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Abstract

Let H  be a graph on n  vertices and G a collection of n  subgraphs of H , one for 
each vertex. Then G is an orthogonal double cover (ODC) of H  if every edge of H
occurs in exactly two members of G and any two members of G share exactly an edge 
whenever the corresponding vertices are adjacent in H . If all subgraphs in G are 
isomorphic to a given graph G , then G is said to be an ODC of H  by G .

We construct the ODCs of n,nH K=  by 1
v

m n m
G P S+ −
= ∪   (union of a path 

1mP + , and a star n mS −  where the center v  of the star is a one of the path ends, 
5 6 7 8 9 10m , , , , ,= ). In all cases, G is a symmetric starter of the cyclic group of order 

n.

Keywords: Orthogonal double cover; ODC; Graph decompositions; Symmetric 
starter. 
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1.  Introduction

An orthogonal double cover (ODC) of the complete graph nK is a collection G of 
n  spanning subgraphs (called pages) such that

(i) every edge of nK  is an edge in exactly two of the pages,

(ii) any two pages share exactly one edge.

If all pages in G are isomorphic to a given graph G  then G is said to be an ODC of 

nK by G .
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There is an extensive literature on ODCs of nK by G , see e.g. [2,4,6,8,9,10]. A 
survey on the topic is given in [5] . 

Recently, this concept has been generalized replacing nK  by an arbitrary graph 
H as follows. Let H  be an arbitrary graph with n vertices and let G 0 -1{ , , } nG G= …
be a collection of n  spanning subgraphs of H (called pages). G is called an ODC of 
H  if there exists a bijective mapping : ( )V Hϕ → G such that:

(i) every edge of H  is contained in exactly two of the graphs 0 -1, , .nG G…

(ii) for every choice of different vertices ,a b of ,H

1       { , } ( ),  or
| ( ( )) ( ())|

0     otherwise.
if a b E H

E a E bϕ ϕ
∈

∩ = 


If all pages in G are isomorphic to a given graph G , then G is said to be an ODC of H
by G . Note that in this case H  is necessarily a regular graph of degree ( )E G . 
Moreover, if H  is not complete, G must be disconnected.

While in principle any regular graph H  is worth considering (e.g., the remarkable 
case of hypercubes has been investigated in [7]), the choice of ,n nH K= is quite 
natural, also in view of a technical motivation: ODCs in such graphs are of help in 
order to construct ODCs of nK  (see [1], p. 48).

An algebraic construction of ODCs via “symmetric starters” (see Section 2) has 
been exploited to get a complete classification of ODCs of ,n nK by G for  9n ≤ : a few 
exceptions apart, all graphs G  are found this way (see  [1], Table 1). This method has 
been applied in both [3] and [1] to detect some infinite classes of graphs G  for which 
there is an ODC of ,n nK  by G .

In particular, let G  be the graph 1 1( ) ( 1)v
m n mP S n K+ −∪ ∪ − , where v∪ denotes the 

union of  a path of length  m and a ( )n m− -star, attached by a vertexv  that is both an 
end-vertex of 1mP + and the center of n mS − , as shown in Figure 1.

For all m and n  such that 2 6m≤ ≤  and m n≤  it was established in [3] that there is 
an ODC of ,n nK  by G  as described above.

Our goal here is to improve this result, by showing that the same is true for 
2 10m≤ ≤  and m n≤ . Namely, we shall prove the following.

Theorem 1.1. Let n  and m  be integers such that 2 10m≤ ≤  and m n≤ . Then there is 
an ODC of ,n nK  by 1 1( ) ( 1)v

m n mG P S n K+ −= ∪ ∪ − .
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v

Figure 1: The graph 4 4
vP S∪ .

Clearly, the above G is a subgraph of ,n nK  if and only if m n≤ . Besides, for 1m =

we have 2 1
v

n nP S S−∪ = , a trivial case. This explains the inequalities appearing in the
above statement of Theorem 1.1.

Preliminaries are to be exposed in Section 2, while Section 3 will contain the 

results that lead to the proof of Theorem 1.1.

2. ODC of ,n nK by symmetric starters

All graphs here are finite, simple and undirected. For all integers 2n ≥ , we will 
denote by nP the path of length 1n − and by nS the n-star (that is, the complete 
bipartite graph 1,nK ). Moreover, 1K is the graph consisting of only one vertex.

Let 0 -1{ , , }nΓ γ γ= … be an (additive) abelian group of order n. The vertices of ,n nK
will be labeled by the elements of 2Γ × � . Namely, for 2( , )v i Γ∈ × �  we will write 
iv for the corresponding vertex and define ,{ , } ( )i j n nw u E K∈ if and only if i j≠ , for

all ,w u Γ∈  and 2,i j∈� . 

