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Abstract

We investigate the existence of pairs (λ, u), with λ > 0 and u harmonic function in a bounded
domain Ω ⊂ R

3, such that the nonlinear boundary condition ∂νu = λµ sinhu holds on ∂Ω, where µ
is a non negative weight function. This type of exponential boundary condition arises in corrosion
modeling (Butler Volmer condition).

1 Statement of the problem and main results

In the study of mathematical models of corrosion, a common problem is the following: find a harmonic
function u in a domain Ω ⊂ R

N satisfying a boundary condition of the form

∂νu(x) = λµ(x)
(

eβu(x) − e−(1−β)u(x)
)

, x ∈ ∂Ω (1.1)

for some λ > 0, where 0 < β < 1 and µ is either identically 1 or the characteristic function of a subset
of ∂Ω [1]. The equation (1.1) is known as Butler-Volmer condition and we refer to [1] (and references
therein) for its justification in corrosion modeling.
In dimension N = 2, there are suitable variational formulations of the previous problem [1], [2] and
of the more general version with a boundary function µ changing sign along ∂Ω [3], [4].
In [3] it is shown that the problem (1.1) has a solution for λ ranging in some intervals depending on
β and on the eigenvalues of the linearized problem.
The symmetric case β = 1/2 in (1.1) takes on a special interest, both in applications and for theoretical
reasons; in [2] the authors prove the existence of infinitely many solutions for any positive λ (assuming
µ(x) ≡ 1) by applying variational methods, relying on index theory, which are suitable for even
functionals (see [5] chapter 5).
In [4], by exploiting known critical point theorems (for symmetric functionals) based on the topological
notions of index and pseudo-index, [6], [7], existence and multiplicity results are proved for the same
problem with an indefinite µ.
Unfortunately, the above mentioned variational methods are no longer applicable to the physical
relevant caseN = 3, since the functional associated to (1.1) does not satisfy the Palais-Smale condition.
In fact, existence results for the three dimensional problem seems to be lacking in the literature.
In this paper we discuss the following problem: find nontrivial solutions u to the system

∆u(x) = 0 in Ω

∂νu(x) = λµ(x) sinh[u(x)] on ∂Ω (1.2)

where Ω is a bounded smooth domain in R
3, λ > 0 and µ is a non negative weight function in L∞(∂Ω)

(with respect to the Hausdorff measure of ∂Ω).
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By observing that the above problem (as well as problem (1.1)) has the line of trivial solutions
{(λ, 0) |λ ∈ R}, it is natural to look for bifurcation solutions. To this aim, it is necessary to discuss a
related linear Steklov eigenvalue problem. This problem is well known in the case of non negative weight
functions µ [8]; in section 2.1 we summarize, for reader’s convenience, the results on the properties of
the eigenvalues and of the eigenfunctions obtained in [3], [9], in the general case µ ∈ L∞(∂Ω). More
detailed results on the regularity of the eigenfunctions, which will be necessary for the subsequent
discussion, are described in section 2.2.
In section 3 we provide a functional setting for the non linear problem in three dimensions and apply
classical results of bifurcation theory [10], [11] to prove that, for every Steklov eigenvalue κ (of the
linearized problem) the pair (κ, 0) is a bifurcation point for (1.2) (and also for (1.1)). As we will show,
the key point is the choice of a suitable Hilbert space formulation of the problem, which allows to
apply variational methods in Bifurcation Theory.
In the last section, we discuss global existence, regularity and symmetry of the solutions and apply
our results to two examples of problem (1.2) respectively in a ball and in a cube, where considerations
of symmetry allows to investigate further properties of the solutions. Finally, we also discuss open
problems and conjectures on the set of non trivial solutions.

2 The linear eigenvalue problem

Let Ω ⊂ R
N be a bounded Lipschitz domain and consider the following linear Steklov eigenvalue

problem in H1(Ω):

∆u(x) = 0 in Ω

γ(∂νu)(x) = λµ(x)γ(u)(x) on ∂Ω (2.1)

where λ ∈ R, µ(x) ∈ L∞(∂Ω) and γ denotes the trace operator on ∂Ω.
We recall that, for a Lipschitz domain Ω, the trace on ∂Ω of the normal derivative of a H1(Ω)
function satisfying ∆u ∈ L2(Ω) (in the weak sense) is well defined as an element of the Sobolev space
H−1/2(∂Ω). For a general overview of Sobolev spaces and traces of functions see [12].

2.1 Existence and multiplicity of eigenfunctions

It is easily seen that the solutions to (2.1) belong to the subspace H1
µ ⊂ H1(Ω) defined as follows:

H1
µ ≡

{

u ∈ H1(Ω),

∫

∂Ω
µγ(u) = 0

}

. (2.2)

Assuming that
∫

∂Ω
µ 6= 0, (2.3)

it turns out [3] that the Dirichlet norm
∫

Ω |∇u|2 is equivalent to the H1 norm in H1
µ and that (2.1) is

equivalent to the following variational problem:
Find u ∈ H1

µ, u 6= 0, such that
∫

Ω
∇u∇v = λ

∫

∂Ω
µγ(u)γ(v) (2.4)

holds for every v ∈ H1
µ.

Moreover, the expression

‖u‖21 =
∫

Ω
|∇u|2 +

(

∫

∂Ω
µγ(u)

)2
, (2.5)
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defines an equivalent norm in H1(Ω). We consider the scalar product in H1(Ω) associated to this
equivalent norm; then, we have the following result [3]:

Proposition 2.1. Assume (2.3). Then, problem (2.1) has infinitely many eigenvalues λn, each of
finite multiplicity and such that |λn| → +∞. Moreover, the following orthogonal decomposition holds:

H1 = H1
0 ⊕ c⊕ Vµ ⊕ V0, (2.6)

where c are constants eigenfunctions corresponding to the null eigenvalue λ0 = 0, the subspace Vµ is
spanned by the eigenfunctions un satisfying the variational equations

∫

Ω
∇un∇v = λn

∫

∂Ω
µγ(un)γ(v), λn 6= 0, (2.7)

for every v ∈ H1 and V0 is spanned by (harmonic) functions w such that

∫

∂Ω
µγ(w)γ(v) = 0 (2.8)

for every v ∈ H1.

