
DIPARTIMENTO DI MATEMATICA
“Francesco Brioschi”

POLITECNICO DI MILANO

Differential 1-forms, their integrals

ans Potential Theory on the

Sierpinski gasket

Cipriani, F.; Guido, D. Isola, T. Sauvageot J.L.

Collezione dei Quaderni di Dipartimento, numero QDD 118

Inserito negli Archivi Digitali di Dipartimento in data 31-1-2012

Piazza Leonardo da Vinci, 32 - 20133 Milano (Italy)



DIFFERENTIAL 1-FORMS, THEIR INTEGRALS AND POTENTIAL

THEORY ON THE SIERPINSKI GASKET

FABIO CIPRIANI, DANIELE GUIDO, TOMMASO ISOLA, AND JEAN-LUC SAUVAGEOT

Abstract. We provide a definition of differential 1-forms on the Sierpinski gasket K and
their integrals on paths. We show how these tools can be used to build up a Potential Theory
on K. In particular, we prove: i) a de Rham re-construction of a 1-form from its periods
around lacunas in K; ii) a Hodge decomposition of 1-forms with respect to the Hilbertian
energy norm; iii) the existence of potentials of elementary 1-forms on suitable covering spaces
of K. We then apply this framework to the topology of the fractal K, showing that each
element of the dual of the first Čech homology group Ȟ1(K) is represented by a suitable
harmonic 1-form.

1. Introduction

1.1. Purpose of the work. The aim of this work is to develop, on the fractal set K known
as Sierpinski gasket, a notion of differential 1-form ω and line integral

∫

γ

ω

along oriented paths γ inK. The purpose for doing this is twofold: on the one hand we wish to
set up tools for a potential theory on K; on the other hand, we would like to use them to have
local representations, i.e. by integrals, of topological invariants. Our main results are: the
construction of a space Ω1(K) of differential forms for which the integral along oriented paths
makes sense; a de Rham (first and second) Theorem, proving that the sequence of periods
around lacunas gives rise to a unique form (up to an exact one); then a Hodge Theorem,
namely that any form ω ∈ Ω1(K) has a unique harmonic representative in cohomology; and
finally, the construction of an (abelian) projective covering, where potentials of 1-forms will
be defined; and the establishment of a pairing between the cohomology of forms and the Čech
homology group of the gasket (de Rham duality theorem).

The classical framework we refer to is that of harmonic integrals on differentiable man-
ifolds, developed by de Rham [5] and Hodge [9]. There, the notions of differential 1-form
and line integral are direct outcome of the notion of tangent bundle. The analytic tool of
exterior differentiation of forms then naturally provides homotopy invariants by means of the
differential complex and its associated cohomology groups. The notion of line integral on
the manifold M allows to establish a local pairing first between closed 1-forms and 1-cycles,
and then between the first cohomology group H1(M) and the first singular homology group
H1(M). Furthermore, the choice of a Riemannian metric on M allows to introduce the notions
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of co-closed and harmonic forms in such a way that each cohomology class in H1(M) has a
unique harmonic representative.

Trying to develop the above framework on the Sierpinski gasket K, two main problems
have to be tackled.

The first is that K is not a manifold: it was originally introduced in [19] as an example
of space with a dense set of ramification points so that it has no open sets homeomorphic
to Euclidean domains. This is the reason why a notion of differentiable structure on K has
to be introduced in an unconventional way. We choose to do this by using the notion of
energy or Dirichlet form, a sort of generalized Dirichlet integral, developed by Beurling and
Deny [2], that can be considered on arbitrary topological spaces. In particular, we consider
the so called standard Dirichlet form E considered by Kusuoka [14] in his construction of a
diffusion process on K, and studied by Kigami [13] in the framework of his harmonic theory
on self-similar fractal sets like K. The primary role of E is to provide the class of finite energy
functions F, which is a dense subalgebra of the algebra of continuous functions C(K), and
plays the role of a Sobolev space on the gasket. More importantly, there exists a canonical first
order differential calculus associated to Dirichlet forms, as developed in [3]. It is represented
by a closed derivation ∂, defined on F with values in a Hilbert C(K)-module H, which is
a differential square root of the Dirichlet form in the sense that E[a] = ‖∂a‖2

H
. One of the

main technical issues will be the proof that the integral along oriented paths makes sense on
(suitably regular) elements of H. As we shall see below, this will force us to a long detour:
the introduction of the bimodule of universal 1-forms Ω1(F) on the Dirichlet algebra F, the
definition of line-integrals on it, and then the proof that an element of Ω1(F) with zero Hilbert
norm has zero integral along all edges, namely the integral makes sense on the quotient. What
we get then is an F-module Ω1(K), which densely embeds in H, thus furnishing the smooth
subspace on which line integrals make sense.

The second problem is that K is a topological space which is not semilocally simply con-
nected, so that it has no universal covering, i.e. a simply connected covering space [15]. This
fact affects the development of a potential theory on K. In an ordinary manifold M , any

closed form ω has a pull back ω̃ on the universal covering space M̃ , which is obviously still

closed but also exact, since M̃ is simply connected. Hence, any closed form on a manifold

admits a primitive function U on M̃ , in the sense that dU = ω̃. Moreover, the primitive U is
a potential of ω in the sense that its line integral along a path γ in M can be computed by
the formula ∫

γ

ω = U(p)− U(q)

where q, p ∈ M̃ are the initial and final points, respectively, of any lifting γ̃ in M̃ of γ.

For the needs of a potential theory on the gasket K, the role played by the universal covering
of a manifold, acted upon by its fundamental group, will be played by a specific natural

projective covering L̃, acted upon by the first Čech homology group Ȟ1(K), which is a
projective limit of finitely generated abelian discrete groups. In particular, the potentials U

of 1-forms on K will be affine functions on L̃.

