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Abstract

We give sufficient conditions for local solutions to some fourth order semilinear ordinary differential

equations to blow up in finite time with wide oscillations. This phenomenon is not visible for lower order

equations. This result is then applied to several classes of semilinear partial differential equations in order

to characterize the blow up of solutions. In particular, its applications to a suspension bridge model are

widely discussed. We also give numerical results which describe this oscillating blow up and allow to

suggest several open problems and formulate some related conjectures.
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1 Introduction

In this paper we are interested in finite time blow up of solutions to the ordinary differential equation

w′′′′(s) + kw′′(s) + f(w(s)) = 0 (s ∈ R) , (1)

where k ∈ R and f is a locally Lipschitz function. This equation arises in several contexts. With no hope

of being exhaustive, let us mention some models which lead to (1). When k is negative (1) is known as

the extended Fisher-Kolmogorov equation, whereas when k is positive it is referred to as Swift-Hohenberg

equation, see [27]. For f(t) = t − t2, (1) arises in the dynamic phase-space analogy of a nonlinearly

supported elastic strut [20]. In [1] the existence of even homoclinics to w ≡ 0 was proved whenever k ≤ 0.

When f(t) = t3 − t, (1) serves as a model of pattern formation in many physical, chemical or biological

systems, see [4, 5] and references therein. The slightly different nonlinearity f(t) = t− t3 + t5 was used by

Peletier [28] in order to investigate localization and spreading of deformation of a strut confined by an elastic

foundation. Last but not least, we mention the important book by Peletier-Troy [27] where one can find many

other physical models, a survey of existing results, and further references.

The first purpose of the present paper is to contribute to a better understanding of the qualitative properties

of solutions to (1) when the nonlinearity f satisfies

f ∈ Liploc(R) , f(t) t > 0 for every t ∈ R \ {0}. (2)

Further assumptions on f are needed in the sequel, although the prototype nonlinearity we have in mind is

f(t) = α|t|q−1t+ |t|p−1t (p > q ≥ 1, α ≥ 0) . (3)

The second, and probably most ambitious, purpose of the present paper is to connect the phenomena which

hold for (1) with several classes of fourth order partial differential equations. The first example concerns a

nonlinear fourth order wave equation. Under suitable boundary and initial conditions, the following nonlinear

beam equation was proposed by Lazer-McKenna [22] as a model for a suspension bridge

utt + uxxxx + γu+ =W (x, t) , x ∈ (0, L) , t > 0 , (4)
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where L > 0 denotes the length of the bridge, u+ = max{u, 0}, γu+ represents the force due to the cables

which are considered as a spring with a one-sided restoring force (equal to γu if u is downward positive and

to 0 if u is upward negative), andW represents the forcing term acting on the bridge (including its own weight

per unit length and the wind or other external sources). The solution u represents the vertical displacement

when the beam is bending. After some normalization, McKenna-Walter [26] reduce the problem of finding

traveling waves solutions of (4) to solving (1) with k ∈ (0, 2) and f(t) = (t + 1)+ − 1. In Section 3.1 we

discuss in more detail this model and we analyze a variant that we recently suggested in [18, 19]; this new

variant perfectly fits with our results.

When k = −4, equation (1) with f(t) = et − 1 arises while seeking radial solutions to the biharmonic

PDE

∆2u+ eu =
1

|x|4 in R
4 \ {0} ; (5)

we refer to [3] for the transformation of this equation which leads to (1) and for further semilinear biharmonic

PDE’s which can be transformed into (1) with the same change of variables. Moreover, with a different

change of variables, also radial solutions to biharmonic PDE’s both at critical growth (in the sense of Sobolev

exponent) and degenerate, such as

∆2u+ |u|8/(n−4)u = 0 in R
n (n ≥ 5), ∆

(
|x|2∆u

)
+ |x|2|u|8/(n−2)u = 0 in R

n (n ≥ 3), (6)

may be reduced to (1), see [14, 18] and further results in Section 3.2. In particular, for the critical growth

equation, our results are connected with some Liouville Theorems, see [9]. Our results enable to prove that

radial solutions to these equations blow up at some finite radius with wide oscillations.

Finally, for n ≥ 2, consider the Cauchy problem for the nonlinear fourth order parabolic equation





ut +∆2u = |u|p−1u in R
n+1
+

u (x, 0) = u0(x) in R
n

(7)

where p > 1+ 4/n and u0 satisfies suitable assumptions; the exponent 1+ 4/n is the analogue of the Fujita-

exponent (see [13, 33] and references therein), arising in second order semilinear Cauchy problems. The

existence of global solutions to (7) was proved in [15] for initial data u0 sufficiently small in a suitable sense,

see also [12] for decay and positivity properties of the solution. The problem of possible blow up for large

initial data was left open and only a partial result such as [15, Theorem 2] is known at present. In Section 3.3

we explain how the results of this paper may shed some light on the finite time blow up of the solutions to

(7).

Let us now briefly explain which is our main result and how it can be applied to the just mentioned PDE’s.

We first recall the following statements proved in [3]:

Proposition 1. Let k ∈ R and assume that f satisfies (2).

(i) If a local solution w to (1) blows up at some finite R ∈ R, then

lim inf
s→R

w(s) = −∞ and lim sup
s→R

w(s) = +∞ . (8)

(ii) If f also satisfies

lim sup
t→+∞

f(t)

t
< +∞ or lim sup

t→−∞

f(t)

t
< +∞, (9)

then any local solution to (1) exists for all s ∈ R.
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If both the conditions in (9) are satisfied then global existence follows from classical theory of ODE’s; but

(9) merely requires that f is “one-sided at most linear” so that statement (ii) is far from being trivial and, as

shown in [18], it does not hold for differential equations of order at most 3. On the other hand, Proposition 1

(i) states that, under the sole assumption (2), the only way that finite time blow up can occur is with “wide and

thinning oscillations” of the solution w; again, in [18] we showed that this kind of blow up is a phenomenon

typical of (at least) fourth order problems such as (1) since it does not occur in related lower order equations.

Note that assumption (9) includes, in particular, the cases where f is either concave or convex.

Although in [18] we gave strong evidence that (8) holds whenever k ≤ 0 and f is superlinear in a suitable

sense, a full proof of this result is not yet available. In this paper (see Theorem 2) we fill this gap by

determining a quite general sufficient condition for the validity of (8) and we describe in some detail the way

the solutions blows up. This result is complemented with several comments and numerical experiments. In

the rest of the paper we will try to convince the reader that this phenomenon occurs in most of fourth order

equations, including partial differential equations. We believe that not only this oscillating blow up is not

visible for lower order equations but also that it is somehow present in many fourth order equations. There

are several reasons for this feeling. Firstly, as already mentioned, assumption (9) shows that if the positive

(respectively, negative) part of the solution is controlled then also its negative (respectively, positive) part is

controlled, see also the proof of [3, Lemma 23]. Secondly, the energy functions used in the present paper

seem to show an increasing chaotic behavior in (1). Finally, the PDE’s which can be reduced to (1) also

exhibit the same oscillating behavior. In particular, since this phenomenon is visible for suspension bridges,

see Section 3.1, this means that it is a phenomenon of real life.

This paper is organized as follows. In Section 2 we state our main results about (1): a sufficient condition

for finite time oscillating blow up (Theorem 2) and a fine description of how this blow up occurs (see the

items in Theorem 2 and the subsequent Theorem 3). Section 2 is complemented with several remarks and

open problems. In Section 3 we show how our results can be applied to several PDE’s such as (4), (5), (6),

(7). In Section 4.1 we discuss the case k > 0. In Section 4.2 we numerically study the dependence of the

blow up time in terms of the parameters involved in (1). In Section 4.3 we numerically test the validity of

some theoretically found blow up estimates. In Section 4.4 we numerically analyze the blow up of solutions

for nonlinearites f quite different from (3), namely superlinearities with fairly different growths at ±∞;

we also numerically analyze the blow up rate found theoretically in (74). In Section 5 we study in detail

the linearized equation and we show how different behaviors appear for different values of k; although the

linearized problem is an approximation of (1) for small values of the solution w, we wonder whether these

behaviors can also justify what happens when w blows up. In Section 6 we introduce the energy functions

and tools needed to study (1). Sections 7 and 8 are devoted to the proofs of Theorems 2 and 3.

2 Main results

Assume that f satisfies the regularity conditions

f ∈ Liploc(R) ∩ C2(R \ {0}) , f ′′(t)t > 0 ∀t 6= 0 , lim inf
t→±∞

|f ′′(t)| > 0 (10)

and the growth conditions

∃p > q ≥ 1, α ≥ 0, 0 < ρ ≤ β, s.t. ρ|t|p+1 ≤ f(t)t ≤ α|t|q+1 + β|t|p+1 ∀t ∈ R . (11)

Notice that (10)-(11) strengthen (2) and that f in (3) satisfies both (10) and (11). Let

F (t) :=

∫ t

0
f(τ) dτ

denote an antiderivative of f .

We now state our main result, namely a sufficient condition for the finite time blow up of local solutions to

(1).

3



Theorem 2. Let k ≤ 0 and assume that f satisfies (10) and (11). Assume that w = w(s) is a local solution

to (1) in a neighborhood of s = 0 which satisfies

w′(0)w′′(0)− w(0)w′′′(0)− kw(0)w′(0) > 0 . (12)

Then, w blows up in finite time for s > 0, that is, there exists R < +∞ such that (8) holds. Therefore, there

exists an increasing sequence {zj}j∈N such that:

(i) zj ր R as j → ∞;

(ii) w(zj) = 0 and w has constant sign in (zj , zj+1) for all j ∈ N.