Notice that a non trivial w satisfying (2.8) can only exist if µγ(w) = cµ = 0, i.e. if the function µ
vanishes on a subset of positive Hausdorff measure of ∂Ω; otherwise, V0 is empty.
In the sequel, we will list all the eigenvalues to problem (2.1) as follows

...λ−2 ≤ λ−1 ≤ 0 ≤ λ1 ≤ λ2...

The eigenvalue λ0 = 0 corresponds to the constant solutions of the homogeneous Neumann problem.
By (2.7), we can take all the un orthogonal and normalized with respect to the scalar product associated

to the Dirichlet norm
∫

Ω |∇u|2 and even to the equivalent norm (2.5) by defining u0 =
(∫

∂Ω µ
)−1

; then,
we have

∫

Ω
∇un∇um =

∫

∂Ω
µγ(un)γ(um) = 0, (2.9)

for n 6= m.
Note that from the relations

∫

Ω
|∇un|2 = λn

∫

∂Ω
µγ(un)

2, (2.10)

we get the inequalities

∫

∂Ω
µγ(un)

2 > 0, for n > 0;

∫

∂Ω
µγ(un)

2 < 0, for n < 0. (2.11)

Remark 2.2. If µ has definite sign, µ ≥ 0 say, the problem is coercive for λ < 0 and we have infinitely
many positive eigenvalues (this is the case of the classical Steklov problem [8]); an analogous assertion
holds if µ ≤ 0. But, as soon as µ is positive on some subset of ∂Ω and negative on some other subset,
both subsets being of positive measure, there are infinitely many positive and negative eigenvalues (see
[3], remark 2.6).

A relevant question from the point of view of bifurcation theory is the multiplicity of the eigenvalues.
The results below follow from [9], Theorem 1.2 :

Theorem 2.3. Let µ± = ess sup(0,±µ). Then:
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1. If µ+ > 0 and
∫

∂Ω µ < 0, the first positive Steklov eigenvalue λ1 is simple and it is the only
nonzero eigenvalue associated to an eigenfunction of definite sign.

2. If µ− > 0 and
∫

∂Ω µ > 0, the first negative Steklov eigenvalue λ−1 is simple and it is the only
nonzero eigenvalue associated to an eigenfunction of definite sign.

Remark 2.4. When
∫

∂Ω µ = 0 (and µ is non trivial) there are still unbounded sequences of positive
and negative eigenvalues to problem (2.1); however, the decomposition (2.6) does not hold in that case
(see [3], remark 2.7) and the occurrence of non zero simple eigenvalues can not be proved. Similarly, if
either µ+ or µ− vanishes, simple nonzero eigenvales could not exist, as in the case e.g. of the classical
Steklov problem (µ = 1) on the sphere.

2.2 On the regularity of eigenfunctions.

Global regularity of the eigenfunctions of (2.1) depends on the weight µ and on the regularity of the
boundary ∂Ω. This issue is also relevant for the subsequent discussion of the nonlinear problem. For,
if we want to consider problem (1.2) (or even (1.1)) as an equation for a continuous operator (in
both the variables λ and u) in a suitable functional space, we should require enough regularity to
give meaning to the boundary conditions; on the other hand, non smooth domains are common in
corrosion problems and in addition the weight µ may be discontinuous (for example, one often has
µ = χΓ, the characteristic function of a subset Γ ⊂ ∂Ω).
Recall that any solution of (2.4) belongs to H1(Ω); the trace of its normal derivative (which is well
defined since u is harmonic in Ω) being proportional to µγ(u), belongs to L2(∂Ω). Thus, it can be
proved that u ∈ H3/2(Ω) in a Lipschitz domain Ω ⊂ R

N [13].
In case of dimension N = 2 this implies (by Sobolev imbedding) u ∈ C(Ω) without any additional
assumption. For N ≥ 3, again by Sobolev imbedding, we have (in a Lipschitz domain)

u ∈ H3/2(Ω) ⊂ W 1
2N
N−1

(Ω) (2.12)

In particular, for any solution u in a Lipschitz domain Ω ⊂ R
3, u ∈ W 1

3 (Ω).
In order to investigate further regularity depending on µ and on the boundary ∂Ω, we will exploit the
following result, which is a special case of theorem 2.4.2.7 in [12]:

Proposition 2.5. Let Ω be a bounded open subset of RN with a C1,1 boundary ∂Ω. Then, for every

f ∈ Lp(Ω) and every g ∈ W
1− 1

p
p (∂Ω), there exists a unique u ∈ W 2

p (Ω) which is a solution of

∆u(x) = f(x) in Ω

γ(∂νu)(x) = g(x) on ∂Ω (2.13)

Then, we can state

Theorem 2.6. Assume that Ω ⊂ R
N , N ≥ 2, is bounded with C1,1 boundary and let µ be a Lipschitz

function on ∂Ω. Then, every solution u to problem 2.1 satisfies u ∈ C(Ω).

Proof. By (2.12) and by the regularity of µ, we have

µγ(u) ∈ W
1− 1

p
p (∂Ω)

with p = 2N
N−1 . Then, by applying proposition 2.5 with f = 0 and g = λµγ(u) we get

u ∈ W 2
2N
N−1

(Ω)
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In particular, by Sobolev imbedding, the solutions u are continuous functions up to the boundary for
N ≤ 4. By recalling the inclusion W 2

2N
N−1

(Ω) ⊂ W 1
2N
N−3

(Ω), we can repeat the previous arguments with

increasing values of p and reach the same conclusion for every N . 2

As previously remarked, we would like to treat also the case of a weight µ with jump discontinuities,
for example when µ is the indicator function of a subset Γ ⊂ ∂Ω.