1.2. Main results. We now come to a closer look at our results. Our first step is the
construction of the bimodule of universal 1-forms Ω1(F) on the Dirichlet algebra F and the
definition of line integrals of its elements along elementary paths in K, namely finite unions
of consecutive oriented edges in K. Also, we define a quadratic form Q on Ω1(F) such that
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Q[df ] = E[f ], as in the tangent bimodule construction. Now we have two natural quotients of
Ω1(F) to take, either w.r.t. the intersection of the kernels of the functionals ω 7→

∫
e
ω, where

e is any edge, or w.r.t. the kernel of the quadratic form Q. A main task will be to show that
the kernels coincide, hence both the integrals and Q make sense on the quotient. While the
proof that Q makes sense on the space Ω1(K) of forms modulo forms with zero integral on
edges is quite direct, the converse is not at all trivial. What we do is to analyze periods of
forms in Ω1(K) around the lacunas of the gasket, and show that, given such periods, we may
construct another form with the same periods in a canonical way as a series of a suitable
sequence of forms dzσ, parametrized by lacunas of K. We then prove that the difference
between the original form and the series is an exact form dU , thus showing at once the first
and second De Rham theorem for the gasket, namely the fact that one may build a form
given its periods, and the fact that such a form is indeed unique, up to exact forms. In the
same time, since the forms dzσ are harmonic, we obtain a Hodge theorem, i.e. we show that
any form has a harmonic representative in the space of (closed) forms modulo exact ones.
Finally, since the decomposition of a form ω ∈ Ω1(K)

ω = dU +
∑

σ

kσdzσ

consists of pairwise orthogonal summands w.r.t. Q, we have that Q[ω] = 0 implies kσ = 0
for all σ, and E[U ] = 0, namely ω = 0, thus proving that Ω1(K) densely embeds in the
tangent module H. As a further outcome of our analysis, it turns out that the only natural
definition of an external differential on 1-forms giving a differential complex is the trivial one,
namely all 1-forms are closed, in accordance with the fact that the gasket is topologically
one-dimensional.

A second major issue of our paper is the attempt of extending the integral of a form from
elementary paths to general ones, and set up a potential theory for 1-forms. In order to work

out a space on which potentials of 1-forms may be defined, we consider the projective limit L̃

of a sequence of regular abelian covering spaces L̃n, where all loops around lacunas of order
up to n are unfolded. The group Γ of deck transformations of such pro-covering happens to
coincide with the Čech homology group Ȟ1(K,Z) of the gasket.

It turns out that, in contrast with the classical situation, the space of locally exact forms
is a proper subspace of the space of (closed) forms. This subspace is the natural one from the
point of view of algebraic topology, first because the integral of such forms extends naturally

to all curves in the gasket; second, because any locally exact form ω has a potential Uω on L̃,
such that the integral of ω along a path γ coincides with the variation of Uω at the end-points

of a lifting of γ to L̃. Moreover, the potential Uω is Γ-affine, namely it is associated with a
homomorphism ϕω : Γ → R such that Uω(gx) = Uω(x) + ϕω(g). The pairing 〈ω, g〉 = ϕω(g)
extends to a de Rham duality between Ȟ1(K,R) and H1

dR(K,R), which we define as the
quotient Ω1

loc(K)/B1(K,R), where B1(K,R) denotes the space of exact forms.
Finally, we try to extend the previous results to the space of all elementary 1-forms. The

main question here is how to select the paths on which all elementary 1-forms can be inte-

grated. The tool we use for that is a pseudo-metric d on L̃, inducing a topology stronger than

the projective limit one, and giving rise to a partition of L̃ in connected d-components made
of points with finite mutual distance. Also, this pseudo-metric produces a length function
on Γ, and the subgroup Γd of elements with finite length. Then, forms in Ω1(K) can be
integrated on all paths which are contained in the same d-components, and potentials are

Γd-affine functions on d-components of L̃.
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1.3. Organization of the paper. Concerning the structure of the work, the second section
is dedicated to recall the definition and main properties of the gasket, and in particular to
illustrate the construction and some properties of the standard Dirichlet form on it, used in
the remaining part of the work.

In the third section we consider the module of universal 1-forms Ω1(F) on the Dirichlet
algebra F, which is algebraically generated by elements fdg, with f, g ∈ F. Then we carefully
define line integrals of its elements along elementary paths in K. Later in that section,
identifying forms in Ω1(F) having the same integral on elementary paths, we construct the
space Ω1(K) of elementary forms, which consists of forms integrable along elementary paths,
and on which the quadratic formQ is well defined. Elements ω in Ω1(K) which are differentials
of elements U in F by the derivation d are called exact forms, their space is denoted by
B1(K,R) and U is called a potential of ω. Such notion may be localized on any open set in
K and the notion of locally exact forms, denoted by Ω1

loc(K), and their corresponding local
potentials are well defined.

The fourth section, after the introduction of co-closed and harmonic forms, is devoted to the
construction of an orthogonal system of locally exact harmonic forms {dzσ : σ ∈ Σ} ⊂ Ω1

loc(K)
associated to the family of lacunas {ℓσ : σ ∈ Σ} of K. A suitable finite linear combination ωσ

of the dzσ’s may then be used to describe the winding number of a path γ around a lacuna
ℓσ as the integral

∫
γ
ωσ.

In section five, by studying the properties of periods of forms in Ω1(K) around elementary
cycles in K and using the above system of harmonic forms, we show that locally exact forms,
i.e. forms in Ω1

loc(K), admit a unique decomposition as a sum of an exact form and a harmonic
one which is a finite superposition of the dzσ’s. The above decomposition extends to forms in
Ω1(K) with the sum replaced by an infinite series, converging with respect to a norm which
makes line integrals continuous. This is a de Rham characterization of forms in Ω1(K) by their
periods around lacunas. In the same section, we prove also a Hodge orthogonal decomposition
for all elementary 1-forms, proving that Ω1(K) densely embeds in the tangent moduleH, with
respect to its Hilbertian topology. Then we observe that the space B1(K,R) is closed in the
Hilbert norm, hence the Hodge orthogonal decomposition extends to all elements in H.

In the sixth section we introduce the pro-covering L̃, show that all locally exact forms
have a potential there, and prove an analogue of a second fundamental result of de Rham on
the Sierpinski gasket: the line integral provides a duality between the first Čech homology
group Ȟ1(K,R) and the first cohomology group H1

dR(K,R). The system of harmonic forms
{dzσ : σ ∈ Σ} provides representatives for the cohomology classes.

In the seventh section we develop a Potential Theory for elementary 1-forms on K. We

start by introducing a pseudo-metric d on the homological pro-covering L̃ which gives rise
to a subgroup Γd of the group of deck transformations and to a notion of effective length of
paths. Then we prove that elementary 1-forms on K admit potentials which are Γd-affine

functions on d-components of L̃, and define the integral along a path of finite effective length

as the variation of its potential along the lifting of the path to L̃.