Furthermore, in each interval (zj , zj+1) where w(s) > 0 the following facts occur:

(iii) 0 < w′(zj) < −w′(zj+1) and there exists a unique mj ∈ (zj , zj+1) such that w′(mj) = 0;

(iv) w′′(zj+1) < 0 < w′′(zj), there exists a unique rj ∈ (zj , zj+1) where w′′ changes sign, and rj < mj .

Similar facts as (iii)-(iv) (with obvious changes) occur in intervals (zj , zj+1) where w(s) < 0. Finally, with

the notations of (iii),
(v) |w(mj)| → +∞ as j → ∞ and F (w(mj+1)) > F (w(mj)) for all j;
(vi) there exist κ1, κ2 > 0, depending only on the parameters in (11), such that

mj+1 −mj ≤
κ1

|w(mj)|(p−1)/4
, zj+1 − zj ≥

κ2

|w(mj)|(p−1)/4
∀j . (13)

Theorem 2 deserves several comments and suggests some open problems which we summarize as follows.

• It would be interesting to have a similar statement when k > 0 since this would allow to prove Conjecture

4 below. However, if k > 0, there are a couple of main tools which are missing and the proof of Theorem 2

cannot be extended in a simple way, see Section 4.1. In any case, numerical results suggest to conjecture that

a result similar to Theorem 2 also holds for k > 0, see again Section 4.1.

• Assumption (11) is a superlinearity assumption. Nevertheless, we believe that the restriction that f is

bounded both from above and below by the same power p > 1 can be removed. Does Theorem 2 hold

for more general kinds of superlinear functions f? In Section 4.4 we study numerically the behavior of the

solutions when f has different growths at ±∞.

• Which is the role played by the parameter k? Are the critical values of k for the linear problem (see

Section 5) important thresholds also for the nonlinear problem (1)? Roughly speaking, these values of k play

a role for small solutions w but it is not clear whether they influence the solution also in cases where blow up

occurs.

• Can assumption (12) be relaxed? We believe that it might be relaxed although it cannot be completely

removed since the trivial solution w(s) ≡ 0 is globally defined, that is, R = +∞. Strictly related is the

question whether there exist nontrivial global solutions to (1). We performed many numerical experiments

and we could not detect any such solution.

• In Section 4.2 we give numerical evidence that the blow up time depends increasingly with respect to

k ∈ R. It would be interesting to have an analytical proof of this fact, also in view of the application to the

suspension bridges model, see Section 3.1. 2

We now compare the rate of blow up of the displacement and of the acceleration. The next result holds for

any k and without assuming (10).

Theorem 3. Let k ∈ R and assume that f satisfies (2) and (11). Assume that a local solution w = w(s) to

(1) blows up (in finite time) as s ր R < +∞. Denote by {zj} the increasing sequence of zeros of w such

that zj ր R as j → +∞, see Proposition 1. Then

∫ zj+1

zj

(
f(w(s))w(s) + F (w(s))

)
ds ∼ 1

2

∫ zj+1

zj

w′′(s)2 ds (14)

as j → ∞. Here, g(j) ∼ ψ(j) means that g(j)/ψ(j) → 1 as j → ∞.
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In the particular case where f has the form (3), (14) becomes

∫ zj+1

zj

|w(s)|p+1 ds ∼ p+ 1

2(p+ 2)

∫ zj+1

zj

w′′(s)2 ds .

Note that the term w′′(s) describes the vertical acceleration, whereas f(w(s))w(s) + F (w(s)) is a measure

of the vertical displacement. Hence, by the superlinearity assumption (11), (14) means that the vertical

acceleration has a higher rate of blow up when compared with the vertical displacement.

3 Applications to fourth order partial differential equations

3.1 Suspension bridges: a fourth order wave equation

In this section we discuss the behavior of traveling waves to (4) and some alternative models for suspension

bridges. Following [26], we normalize (4) by putting γ = 1 and W ≡ 1. Then, seeking traveling waves

u(x, t) = 1 + w(x− ct) to (4) leads to the equation

w′′′′(s) + kw′′(s) + [w(s) + 1]+ − 1 = 0 (s ∈ R, k = c2) .

In order to maintain the same behavior but with a smooth nonlinearity, Chen-McKenna [7] suggest to consider

the equation

w′′′′(s) + kw′′(s) + ew(s) − 1 = 0 (s ∈ R) , (15)

which is exactly of the kind (1) with f(t) = et − 1 satisfying (2) but not (11).

As pointed out by McKenna [25, Section 6], according to historical sources, one of the most interesting be-

haviors for suspension bridges (including the Golden Gate and the Tacoma Narrows Bridge) is the following:

large vertical oscillations can rapidly change, almost instantaneously, to a torsional oscillation.

Our explanation to this fact is that

since the motion cannot be continued downwards due to the cables, when the bridge reaches its equilibrium

position the existing energy generates a crossing wave, namely a torsional oscillation.

Since the Tacoma Bridge collapse (November 1940) was due to a wide torsional motion of the bridge (see

[32]), the bridge cannot be considered as a one dimensional beam. This problem was overcome in [10, Sec-

tion 2.3] by introducing the deflection from horizontal as a second unknown function (besides the vertical

displacement). In [18] we suggested to maintain the one dimensional model provided one also allows dis-

placements below the equilibrium position and these displacements replace the deflection from horizontal; in

other words, the unknown function w now represents the upwards vertical displacement when w > 0 and the

deflection from horizontal when w < 0. Instead of (4), one should then consider the more general semilinear

fourth order wave equation

utt + uxxxx + f(u) = 0 , x ∈ (0, L) , t > 0 , (16)

with a nonlinearity f which should be superlinear and unbounded when both u→ ±∞. The superlinearity is

justified by the fact that more the position of the bridge is far from the horizontal equilibrium position, more

the action of the wind becomes relevant because the wind hits transversally the surface of the bridge. If ever

the bridge would reach the limit vertical position, the wind would hit it orthogonally. This means that the

forcing term f becomes more powerful for large displacements from the horizontal position.

Of course, traveling waves to (16) which propagate at some velocity c > 0 (depending on the elasticity

of the material of the beam), solve (1) with k = c2 > 0. On the other hand, the equation of the elastic

combined vertical/torsional oscillation motion in the wind of suspension bridges seem to be well-known
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among engineers. In a simplified form, the stationary equation may be written as (1) where k = −H < 0
(being H the tension force of the cables due to the deadloads) and where the nonlinearity f(w) is replaced by

a nonlocal term, see e.g. (1) and (2) in [8]. Hence, also when k < 0, (1) arises in the description of bridges

oscillations. In any case, our numerical results suggest that a statement similar to Theorem 2 also holds for

k > 0, see Section 4.1. We are so led to formulate the following

Conjecture 4. Assume that f satisfies (10) and (11). Then traveling waves w(s) = u(s+ ct, t) to (16) blow

up at some finite time R where (8) holds.

The Tacoma collapse is just the most celebrated and dramatic evidence of bridge’s oscillations. The very

same day when the London’s Millennium Bridge opened (April 2007) and the crowd streamed on it, the

bridge started to sway from side to side, see [23]. According to Sanderson [30], the bridge swaying was

due to the way people balanced themselves, rather than the timing of their steps. Therefore, the pedestrians

acted as negative dampers, adding energy to the bridge’s natural sway. Macdonald [24, p.1056] explains this

phenomenon by writing

above a certain critical number of pedestrians, this negative damping overcomes the positive structural

damping, causing the onset of exponentially increasing vibrations.

This description corresponds to a typical superlinear behavior. This justifies our assumption (11) and the

particular shape of the nonlinearity f as in (3). It is not yet clear whether α = 0 or α > 0, namely if the

superlinear behavior also occurs close to equilibrium. The Millennium Bridge was made secure by adding

some (unaesthetic) positive dampers. These dampers correspond to taking a smaller coefficient β in (11), in

such a way to delay the effect of the superlinear behavior of the forcing term f .

Another pedestrian bridge, the Assago metro Bridge in Milan, had a similar problem. In February 2011,

just after a concert the publics crossed the bridge and, suddenly, the oscillations were so strong that people

could hardly stand, see [11] and also the video from [2]. Even worse was the subsequent panic effect when

the crowd started running in order to escape from a possible collapse; this amplified oscillations. Also this

problem was solved by adding positive dampers, see [31].

3.2 Semilinear elliptic biharmonic equations

In this section we show how our results apply to semilinear elliptic partial differential equations involving the

biharmonic operator. For n ≥ 2 and for any p > 1 put

Θn,p := 2(p+ 3)
(
(n− 4)p− (n+ 4)

)(
(n− 2)p− (n+ 6)

)
.

Then, for any µ ∈ R, we consider the equation

∆2u+ 2

(
4− n+

8

p− 1

)
x · ∇∆u

|x|2 + µ
∆u

|x|2

−
(
(n− 2)p− (n+ 6)

p− 1
µ+

Θn,p

(p− 1)3

)
x · ∇u
|x|4 + |u|p−1u = 0 in R

n . (17)

In spite of its unpleasant form, (17) has a couple of interesting particular cases.

If n ≥ 5, p = n+4
n−4 and µ = 0, (17) becomes

∆2u+ |u|8/(n−4)u = 0 in R
n , (18)

namely a semilinear critical growth equation (in the sense of Sobolev embedding).