Proposition 2.7. Assume that Ω ⊂ R
N , N = 2, 3, is bounded with C1,1 boundary and let µ = χΓ,

where Γ ⊂ ∂Ω has Lipschitz boundary. Then, every solution u to problem 2.1 is continuous up to the
boundary.

Proof. By (2.12) and by the trace theorems, if u solves (2.1) we have γ(u) ∈ W
1− 1

p
p (∂Ω), with p ≤ 4

if N = 2 and p ≤ 3 if N = 3. Then, by applying corollary 1.4.4.5 of [12], it can be shown that

χΓ γ(u) ∈ W
1− 1

p
p (∂Ω) (2.14)

whenever 1 − 1
p < 1

p that is for p < 2. Then, again by theorem 2.5 and by Sobolev imbedding, u is
continuous up to the boundary if p > N/2. The two conditions are compatible whenever N < 2p < 4,
that is for N = 2 and N = 3. 2

Remark 2.8. More generally, it follows from proposition 2.5 that if µ is such that the product µγ(u)

belongs to the trace space W
1− 1

p
p (∂Ω) (for some p ≤ 2N

N−1) then u ∈ W 2
p (Ω). A sufficient condition can

be derived from general properties of Sobolev space functions, but it will not be used in the following.
By the inclusion W 2

p (Ω) ⊂ W 1
Np
N−p

(Ω), we may improve (2.12) provided Np
N−p > 2N

N−1 , i.e. for p > 2N
N+1 .

By putting p1 = Np
N−p we get further regularity if µ is such that µγ(u) ∈ W

1− 1
p1

p1 (∂Ω). Then, possibly

iterating, we achieve u ∈ W 2
p (Ω) for some larger p. As previously noticed, we obtain global continuity

of the solution if p > N/2. In the limit case p = N/2 we have

u ∈ W 2
N/2(Ω) ⊂ W 1

N (Ω) (2.15)

Remark 2.9. As we will show below, W 1
N (Ω) is the largest space where the nonlinear boundary con-

ditions (1.1), (1.2) can be stated in terms of traces at the boundary of functions defined in Ω ⊂ R
N .

It is remarkable that, in the case N = 3, the condition u ∈ W 1
3 (Ω) holds in a Lipschitz domain for

any bounded weight function µ.

3 Bifurcation solutions of the 3 dimensional problem

We now discuss a possible functional setting for the non linear problem (1.2). For notational simplicity,
sometimes we will denote by the same symbol a function defined in Ω and its trace on the boundary
∂Ω.
The previous discussion on the regularity of the solutions of the linear problem suggests to consider
the Sobolev space W 1

N (Ω); actually, if u ∈ W 1
N (Ω) it can be proved that the right hand side of (1.1)

belongs to Lp(∂Ω) for every p ≥ 1. More precisely, we have

Proposition 3.1. For every u ∈ W 1
N (Ω) and α ∈ R one has eαu ∈ W 1

p (Ω) for 1 ≤ p < N . Moreover,
for 1 < p < N the following estimate holds

∫

∂Ω
eαu ≤ C(1 + ‖u‖p

W 1
p
) e

βp‖u‖N
W1

N (3.1)
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Proof. We start from the inequality (see [14], theorem 7.15)

∫

Ω
e

(

|v|
c1‖∇v‖N

)N/(N−1)

≤ c2
∣

∣Ω
∣

∣, ∀ v ∈ W 1,N
0 (Ω) (3.2)

where the costants c1, c2 only depend on N . Then, by the inequality

αv ≤ |αv| ≤ N − 1

N

( |v|
c1‖∇v‖N

)
N

N−1
+

1

N

(

|α| c1‖∇v‖N
)N

(3.3)

one gets
∫

Ω
eαv ≤ C ′eβ

′‖∇v‖NN , ∀ v ∈ W 1,N
0 (Ω) (3.4)

Let Ω ⊂⊂ Ω̃ and for any u ∈ W 1
N take ũ ∈ W 1,N

0 (Ω̃) such that ũ = u on Ω and ‖∇ũ‖LN (Ω̃) ≤
C‖u‖W 1

N (Ω). Then
∫

Ω
eαu ≤

∫

Ω̃
eαũ ≤ Ce

β‖u‖N
W1

N
(Ω) , ∀ u ∈ W 1

N (Ω) (3.5)

By replacing α with α/p in the previous estimate, we find that eαu ∈ Lp(Ω) for every p. Moreover,
for every 1 ≤ p < N , we have

∫

Ω
|∇

(

eαu
)

|p = |α|p
∫

Ω
eαpu|∇u|p ≤ |α|p

(

∫

Ω
e
α Np

N−p
u
)

N−p
N

(

∫

Ω
|∇u|N

)
p
N ≤ Ce

β̃‖u‖N
W1

N
(Ω)‖∇u‖pN (3.6)

where in the last line we used the estimate (3.5). Then, the first part of the lemma follows.
In order to derive the estimate on the boundary, we fix 1 < p < N and consider the bound

∫

∂Ω
eαu =

∫

∂Ω
|eαu/p|p ≤ C

(

∫

Ω
|∇

(

eαu/p
)

|p +
∫

Ω
eαu

)

(3.7)

By the previous estimates (3.5), (3.6) (again by replacing α with α/p) we readily get the bound (3.1).
2

Hereafter, we consider the problem (1.2) for N = 3. We will assume λ > 0 and take for simplicity
µ = 1; with minor changes, we could also treat the case µ ≥ 0.
As we will see below, it is convenient to search three dimensional solutions in the Hilbert space
H3/2(Ω) ⊂ W 1

3 (Ω).
Let f ∈ L2(∂Ω) satisfies

∫

∂Ω f = 0; define the Neumann to Dirichlet map

Gf = v0|∂Ω (3.8)

where v0 is the unique harmonic function in Ω with Neumann datum f and such that
∫

∂Ω v0 = 0.