In an appendix to the work we confine the technical result on the coincidence of the

projective limit topology of the homological pro-covering L̃, with the topology generated by
the potentials zσ of the harmonic forms dzσ associated to the family of all lacunas ℓσ in K,
which implies that the topology induced by d is stronger than the projective limit topology.
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2. Preliminary notions

We denote by K the Sierpinski gasket, a prototype of self-similar fractal sets. It was
introduced in [19] as a curve with a dense set of ramified points and has been the object of
various investigations in Probability [14] and Theoretical Physics [17].

Let p0 := (0, 0), p1 := (1
2
,
√
3
2
), p2 := (1, 0) be the vertices of an equilateral triangle and

consider the contractions wi of the plane: x ∈ R2 → pi +
1
2
(x − pi) ∈ R2. Then K is the

unique fixed-point w.r.t. the contraction map E 7→ ∪2
i=0wi(E) in the set of all compact

subsets of R2, endowed with the Hausdorff metric. Two ways of approximating K are shown
in Figures 1 and 2.

Let us denote by Σm := {0, 1, 2}m the set of words of length m ≥ 0 composed by m letters
chosen in the alphabet of three letters {0, 1, 2} and by Σ :=

⋃
m≥0 Σm the whole vocabulary

(by definition Σ0 := {∅}). A word σ ∈ Σm has, by definition, length m and this is denoted
by |σ| := m. For σ = σ1σ2 . . . σm ∈ Σm let us denote by wσ the contraction wσ := wσ1 ◦wσ2 ◦
· · · ◦ wσm

.

Let V0 := {p0, p1, p2} be the set of vertices of the equilateral triangle and E0 := {e0, e1, e2}
the set of its edges, with ei opposite to pi. Then, for any m ≥ 1, Vm :=

⋃
|σ|=m wσ(V0) is

the set of vertices of a finite graph (i.e. a one-dimensional simplex) (Vm, Em) whose edges are
given by Em :=

⋃
|σ|=m wσ(E0) (see Figure 2). The self-similar set K can be reconstructed

also as an Hausdorff limit either of the increasing sequence Vm of vertices or of the increasing
sequence Em of edges, of the above finite graphs. Set V∗ := ∪∞m=0Vm, and E∗ := ∪∞m=0Em.

Figure 1. Approximations from above of the Sierpinski gasket.

Figure 2. Approximations from below of the Sierpinski gasket.

In the present work a central role is played by the quadratic form E : C(K) → [0,+∞]
given by

E[f ] = lim
m→∞

(
5

3

)m ∑

e∈Em

|f(e+)− f(e−)|2,

where each edge e has been arbitrarily oriented, and e−, e+ denote its source and target. It
is a regular Dirichlet form since it is lower semicontinuous, densely defined on the subspace
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F := {f ∈ C(K) : E[f ] < ∞} and satisfies the Markovianity property

(2.1) E[f ∧ 1] ≤ E[f ] f ∈ C(K)1.

The existence of the limit above and the mentioned properties are consequences of the
theory of harmonic structures on self-similar sets developed by Kigami [13]. As a result of
the theory of Dirichlet forms [2, 7], the domain F is an involutive subalgebra of C(K) and,
for any fixed f, h ∈ F, the functional

(2.2) F ∋ g 7→ 1

2

(
E(f, gh)− E(fh, g) + E(h, fg)

)
∈ R

extends to a finite Radon measure called the energy measure (or carré du champ) of f and h
and denoted by Γ(f, h). In particular, for f ∈ F, Γ(f, f) is a nonnegative measure and one
has the representation

E[f ] =

∫

K

1 dΓ(f, f) = Γ(f, f)(K) f ∈ F .

In applications, f may represent a configuration of a system, E[f ] its corresponding total
energy and Γ(f, f) represents its distribution. In homological terms, Γ is (up to the constant
1/2) the Hochschild co-boundary of the 1-cocycle φ(f0, f1) := E(f0, f1) on the algebra F.

The Dirichlet or energy form E should be considered as a Dirichlet integral on the gasket.
It is closable with respect to a wide range of Borel measures on K and, once the measure
m has been chosen, it gives rise to a positive, self-adjoint operator on L2(K,m), which may
be thought of as a Laplace-Beltrami operator on K. However, since in the present work
the Dirichlet form solely will play a role, the Laplace-Beltrami operator we need will be
understood as the operator ∆ : F → F

∗ such that

〈∆f, g〉 := E(f, g) f, g ∈ F .

A function f ∈ F is said to be harmonic in a open set A ⊂ K if, for any g ∈ F vanishing on
Ac, one has

E(f, g) = 0 .

As a consequence of the Markovianity property 2.1, a Maximum Principle holds true for
harmonic functions on the gasket [13]. In particular, one calls 0-harmonic a function u on
K which is harmonic in V c

0 . Equivalently, for given boundary values on V0, u is the unique
function in F such that E[u] = min {E[v] : v ∈ F, v|V0 = u}. More generally, one may call m-
harmonic a function that, given its values on Vm, minimizes the energy among all functions
in F. For such functions we have

E[u] =

(
5

3

)m ∑

e∈Em

|u(e+)− u(e−)|2 .

It is not difficult to check that f ∈ F is m-harmonic if and only if ∆f is a linear combination
of Dirac measures supported on the vertices Vm.

Definition 2.1. (Cells, lacunas) For any word σ ∈ Σm, define a corresponding cell in K as
follows

Cσ = wσ(K) ,

its perimeter by πCσ = wσ(E0), its (combinatorial) boundary by ∂Cσ = wσ(V0) and its
(combinatorial) interior by Co

σ = Cσ \ ∂Cσ. We will also define the lacuna ℓ∅, see Fig. 3, as

1Here and in the following, we will denote by C(K) the space of real valued continuous functions. As a
consequence, the quadratic Dirichlet form E will give rise to a symmetric bilinear form over F.
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the boundary of the first removed triangle according to the approximation in Fig. 1. For any
σ ∈ Σ, the lacuna ℓσ is defined as ℓσ = wσ(ℓ∅).

Figure 3. The lacuna ℓ∅

For a function f on K, let us define its oscillation on a closed subset T ⊆ K as

Osc(f)(T ) := max
x,y∈T

|f(x)− f(y)| = max
T

f −min
T

f .