If n ≥ 3, p = n+6
n−2 and µ = 2n, (17) becomes the degenerate equation

∆
(
|x|2∆u

)
+ |x|2|u|8/(n−2)u = 0 in R

n . (19)
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We are interested in determining the behavior of radial solutions to (17). In its radial form, with u = u(r)
(r = |x|), (17) reads

u′′′′(r) +
2(3p+ 5)

p− 1

u′′′(r)

r
+

(
16(n− 1)

p− 1
− (n− 1)(n− 5) + µ

)
u′′(r)

r2

+

(
p+ 7

p− 1
µ− 16(n− 1)

p− 1
− Θn,p

(p− 1)3
+ (n− 1)(n− 5)

)
u′(r)

r3
+ |u(r)|p−1u(r) = 0 (20)

for all r > 0. As in [14] we set

u(r) = r−4/(p−1)w(log r) (r > 0) , w(s) = e4s/(p−1) u(es) (s ∈ R) . (21)

Tedious calculations then show that

u′(r)

r3
= r−4p/(p−1)

[
w′(s)− 4

p− 1
w(s)

]
,

u′′(r)

r2
= r−4p/(p−1)

[
w′′(s)− p+ 7

p− 1
w′(s) +

4(p+ 3)

(p− 1)2
w(s)

]
,

u′′′(r)

r
= r−4p/(p−1)

[
w′′′(s)− 3(p+ 3)

p− 1
w′′(s) +

2(p2 + 10p+ 13)

(p− 1)2
w′(s)− 8(p+ 1)(p+ 3)

(p− 1)3
w(s)

]
,

u′′′′(r) = r−4p/(p−1)

[
w′′′′(s)− 2(3p+ 5)

p− 1
w′′′(s) +

11p2 + 50p+ 35

(p− 1)2
w′′(s)

−2(3p3 + 35p2 + 65p+ 25)

(p− 1)3
w′(s) +

8(p+ 1)(p+ 3)(3p+ 1)

(p− 1)4
w(s)

]
.

Therefore, after the change (21), equation (20) may be rewritten as (s ∈ R)

w′′′′(s)−
(
(n2 − 6n+ 12)p2 − 2(n2 + 2n− 20)p+ n2 + 10n+ 44

(p− 1)2
− µ

)
w′′(s)

+
16

(p− 1)2

(
(n2 − 6n+ 12)p2 − 2(n2 + 2n− 20)p+ n2 + 10n+ 28

(p− 1)2
− µ

)
w(s) + |w(s)|p−1w(s) = 0 .

Therefore, if

µ ≤ (n2 − 6n+ 12)p2 − 2(n2 + 2n− 20)p+ n2 + 10n+ 28

(p− 1)2
(22)

then the coefficient of w′′(s) is negative, whereas the coefficient of w(s) is nonnegative and Theorem 2

applies. Hence, we have

Corollary 5. Let n ≥ 2, p > 1 and µ ∈ R satisfy (22). Let u = u(r) be a nontrivial radially symmetric

solution to the equation (17) in a neighborhood of the origin and such that u(0)u′′(0) < 0. Then there exists

ρ ∈ (0,∞) such that

lim inf
rրρ

u(r) = −∞ and lim sup
rրρ

u(r) = +∞ .

In particular, this result applies to (18) and (19) since (22) is satisfied; after the reduction to the radial form

and after the change of variables (21), they become respectively

w′′′′(s)− n2 − 4n+ 8

2
w′′(s) +

(
n(n− 4)

4

)2

w(s) + |w(s)|8/(n−4)w(s) = 0 ,
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w′′′′(s)− (n− 2)2

2
w′′(s) +

(n− 2)4

16
w(s) + |w(s)|8/(n−2)w(s) = 0 ,

which are both as (1) with k < 0 and f satisfying (3). In the particular cases where n = 8 (first equation) and

n = 4 (second equation), they become

w′′′′(s)− 20w′′(s) + 64w(s) + w(s)3 = 0 , w′′′′(s)− 2w′′(s) + w(s) + w(s)5 = 0.

Note also that the condition u(0)u′′(0) < 0 replaces (12); once again we point out that this condition cannot

be completely dropped since otherwise we could have the trivial solution u(r) ≡ 0.

3.3 Parabolic biharmonic equations

As already mentioned, when p > 1 + 4/n, global existence results for (7) were obtained in [12, 15] under

smallness assumptions on the initial datum u0; more precisely, [12, Theorem 1.5] states that there exists

α > 0 such that if u0 ∈ C0(Rn) satisfies

|u0 (x)| ≤
α

1 + |x|β
∀x ∈ R

n

for some β ≥ 4/(p− 1), then the solution to (7) is global in time and converges uniformly to 0 as t→ +∞.

On the other hand, the possible finite time blow up in presence of large initial data u0 seems to be related to

the sign changing properties of the biharmonic heat kernels. It is shown in [12, 16] that the linear biharmonic

heat operator has an “eventual local positivity” property; by this we mean that, for positive initial data u0 the

solution to the linear problem (with no source) is eventually positive on compact subsets of Rn but negativity

can appear at any time far away from the origin. We also refer to [17] for possible extensions to higher order

polyharmonic heat equations. This eventual local positivity property is also available for (7) for suitable

initial data u0, see [12].

The problem to understand if the solution to (7) may blow up in finite time for large data u0 is still open.

Let

ω := lim inf
|x|→∞

|x|4/(p−1)u0(x) , ω := lim sup
|x|→∞

|x|4/(p−1)u0(x) . (23)

Then [15, Theorem 2] states that there exists Λ > 0 such that if ω > Λ or ω < −Λ, then the solution u to

(7) may be global only if its negative part u− and its positive part u+ are “perfectly balanced”, namely their

masses (computed in a suitable form) have the same weight. But our crucial estimate (74) seems to say that

∫

Rn

|u+(x)|p+1 dx > 2

∫

Rn

|u−(x)|p+1 dx ;

if this were true, then we would have blow up in finite time t with wide oscillations also for solutions to (7).

The fact that the noncoercive equation (7) has been considered should not change this point of view. As

we have seen, finite time blow up for fourth order equations seems to occur with wide oscillations regardless

of the signs of the terms. In any case, for the coercive equation ut + ∆2u + |u|p−1u = 0 in R
n+1
+ , if one

multiplies it by the solution u and formally integrates by parts, one gets

1

2

d

dt
‖u(t)‖22 = −‖∆u(t)‖22 − ‖u(t)‖p+1

p+1 < 0 .

This says that the L2-norm of the solution is decreasing and, therefore, one expects that the solution could be

global and should not blow up in finite time.

Summarizing, although our results do not apply directly to (7), they suggest the following
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Conjecture 6. Assume that n ≥ 2 and that p > 1 + 4/n. Let u0 ∈ C0(Rn) and let ω and ω be as in (23).

There exists Λ > 0 such that if ω > Λ or ω < −Λ, then the solution to (7) blows up in finite time with wide

oscillations. Namely, there exists T ∈ (0,+∞) such that

lim sup
tրT

sup
x∈Rn

u(x, t) = +∞ and/or lim inf
tրT

inf
x∈Rn

u(x, t) = −∞ .

We do have some doubts about the and/or statement. We believe that blow up with oscillations (“and ”

case) might occur, for instance, whenever

lim inf
|x1|→∞

|x1|4/(p−1)u0(x) > Λ , lim sup
|x2|→∞

|x2|4/(p−1)u0(x) < −Λ .

4 Numerical results

Here we used a class of symmetric non-symplectic methods which are improved versions of methods previ-

ously introduced in [6] and are called block-Boundary Value Methods (block-BVM) [21]. They could also be

rewritten in the form of implicit collocation Runge-Kutta methods. So they share all the nice properties of

symmetric Runge-Kutta schemes. The block-BVM are defined by a set of linear multistep formulas combined

in a suitable way. In our implementation, the time integration interval is discretized by using two different

meshes: an equispaced coarser one and a nonequispaced finer one. This methods enjoys excellent numerical

stability properties [29] and, if a first integral exists, it is numerically conserved both on the coarse mesh and

on the finer mesh, provided that a suitable timestep is used. It is known that if the considered differential

problem is not Hamiltonian but still has a first integral, then a symmetric integrator is the most suitable. This

fact motivates our choice, since our problem is not Hamiltonian, but enjoys the conservation of the energy

function in (30). Here we define numerically the blow up time R as the last value of the independent variable

s when the numerical algorithm stops for convergence reasons.
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Figure 1: Energy and solution for k = 3.6, [w(0), w′(0), w′′(0), w′′′(0)] = [0.9, 0, 0, 0], f(t) = t+ t3.

From Figure 1 it is clear that the energy function is conserved until s = 96.35 with a maximum absolute

error less than 10−8, whereas the blow up time is R = 96.59. This means that, numerically, the energy func-

tion is conserved almost until s = R. This behavior was found in all the examples we ran. The corresponding

solution is reported in the second plot in Figure 1. It is worth noticing that the solution exhibits the same

qualitative behavior as reported in [18, Figure 3], where we used numerical methods which do not conserve

the energy function. In spite of this fact, the blow up time was computed there to be R = 96.59, as well.

4.1 Some remarks on the case k > 0

Let us start by explaining which parts of the proof of Theorem 2 cannot be extended to the case k > 0.

First, the energy functions G and H , see (32) and (33), do not possess nice monotonicity properties as in the

9



case k ≤ 0. Second, Lemma 11 does not hold and w may have very complicated behaviors in its positivity

intervals. This makes it more difficult to obtain an estimate such as (78) below. Figure 2 refers to the case

k = 3.5, [w(0), w′(0), w′′(0), w′′′(0)] = [0.8, 0, 0, 0], with f(t) = t+ t3.

73 74 75 76 77 78
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0.6

0.8

1

1.2

1.4

Figure 2: Qualitative behavior of the solution w in the interval [zj , zj+1].