By the regularity results quoted above, we have v0 ∈ H3/2(Ω) and therefore Gf ∈ H1(∂Ω).
Let us define the subspace

Ḣ1(∂Ω) =
{

φ ∈ H1(∂Ω),

∫

∂Ω
φ = 0

}

(3.9)

and the operator

G(λ, φ) = λG
(

sinh[φ+ s(φ)]
)

(3.10)

where

s(φ) = − tanh−1
(

∫

∂Ω sinh(φ)
∫

∂Ω cosh(φ)

)

=
1

2
log

(

∫

∂Ω e−φ

∫

∂Ω eφ

)

(3.11)
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By the estimate (3.5) (with N = 2) the exponentials e±φ lie in Lp(∂Ω) for every p ≥ 1; moreover, by
the definition (3.11), the right hand side of (3.10) has vanishing integral on ∂Ω. Thus, the operator
G(λ, ·) maps Ḣ1(∂Ω) in itself.
Assume now that φ solves the functional equation

φ = G(λ, φ) = λG
(

sinh[φ+ s(φ)]
)

(3.12)

Then, the unique harmonic function u0 ∈ H1(Ω) such that u0|∂Ω = φ, satisfies the variational equation

∫

Ω
∇u0∇v = λ

∫

∂Ω
sinh[u0|∂Ω + s(u0|∂Ω)]v (3.13)

for every v such that
∫

∂Ω v = 0.
Finally, by standard regularity results (see section 4) the function u(x) = u0(x) + s(u0|∂Ω) satisfies
the boundary value problem (1.2).
We will now write the functional equation (3.12) in an equivalent form which is suitable for the
application of variational methods in bifurcation theory. Let us first consider the eigenfunctions vi of
the linear eigenvalue problem normalized according to

∫

Ω
∇vi∇vj = δij

Then, we have on the boundary

∫

∂Ω
vivj =

1

λi
δij and

∫

∂Ω
vi = 0 (3.14)

where 0 < λ1 ≤ λ2 ≤ ... ≤ λi ≤ ... are the eigenvalues listed with their multiplicity.
The vectors

√
λivi|∂Ω form an orthonormal system which span the subspace of zero mean functions of

L2(∂Ω).
Let us now introduce the Hilbert space E of the sequences of real numbers

t = {ti}i=1,2,... (3.15)

such that

‖t‖2 =
∞
∑

i=1

λi t
2
i < ∞ (3.16)

We now look for φ and u0 in (3.12), (3.13) represented in the form

u0 = u0(t) =

∞
∑

i=1

ti vi; φ = φ(t) = u0(t)|∂Ω (3.17)

By ∂νv|∂Ω = λiv|∂Ω and by (3.14) we get

‖∂νu0(t)‖L2(∂Ω) = ‖t‖

so that u0 ∈ H3/2(Ω) and φ ∈ Ḣ1(∂Ω).
By choosing v = vi, i = 1, 2, ... as test functions in (3.13) we obtain

ti = λ

∫

∂Ω
sinh[φ(t) + s(φ(t))] vi ≡ λfi(t) (3.18)
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Note that, by Parseval identity and by the arguments following (3.10),

∑

i

λif
2
i =

∑

i

(

∫

∂Ω
sinh[φ+ s(φ)]

√
λi vi

)2
=

∫

∂Ω
sinh2[φ+ s(φ)] < ∞ (3.19)

Hence, by defining
f(t) = {fi(t)}i=1,2,... (3.20)

we can write (3.18) in the form
t = λ f(t) (3.21)

where both terms of the equation belong to E.
We now introduce the functional I : E → R defined by

I(t) =

∫

∂Ω
cosh[φ(t) + s(φ(t))] (3.22)

It can be readily checked that I is C2, even, and satisfies:

∂tiI(t) =

∫

∂Ω
sinh[φ(t) + s(φ(t))]

(

vi + (s′(φ(t)), vi)L2(∂Ω)

)

= fi(t) (3.23)

where s′ denotes the derivative of the functional (3.11) and the last equality follows by the definition
(3.18) and by

∫

∂Ω sinh[φ+ s(φ)] = 0. Hence, we can write

I ′(t) = f(t) (3.24)

where the above equality is meant between elements of the dual space E∗.
For the resolution of (3.21), it is now convenient to define

H(φ) = sinhφ− φ (3.25)

By the orthogonality relations (3.14) we get

fi(t) =
ti
λi

+

∫

∂Ω
H
(

φ+ s(φ)
)

vi =
ti
λi

+Hi(t), i = 1, 2, ... (3.26)

where the sequence

Hi(t) =

∫

∂Ω
H
(

φ+ s(φ)
)

vi, (3.27)

satisfies the bound
∑

i

λiHi(t)
2 =

∫

∂Ω
|H(φ+ s(φ)|2 ≤ C‖t‖6 (3.28)

for every t in a bounded set of E (see appendix).
Finally, by defining

H(t) =
{

Hi(t)
}

i=1,2,...
(3.29)

the equations (3.26) are equivalent to

f(t) = Lt+H(t) (3.30)

where the L at the right hand side denotes the compact self-adjoint operator

{Lt}i =
ti
λi

, i = 1, 2, ... (3.31)
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Thus, by recalling (3.24) we can write (3.21) in the form

1

λ
t = I ′(t) = Lt+H(t) (3.32)

In order to solve the above equation, we can argue as in theorem 11.4 of [10] and reduce the problem,
by the Lyapunov-Schmidt method, to searching the critical points of the functional (3.22) restricted to
some submanifold of a finite dimensional manifold M ⊂ E. Then, we can state:

Theorem 3.2. Every eigenvalue λi of the linear problem (2.1) is a bifurcation point for (3.32). If
the multiplicity of the eigenvalue is n, there is an r0 > 0 such that for each r ∈ (0, r0) there exist at
least n distinct pairs of solutions (λm(r),±tm(r)), 1 ≤ m ≤ n, with ‖tm‖ = r; moreover λm(r) → λi

as r → 0.