Lemma 2.2. Let f be harmonic in the interior of a cell C and let C1 be one of its three
sub-cells. Then Osc(f)(C1) ≤ 3

5
Osc(f)(C).

Proof. Since f is harmonic, its maximum and minimum are attained on the boundary. If
f0, f1, f2 are the values of f on the vertices of C, and x is one of the new vertices of the
subdivision of C, then f(x) is a convex combination of f0, f1, f2 with coefficients 1

5
, 2
5
, 2
5
. The

thesis then follows from a direct computation. �

3. The space of 1-forms

Let us denote with Ω1(F) the F-bimodule of universal 1-forms [10], that is Ω1(F) is the
sub-F-bimodule of F ⊗ F generated by elements of the form fdg, where the differential
operator d is defined by df := f ⊗ 1 − 1 ⊗ f , f ∈ F, and the bimodule operations are
f dg = f(g⊗ 1− 1⊗ g) := fg⊗ 1− f ⊗ g, and dg f := d(gf)− g df = g⊗ f − 1⊗ gf , f, g ∈ F.
There is a natural pairing between elements of F ⊗ F and oriented edges which is given by
(f ⊗ g)(e) := f(e+)g(e−) on elementary tensors. As a consequence,

dg(e) = g(e+)− g(e−)(3.1)

(f dg)(e) = f(e+)dg(e)(3.2)

(dg f)(e) = f(e−)dg(e).(3.3)

3.1. Integrating 1-forms along elementary paths.

Definition 3.1. A path in K given by a finite union of consecutive oriented edges in E∗ is
called elementary.

Let γ be an oriented elementary path in K and ω =
∑

i∈I fidgi ∈ Ω1(F). For n ∈ N, define

In(γ)(ω) =
∑

e∈En(γ)

ω(e),

where En(γ) denotes the set of oriented edges of level n contained in γ.

Definition 3.2. We define the integral of a 1-form ω along an elementary path γ as the limit∫
γ
ω = limn→∞ In(γ)(ω). The existence of such limit is proved below.



8 FABIO CIPRIANI, DANIELE GUIDO, TOMMASO ISOLA, AND JEAN-LUC SAUVAGEOT

Theorem 3.3. Let ω ∈ Ω1(F) be a 1-form and γ an elementary path in K. Then

(i) the integral
∫
γ
ω is well defined,

(ii) the integral is a bimodule trace, namely

∫

γ

hω =

∫

γ

ω h h ∈ F ,

(iii) for all h ∈ F, the following approximation holds true:

∫

γ

hω = lim
n

∑

e∈En(γ)

h(e+)

∫

e

ω .

Proof. It is not restrictive to assume ω = fdg.
(i) For given n and e ∈ En(γ), let e

0 ∈ Vn+1 be the middle point of the edge e. One computes

In+1(fdg) =
∑

e∈En(γ)

f(e+)
(
g(e+)− g(e0)

)
+

∑

e∈En(γ)

f(e0)
(
g(e0)− g(e−)

)
(3.4)

= In(fdg) +
∑

e∈En(γ)

(
f(e0)− f(e+)

)(
g(e0)− g(e−)

)
,

so that

|In+1(fdg)− In(fdg)| ≤


 ∑

e∈En(γ)

∣∣f(e0)− f(e+)
∣∣2



1/2 
 ∑

e∈En(γ)

∣∣g(e0)− g(e−)
∣∣2



1/2

≤


 ∑

e∈En+1(γ)

|df(e)|2



1/2 
 ∑

e∈En+1(γ)

|dg(e)|2



1/2

(3.5)

≤ 1

2

∑

e∈En+1(γ)

(|df(e)|2 + |dg(e)|2)(3.6)

≤ 1

2

(
3

5

)n+1

(E[f ] + E[g]) .(3.7)

Hence,

|In(γ)(fdg)− In+p(γ)(fdg)| ≤
n+p−1∑

k=n

Ik+1(fdg)− Ik(fdg)| ≤
3

4
(E[f ] + E[g])

(
3

5

)n

,

namely the sequence In(γ)(fdg) converges.
(ii) The result follows form

In(γ)(h fdg)− In(γ)(fdg h)| ≤ ‖f‖∞
∑

e∈En(γ)

|dh(e)| |dg(e)| ≤ 1

2
‖f‖∞(E[h] + E[g])

(3
5

)n
.
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(iii) The thesis follows from
∣∣∣∣In(γ)(hω)−

∑

e∈En(γ)

h(e+)

∫

e

ω

∣∣∣∣ ≤
∑

e∈En(γ)

|h(e+)|
∣∣∣∣ω(e)−

∫

e

ω

∣∣∣∣

≤ ‖h‖∞
∑

e∈En(γ)

∞∑

p=0

|Ip+n+1(e)(fdg)− Ip+n(e)(fdg)|

≤ 1

2
‖h‖∞

∞∑

p=0

∑

e∈En(γ)

∑

e′∈Ep+n+1(e)

(|df(e′)|2 + |dg(e′)|2)

≤ 1

2
‖h‖∞

∞∑

p=0

∑

e′∈Ep+n+1(γ)

(|df(e′)|2 + |dg(e′)|2)

≤ 1

2
‖h‖∞(E[f ] + E[g])

∞∑

p=0

(
3

5

)p+n+1

≤ 3

4
‖h‖∞(E[f ] + E[g])

(
3

5

)n

.

�

In the definition of integral of 1-forms, we used a kind of Riemann-Stieltjes integral condi-
tioned to diadic partitions of edges. Unfortunately, while the classical result of Young [24] for∫
fdg requires Hölder continuity of f and g with sum of the exponents > 1, restrictions to

edges of finite energy functions on the gasket are known to be only β-Hölder, with β < 1/2 (cf.
e.g. [11]), therefore we cannot use Young result. Also, restrictions to edges of finite energy
functions are not of bounded variation in general, therefore we cannot use Lebesgue-Stieltjes
integral either.

Nevertheless, on identifying an edge e ∈ E∗ with [0, 1], the bilinear form (f,Dg)e on L2(e),

which coincides with
∫ 1

0
f(x)g′(x) dx for smooth functions, naturally extends to a bounded

form on H1/2(e), hence makes sense also for f, g ∈ F since, by results of Jonsson [12], traces
of finite energy functions on edges e ∈ E∗ belong to the fractional Sobolev space Hα(e) for

any α ≤ α0, α0 =
log(10/3)

log 4
∼ 0.87.

The two notions indeed coincide, as shown below.

Proposition 3.4. Let e be an edge in K, f, g finite energy functions on K. Then

(3.8)

∫

e

fdg = (f,Dg)e.

Proof. Let us consider the continuous piecewise-linear approximation fn of a function f which
coincides with f on diadic points of the edge e identified with the interval [0, 1]:

fn(x) =
2n∑

j=1

χ[(j−1)2−n,j2−n)(x)
(
f((j − 1)2−n) +

f(j2−n)− f((j − 1)2−n)

2−n
(x− (j − 1)2−n)

)
.