However, In Figures 3 and 4 we exhibit a couple of plots of solutions to (1) which show that Theorem 2

probably holds true also when k > 0; we display the plot of the solution and the dependence j 7→ |Mj | for

the first critical points of the solution to (1) in the two following cases:

– k = 3.5, f(t) = t+ t3 and [w(0), w′(0), w′′(0), w′′′(0)] = [0.8, 0, 0, 0];
– k = 3.8, f(t) = t+ t3 and [w(0), w′(0), w′′(0), w′′′(0)] = [1, 0, 0, 0].
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Figure 3: Critical levels are not monotone when k = 3.5.
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Figure 4: Critical levels are not monotone when k = 3.8.
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4.2 Dependence of the blow up time on the parameters of the equation

In this section we give some numerical results which show how the blow up time R for (1) depends on α, p,

k, and on the initial data; here α is the coefficient in (3). We ran many tests and we always obtained the same

behaviors, so we reported here just a few of them, with the only end of enlightening how they appear.

−3 −2 −1 0 1 2 3 4
4

5

6

7

8

9

10

11

12

13

 k

 R

Figure 5: R = R(k) with p = 3, α = 1, [w(0), w′(0), w′′(0), w′′′(0)] = [1, 0, 0, 0].
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 w(0)

 R

Figure 6: R = R(w(0)) with p = 3, α = 1, k = −1, [w(0), w′(0), w′′(0), w′′′(0)] = [w(0), 0, 0, 0].
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Figure 7: R = R(w′′(0)) with p = 3, α = 1, k = −1, [w(0), w′(0), w′′(0), w′′′(0)] = [0.8, 0, w′′(0), 0].

In the whole, these figures enable us to make the following

Conjecture 7. When all the other parameters remain fixed, the maps R = R(k) and R = R(w′′(0)) are

strictly increasing, whereas the maps R = R(p), R = R(α), R = R(w(0)) are strictly decreasing.
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Figure 8: R = R(α) with p = 3, k = −1, [w(0), w′(0), w′′(0), w′′′(0)] = [1, 0, 0, 0].
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Figure 9: R = R(p) with α = 1, k = −1, [w(0), w′(0), w′′(0), w′′′(0)] = [1, 0, 0, 0].

4.3 Tests for the theoretical blow up estimate

For f(t) = t + t3, we test the validity of (74) which, in this case, asymptotically becomes M4
j /M

4
j−1 > 2.

In the next table we show the results related to the case p = 3, k = −1, [w(0), w′(0), w′′(0), w′′′(0)] =
[1, 0, 0, 0]. Condition (12) is satisfied at the second integration step. It clear appears that M4

j /M
4
j−1 > 2

always occurs with... no doubts!

j 1 2 3 4 5 6

|Mj | 1.00e+ 1 7.08e+ 1 4.80e+ 2 3.24e+ 3 2.18e+ 4 1.47e+ 5

M4
j /M

4
j−1 2.40e+ 3 2.11e+ 3 2.07e+ 3 2.05e+ 3 2.07e+ 3

Next, we made the same test in the case p = 5/3, k = −1, [w(0), w′(0), w′′(0), w′′′(0)] = [1, 0, 0, 0]. In

this case, (74) asymptotically becomes M
8/3
j /M

8/3
j−1 > 2. The results are quoted in the next table and, again,

show that (74) may probably be improved.

j 1 2 3 4 5 6 8

|Mj | 2.62e+ 1 4.59e+ 2 6.57e+ 3 8.78e+ 4 1.14e+ 6 1.47e+ 7 1.87e+ 8

M
8/3
j /M

8/3
j−1 2.07e+ 3 1.21e+ 3 1.00e+ 3 9.31e+ 2 9.14e+ 2 8.81e+ 2

Although the above tables suggest several comments, we do not afford any conjecture in this situation.
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4.4 A nonlinearity with different growths at infinity

In this section we numerically study the equation (1) with k = −2 and f(t) = et − 1 + t3, that is

w′′′′(s)− 2w′′(s) + ew(s) − 1 + w(s)3 = 0 (s ∈ R) . (24)

Notice that f satisfies (2) and (9) except for the sign condition on f ′′ but, at least, we have f ′(t) > 0 for all

t 6= 0. Therefore, Lemma 12 still holds. Also Lemma 11 holds since it merely requires (2). Hence, we may

obtain (74) which reads

eMj+1 + 1−Mj+1 +M4
j+1 > 2eMj − 2Mj + 2M4

j ;

here we assume that Mj > 0 and Mj+1 < 0. Assuming that the solution to (24) blows up in finite time, so

that (8) holds, the latter asymptotically becomes

M4
j+1 e

−Mj > 2 . (25)

In Figure 10, we plot a solution to (24).
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Figure 10: Solution of (24) for initial data [w(0), w′(0), w′′(0), w′′′(0)] = [1, 0, 0, 0].

Then we test the validity of (25), see the next table.

j 1 3

Mj > 0 1.00e+ 0 1.99e+ 1

Mj+1 < 0 −1.36e+ 1 −2.55e+ 3

M4
j+1 e

−Mj 1.26e+ 4 9.63e+ 4

Therefore, it seems that Theorem 2 also holds true for nonlinearities f satisfying (2) plus some superlin-

earity conditions at ±∞, but fairly different from (3).

5 The linear problem

For a better understanding (1) we are here interested in the case where f(t) = t, thereby complementing

the analysis in [3]. Note that this function f satisfies (2)-(10) but not (11). It turns out that several different

critical values of k appear.

In this case, (1) reads

w′′′′(s) + kw′′(s) + w(s) = 0 (s ∈ R) . (26)

13



This is also the linearized equation at 0 if we assume that f ′(0) = 1. More generally, if f is a function such

that f ′(0) = A > 0 and w is a solution to (1) then z(s) = w(s/ 4
√
A) solves the new equation

z′′′′(s) +
k√
A
z′′(s) + f̃(z(s)) = 0

where f̃(t) = 1
A f(t) and f̃ ′(0) = 1. Hence, up to scaling k, we may always assume that f ′(0) = 1. Of

course, if f ′(0) = 0 this trick is no longer available.

A crucial role in the study of (26) is played by the so-called characteristic equation

λ4 + kλ2 + 1 = 0 (27)

whose solutions are formally given by

λ2 =
−k ±

√
k2 − 4

2
.

We have to distinguish different cases.

• Case k < −2. The solutions to (27) are all real and are given by

λ ∈



±

√
|k|+

√
k2 − 4

2
,±

√
|k| −

√
k2 − 4

2



 =: {±λ1,±λ2} . (28)

Moreover, two of them are positive whereas the two others are negative. All the solutions to (26) are given

by linear combinations of the functions

eλ1s , e−λ1s , eλ2s , e−λ2s .

• Case k = −2. The solutions to (27) are λ ∈ {±1}, both with multiplicity 2. All the solutions to (26) are

given by linear combinations of the functions

es , ses , e−s , se−s .

Remark 8. For later use, we remark that the solution w(s) = se−s has a maximum point at s = 1 where

H(1) = −2e−2 < 0 and it converges to 0 as s → ∞. This example shows that Lemma 10 does not hold if

H(m) ≤ 0.

• Case −2 < k < 2. The solutions to (27) are all complex and are given by

λ ∈
{
±
√
2− k

2
± i

√
2 + k

2
,±

√
2− k

2
∓ i

√
2 + k

2

}
=: {±α± iβ,±α∓ iβ} . (29)

Hence, the real part of these solutions can be either positive or negative. All the solutions to (26) are given

by linear combinations of the functions

eαs cos(βs) , eαs sin(βs) , e−αs cos(βs) , e−αs sin(βs) .

• Case k = 2. The solutions to (27) are λ ∈ {±i}, both with multiplicity 2. All the solutions to (26) are

given by linear combinations of the functions

cos(s) , sin(s) , s cos(s) , s sin(s) .
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• Case k > 2. The solutions to (27) are all purely imaginary and are given by

λ ∈



±i

√
k +

√
k2 − 4

2
,±i

√
k −

√
k2 − 4

2



 =: {±iλ1,±iλ2} .

All the solutions to (26) are given by linear combinations of the functions

cos(λ1s) , sin(λ1s) , cos(λ2s) , sin(λ2s) .

In the table below we summarize the behavior of (nontrivial) solutions to (26).

k number of zeros limit at ±∞

k < −2 finite {0,+∞,−∞}

k = −2 finite {0,+∞,−∞}

−2 < k < 2 infinite {0,+∞,−∞} or −∞ = lim inf < lim sup = +∞

k = 2 infinite −∞ < lim inf < 0 < lim sup < +∞ or −∞ = lim inf < lim sup = +∞

k > 2 infinite −∞ < lim inf < 0 < lim sup < +∞

6 Energy functions and preliminary lemmas

In this section we introduce some useful tools (energy functions) and we prove some lemmas which will

enable us to reach the proofs of our main results. We point out that in some of the following statements the

function f is not required to satisfy assumptions (10) and (11) but only weaker assumptions. However, all the

results hold under assumptions (10)-(11).

To equation (1) we associate the energy function

E(s) := k

2
w′(s)2 + w′(s)w′′′(s) + F (w(s))− 1

2
w′′(s)2 . (30)

Then, if w solves (1), there holds

E ′(s) = 0 =⇒ E(s) = C , (31)

for some C ∈ R.