Let G  be a spanning subgraph of n,nK  and let a Γ∈ . Then the graph G  with 
( ) {( , ):( , ) ( )}E G a u a v a u v E G+ = + + ∈ is called the a-translate of G . The length of 

an edge ( , ) ( )e u v E G= ∈  is defined by () . d e v u= − As an example, Figure 2 shows 
the edges of 

00
G  labeled by their lengths.

G  is called a half starter with respect to | ( )|if E G nΓ =  and the lengths of all 

edges in G  are pairwise mutually different, i.e. { (): ( )} .d e e E G Γ∈ = The following 

three results were established in [1]. 
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Figure 2: ODC of 3,3K  by 4G P=  with 3.Γ = �

Theorem 2.1. If G  is a half starter, then the union of all translates of  G forms an 

edge decomposition of n,nK , i.e. ,( ) ( ).n na
E G a E K

Γ∈
+ =∪

Here, the half starter will be represented by the vector:
0 1 1

( ) ( , , , ).
n

v G v v vγ γ γ −
= …

Where 
i

vγ Γ∈  and 0( )
i

vγ  is the unique vertex (( ,0) {0})
i

vγ Γ∈ ×  that belongs to 
the unique edge of length .iγ  For example, in Figure 2 the graph 

00
G  is a half starter 

with respect to 3�  represented by (0,1,1) (e.g. 0 1{1 ,2 } is the unique edge of length 1, 
thus 1 1v = ).

Two half starter vectors 0( )v G  and 1( )v G  are said to be orthogonal if 

0 1{ ( ) ( ): } .v G v Gγ γ γ Γ Γ− ∈ =

Theorem 2.2. If two half starters 0( )v G  and 1( )v G  are orthogonal, then 
, 2{ : ( , ) }a iG G a i= ∈ ×Γ �  with ,a i iG G a= +  is an ODC of n,nK .

The subgraph sG  of n,nK with 0 1 0 1( ) {{ , }:{ , } ( )}sE G u v v u E G= ∈  is called the 
symmetric graph of G . Note that if G  is a half starter, then sG  is also a half starter .

A half starter G  is called a symmetric starter with respect Γ  if ( )v G  and ( )sv G
are orthogonal.

Theorem 2.3. Let n  be a positive integer and let G  be a half starter represented by 
0 1 -1

( ) ( , , , )
n

v G v v vγ γ γ= … . Then G  is symmetric starter if and only if
{ - : } .v vγ γ γ γ Γ Γ− + ∈ =
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3. The main results

In view of Section 2, all we need is to find suitable symmetric starters for the cases 
under study. Each of these will be dealt with in a lemma.

Lemma 3.1. For all integers 5n ≥  the vector ( ) (0,2,0,2,2,2, ,2,2,2,4,4)v G = …  is a 
symmetric starter of n� , isomorphic to (2,0)

6 5 1( ) ( 1)nP S n K−∪ ∪ − .

Proof. For any integer ni∈� , we can define the vector
( ) (0,2,0,2,2,2, ,2,2,2,4,4)v G = …  as follows.

0 0, 2, or
( ) 4 2, 1,or

2 otherwise.
i

i
v G i n n

=
= = − −



Therefore we find

0 0, 2, or
( ) 4 1, 2, or

2 otherwise.
i

i n
v G i−

= −
= =



Then we have
0 0, or

1 1, or
2 2, or

( ) ( )
1 1, or
2 2, or

otherwise.

i i

i
n i
n i

v G v G i
i n
i n

i

−

=
 − =
 − =

− + =  = −
 = −



It is easily checked that { ( ) ( ) : }i i n nv G v G i i−− + ∈ =� � , hence it is a 
symmetric starter by Theorem 2.3. �

Figure 3: A symmetric starter of n�  for an ODC of ,n nK by (2,0)
6 5 1( ) ( 1)nP S n K−∪ ∪ − .
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From Figure 3, and for ni∈� , the ith graph isomorphic to the symmetric starter 
(2,0)

6 5 1( ) ( 1)nP S n K−∪ ∪ −  has the edges:

1 0 1 0 1 0 0 1( ) { , ,( 2),( 4),( 3),( 2)} {{( 2),( )}:5 1}iE G i i i i i i i i j j n= + + + + ∪ + + ≤ ≤ − .

Lemma 3.2. For all integers 6n ≥ the vector
( ) (2, 1,0, 4, 5, 6, ,6,5,4,3,2,0, 1)v G n n n n n= − − − − −…  is a symmetric starter of n�

isomorphic to ( 1,1)
7 6 1( ) ( 1)n

nP S n K−
−∪ ∪ − .