Since eq. (3.8) clearly holds for continuous piecewise-linear functions, it is sufficient to show
that both terms in (3.8) are continuous w.r.t. the approximation above. By definition,
Ik(fdg) = Ik(fndgn), n ≥ k, therefore

∣∣∣∣
∫

e

fdg −
∫

e

fndgn

∣∣∣∣ ≤
∣∣∣∣
∫

e

fdg − In(fdg)

∣∣∣∣+
∣∣∣∣In(fndgn)−

∫

e

fndgn

∣∣∣∣→ 0,
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since the first summand goes to 0 by the preceding Theorem 3.3, and, setting |e| = p,
∣∣∣∣In(fndgn)−

∫

e

fndgn

∣∣∣∣ =
∑

e′∈Ep+n(e)

df(e′) dg(e′) ≤ 1

2

(
3

5

)n+p

(E[f ] + E[g]).

As for the bilinear form, it is sufficient to show that fn → f in H1/2(e). According to [12], a
norm for the Sobolev spaces Hα[0, 1], 1/2 < α < 1, is

‖f‖Hα = (f(0)2 + f(1)2)1/2 +
( ∞∑

n=0

2n(2α−1)En(f)
)1/2

,

where

En(f) =
2n∑

j=1

(
f(j2−n)− f((j − 1)2−n)

)2
.

Therefore,

‖f − fk‖2Hα =
∞∑

n=k+1

2n(2α−1)En(f − fk) ≤ 2
∞∑

n=k+1

2n(2α−1)En(f) + 2
∞∑

n=k+1

2n(2α−1)En(fk).

If α ≤ α0, the first summand is a remainder of a convergent series, hence goes to 0, as
k → ∞. As for the second, since fk has constant slope on diadic intervals of length 2−k, a
direct computation shows that, for n > k, En(fk) = 2k−nEk(f), therefore

∞∑

n=k+1

2n(2α−1)En(fk) = (22−2α − 1)−12k(2α−1)Ek(f) → 0

since 2k(2α−1)Ek(f) is the generic term of a convergent series. This shows that, for α ∈
(1/2, α0], fk → f in Hα[0, 1]. The convergence in H1/2[0, 1] then follows. �

3.2. An inner product for 1-forms. The aim of this section is to generalize the quadratic
form Q[df ] := E[f ] from exact forms df to general 1-forms in Ω1(F). Since E[f ] = limn En[f ],
with

En[f ] = (5/3)n
∑

e∈En

|df(e)|2 = (5/3)n
∑

e∈En

|
∫

e

df |2 ,

we shall consider the quadratic forms

(3.9) Qn[ω] = (5/3)n
∑

e∈En

∣∣∣∣
∫

e

ω

∣∣∣∣
2

, Q̃n[ω] = (5/3)n
∑

e∈En

|ω(e)|2 , ω ∈ Ω1(F) .

We shall show that the limits limn Qn[ω] and limn Q̃n[ω] exist and are equal for any 1-form.

Theorem 3.5. For any ω ∈ Ω1(F), Q̃[ω] := limn Q̃n[ω] exists and is finite. Moreover,

(i) Q̃[f dg − dg f ] = 0.

(ii) Q̃(dg, fdh) =
1

2

(
E(g, fh)− E(gh, f) + E(h, fg)

)
. In particular we have the identities

(3.10) Q̃(fdg, dh) = Q̃(dg, fdh) =

∫

K

f dΓ(g, h) f, g, h ∈ F ,

where Γ(g, h) is the energy measure of the Dirichlet form E, associated to g, h ∈ F, cf. (2.2).
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Proof. We have

Q̃n[f dg − dg f ] =

(
5

3

)n ∑

e∈En

df(e)2dg(e)2 ≤ En[f ] max
e∈En

dg(e)2.

Since the last term tends to 0 by uniform continuity of g, we get (i).
A straightforward computation gives

Q̃n(dg, f dh) + Q̃n(dg, dh f) = En(g, fh)− En(gh, f) + En(h, fg),

therefore (ii) follows from (i). The first equality in (3.10) follows by (ii) and the symmetry

of Q̃ and E. The main statement now follows by linearity. �

Remark 3.6. In the following, we use the shorthand notation EC [f ] := E[f |C ], for any cell C
in K.

Theorem 3.7. There is a well defined quadratic form Q on Ω1(F), given by

Q[ω] = lim
n→∞

Qn[ω] = lim
n→∞

Q̃n[ω] = Q̃[ω].

In particular, we have

(3.11) Q(fdg, dh) = Q(dg, fdh) =

∫

K

f dΓ(g, h) f, g, h ∈ F ,

where Γ(g, h) is the energy measure of the Dirichlet form E, associated to g, h ∈ F. We shall
define a Hilbertian seminorm on Ω1(F) by ‖ω‖2 = Q[ω]1/2.

Proof. For sequences x = {xe : e ∈ E∗}, we introduce the seminorms

(3.12) Φn(x) :=

(
5

3

)n/2
(
∑

e∈En

|xe|2
)1/2

.

In particular, Q̃n[ω] = Φn(ω(e))
2 and Qn[ω] = Φn(

∫
e
ω)2. Let us denote with C(e) the cell

having e as one of its boundary segments. We get, by inequality (3.5),

Φn

(
(fidgi)(e)−

∫

e

fidgi

)2

=
(5
3

)n ∑

e∈En

∣∣In(e)(fidgi)− lim
k→∞

Ik(e)(fidgi)
∣∣2

≤
(5
3

)n ∑

e∈En

( ∞∑

j=n

∣∣Ij+1(e)(fidgi)− Ij(e)(fidgi)
∣∣
)2

≤
(5
3

)n ∑

e∈En

( ∞∑

j=n

(3
5

)j+1

EC(e)[fi]
1/2

EC(e)[gi]
1/2

)2

=
9

4

(3
5

)n ∑

e∈En

EC(e)[fi] EC(e)[gi] ≤
27

4

(3
5

)n
E[fi]E[gi].