Proof. Let λi = λi+1 = ... = λi+n−1 be of multiplicity n and define ij = i + j − 1, with j = 1, ..., n.
Let the eigenfunctions {vi1 , ..., vin} span the relative eigenspace. By projecting (3.32) respectively on
the subspace of E spanned by (ti1 , ..., tin) and on its orthogonal complement and by using the implicit
function theorem one can uniquely determine, in a neighborhood O of the origin of Rn, a sequence of
C1 functions χk = χk(ti1 , ..., tin), k 6= i1, i2, ..., in, such that every solution t of sufficiently small norm
satisfies

tk = χk(ti1 , ..., tin) k 6= i1, i2, ..., in (3.33)

By definition, t ∈ M if and only if (ti1 , ..., tin) ∈ O and (3.33) holds.

Furthermore, there is a unique function λ = λ(ti1 , ..., tin) (continuously differentiable in a neighborhood
of the origin) satisfying

λ(ti1 , ..., tin) → λi for (ti1 , ..., tin) → (0, 0, ..., 0)

and such that the following system holds for every t ∈ M:

λ(ti1 , ..., tin)
−1χk(ti1 , ..., tin) =

χk(ti1 , ..., tin)

λk
+Hk(t) (k 6= i1, i2, ..., in); (3.34)

λ(ti1 , ..., tin)
−1 = λ−1

i +

∑n
j=1Hij (t)tij
∑n

j=1 t
2
ij

(3.35)

(see [10], eq. (11.14)).
Let us denote by < , > the duality product between E and E∗. By (3.24), (3.26), (3.34) and (3.35),
we have for every t ∈ M:

< I ′(t), t >=< f(t), t >=

n
∑

j=1

fij (t)tij + λ(ti1 , ..., tin)
−1

∑

k 6=i1,i2,...,in

χ2
k(ti1 , ..., tin)

=
n
∑

j=1

[λ−1
i t2ij +Hij (t)tij ] + λ(ti1 , ..., tin)

−1
∑

k 6=i1,i2,...,in

χ2
k(ti1 , ..., tin)

= λ(ti1 , ..., tin)
−1

[

n
∑

j=1

t2ij +
∑

k 6=i1,i2,...,in

χ2
k(ti1 , ..., tin)

]

(3.36)

The form of the last term suggests to define the submanifold

Dǫ = {t ∈ M :
n
∑

j=1

t2ij +
∑

k 6=i1,i2,...,in

χ2
k(ti1 , ..., tin) = ǫ2} (3.37)
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The critical points t of I|Dǫ satisfy
< I ′(t),x >= 0 (3.38)

for all x in the tangent space TDǫt ⊂ TMt. By (3.33), we get

TMt =
{

x = {xi}i=1,2,.. : xk =
n
∑

j=1

xij∂ijχk(ti1 , ..., tin), ∀k 6= i1, ..., in

}

(3.39)

and therefore

TDǫt =
{

x ∈ TMt :

n
∑

j=1

xij tij +
∑

k 6=i1,i2,...,in

(

n
∑

j=1

xij∂ijχk)χk = 0
}

(3.40)

Then, by (3.36)-(3.40) every critical point t of I|Dǫ satisfies

0 =
〈

f(t)− ǫ−2 < f(t), t > t , y
〉

=
〈

f(t)− λ(ti1 , ..., tin)
−1t , y

〉

(3.41)

for every y ∈ span{t, TDǫt}.
We now prove that the pair (λ, t) solves (3.32). By (3.26) and (3.34), we need only to consider in
(3.41) the projection

Py ∈ span
{

{tij}j=1,...,n, {xij}j=1,...,n

}

where, by (3.40), the {xij}j=1,...,n span the n− 1 dimensional subspace of Rn of the vectors satisfying

n
∑

j=1

xij
[

tij +
∑

k 6=i1,i2,...,in

χk∂ijχk

]

= 0

Thus, we are left to prove that the vector {tij}j=1,...,n does not belong to the previous subspace.
Actually, the equation

n
∑

j=1

t2ij +

n
∑

j=1

tij
[

∑

k 6=i1,i2,...,in

χk∂ijχk

]

= 0 (3.42)

has no nontrivial solution for small tij since the second term at the left hand side is o(
∑n

j=1 t
2
ij
) (see

appendix). Thus, every critical point t of I|Dǫ solves (3.32), with λ given by (3.35). Since I is even,
the theorem follows by corollary 11.30 of [10]. 2

Now, by recalling (3.17), we may claim that to every solution t of (3.32), i.e. of (3.21), it corresponds
a non trivial solution u0(t) ∈ H3/2(Ω) to (3.13) or, equivalently, a nontrivial solution φ ∈ H1(∂Ω) to
(3.12). Thus, we conclude that for λ near to an eigenvalue λi of (2.1) of multiplicity n, the nonlinear
boundary value problem (1.2) (with a non negative weight µ) has at least n distinct pairs of non trivial
solutions.