Define also

G(s) := w′(s)2 − w(s)w′′(s)− k

2
w(s)2 (32)

so that

H(s) := G′(s) = w′(s)w′′(s)− w(s)w′′′(s)− kw(s)w′(s) (33)

and

H ′(s) = G′′(s) = w′′(s)2 − kw′(s)2 + w(s)f(w(s)). (34)

If k ≤ 0 and (2) holds, by (34) we infer that

G′′(s) = H ′(s) ≥ 0 so that H is nondecreasing and G is convex. (35)

All the above properties follow by using repeatedly (1) in the computations. Further energy functions will

be introduced under additional assumptions on f , see Lemma 12 below. These energy functions are quite

useful to prove qualitative properties of the solution to (1). The first of such properties reads:
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Lemma 9. Let k ≤ 0 and assume that f ∈ Liploc(R) satisfies (11). Let w be a solution to (1) defined on

some maximal interval [0, R). Then, for the function H defined in (33), the following alternative holds:

(i) If H(s) is bounded as sր R, then R = +∞, H(s) ≤ 0 for all s and

lim
s→+∞

H(s) = lim
s→+∞

w(s) = 0.

(ii) If H(0) > 0, then

lim
s→R

H(s) = +∞ , lim
s→R

G(s) = +∞ ,

and w(s) is unbounded as s→ R.

Proof. If R < +∞, Proposition 1 states that there exists a sequence of local maxima mj such that mj ր R
and w(mj) → ∞ as j → ∞. Hence, (31) shows that

lim
j→∞

w′′(mj)
2

2
= lim

j→∞
[F (w(mj))− C] = +∞ .

Sincew′′(mj) < 0, we infer thatG(mj) = −w(mj)w
′′(mj)− k

2w(mj)
2 → ∞ and, subsequently,H(mj) =

G′(mj) → ∞ in view of (35). We have so proved that if H(s) remains bounded, then R = +∞.

For the remaining statements, we refer to [3, Theorem 8] for the case k < 0 and to [18, Lemma 9] for the

case k = 0. In the case where R <∞ (statement (ii)) one should invoke once more Proposition 1. 2

Next, we turn our attention on geometric properties of the solution, such as monotonicity and concavity.

The next two statements are also obtained by exploiting the features of the energy functions. In particular,

Remark 8 shows that the next result may not hold if the assumption H(m) > 0 is violated.

Lemma 10. Let k ≤ 0 and assume that f satisfies (2). Assume that a solution w = w(s) to (1) admits a

local maximum at some m such that w(m) > 0 and H(m) > 0. Then w is strictly concave in some maximal

interval (m, ξ). In particular, in such interval the solution w is strictly decreasing. Moreover:

– if ξ = +∞, then lims→∞w(s) = −∞;

– if ξ < +∞, then w(ξ) < 0 and F (w(m)) < F (w(ξ)).
Therefore, the solution w vanishes exactly once in (m, ξ).

Proof. The assumptions w(m) > 0 and H(m) > 0 imply that w′′′(m) < 0. Hence, w′′′(s) < 0 in some

maximal right neighborhood (m,σ) of m. Since w′′(m) ≤ 0, we also have that w′′(s) < 0 in some maximal

interval (m, ξ) with ξ ≥ σ (equality holds only in the case where σ = +∞).

If ξ = +∞, then lims→∞w(s) = −∞ (recall that w is strictly decreasing).

If ξ < +∞, then σ < +∞ and

s 7→ w′′(s)2 is strictly increasing in [m,σ] . (36)

Note that σ > m is the first stationary point of w′′(s)2 and w′′′(σ) = 0 so that, by (31),

F (w(m))− w′′(m)2

2
= E(m) = E(σ) = k

2
w′(σ)2 + F (w(σ))− w′′(σ)2

2
.

Since w′′(σ)2 > w′′(m)2 by (36) and since k ≤ 0, we then have

F (w(σ))− F (w(m)) = −k
2
w′(σ)2 +

w′′(σ)2

2
− w′′(m)2

2
> 0 . (37)

Since w(σ) < w(m) and since (2) implies that t 7→ F (t) is increasing for t ≥ 0, we necessarily have

w(σ) < 0. Finally, since ξ > σ and w is strictly decreasing in (σ, ξ), we have w(ξ) < w(σ) < 0 and, by (2)

and (37), F (w(m)) < F (w(σ)) < F (w(ξ)). 2
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Let w = w(s) be a local solution to (1) and assume that there exists an interval [z1, z2] ⊂ (0,+∞) such

that

w(z1) = w(z2) = 0 and w(s) > 0 ∀s ∈ (z1, z2) . (38)

We now prove very precise geometric properties of w in these intervals; what follows can be extended to

intervals where w is negative.

Lemma 11. Let k ≤ 0 and assume that f satisfies (2). Let w be a solution to (1) defined on [0,+∞) and

satisfying H(0) > 0 and G(0) ≥ 0. Assume that there exists an interval [z1, z2] ⊂ (0,+∞) such that (38)

holds. Then the following facts occur:

(i) 0 < w′(z1) < −w′(z2) and there exists a unique m ∈ (z1, z2) such that w′(m) = 0;

(ii) 0 < w′(z1) < −w′(z2), there exists a unique r ∈ (z1, z2) where w′′ changes sign, moreover r < m.

Proof. Since H(0) > 0 and G(0) ≥ 0, by (33) and (35), we know that 0 ≤ G(0) < w′(z1)
2 = G(z1) <

G(z2) = w′(z2)
2. Hence, 0 < w′(z1) < −w′(z2). Moreover, w cannot admit two critical points in view of

Lemma 10. This proves Item (i).
By (35) we infer that 0 < H(0) < w′(z1)w

′′(z1) = H(z1) < H(z2) = w′(z2)w
′′(z2) which, together

with the just proved Item (i), shows that w′′(z2) < 0 < w′′(z1) and the existence of a first r ∈ (z1, z2) such

that w′′(r) = 0 and w′′ changes sign in r. Lemma 10 states that r < m. So, we just have to prove uniqueness

of the point r in (z1,m). If not, there exists a second point σ ∈ (r,m) such that w′′(σ) = 0 and w′′ changes

sign in σ. Since in r the function w′′ changes from positive to negative, we necessarily have w′′′(r) ≤ 0.

Similarly, we have w′′′(σ) ≥ 0. Hence,

w′(r)w′′′(r) ≤ 0 ≤ w′(σ)w′′′(σ) . (39)

Moreover, since w′′(s) < 0 for s ∈ (r, σ), we have 0 < w′(σ) < w′(r) and, in turn,

0 ≥ k

2
w′(σ)2 ≥ k

2
w′(r)2 (40)

with strict inequalities if k < 0. Finally, recalling that (2) implies the monotonicity of F in [0,∞), since

w′(s) > 0 for s ∈ (r, σ), we have F (w(r)) < F (w(σ)). Combined with (39) and (40), this gives

E(r) = k

2
w′(r)2 + w′(r)w′′′(r) + F (w(r)) <

k

2
w′(σ)2 + w′(σ)w′′′(σ) + F (w(σ)) = E(σ)

in contradiction with (31). 2

The simple geometric properties of the solution found in Lemma 11 are displayed in Figure 11 below.

z
j+1

r
j

m
j

z
j

Figure 11: Qualitative behavior of the solution w in the interval [zj , zj+1].

We now introduce two further energy functions. Let w = w(s) be a local solution to (1) and let

Φ(s) :=
w′′(s)2

2
+ F (w(s)) , Ψ(s) := w′′(s)2 − k

2
w′(s)2 − w′(s)w′′′(s) . (41)

Then, if f is increasing we can prove
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Lemma 12. Assume (2) and (10). Assume that k ≤ 0 and let w = w(s) be a nontrivial local solution to (1).

Then Φ and Ψ are strictly convex functions. Moreover, if w admits a local maximum at some m such that

w(m) > 0 and H(m) > 0, then Φ and Ψ are strictly increasing for s ≥ m.

Proof. Note first that (2)-(10) imply that

f ′(t) > 0 ∀t 6= 0 . (42)

By differentiating and by using (1) we obtain

Φ′(s) = w′′(s)w′′′(s) + f(w(s))w′(s) , Φ′′(s) = w′′′(s)2 − kw′′(s)2 + f ′(w(s))w′(s)2 .

By (42) and recalling that k ≤ 0, we obviously have Φ′′(s) > 0 for almost all s, except for at most some

isolated s where Φ′′(s) = 0 or where Φ′′ is not defined (when w(s) = 0). If the local maximum m exists, the

assumptions w(m) > 0 and H(m) > 0 imply that w′′′(m) < 0, that is, Φ′(m) ≥ 0 and hence Φ′(s) > 0 for

all s > m. This proves the statements for Φ. Since E(s) = Φ(s) − Ψ(s), by (31) we obtain Ψ′(s) = Φ′(s)
and Ψ′′(s) = Φ′′(s), which prove the statements also for Ψ. 2

Finally, we prove a crucial and somehow unexpected result. Roughly speaking, it states that (1) has no

solutions eventually of one sign. If k ≥ 0, we recall from [3, Theorem 4] that a similar result holds by merely

assuming (2) and

lim inf
t→±∞

|f(t)| > 0 . (43)

Proposition 13. Let k ≥ 0 and let f satisfy (2) and (43). If w is a nontrivial global solution to (1), then w(s)
changes sign infinitely many times as s→ +∞ and as s→ −∞.

It is also known [3] that, under the sole assumption (2), this phenomenon may not occur when k < 0.

Moreover, when k ≤ 0 the linear problem studied in Section 5 does have global solutions eventually of one

sign. These are the reasons why we believe that the next result is somehow surprising.