As a consequence, for ω =
∑

i∈I fidgi,

∣∣Q̃n[ω]
1/2 −Qn[ω]

1/2
∣∣ =

∣∣∣∣Φn(ω(e))− Φn(

∫

e

ω)

∣∣∣∣ ≤
∣∣∣∣Φn(ω(e)−

∫

e

ω)

∣∣∣∣

≤
∑

i∈I

∣∣∣∣Φn((fidgi)(e)−
∫

e

fidgi)

∣∣∣∣ ≤
3
√
3

2

(3
5

)n/2∑

i∈I
E[fi]

1/2
E[gi]

1/2.
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The thesis follows. �

Definition 3.8. Let us now introduce the equivalence relation on Ω1(F) given by ω ∼ ω′ ⇐⇒∫
e
(ω − ω′) = 0, for all e ∈ E∗, and consider the quotient space Ω1(K) := Ω1(F)/ ∼. We call

elementary 1-forms the elements of Ω1(K). We endow Ω1(K) with the norm

(3.13) ‖ω‖2,∞ = sup
n

Qn[ω]
1/2.

Since ‖ω‖2,∞ = 0 ⇒ Qn[ω] = 0, ∀n ⇒
∫
e
ω = 0, ∀e ∈ E∗, the norm property follows.

Let us observe that the integrals ω →
∫
e
ω and the seminorm ω → ‖ω‖2 are continuous w.r.t.

the norm ‖ · ‖2,∞.
Theorem 3.9. The space Ω1(K) is an F-bimodule, and d becomes a derivation on F with
values in Ω1(K). The integral along an elementary path and the seminorm ‖ · ‖2 are well
defined on it. Also, the left and right module multiplications coincide.

Proof. The kernel of the quotient map is an F-bimodule because of Theorem 3.3 (ii), hence the
quotient is a bimodule, too. Denoting by π the quotient map, we have the Leibniz property
π(d(fg)) = π(f dg) + π(df g) = fπ(dg) + π(df)g, namely d is a derivation with values in the
bimodule Ω1(K). The seminorm ‖ · ‖2 is well defined by Theorem 3.7. Left and right module
multiplications coincide because of Theorem 3.3 (ii). �

Let us observe that, up to now, ‖·‖2 is only a seminorm. The norm property will be proved
later on, as a consequence of the Hodge decomposition in Theorem 5.8.

Remark 3.10. In a general Dirichlet space over a locally compact Hausdorff space X, the
positivity properties of the Dirichlet form and, more specifically, those of the carré du champ,
give rise to a Hilbertian seminorm on Ω1(F). By separation and completion, this gives rise
to a Hilbert space H which is in fact a Hilbert C0(X)-bimodule called the tangent bimodule
associated to E and whose elements are called square integrable forms, [3]. In the present case
of the Sierpinski gasket, since the Dirichlet form is strongly local, the right and left actions
coincide so that H is a Hilbert C(K)-module.

3.3. Locally exact 1-forms.

Definition 3.11. Let ω be a form in Ω1(K), V ⊆ K. A continuous function f on V will be
called a local potential of ω on V if df = ω|V, i.e.∫

e

ω = f(e+)− f(e−), ∀e ∈ E∗(V).

The form ω will be called locally exact if, ∀x ∈ K, there exists a pair (Vx, fx), where Vx is a
neighborhood of x and fx is a local potential of ω on Vx. We denote by Ω1

loc(K) the set of
such forms.
The form ω will be called n-exact if it has a local potential fσ on any cell Cσ, |σ| = n.

Theorem 3.12.

(i) A form is locally exact iff it is n-exact for some n ∈ N.
(ii) If f is a local potential on the open set V of ω ∈ Ω1(K), then f has finite local energy,
namely

∃ EV[f ] = lim
n

(
5

3

)n ∑

C∈Celln(V)

∑

e∈En(C)

|df(e)|2 < ∞,

where Celln(V) is the set of cells of level n contained in V.
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(iii) A collection {fσ}|σ|=n of functions with finite local energy on the cells Cσ, |σ| = n,
uniquely determines an n-exact form in Ω1(K).

Proof. (i) We denote by {Un(x) : n ∈ N} a neighbourhood basis for x ∈ K, where, if x 6∈ V∗,
Un(x) denotes the unique open n-cell containing x, whereas, if x ∈ V∗, Un(x) denotes the
neighbourhood of x consisting of x and of the (at most two) open n-cells bounding x. Let us
say that Un(x) has level n.
( =⇒ ) For any x ∈ K, let (Ux, fx) be a basic neighbourhood of x, and a local potential for ω
in Ux. Because {Ux : x ∈ K} is an open cover of K, we can extract a finite cover {U1, . . . , Uk}.
Let n denote the maximum level of the neighbourhoods U1, . . . , Uk. Then ω is n-exact.
( ⇐= ) Let {fσ}|σ|=n be the collection of local potentials on the n-cells {Cσ : |σ| = n}. If
x ∈ K \ (Vn \V0), there is a unique σ such that x ∈ Cσ ⊃ Un(x), so that fσ is a local potential
on Un(x). If x ∈ Vn \ V0, there are σ1, σ2 such that |σ1| = |σ2| = n and x ∈ Cσ1 ∩ Cσ2 . Set

c := fσ1(x)− fσ2(x) and fx(y) :=

{
fσ1(y), y ∈ Cσ1 ,

fσ2(y) + c, y ∈ Cσ2 ,
so that fx is a continuous function,

and a local potential for ω on Un(x).
(ii) If C is a cell of level n,

∑
e∈En(C) |df(e)|2 ≤ 5/3

∑
e∈En+1(C) |df(e)|2, hence

(
5

3

)n ∑

C∈Celln(V)

∑

e∈En(C)

|df(e)|2 ≤
(
5

3

)n+1 ∑

C∈Celln(V)

∑

e∈En+1(C)

|df(e)|2

≤
(
5

3

)n+1 ∑

C∈Celln+1(V)

∑

e∈En+1(C)

|df(e)|2,

showing that the sequence is increasing. Finally,

lim
n

(
5

3

)n ∑

C∈Celln(V)

∑

e∈En(C)

|df(e)|2 = lim
n

(
5

3

)n ∑

C∈Celln(V)

∑

e∈En(C)

|
∫

e

ω|2

≤ lim
n

(
5

3

)n ∑

e∈En

|
∫

e

ω|2 = Q[ω] < ∞.

(iii) Let fσ be a function with finite energy defined on the cell Cσ. We may associate with
it an element in Ω1(K) as follows: let A ⊃ Cσ be an open set in K such that (K \ Co

σ) ∩ A

consists of (at most) three cells, each containing exactly one boundary vertex of Cσ; let f̃σ be
a function in F which coincides with fσ in Cσ and is constant on each connected component
of (K \ Co

σ) ∩ A; and let χσ be a function in F which is 1 on Cσ and has support contained

in A. If we set ωσ = χσdf̃σ, then
∫

e

ωσ = lim
n→∞

∑

e′∈En

e′⊂e

χσ(e
′
+)(f̃σ(e

′
+)− f̃σ(e

′
−)).