Remark 3.3. In the general case of the boundary condition (1.1) (with µ ≥ 0) we can repeat with
obvious modifications the discussion leading to theorem 3.2. The main difference is that the functional
I is no more symmetric, so that its restriction to the submanifold Dǫ has (at least) two different critical
points corresponding to the maximum and minimum. As a consequence, there is an r0 > 0 such that
for each r ∈ (0, r0) there exist at least 2 distinct solutions (λk(r), tk(r)), k = 1, 2, with ‖tk‖ = r;
moreover λk(r) → λi as r → 0.
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4 Properties of the solutions and applications

Let us first investigate the regularity of the solutions to (1.2) found in the previous section; recall
that, for λ near to the bifurcation values and assuming µ ≥ 0, such solutions lie in the Sobolev space
H3/2(Ω) and satisfy (1.2). As in the linear problem, more regularity on the data allows more regularity
of the solutions.

Theorem 4.1. Assume that Ω ⊂ R
3 is bounded with C1,1 boundary and let µ be a non negative

Lipschitz function on ∂Ω. Then, every solution u ∈ H3/2(Ω) to problem (1.2) belongs to C1,α(Ω̄) for
every α < 1.

Proof. By the imbedding u ∈ H3/2(Ω) ⊂ W 1
3 (Ω), by proposition 3.1 and by the regularity of µ, we

have

µ sinhu ∈ W
1− 1

p
p (∂Ω)

for 1 ≤ p < 3. Hence, by theorem 2.5 we get u ∈ W 2
p (Ω) for the same values of p. By the Sobolev

immersion W 2
p (Ω) ⊂ C0,α(Ω̄), α = 2− 3

p < 1, we further obtain

µ sinhu ∈ C0,α(∂Ω)

Then, the theorem follows by standard Hölder regularity results [14]. 2

Remark 4.2. By iteration of the above proof, if µ is smooth (e.g. µ = 1) on a smooth boundary (e.g.
a sphere) we get solutions u ∈ C∞(Ω̄). If on the contrary µ has a jump discontinuity (e.g. µ is the
indicator function of a subset of ∂Ω) by the same arguments as in the proof of proposition 2.7 we still
have u ∈ C0(Ω̄).

We now consider global existence of the bifurcation solutions. It can be checked that the operator
G in equation (3.12) is continuous in Ḣ1(∂Ω) and that maps bounded sets into relatively compact
sets. The latter property follows by the bound (3.5), by the previous regularity results and by Sobolev
imbedding; continuity can be proved by using arguments similar to those of lemma 2.2 in [2]. Then,
in the case of bifurcation from eigenvalues of odd multiplicity, a global result holds (see [11], theorem
1.10). By denoting with S ⊂ R × Ḣ1(∂Ω) the closure of the set of the non trivial solutions (λ, φ) to
(3.12), we have

Proposition 4.3. Let κ be an eigenvalue of odd multiplicity of the linear problem (2.1) and let C be
the component (i.e. a closed connected subset maximal with respect to inclusion) of S to which (κ, 0)
belongs. Then C is either unbounded or contains (κ̄, 0), where κ̄ 6= κ.

Example 4.4. Let us consider the problem (1.2) with Ω the unit ball of R3 and µ = 1. It is well known
that the eigenfunctions of the corresponding linear Steklov problem are the homogenous harmonic
polynomials of degree n and that the Steklov eigenvalues are precisely n, n = 0, 1, 2, ... Moreover,
the dimension of each eigenspace is 2n + 1. Hence, proposition 4.3 applies to the component of S
containing (n, 0) for every n = 1, 2, .... 2

In a spherical domain it is natural to look for solutions with an axial symmetry with respect to a
diameter (note that there are no nontrivial radially symmetric solutions to (1.2) in the ball). By
suitably choosing the coordinate system, we may consider solutions symmetric with respect to the z
axis, i.e. solutions which are constant along the parallel lines of the sphere; in spherical coordinates,
they will only depend on the distance r =

√

x2 + y2 + z2 from the origin, and on the polar angle θ.

Let us denote by H
3/2
ax (Ω) the subspace of the functions v ∈ H3/2(Ω) with the above axial symmetry;

the boundary traces v|∂Ω with vanishing integral on the sphere will belong to a subspace of (3.9)
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denoted by Ḣ1
ax(∂Ω). Now, by rotational invariance of the Laplacian and by uniqueness of the solution

of the Neumann problem, one can check that the operator G(λ, ·) defined by (3.10) maps Ḣ1
ax(∂Ω) in

itself. Moreover, the (non constant) axially symmetric eigenfunctions of the Steklov problem in the
ball are those harmonic polynomials which (in polar coordinates) are independent of the azimuthal
angle, that is rnPn(cos θ), n = 1, 2, ... where the Pn are the Legendre polynomials. The restrictions
of these eigenfunctions to the spherical surface span the subspace of axially symmetric, zero mean
functions of L2(∂Ω).

We now define u0 ∈ H
3/2
ax (Ω) and φ ∈ Ḣ1

ax(∂Ω) by restricting (3.17) to the above symmetric eigen-
functions; then, by the same arguments as in section 3 we find nontrivial solutions (λ, u) of (1.2)

bifurcating from (n, 0), n = 1, 2, ... and such that u ∈ H
3/2
ax (Ω). We stress that there is a unique

(normalized) axially symmetric eigenfunction for every eigenvalue n, so that all the eigenvalues of the

linear problem in H
3/2
ax (Ω) are simple. Thus, we get

Proposition 4.5. Let Ω be the unit ball and let µ = 1. Then, for any n = 1, 2, ... there is a component
Cn ⊂ R × Ḣ1

ax(∂Ω) of S which meets the point (n, 0); each Cn is either unbounded or meets (m, 0),
with m 6= n.

