n-9}\right) \cup(n-1) K_{1}$ has the edges:

$$
\begin{aligned}
E(G)= & \left\{(i+6)_{1},(i+4)_{0},(i+2)_{1},(i+1)_{0}, i_{1}, i_{0},(i+4)_{1},(i+8)_{0},(i+5)_{1},(i+2)_{0}\right\} \cup \\
& \left\{\left\{(i+2)_{0},(i+j)_{1}\right\}: 7 \leq j \leq n-3\right\} .
\end{aligned}
$$

Lemma 3.6. For all integers $n \geq 10$ the vector $v(G)=(0,1,4,5,0,3,3,3,3, \ldots, 3,3,3,3,8,5,8,1)$ is a symmetric starter of \mathbb{Z}_{n} isomorphic to $\left(P_{11} \cup^{(3,0)} S_{n-10}\right) \cup(n-1) K_{1}$.

Proof. For any integer $i \in \mathbb{Z}_{n}$, we can define the vector $v(G)=(0,1,4,5,0,3,3,3,3, \ldots, 3,3,3,3,8,5,8,1)$ as follows.

$$
v_{i}(G)= \begin{cases}0 & i=0,4, \text { or } \\ 1 & i=1, n-1, \text { or } \\ 4 & i=2, \text { or } \\ 5 & i=3, n-3, \text { or } \\ 8 & i=n-2, n-4, \text { or } \\ 3 & \text { otherwise }\end{cases}
$$

Therefore we find

$$
v_{-i}(G)= \begin{cases}0 & i=0, n-4, \text { or } \\ 1 & i=1, n-1, \text { or } \\ 4 & i=n-2, \text { or } \\ 5 & i=3, n-3, \text { or } \\ 8 & i=2,4, \text { or } \\ 3 & \text { otherwise }\end{cases}
$$

Then we have

$$
v_{i}(G)-v_{-i}(G)+i= \begin{cases}-i & i=2,4, n-2, n-4, \text { or } \\ i & \text { otherwise } .\end{cases}
$$

It is easily checked that $\left\{v_{i}(G)-v_{-i}(G)+i: i \in \mathbb{Z}_{n}\right\}=\mathbb{Z}_{n}$ hence it is a symmetric starter by Theorem 2.3.

From Figure 8, and for all $i \in \Gamma$, the $i^{\text {th }}$ graph isomorphic to the symmetric starter $\left(P_{11} \cup^{(3,0)} S_{n-10}\right) \cup(n-1) K_{1}$ has the edges: $E(G)=\left\{(i+4)_{0,}(i+6)_{1},(i+8)_{0},(i+4)_{1}, i_{0}, i_{1},(i+1)_{0},(i+2)_{1},(i+5)_{0},(i+8)_{1},(i+3)_{0}\right\} \cup$ $\left\{\left\{(i+3)_{0},(i+j)_{1}\right\}: 9 \leq j \leq n-2\right\}$.

Figure 8: A symmetric starter of \mathbb{Z}_{n} for an ODC of $K_{n, n}$ by $\left(P_{11} \cup^{(3,0)} S_{n-10}\right) \cup(n-1) K_{1}$
Proof of Theorem 1.1. For $m \leq 4$ the statement was already proved in [3]. For each $m \geq 5$, Lemmas 3.1 to 3.5 provide a symmetric starter of \mathbb{Z}_{n} with the appropriate graph G. In view of Theorem 2.2, the translates of G form an ODC of $K_{n, n}$. \square

Note that ODCs for cases $n=5$ and $n=6$ were found already in [3], but not via symmetric starters.

References

[1] R. El-Shanawany, H.-D.O.F. Gronau, and Martin Grüttmüller. Orthogonal double covers of $K_{n, n}$ by small graphs, Discrete Appl. Math., 138 (2004) 47-63.
[2] R. El-Shanawany, Orthogonal double covers of complete bipartite graphs, Ph.D. Thesis, Universtät Rostock, 2002 .
[3] R. El-Shanawany, M. Sh. Higazy, Orthogonal double covers of complete bipartite graphs by certain graphs, Sci. Bull. Fac. Eng. Ain Shams Univ., 40 (March 31, 2005) No. 1.
[4] B. Ganter, H.-D.O.F. Gronau, R. C. Mullin, On orthogonal double covers of K_{n}, Ars Combin., 37 (1994) 209-221.
[5] H.-D.O.F. Gronau, S. Hartmann, M. Grüttmüller, U. Leck, V. Leck, On orthogonal double covers of graphs, Des. Codes Cryptogr., 27 (2002) 49-91.
[6] H.-D.O.F. Gronau, R.C. Mullin, A. Rosa, Orthogonal double covers of complete graphs by trees, Graphs Combin., 13 (1997) 251262.
[7] S. Hartmann, U. Schumacher, Orthogonal double covers of general graphs, Discrete Appl. Math., 138 (2004) 107-116.
[8] S. Hartmann, U. Leck, V. Leck, A conjecture on orthogonal double covers by paths, Congr. Numer., 140 (1999) 187-193.
[9] U. Leck, V. Leck, Orthogonal double covers of complete graphs by trees of small diameter, Discrete Appl. Math., 95 (1999) 377-388.
[10] V. Leck, Orthogonal Double Covers Of K_{n}, Ph.D. Thesis, Universtät Rostock, 2000.