Now, if e intersects Cσ at most in one vertex, we get
∫
e
ωσ = 0, because f̃σ is constant on any

e′ ∈ En, e
′ ⊂ e. If, on the contrary, e ⊂ Cσ, then χσ(e

′
+) = 1, for any such e′, while f̃σ = fσ,

so that
∫
e
ωσ = limn→∞

∑
e′∈En

e′⊂e
(fσ(e

′
+)− fσ(e

′
−)) = fσ(e+)− fσ(e−). Clearly

∑
|σ|=n ωσ is the

required n-exact form. �

Theorem 3.13.
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(i) Let ω be a k-exact 1-form generated by the local potentials fσ, |σ| = k. Then Q[ω] =∑
|σ|=k ECσ

[fσ].

(ii) ‖ · ‖2 is a norm on Ω1
loc(K).

Proof. (i) For any n > k, we get

Qn(ω) =
(5
3

)n ∑

e∈En

∣∣∣
∫

e

ω
∣∣∣
2

=
(5
3

)n ∑

|τ |=k

∑

e∈En(Cτ )

∣∣∣
∫

e

ω
∣∣∣
2

=
∑

|τ |=k

En[fτ ].

Therefore, Q(ω) = lim
n→∞

Qn(ω) =
∑

|σ|=k

lim
n→∞

En[fσ] =
∑

|σ|=k

E[fσ].

(ii) Indeed, 0 = Q(ω) =
∑
|σ|=k E[fσ] =⇒ fσ is constant on Cσ, for any σ =⇒ ω = 0. �

3.4. The completion of the space of elementary 1-forms. We denote by Ω1(K) the
completion of (Ω1(K), ‖ · ‖2,∞).

Theorem 3.14. The quadratic forms Q, Qn, n ∈ N, extend to Ω1(K) by continuity. More-

over, if {ωk}k∈N ⊂ Ω1(K) and ωk → ω in Ω1(K), then

(3.14) lim
k→∞

Q[ωk] = lim
n→∞

Qn[ω].

Proof. The first statement is obvious since ω → ‖ω‖2 and ω →
∫
e
ω are continuous w.r.t.

‖ · ‖2,∞. As a consequence, the first limit in (3.14) exists and is finite. Then,

|Q[ωk]
1/2 −Qn[ω]

1/2| ≤ |Q[ωk]
1/2 −Qn[ωk]

1/2|+ |Qn[ωk]
1/2 −Qn[ω]

1/2|
≤ |Q[ωk]

1/2 −Qn[ωk]
1/2|+ ‖ωk − ω‖2,∞

The thesis follows. �

Proposition 3.15. ‖ · ‖2 is not a norm on Ω1(K).

Proof. Let pi, i = 0, 1, 2, be the external vertices of the gasket, ei be the edge in E0 opposite
to pi, i = 0, 1, 2, and let g be the 0-harmonic function taking value −1/2 on x0, 0 on x1 and
1/2 on x2. Then, for any given n, let us consider the n-exact form ωn determined by the
functions fσ, |σ| = n, where

(3.15) fσ =

{
2−ng ◦ wσ if σ ∈ {0, 2}n
0 otherwise.

Observe that, for any edge e ∈ Ek,

(3.16) lim
n

∫

e

ωn =

{
2−k if e = wσe1, σ ∈ {0, 2}k
0 otherwise.

On the one hand

‖ωn‖22 ≡ Q[ωn] =
∑

σ∈{0,2}n
E[2−ng ◦ wσ],= 2−n(5/3)nE[g],

namely ωn converges to 0 w.r.t. ‖·‖2. We now prove that ωn → ω in ‖·‖2,∞, where ω ∈ Ω1(K)
is non-trivial.

Define ω by its values
∫
e
ω :=

{
2−k if e = wσe1, σ ∈ {0, 2}k
0 otherwise.
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Fix n ∈ N, and compute Qk[ω − ωn]. If k < n,

Qk[ω − ωn] =
(5
3

)k ∑

e∈Ek
e 6⊂e1

∣∣∣
∫

e

ωn

∣∣∣
2

=
(5
3

)k
· 2k+1(2−n−1)2 =

1

2

(10
3

)k
4−n.

If k ≥ n, Qk[ω − ωn]
1/2 ≤ Qk[ω]

1/2 + Qk[ωn]
1/2. Now, Qk[ω] =

(
5
3

)k
2−2k =

(
5
12

)k
, and

Qk[ωn] = Q[ωn], because each edge e ∈ Ek is contained in only one cell Cσ, where ωn has a
potential fσ, so that

Qk[ωn] =
(5
3

)k ∑

|σ|=n

∑

e∈Ek(Cσ)

∣∣∣
∫

ωn

∣∣∣
2

=
∑

|σ|=n

Ek[fσ|Cσ
] =

∑

|σ|=n

ECσ
[fσ] = Q[ωn].

Therefore, Qk[ω − ωn] ≤ 2Qk[ω] + 2Qk[ωn] ≤ 2
(

5
12

)k
+ 2E[g]

(
5
6

)n
. Hence,

Q[ω − ωn] = sup
k

Qk[ω − ωn] ≤
1

2

(5
6

)n
+ 2
( 5

12

)n
+ 2E[g]

(5
6

)n
→ 0, n → ∞,

namely ωn converges in ‖ · ‖2,∞ to the non-trivial 1-form ω ∈ Ω1(K). �

4. Harmonic 1-forms

4.1. 1-forms associated with lacunas. In this section we introduce a distinguished system
of locally exact 1-forms associated with lacunas. In the forthcoming sections, their proper-
ties will play a fundamental role in the proof of a de Rham characterization and a Hodge
decomposition for 1-forms.

Definition 4.1. For any n ≥ 0 and |σ| = n, define dzσ as the (n + 1)-exact form which
minimizes the norm ‖ · ‖2 among those (n+ 1)-exact 1-forms ω satisfying

∫
ℓσ
ω = 1.

By definition dzσ is exact in any of the cells Cσi, hence
∫
πCσ

dzσ = −1 (lacunas are traversed
clockwise and boundaries of cells are traversed counter-clockwise, according to the standard
convention, as they constitute the boundary of the union of the convex hulls of the cells Cσi,
i = 1, 2, 3). The minimization request implies that dzσ vanishes in any cell Cτ with τ 6= σ,
|τ | = n, and that dzσ is symmetric for rotations of 2

3
π around ℓσ.