Lemma 14. Let k ≤ 0 and assume that f satisfies (10) and (11). Let w be a local solution to (1) such that

H(0) > 0 and G(0) ≥ 0. Then w cannot be continued on [0,+∞) as a solution eventually of one sign.

Proof. If k = 0 this statement is known, see Proposition 13. So, take k < 0.

Assume first that there exists σ ≥ 0 such that w(s) ≥ 0 for s ∈ [σ,+∞). If w admits a local maximum at

some m > σ, then w(m) > 0 and H(m) > 0, the latter in view of (35). Then, by Lemma 10, we would have

that w changes sign, contradiction. Therefore, w does not admit a local maximum and, in turn, w admits a

limit ℓ ∈ [0,∞] as s→ ∞. By Lemma 9 (ii), we necessarily have ℓ = +∞.

We have so shown that if w(s) is eventually positive, then

lim
s→+∞

w(s) = +∞ . (44)

In particular, since we have also just seen that w cannot admit a local maximum, this means that

w′(s) ≥ 0 ∀s ≥ σ . (45)

Next, we study the second derivative. It cannot be that w′′(s) ≤ 0 eventually since otherwise from (1) and

(44) we would obtainw′′′′(s) = −kw′′(s)−f(w(s)) → −∞, implying thatw′′(s) → −∞ and, subsequently,

that w(s) → −∞. Therefore, w′′(s) > 0 on some interval (s1, s2) with s1 > σ. If w′′(s2) = 0 then again by

(1) we would get that w′′′′(s2) < 0 and also that w′′′′ remains negative as long as w′′ is negative. Hence, w′′

is concave as long as it remains negative and therefore it is eventually negative, contradicting what we just

said. This shows that there exists s ≥ σ such that

w′′(s) > 0 ∀s > s . (46)
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This also allows to strengthen (45) with

w′(s) > 0 ∀s > s . (47)

By differentiating twice (1) we obtain

w(6)(s) = −kw′′′′(s)− f ′′(w(s))w′(s)2 − f ′(w(s))w′′(s) . (48)

It cannot be that w′′′′(s) < 0 eventually since otherwise from (10)-(42)-(44)-(46)-(47)-(48) we would obtain

w(6)(s) < −f ′′(w(s))w′(s)2 < −c for some c > 0, implying that w′′′′(s) → −∞, against (46). Therefore,

w′′′′(s) > 0 on some interval (s1, s2) with s1 > s. If w′′′′(s2) = 0 then again by (48) we would get that

w(6)(s2) < 0 and also that w(6) remains negative as long as w′′′′ is negative. Hence, w′′′′ is concave as long

as it remains negative and therefore it is eventually negative, contradicting what we just said. This shows that

there exists σ such that

w′′′′(s) > 0 ∀s > σ . (49)

By (1) and (49) we readily obtain that kw′′(s) + f(w(s)) < 0 for all s > σ. By multiplying this inequality

by w′(s) and recalling (47) we obtain

d

ds

[
k

2
w′(s)2 + F (w(s))

]
= kw′′(s)w′(s) + f(w(s))w′(s) < 0 ∀s > σ .

By (11), this proves that there exists c1 ∈ R such that

k

2
w′(s)2 +

ρ

p+ 1
w(s)p+1 ≤ k

2
w′(s)2 + F (w(s)) ≤ c1 ∀s > σ .

Hence, if we divide by w(s)p+1 and we recall (44), we get

2c22 :=
2ρ

|k|(p+ 1)
≤ w′(s)2

w(s)p+1
+ o(1) ∀s > σ .

By taking the square root and choosing a sufficiently large σ0 > σ, this shows that

c2 ≤
w′(s)

w(s)(p+1)/2
∀s > σ0 .

By integrating over (σ0, s) this gives

c2(s− σ0) ≤
2

p− 1

(
1

w(σ0)(p−1)/2
− 1

w(s)(p−1)/2

)

and we get a contradiction by letting s→ ∞. This shows that w cannot be eventually positive.

Similarly, by reversing all signs, we can reach a contradiction if w(s) is eventually negative. 2

7 Proof of Theorem 2

Step 1. Organization of the proof.

Denote by [0, R) the maximal interval of continuation of the local solution w = w(s). In order to prove that

R < +∞, we need some delicate estimates, see Steps 2-3-4-5 below. Once these estimates are obtained,

in Step 6 we prove that R < +∞. However, before doing this, we need to remark some preliminary facts,

regardless of whether R is finite or infinite.

Items (i) and (ii) follow from Proposition 1 in the caseR < +∞ and from Lemma 14 in the caseR = +∞.
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For all j let mj ∈ (zj , zj+1) be the point where |w(s)| attains its maximum on [zj , zj+1] and let Mj =
w(mj). If R < +∞, by Proposition 1 we infer that

lim sup
j→∞

|Mj | = +∞ .

Therefore, there exists a subsequence {mh} ⊂ {mj} such that

lim
h→∞

|Mh| = +∞ .

In view of (11) and (31) we then infer

lim
h→∞

w′′(mh)
2 = 2 lim

h→∞
[F (Mh)− C] = +∞ .

Hence, recalling the definition of G in (32) and noticing that w(mh)w
′′(mh) < 0, we get

lim
h→∞

G(mh) = − lim
h→∞

[
Mhw

′′(mh) +
k

2
M2

h

]
= +∞ .

By (35) we then deduce that limsրRG(s) = +∞ without extracting subsequences. In particular, we get that

lim
j→∞

G(mj) = − lim
j→∞

[
Mjw

′′(mj) +
k

2
M2

j

]
= +∞ (50)

on the whole sequence {mj} of maxima of |w(s)|. Using again (31) we obtain that

|w′′(mj)| =
√

2(F (Mj)− C) (51)

which, replaced into (50), proves that

lim
j→+∞

|Mj | = +∞ (52)

whenever R < +∞. If R = +∞, in what follows we assume that the local solution w = w(s) can be

continued as s→ +∞ so that w is defined (at least) on [0,+∞). By Lemma 14 we know that w(s) changes

sign infinitely many times as s → +∞. Note that by (32) and Lemma 9, we have again (50), whereas by

(31), we have again (51). Hence, we obtain (52) also in the case R = +∞.

Since (12) is equivalent to H(0) > 0, by Lemma 9 (ii) we know that there exists σ ≥ 0 such that

H(σ) > 0 and G(σ) ≥ 0. Since (1) is autonomous, we may assume that σ = 0. Hence, Lemma 11 applies.

We now prove some estimates related to the points found in Lemma 11. For sake of simplicity, we denote

by (zj , zj+1) an interval where w(s) > 0 and by (zj−1, zj) an interval where w(s) < 0; moreover, we put

Mj = w(mj) > 0 and Mj−1 = w(mj−1) < 0. Clearly the estimates below can be reversed on intervals

where w has the opposite sign.

Step 2. We prove that

lim
j→∞

(rj − zj) = 0 . (53)

Assume for contradiction that the claim is false so that lim supj→∞(rj − zj) > 0. Then there exists a > 0
and a subsequence (still denoted in the same way) such that (rj−zj) ≥ a for all j. By Lemma 9 we know that

w′(zj)
2 = G(zj) → +∞ as j → ∞. In turn, by Lemma 11, we know that w′(s) → +∞ for all s ∈ [zj , rj ]

as j → ∞. Finally, this proves that

w(zj + σ) → +∞ ∀σ ∈ (0, rj − zj ] as j → ∞ . (54)

Let h(s) := (s− zj)
3(rj − s)4. By (54) and assumption (11), we infer that

h(zj+σ)f(w(zj+σ))+kh
′′(zj+σ)w(zj+σ)+h

′′′′(zj+σ)w(zj+σ) → +∞ ∀σ ∈ (0, rj−zj) (55)
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as j → ∞. Multiply (1) by h(s) and integrate over [zj , rj ]. Since h, h′, h′′ vanish in {zj , rj} and h′′′(rj) = 0,

four integration by parts yield

∫ rj

zj

[h(s)f(w(s)) + kh′′(s)w(s) + h′′′′(s)w(s)] ds = 0 .

This contradicts (55) unless (53) holds. This proves the claim of Step 2.

Step 3. We prove that there exists C1 = C1(ρ, p) > 0 such that if j is sufficiently large, then

rj − zj ≤
C1

|Mj−1|(p−1)/4
. (56)

In what follows c denotes a positive constant which depends on ρ and p and which may vary from line to

line, and also within the same formula. Let

h(s) := sin4
(
π
s− zj
rj − zj

)

so that

h′(s) :=
4π

rj − zj
sin3

(
π
s− zj
rj − zj

)
cos

(
π
s− zj
rj − zj

)
,

h′′(s) :=
4π2

(rj − zj)2

[
3 sin2

(
π
s− zj
rj − zj

)
− 4 sin4

(
π
s− zj
rj − zj

)]
,

h′′′(s) :=
8π3

(rj − zj)3

[
3 sin

(
π
s− zj
rj − zj

)
cos

(
π
s− zj
rj − zj

)
− 8 sin3

(
π
s− zj
rj − zj

)
cos

(
π
s− zj
rj − zj

)]
,

h′′′′(s) :=
8π4

(rj − zj)4

[
3− 30 sin2

(
π
s− zj
rj − zj

)
+ 32 sin4

(
π
s− zj
rj − zj

)]
.