Proof. For any integer ni∈� , we can define the vector 
( ) (2, 1,0, 4, 5, 6, ,6,5,4,3,2,0, 1)v G n n n n n= − − − − −… as follows.

2 0, or
1 1, 1, or

( )
0 2, 2, or

1 otherwise.

i

i
n i n

v G
i n

n i

=
 − = −=  = −
 − −

Therefore we find 
2 0, or

1 1, 1, or
( )

0 2, 2, or
1 otherwise.

i

i
n i n

v G
i n

i

−

=
 − = −=  = −
 −

Then we have
0 0, or

( ) ( ) 1, 2, 2, 1, or
otherwise.

i i

i
v G v G i i i n n

i
−

=
− + = = − −
−

It is easily checked that { ( ) ( ) : }i i n nv G v G i i−− + ∈ =� � , hence it is a 
symmetric starter by Theorem 2.3.�

Figure 4: A symmetric starter of n�  for an ODC of ,n nK by ( 1,1)
7 6 1( ) ( 1)n

nP S n K−
−∪ ∪ −
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From Figure 4, and for all ni∈� , the ith graph isomorphic to the symmetric starter 
( 1,1)

7 6 1( ) ( 1)n
nP S n K−
−∪ ∪ −  has the edges:

1, 0 1 0 1 0 1

0 1

( ) { ( 1),( 2), ,( 2),( 2),( 1)}
{{( ),( 1)}: 3 4}.

E G i i n i n i i i i n
i j i n j n

= + − + − + + + − ∪

+ + − ≤ ≤ −

Lemma 3.3. For all integers 7n ≥  the vector ( ) (0,1,2,0,2,2,2, ,2,2,2,6,6,1)v G = …
is a symmetric starter of n�  isomorphic to (2,0)

8 7 1( ) ( 1)nP S n K−∪ ∪ − .

Proof. For any integer ni∈� , we can define the vector
( ) (0,1,2,0,2,2,2, ,2,2,2,6,6,1)v G = … as follows.

0 0, 3, or
1 1, 1, or

( )
6 3, 2, or
2 otherwise.

i

i
i n

v G
i n n

=
 = −=  = − −


Therefore we find
0 0, 3, or
1 1, 1, or

( )
6 2, 3, or
2 otherwise.

i

i n
i n

v G
i−

= −
 = −=  =


Then we have
2, 3, 2, 3, or

( ) ( )
otherwise.i i

i i n n
v G v G i

i−

− = − −
− + = 


It is easily checked that { ( ) ( ) : }i i n nv G v G i i−− + ∈ =� � hence it is a 
symmetric starter by Theorem 2.3. �

Figure 5: A symmetric starter of n�  for an ODC of ,n nK by (2,0)
8 7 1( ) ( 1)nP S n K−∪ ∪ − .
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From Figure 5, and for all ni∈� , the ith graph isomorphic to the symmetric starter 
(2,0)

8 7 1( ) ( 1)nP S n K−∪ ∪ −  has the edges:

1, 0 1 0 1 0 1 0

0 1

( ) {( 2)( 1), , ,( 3),( 6),( 4),( 2)}
{{( 2),( )}: 6 2}.

E G i i i i i i i i
i i j j n

= + + + + + + ∪

+ + ≤ ≤ −

Lemma 3.4. For all integers 8n ≥  the vector 
( ) (0,4,0,3,2,2,2,2, ,2,2,2,3,4,6)v G = …  is a symmetric starter of n�  isomorphic to

(2,0)
9 8 1( ) ( 1)nP S n K−∪ ∪ − .

Proof. For any integer ni∈� , we can define the vector 
( ) (0,4,0,3,2,2,2,2, ,2,2,2,3,4,6)v G = … as follows.

0 0, 2, or
4 1, 2, or

( ) 3 3, 3, or
6 1, or
2 otherwise.

i

i
i n

v G i n
i n

=
 = −= = −
 = −


Therefore we find
0 0, 2, or
4 2, 1, or

( ) 3 3, 3, or
6 1, or
2 otherwise.

i

i n
i n

v G i n
i

−

= −
 = −= = −
 =


Then we have
1, 2, 2, 1, or

( ) ( )
otherwise.i i

i i n n
v G v G i

i−

− = − −
− + = 


It is easily checked that { ( ) ( ) : }i i n nv G v G i i−− + ∈ =� � hence it is a 
symmetric starter by Theorem 2.3. �

Figure 6: A symmetric starter of n�  for an ODC of ,n nK by (2,0)
9 8 1( ) ( 1)nP S n K−∪ ∪ − .
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From Figure 6, and for all ni∈� , the ith graph isomorphic to the symmetric starter 
(2,0)

9 8 1( ) ( 1)nP S n K−∪ ∪ −  has the edges:

0, 1 0 1 0 1 0 1 0

0 1

( ) {( 6) ( 5),( 4),( 2), , ,( 3),( 6),( 2)}
{{( 2),( )}: 7 2}.