It would be interesting to establish which of the alternatives of the previous proposition actually
holds. We can partially answer to this question by further restricting to the subspace of the axially
symmetric functions u in the ball which are odd with respect to z; by writing, in spherical coordinates,
u = u(r, cos θ) we have

u(r, cos θ) = −u(r, cos(π − θ)) ∀ r ≥ 0, 0 ≤ θ ≤ π (4.1)

By putting cos θ = t, −1 ≤ t ≤ 1, we get u = u(r, t), with u(r,−t) = −u(r, t). The following lemma is
required to prove our results:

Lemma 4.6. Let Ω be the unit ball and let u ∈ C1(Ω̄) an axially symmetric solution to problem (1.2)
(with µ = 1) which satisfies (4.1). Let us write u = u(r, t) and assume that one of the following cases
occurs:

i) The function u(1, ·) has double zeros, but no simple zeros in (−1, 0) ∪ (0, 1);

ii) u(1, ·) has no zeros in (−1, 0) ∪ (0, 1) and it vanishes at t = 0,±1;

iii) u(1, ·) has a unique double zero at t = 0.

Then, u = 0.

Proof. By (4.1), u(r, 0) = 0 for every r ∈ [0, 1]. Hence, the plane z = 0 is a nodal surface for u.
Assume that u(1, ·) vanishes at ±t ∈ (−1, 0)∪ (0, 1); then, there are two nodal circles on the spherical
boundary, symmetric with respect to the equatorial plane. If we consider any longitudinal section
of the sphere, we have u = 0 on the diameter of a disk and at two pairs of symmetric points on its
circular boundary, one pair on the upper half, the other obtained by reflection on the lower half. By
symmetry, it is enough to consider the zeros of u in the (closed) upper semi disk; we denote by C such
domain and by ∂C+ the part of its boundary not lying on the diameter. Note that every symmetric
pair of zeros on ∂C+ corresponds to a nodal circle on the upper spherical surface and every nodal line
in C corresponds to a nodal rotational surface in the upper half of the ball.
If u does not vanish identically, by the Hopf principle the zeros on ∂C+ are not extremum points
since the boundary condition implies ∂ru(1, t) = 0; moreover, if u(1, ·) has a double zero at t, we have
∇u(1, t) = 0. Hence, we may assume that from each of these points originate (at least) two distinct
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nodal lines of u. In fact, should a single nodal line arise, we get in the three dimensional space a nodal
surface of double zeros of u; since u is harmonic, this implies u = 0.
Thus, we have two symmetric pairs of nodal lines beginning at symmetric points on ∂C+; assuming
that the only other zeros of u are the points of the diameter, these nodal lines will necessarily form,
possibly with part of the diameter itself, a closed path in C. In the three dimensional space, we get
a closed nodal surface for u, so that u = 0 by the maximum principle. The same conclusion holds if
there are arbitrary pairs of double zeros in (−1, 0) ∪ (0, 1), but no simple zeros.
Assume now that ii) holds. Hence, u vanishes at the top of C; if there exist at least two nodal lines
originating from this point, we can repeat the previous arguments to conclude that u = 0. On the
other hand, if there is only one nodal line outgoing from the top, this is necessarily the perpendicular
to the diameter, so that u = 0 again by the maximum principle.
Finally, should u have a double zero at t = 0, either the diameter is a line of double zeros, or it is part
of a closed nodal line in C. In both cases, we get u = 0. 2

Let us now denote by V ⊂ Ḣ1
ax(∂Ω) the subspace of the functions φ such that φ(−t) = −φ(t); by the

invariance of the Laplace operator with respect to the reflection z 7→ −z and by the symmetry of the
Neumann condition on the sphere, it follows that the (axially symmetric) solutions of the Neumann
problem in the ball, with boundary data in V and having zero mean on the surface, are odd functions
of t = cos θ. Hence, we can further restrict the functional formulation of the nonlinear equation (3.12)
to the subspace V . The representation (3.17) will now contain only the eigenfunctions with odd indices
r2k+1P2k+1(cos θ), k = 0, 1, 2, ... Then, we can state

Theorem 4.7. Let Ω be the unit ball and let µ = 1. Then, for any k = 0, 1, 2, ... there is a component
Dk ⊂ R× V of S which meets the point (2k + 1, 0); each Dk is either unbounded or meets (2j + 1, 0)
for some j 6= k. The component D0 is unbounded.

Proof. The first part of the theorem follows by the previous discussion and by proposition 4.3. We
now show that the D0 is actually unbounded. Recall that, by regularity, every solution u to problem
(1.2) belongs to C1(Ω̄). Let us consider, in the subspace of the odd functions φ(t) ∈ C1([−1, 1]), the
subset Sk of the functions φ having exactly 2k+1 simple zeros in (−1, 1) and such that φ(1) > 0. The
set Sk is open and P2k+1(t) ∈ Sk. Then, by the same arguments as in Lemma 2.7 of [11], there is a
neighborhood Nk ⊂ R×V of (2k+1, 0) such that if (λ, φ) ∈ Nk is a non trivial solution, then φ ∈ Sk.
In particular, we have Dk∩Nk ⊂ (R×Sk)∪(2k+1, 0) for every k. We claim that D0 ⊂ (R×S0)∪(1, 0);
then, since Sj ∩ Sk = ∅ for j 6= k, the theorem follows.
In order to prove the claim, assume that C0 6⊂ R × S0 ∪ (1, 0); then, there is (λ, φ) ∈ C0 ∩ (R × ∂S0),
(λ, φ) 6= (1, 0), which is a limit point of a sequence (λn, φn) ∈ R× S0; but, as shown in the examples
below, a function in ∂S0 either vanishes at t = ±1 or it has a double zero at the origin or symmetric
double zeros in (−1, 0) ∪ (0, 1).

t1−1 t1−1 t1−1

In any case, since φ(t) = u(1, t) for some solution u of (1.2), it follows by lemma 4.6 that φ = 0. Hence,
λ = 2j + 1 for some j > 0; but this implies that (λn, φn) is definitively in R× Sj , a contradiction. 2
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Remark 4.8. The results obtained by variational methods for the analogous two-dimensional problem
in a disk seems to indicate that in the (λ, ‖φ‖) plane the branches of solutions outgoing from (n, 0)
become asymptotic to the λ = 0 axis.