Multiply (1) by h(s) and integrate over [zj , rj ]. Since h, h′, h′′, h′′′ vanish in {zj , rj}, four integration by

parts yield ∫ rj

zj

h(s)f(w(s)) ds = −
∫ rj

zj

[kh′′(s) + h′′′′(s)]w(s) ds . (57)

Our purpose is now to estimate the terms in (57). Before doing this, we need some energy arguments. Since

mj−1 is a minimum forw we havew′′(mj−1) > 0 so that, by (31), we havew′′(mj−1) =
√

2(F (Mj−1)− C).
Hence, by (52),

G(mj−1) = |Mj−1|w′′(mj−1)−
k

2
M2

j−1 ≥ |Mj−1|
√

2(F (Mj−1)− C) ≥ c|Mj−1|
p+3
2 ,

where the last inequality follows from assumption (11). By taking into account (35), we then infer that

w′(zj)
2 = G(zj) > G(mj−1) ≥ c|Mj−1|

p+3
2 .

Since w(s) is convex in [zj , rj ], see Lemma 11, we then deduce

w(s) ≥ c|Mj−1|
p+3
4 (s− zj) ∀s ∈ [zj , rj ] .

In particular, by (11) we also have

f(w(s)) ≥ ρw(s)p ≥ c|Mj−1|
(p+3)(p−1)

4 (s− zj)
p−1w(s) ∀s ∈ [zj , rj ] . (58)
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Next, we estimate

−kh′′(s)− h′′′′(s) = − 4kπ2

(rj − zj)2

[
3 sin2

(
π
s− zj
rj − zj

)
− 4 sin4

(
π
s− zj
rj − zj

)]

− 8π4

(rj − zj)4

[
3− 30 sin2

(
π
s− zj
rj − zj

)
+ 32 sin4

(
π
s− zj
rj − zj

)]

≤ 12|k|π2
(rj − zj)2

sin2
(
π
s− zj
rj − zj

)
+

8π4

(rj − zj)4

[
−3 + 30 sin2

(
π
s− zj
rj − zj

)]

≤ 24π4

(rj − zj)4

[
−1 + 11 sin2

(
π
s− zj
rj − zj

)]
(59)

where the last inequality follows from (53), provided j is sufficiently large. By inserting (58) and (59) into

(57) we obtain

|Mj−1|
(p+3)(p−1)

4

∫ rj

zj

sin4
(
π
s− zj
rj − zj

)
(s− zj)

p−1w(s) ds

≤ c

(rj − zj)4

∫ rj

zj

[
−1 + 11 sin2

(
π
s− zj
rj − zj

)]
w(s) ds . (60)

Let

γ :=
1

π
arcsin

1√
11

≃ 0.0975

and notice that

11 sin2
(
π
s− zj
rj − zj

)
≤ 1 ∀s ∈ [zj , zj + γ(rj − zj)] ∪ [rj − γ(rj − zj), rj ] .

Therefore, from (60) we deduce

|Mj−1|
(p+3)(p−1)

4

∫ rj−γ(rj−zj)

zj+γ(rj−zj)
sin4

(
π
s− zj
rj − zj

)
(s− zj)

p−1w(s) ds

≤ c

(rj − zj)4

∫ rj−γ(rj−zj)

zj+γ(rj−zj)

[
−1 + 11 sin2

(
π
s− zj
rj − zj

)]
w(s) ds . (61)

On the new interval of integration [zj + γ(rj − zj), rj − γ(rj − zj)] we have uniform bounds such as

sin4
(
π
s− zj
rj − zj

)
≥ 1

121
, −1 + 11 sin2

(
π
s− zj
rj − zj

)
≤ 10 .

Hence, from (61) we may finally obtain

|Mj−1|
(p+3)(p−1)

4 γp−1(rj − zj)
p−1

∫ rj−γ(rj−zj)

zj+γ(rj−zj)
w(s) ds

≤ |Mj−1|
(p+3)(p−1)

4

∫ rj−γ(rj−zj)

zj+γ(rj−zj)
(s− zj)

p−1w(s) ds ≤ c

(rj − zj)4

∫ rj−γ(rj−zj)

zj+γ(rj−zj)
w(s) ds

which we rewrite as (56) for some C1 > 0 depending only on ρ and p which appear in (11).

Step 4. We prove that there exists C2 = C2(ρ, p) > 0 such that if j is sufficiently large, then

zj+1 −mj ≤
C2

M
(p−1)/4
j

. (62)
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Let h(s) := (s−mj)
2(zj+1 − s)3 and note that

h(mj) = h′(mj) = h(zj+1) = h′(zj+1) = h′′(zj+1) = 0 . (63)

For all ℓ ∈ {0, 1, 2, 3, 4} let h(ℓ) denote the ℓ-th derivative of h. Clearly, h(ℓ) is a linear combination of

polynomials such as (s−mj)
a(zj+1 − s)b with a+ b = 5− ℓ. Therefore,

∀ℓ ∈ {0, 1, 2, 3, 4} ∃cℓ > 0 such that |h(ℓ)(s)| ≤ cℓ(zj+1 −mj)
5−ℓ ∀s ∈ [mj , zj+1] . (64)

Recall that w(mj) =Mj and w(zj+1) = w′(mj) = 0; then, by (63), four integrations by parts yield

−
∫ zj+1

mj

w′′′′(s)h(s) ds = −
∫ zj+1

mj

w(s)h′′′′(s) ds− h′′′(mj)Mj

so that, by (64),

−
∫ zj+1

mj

w′′′′(s)h(s) ds ≤ c4(zj+1 −mj)

∫ zj+1

mj

w(s) ds+ c3(zj+1 −mj)
2Mj

≤ (c3 + c4)(zj+1 −mj)
2Mj . (65)

Similarly, two integrations by parts yield

−k
∫ zj+1

mj

w′′(s)h(s) ds = −k
∫ zj+1

mj

w(s)h′′(s) ds ≤ c2|k|(zj+1 −mj)
4Mj . (66)

In view of Lemma 11 we know that w is concave over [mj , zj+1] so that

w(s) ≥ Mj(zj+1 − s)

zj+1 −mj
∀s ∈ [mj , zj+1] .

Then, by assumption (11), we infer that

f(w(s)) ≥ ρw(s)p ≥ ρMp
j

(zj+1 − s)p

(zj+1 −mj)p
∀s ∈ [mj , zj+1] .

Therefore,

∫ zj+1

mj

f(w(s))h(s) ds ≥
ρMp

j

(zj+1 −mj)p

∫ zj+1

mj

(s−mj)
2(zj+1 − s)p+3 ds

(σ = zj+1 − s) =
ρMp

j

(zj+1 −mj)p

∫ zj+1−mj

0
σp+3(zj+1 −mj − σ)2 ds

=
2ρMp

j

(p+ 4)(p+ 5)(p+ 6)
(zj+1 −mj)

6 . (67)

Multiply (1) by h(s), and integrate over [mj , zj+1] to obtain

∫ zj+1

mj

f(w(s))h(s) ds = −
∫ zj+1

mj

w′′′′(s)h(s) ds− k

∫ zj+1

mj

w′′(s)h(s) ds .

By plugging the estimates (65), (66), (67) into this identity, we get

2ρMp
j

(p+ 4)(p+ 5)(p+ 6)
(zj+1 −mj)

6 ≤ (c3 + c4)(zj+1 −mj)
2Mj + c2|k|(zj+1 −mj)

4Mj ,

23



that is,

2ρMp−1
j

(p+ 4)(p+ 5)(p+ 6)
(zj+1 −mj)

4 − c2|k|(zj+1 −mj)
2 − (c3 + c4) ≤ 0 .

By solving this biquadratic algebraic inequality we infer that

(zj+1 −mj)
2 ≤

c2|k|+
√
c22k

2 + 8ρMp−1
j (c3 + c4)/ω

4ρMp−1
j

ω , with ω = (p+ 4)(p+ 5)(p+ 6) .

Finally, this yields (62) for some C2 > 0 depending only on ρ and p which appear in (11).

Step 5. We prove that there exists C3 = C3(ρ, p) > 0 such that if j is sufficiently large, then

mj − rj ≤
C3

M
(p−1)/4
j

. (68)

We proceed as in Step 4 but with a different test function. Let h(s) := (s− rj)
4(mj − s)2 and note that

h(mj) = h′(mj) = h(rj) = h′(rj) = h′′(rj) = h′′′(rj) = 0 . (69)

For all ℓ ∈ {0, 1, 2, 3, 4} let h(ℓ) denote the ℓ-th derivative of h. Clearly, h(ℓ) is a linear combination of

polynomials such as (s− rj)
a(mj − s)b with a+ b = 6− ℓ. Therefore,

∀ℓ ∈ {0, 1, 2, 3, 4} ∃cℓ > 0 such that |h(ℓ)(s)| ≤ cℓ(mj − rj)
6−ℓ ∀s ∈ [rj ,mj ] . (70)

Recall that w(mj) =Mj and w′(mj) = 0; then, by (69), four integrations by parts yield

−
∫ mj

rj

w′′′′(s)h(s) ds = −
∫ mj

rj

w(s)h′′′′(s) ds+ h′′′(mj)Mj

so that, by (70),

−
∫ mj

rj

w′′′′(s)h(s) ds ≤ c4(mj − rj)
2

∫ mj

rj

w(s) ds+ c3(mj − rj)
3Mj ≤ (c3 + c4)(mj − rj)

3Mj . (71)

Similarly, two integrations by parts yield

−k
∫ mj

rj

w′′(s)h(s) ds = −k
∫ mj

rj

w(s)h′′(s) ds ≤ c2|k|(mj − rj)
5Mj . (72)

By Lemma 11 we know that w is concave over [rj ,mj ] so that (this inequality is far from being optimal!)

w(s) ≥ Mj(s− rj)

mj − rj
∀s ∈ [rj ,mj ] .