E G i i i i i i i i i
i i j j n

= + + + + + + + ∪

+ + ≤ ≤ −

Lemma 3.5. For all integers 9n ≥  the vector 
( ) (0,1,4,2,0,2,2,2, ,2,2,2,8,8,4,1)v G = …  is a symmetric starter of n�  isomorphic to

(2,0)
10 9 1( ) ( 1)nP S n K−∪ ∪ − .

Proof. For any integer ni∈� , we can define the vector
( ) (0,1,4,2,0,2,2,2, ,2,2,2,8,8,4,1)v G = … as follows.

0 0, 4, or
1 1, 1, or

( ) 4 2, 2, or
8 3, 4, or
2 otherwise.

i

i
i n

v G i n
i n n

=
 = −= = −
 = − −


Therefore we find
0 0, 4, or
1 1, 1, or

( ) 4 2, 2, or
8 3, 4, or
2 otherwise.

i

i n
i n

v G i n
i

−

= −
 = −= = −
 =


Then we have
3, 4, 3, 4, or

( ) ( )
otherwise.i i

i i n n
v G v G i

i−

− = − −
− + = 


It is easily checked that { ( ) ( ) : }i i n nv G v G i i−− + ∈ =� � hence it is a 
symmetric starter by Theorem 2.3. �

Figure 7: A symmetric starter of n�  for an ODC of ,n nK by (2,0)
10 9 1( ) ( 1)nP S n K−∪ ∪ − .
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From Figure 7, and for all ni∈� , the ith graph isomorphic to the symmetric starter 
(2,0)

10 9 1( ) ( 1)nP S n K−∪ ∪ −  has the edges:

1, 0 1 0 1 0 1 0 1 0

0 1

( ) {( 6)( 4),( 2),( 1), , ,( 4),( 8),( 5),( 2)}
{{( 2),( )}: 7 3}.

E G i i i i i i i i i i
i i j j n

= + + + + + + + + ∪

+ + ≤ ≤ −

Lemma  3.6. For all  integers 10n ≥  the vector 
( ) (0,1,4,5,0,3,3,3,3, ,3,3,3,3,8,5,8,1)v G = … is a symmetric starter of n�  isomorphic 
to (3,0)

11 10 1( ) ( 1)nP S n K−∪ ∪ − .

Proof. For any integer ni∈� , we can define the vector
( ) (0,1,4,5,0,3,3,3,3, ,3,3,3,3,8,5,8,1)v G = … as follows. 

 
0 0, 4, or
1 1, 1, or
4 2, or

( )
5 3, 3, or
8 2, 4, or
3 otherwise.

i

i
i n
i

v G
i n
i n n

=
 = −
 =

=  = −
 = − −



Therefore we find
0 0, 4, or
1 1, 1, or
4 2, or

( )
5 3, 3, or
8 2, 4, or
3 otherwise.

i

i n
i n
i n

v G
i n
i

−

= −
 = −
 = −

=  = −
 =



Then we have
2, 4, 2, 4, or

( ) ( )
otherwise.i i

i i n n
v G v G i

i−

− = − −
− + = 



It is easily checked that { ( ) ( ) : }i i n nv G v G i i−− + ∈ =� � hence it is a 
symmetric starter by Theorem 2.3. �

From Figure 8, and for all ,i Γ∈ the ith graph isomorphic to the symmetric starter 
(3,0)

11 10 1( ) ( 1)nP S n K−∪ ∪ −  has the edges:

0, 1 0 1 0 1 0 1 0 1 0

0 1

( ) {( 4) ( 6),( 8),( 4), , ,( 1),( 2),( 5),( 8),( 3)}
{{( 3),( )}:9 2}.

E G i i i i i i i i i i i
i i j j n

= + + + + + + + + + ∪

+ + ≤ ≤ −
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Figure 8: A symmetric starter of n�  for an ODC of ,n nK by (3,0)
11 10 1( ) ( 1)nP S n K−∪ ∪ −

Proof of Theorem 1.1. For 4m ≤ the statement was already proved in [3]. For each 
5m ≥ , Lemmas 3.1 to 3.5 provide a symmetric starter of n�  with the appropriate 

graphG . In view of Theorem 2.2, the translates of G  form an ODC of ,n nK .�

Note that ODCs for cases 5n = and 6n = were found already in [3], but not via 
symmetric starters. 
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