Finally, as an example of different type, we consider a problem in a cube, where µ is the indicator
function of a single face.

Example 4.9. Let Ω be the unit cube [0, 1]3 and let µ = 1 on [0, 1] × [0, 1] × {1} and µ = 0 on the
remaining part of the boundary. By separation of variables, the eigenfunctions of the linear problem
(2.1) are

uj,k(x, y, z) = cos(πjx) cos(πky) cosh(pj,kz), j, k = 0, 1, 2, ...

where pj,k = π
√

j2 + k2. The corresponding Steklov eigenvalues are

λj,k = pj,k tanh pj,k

Then, by theorem 3.2, if the eigenvalue λj,k has multiplicity n there are at least n distinct pairs of non
trivial solutions to the non linear problem (1.2) bifurcating from (λj,k, 0). Since pj,k = pk,j, if j 6= k
each eigenvalue has at least multiplicity two, but we can still reduce the multiplicity by considerations
of symmetry. In fact, by still focusing on the symmetry properties of the solutions to the Neumann
problem, one can prove that the subspaces of the functions u which are respectively even and odd for
the reflection u(x, y) 7→ u(y, x) are both invariant for the action of the operator G(λ, ·) defined by
(3.10). Hence, we can find non trivial solutions of the non linear problem in these subspaces by the
same arguments which led to proposition 4.7; in each subspace, the eigenvalue λj,k is simple provided
that the integer (pj,k/π)

2 can be expressed in a unique way as a sum of two squares, ignoring order
and signs. Nevertheless, it is known that there are positive integers which can be represented in more
than one way as a sum of two squares, depending on their factorization [15]. For example, we have
25 = 02 + 52 = 32 + 42, or 65 = 12 + 82 = 42 + 72; hence, even in a subspace of symmetric functions,
the eigenvalues 5π tanh(5π) and

√
65π tanh(

√
65π) have multiplicity two. 2

We conclude by observing that if a bifurcation branch contains non trivial solutions φ of arbitrarily
large norm (in H1(∂Ω)) and if λ is bounded along the same branch, then also the sup norm ‖φ‖L∞(Ω)

becomes arbitrarily large; if not, the Neumann datum λ sinh(φ+ s(φ)) would be bounded in L2(∂Ω),
and the same holds for the H3/2(Ω) norm of the solution u to (1.2). But since u = u0 + s(φ), with
u0|∂Ω = φ, we would obtain that also ‖φ‖H1(∂Ω) is bounded, a contradiction.

5 Appendix

We first prove (3.28), i.e.
∑

i

λiHi(t)
2 =

∫

∂Ω
|H(φ+ s(φ)|2 ≤ C‖t‖6 (5.1)

The first equality follows readily by definition (3.27) and by Parseval identity. Let us now estimate
the integral. By Taylor expansion of the exponentials in (3.11) and recalling that

∫

∂Ω φ = 0, we can
write

s(φ) = log
1 + 1

|Ω|

∫

∂Ω φ2g−(φ)

1 + 1
|Ω|

∫

∂Ω φ2g+(φ)

where the function g+(φ) [g−(φ)] is bounded for φ ≤ 0 [φ ≤ 0] and such that g+(φ) ≤ eφ/2 for φ > 0
[g−(φ) ≤ e−φ/2 for φ < 0]. Hence, by the estimates of section 3 and by Hölder inequality we get

|s(φ)| ≤ C1‖φ‖2L4(∂Ω) ≤ C2‖φ‖2H1(∂Ω) ≤ C3‖t‖2 (5.2)
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for t in a bounded set of E.
Now, by (3.25) we have

H
(

φ+ s(φ)
)

=
(

φ+ s(φ)
)3H̃

(

φ+ sφ)
)

where 0 < H̃(φ) < cosh(φ)/6. Then, for t in a bounded set,

∫

∂Ω
H
(

φ+ s(φ)
)2 ≤ K1‖φ+ s(φ)‖6L12(∂Ω) ≤ K2‖φ+ s(φ)‖6H1(∂Ω) ≤ K3‖t‖6 (5.3)

where in the last inequality we used (5.2).

We prove now the claim following (3.42). We need an estimate of the term

∑

k 6=i1,i2,...,in

χk(ti1 , ..., tin)∂ijχk(ti1 , ..., tin) (5.4)

Let us write (3.34) in the form

χk(ti1 , ..., tin) =
(

λ(ti1 , ..., tin)
−1 − λ−1

k

)−1
Hk(t) (5.5)

where the components of t satisfy tk = χk(ti1 , ..., tin) and k 6= ti1 , ..., tin . By recalling that, for small
tij , λ(ti1 , ..., tin) ≈ λi 6= λk and by the bound (5.1), we obtain

∑

k 6=i1,i2,...,in

λkχ
2
k(ti1 , ..., tin) ≤ C

(

n
∑

j=1

t2ij
)3

(5.6)

for {tij}j=1,...,n in a neighborhood of the origin.
Moreover, by differentiating (3.34) and (3.35) with respect to ti1 , j = 1, 2, ...n, and by the same
calculations as in [10], equations (1.16)-(1.19), one can prove (we omit the details)

∑

k

λk|∂ijχk|2 ≤ C
(

n
∑

l=1

t2il
)2

(5.7)

Finally, by estimating (5.4) taking account of (5.6), (5.7), the claim follows.
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