Then, by assumption (11), we infer that

f(w(s)) ≥ ρw(s)p ≥ ρMp
j

(s− rj)
p

(mj − rj)p
∀s ∈ [rj ,mj ] .

Therefore,

∫ mj

rj

f(w(s))h(s) ds ≥
ρMp

j

(mj − rj)p

∫ mj

rj

(s− rj)
p+4(mj − s)2 ds

(σ = s− rj) =
ρMp

j

(mj − rj)p

∫ mj−rj

0
σp+4(mj − rj − σ)2 ds

=
2ρMp

j

(p+ 5)(p+ 6)(p+ 7)
(mj − rj)

7 . (73)
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Multiply (1) by h(s), and integrate over [rj ,mj ] to obtain

∫ mj

rj

f(w(s))h(s) ds = −
∫ mj

rj

w′′′′(s)h(s) ds− k

∫ mj

rj

w′′(s)h(s) ds .

By plugging the estimates (71), (72), (73) into this identity, we get

2ρMp
j

(p+ 5)(p+ 6)(p+ 7)
(mj − rj)

7 ≤ (c3 + c4)(mj − rj)
3Mj + c2|k|(mj − rj)

5Mj ,

that is,

2ρMp−1
j

(p+ 5)(p+ 6)(p+ 7)
(mj − rj)

4 − c2|k|(mj − rj)
2 − (c3 + c4) ≤ 0 .

By solving this biquadratic algebraic inequality we infer that

(mj − rj)
2 ≤

c2|k|+
√
c22k

2 + 8ρMp−1
j (c3 + c4)/ω

4ρMp−1
j

ω , with ω = (p+ 5)(p+ 6)(p+ 7) .

Finally, this yields (68) for some C3 > 0 depending only on ρ and p which appear in (11).

Step 6. We show that R < +∞.

By (12) we may apply Lemma 12 to obtain, for all j ∈ N,

F (Mj) = F (w(mj)) > F (w(rj)) = Φ(rj)

> Φ(mj−1) =
w′′(mj−1)

2

2
+ F (w(mj−1)) = 2F (Mj−1)− C (74)

the latter equality being a consequence of

E(mj−1) = F (w(mj−1))−
w′′(mj−1)

2

2
= C

which holds in view of (31). In particular, (74) shows that

j 7→ F (Mj) is strictly increasing and lim
j→∞

F (Mj) = +∞ . (75)

By iterating (74) we find F (Mj) > 2j [F (M0) − C] + C for all j ≥ 1. In turn, by (75) we may relabel the

indices j (in such a way that F (M0) > 2C) and obtain

F (Mj) > 2j−1F (M0) ∀j ∈ N . (76)

Moreover, by using (11), (74) gives

α

q + 1
M q+1

j +
β

p+ 1
Mp+1

j ≥ F (Mj) > 2F (Mj−1)− C ≥ 2ρ

p+ 1
|Mj−1|p+1 − C

so that, by (75) and by possibly relabeling j, we infer that

|Mj |p+1 ≥ c(β, ρ) |Mj−1|p+1 ∀j ∈ N . (77)

By combining (77) with (56)-(62)-(68)-(76) we readily obtain that

mj −mj−1 ≤
κ1

|Mj−1|(p−1)/4
≤ c

[F (Mj−1)](p−1)/4(p+1)
≤ c

(
1

2(p−1)/4(p+1)

)j−1

∀j ≥ 1 (78)
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for some κ1 = κ1(β, ρ, p) > 0. This proves the first part of (13). Finally, by combining (77) with (78), we

obtain

R−m0 =
∞∑

j=0

(mj+1 −mj) ≤ c
∞∑

j=0

(
1

2(p−1)/4(p+1)

)j

< +∞

since the geometric series has ratio
(
1
2

) p−1
4(p+1) < 1. Therefore, R < +∞ and the solution blows up in finite

time.

Step 7. We prove the second part of (13).

First of all, we recall the well-known Poincaré-type inequalities

‖u‖2 ≤ (zj+1 − zj)‖u′‖2 ≤ (zj+1 − zj)
2‖u′′‖2 ∀u ∈ H2 ∩H1

0 (zj , zj+1) (79)

where ‖ · ‖2 denotes the L2(zj , zj+1)-norm, whereas H2 and H1
0 represent the usual Sobolev spaces. Next,

we observe that, upon integration, (11) yields

F (t) ≤ α

q + 1
|t|q+1 +

β

p+ 1
|t|p+1 ∀t ∈ R . (80)

We may now start the proof of the estimate. Some integrations by parts and (1) yield

∫ zj+1

zj

w′(s)w′′′(s) ds = −
∫ zj+1

zj

w(s)w′′′′(s) ds

=

∫ zj+1

zj

w(s)[kw′′(s) + f(w(s))] ds = −k
∫ zj+1

zj

w′(s)2 ds+

∫ zj+1

zj

f(w(s))w(s) ds .

Hence, if we integrate (30) over [zj , zj+1] we obtain

2

∫ zj+1

zj

[F (w(s)) + f(w(s))w(s)] ds =

∫ zj+1

zj

[w′′(s)2 + kw′(s)2] ds+ 2C(zj+1 − zj)

where C is as in (31). Using (11), (79), (80), the latter identity yields the estimate

2α
q + 2

q + 1

∫ zj+1

zj

|w(s)|q+1 ds+ 2β
p+ 2

p+ 1

∫ zj+1

zj

|w(s)|p+1 ds ≥ (1 + o(1))

∫ zj+1

zj

w′′(s)2 ds+ o(1)

≥ 1 + o(1)

(zj+1 − zj)4

∫ zj+1

zj

w(s)2 ds+ o(1) ,

where o(1) are infinitesimals due (78). We may then further estimate

[c(β, p) + o(1)]Mp−1
j

∫ zj+1

zj

w(s)2 ds ≥ 1 + o(1)

(zj+1 − zj)4

∫ zj+1

zj

w(s)2 ds ,

which finally gives

c(β, p)Mp−1
j ≥ 1

(zj+1 − zj)4
.

Step 8. Conclusion.

Since the above proof of Theorem 2 is quite lengthy and delicate, let us indicate the exact points where the

statements were reached.

The fact that R < +∞ is proved in Step 6. Statements (i) and (ii) are proved in Step 1. Statements (iii)
and (iv) follow from Lemma 11. Statement (v) follows from (52) and (75). Statement (vi) is proved in (78)

(first estimate) and in Step 7 (second estimate).
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8 Proof of Theorem 3

By Proposition 1, we know that (8) holds. Denote by [zj , zj+1] an interval of positivity (or negativity) for the

solution w and note that two integrations by parts yield
∫ zj+1

zj

w′′′′(s)w(s) ds =

∫ zj+1

zj

w′′(s)2 ds−
[
w′′(s)w′(s)

]zj+1

zj
.

Hence, if we multiply (1) by w(s) and integrate over (zj , zj+1), we obtain

[
w′′(s)w′(s)

]zj+1

zj
=

∫ zj+1

zj

w′′(s)2 ds+ k

∫ zj+1

zj

w′′(s)w(s) ds+

∫ zj+1

zj

f(w(s))w(s) ds . (81)

On the other hand, if we integrate the energy E in (30) over (zj , zj+1), by (31) we get

[
w′′(s)w′(s)

]zj+1

zj
= C(zj+1 − zj) +

3

2

∫ zj+1

zj

w′′(s)2 ds+
k

2

∫ zj+1

zj

w′′(s)w(s) ds−
∫ zj+1

zj

F (w(s)) ds .

(82)

By combining (81) with (82) we infer
∫ zj+1

zj

(
f(w(s))w(s)+F (w(s))

)
ds = C(zj+1−zj)+

1

2

∫ zj+1

zj

w′′(s)2 ds− k

2

∫ zj+1

zj

w′′(s)w(s) ds . (83)

Next, we estimate

I(j) :=

∣∣∣∣∣

∫ zj+1

zj

w′′(s)w(s) ds

∣∣∣∣∣ ≤
∫ zj+1

zj

|w′′(s)|
(
f(w(s))w(s)

) 1
p+1

( |w(s)|p
|f(w(s))|

) 1
p+1

ds ,

so that, by Hölder’s inequality,

I(j) ≤
(∫ zj+1

zj

w′′(s)2 ds

) 1
2
(∫ zj+1

zj

f(w(s))w(s) ds

) 1
p+1

(∫ zj+1

zj

( |w(s)|p
|f(w(s))|

) 2
p−1

ds

) p−1
2(p+1)

.

Next, we use (11) to estimate further

I(j) ≤ (zj+1 − zj)
p−1

2(p+1)

ρ
1

p+1

(∫ zj+1

zj

w′′(s)2 ds

) 1
2
(∫ zj+1

zj

f(w(s))w(s) ds

) 1
p+1

.

In turn, by Young’s inequality, we get

I(j) ≤ (zj+1 − zj)
p−1

2(p+1)

2ρ
1

p+1



∫ zj+1

zj

w′′(s)2 ds+

(∫ zj+1

zj

f(w(s))w(s) ds

) 2
p+1


 .

Recalling that p > 1, we have so proved that

I(j) = o

(∫ zj+1

zj

w′′(s)2 ds

)
+ o

(∫ zj+1

zj

f(w(s))w(s) ds

)

as j → ∞. Inserting this estimate into (83) we get

∫ zj+1

zj

(
f(w(s))w(s) + F (w(s))

)
ds + o

(∫ zj+1

zj

f(w(s))w(s) ds

)

= o(1) +
1

2

∫ zj+1

zj

w′′(s)2 ds + o

(∫ zj+1

zj

w′′(s)2 ds

)
.

The result then follows by letting j → ∞.
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