Proposition 4.2. The forms dzσ are weakly co-closed, i.e. orthogonal to all exact 1-forms,
and pairwise orthogonal, with

‖dzσ‖22 =
5

6

(
5

3

)|σ|
.

Proof. A simple calculation shows that for any cell Cσi, the local potential ziσ on such cell
is the harmonic function determined (up to an additive constant) by the values 1

6
, 0,−1

6
on

the vertices x1, x2, x3, where x3, x1 is the edge bounding the lacuna. Therefore, ∆ziσ may be
canonically identified with the measure given by the linear combination 1

2
δx1 − 1

2
δx3 . As a

consequence, for any f ∈ F,

Q(df, dzσ) =
∑

i=1,2,3

Q(df, dziσ) =
∑

i=1,2,3

E(f, ziσ) =
∑

i=1,2,3

∫

K

fd(∆ziσ) = 0.

If τ < σ the orthogonality follows as above; if τ and σ are not ordered, dzσ and dzτ have
disjoint support. The value of the norm follows from a direct computation. �

Similarly to the case of an ordinary compact smooth manifold, we introduce the following
definition.
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Definition 4.3. 1-forms which are locally exact and co-closed will be termed harmonic.
Hence {dzσ : σ ∈ Σ} is a orthogonal system of harmonic 1-forms.

Remark 4.4. In the next section, as a consequence of a Hodge decomposition, we will show
that locally exact forms are dense in the tangent F-module H of square integrable 1-forms.
Hence, the only way to define on H a closable operator (d1,Ω

1(K)), with values in another
non degenerate, Hilbertian F-module Ω2(K), to get a complex 0 → F → Ω1(K) → Ω2(K),
is by the zero map d1 = 0. This forces Ω2(K) = {0}, so that non vanishing 2-forms cannot
exist on K. This supports, homologically, the fact that K is, topologically, one dimensional.

Proposition 4.5. Any n-exact form has a unique orthogonal decomposition as the sum of
an exact form plus a finite linear combination of dzτ , |τ | < n.

Proof. Let us observe that the orthogonal complement of n-exact forms into (n + 1)-exact
forms is generated by the dzσ, |σ| = n. Indeed, by Theorem 3.13 (ii), the seminorm ‖ · ‖2 is a
norm on locally exact forms, hence the orthogonal complement is well defined. We now note
that, for any cell Cσ, an (n+1)-exact form ω on Cσ is indeed n-exact if and only if

∫
ℓσ
ω = 0,

since in this case the three local potentials on the three sub-cells may glue to a continuous
function on Cσ. Therefore, any (n+ 1)-exact form ω supported in Cσ may be written as

ω = (ω − cσdzσ) + cσdzσ, cσ :=

∫

ℓσ

ω,

namely, for any cell Cσ, the codimension of n-exact forms into (n+1)-exact forms supported
in Cσ is 1. This shows that exact forms and the dzτ , |τ | < n, generate the n-exact forms,
hence the thesis. �

Remark 4.6. Proposition 4.5 is a characterization of n-exact forms. As we shall see in Corol-
lary 5.4, Proposition 4.5 generalizes to elementary 1-forms, finite linear combinations being
replaced by infinite series.

4.2. Winding numbers and a combinatoric way to describe lacunas bounding cells.

Since dzσ is invariant under rotations of 2
3
π around the lacuna ℓσ, the integral along any edge

e bounding Cσ is equal to −1/3. We now consider the integral
∫
ℓτ
dzρ. It is not difficult to

see that such integral does not vanish only if τ ≤ ρ (τ is a truncation of ρ), more precisely,

∫

ℓτ

dzρ =





1 if τ = ρ,

−1/3 if ℓτ ∩ πCρ 6= ∅,
0 otherwise.

As a consequence, we can find numbers aσρ , ρ ≤ σ, such that the 1-form

ωσ :=
∑

ρ≤σ
aσρdzρ

has the property

(4.1)

∫

ℓτ

ωσ = δστ σ , τ ∈ Σ .

In other words, the 1-form ωσ detects only the lacuna ℓσ.

Remark 4.7 (Winding number). It follows directly by the observations above that, for any
closed elementary path γ in K, ∫

γ

ωσ
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is the winding number of the path γ around the lacuna ℓσ. This interpretation extends to
general closed paths, according to Definition 6.3 below.

Observe that, for any multi-index σ, we get aσσ = 1 and, for τ < σ, 0 =
∫
ℓτ
(
∑

aσρdzρ) =∑
ρ≤σ a

σ
ρ

∫
ℓτ
dzρ, namely

(4.2) aστ =
1

3

∑

τ<ρ≤σ
A(τ, ρ)aσρ , where A(τ, ρ) =

{
1 if ℓτ ∩ πCρ 6= ∅,
0 otherwise.

Even if the system of equations can be solved iteratively, by successive truncations of σ, we
will need in the sequel just the following bound.

Lemma 4.8. With the notation above, 0 ≤ aστ ≤ 1, τ ≤ σ.

Proof. For a given σ, let us rename indices and variables as follows: replace the n-th truncation
σ(n) of σ with n, so that the order is reversed, and rename aσ

σ(n) as vn. Then the equation
above becomes

vp =
1

3

p−1∑

j=0

Apjvj, when p 6= 0, v0 = 1.

Denoting by P the projection on the 0-th component, we get v = (1
3
A + P )v. Recall that

Aij may be non zero for at most three indices i following j, and observe that A is a lower
triangular matrix, hence (Ap)jk does not vanish only if k ≤ j− p, and PA = 0. Therefore we
get

v =
(1
3
A+ P

)p
v = 3−pApv +

p−1∑

j=0

(
1

3

)j

AjPv,

and, since v0 = 1,

vp = 3−p(Ap)p0v0 +

p−1∑

j=0

(
1

3

)j

(Aj)p0v0 =

p∑

j=0

(
1

3

)j

(Aj)p0.

We now interpret A as the adjacency matrix of an oriented simple graph, where the vertices
are the indices 0, 1, . . . and an oriented edge goes from j to i if Aij = 1. Then, (Aj)p0 is
equal to the number of oriented paths of length j joining 0 with p. Since from any vertex
may depart at most three edges, if there is an edge joining 0 with p, then there are at most
2 oriented paths of length 2 joining 0 with p, at most 6 oriented paths of length 3 joining 0
with p, and so on. So, denoting with ni the number of oriented paths of length i joining 0
with p, we have

(4.3)





n1 ≤ 1

n1 + n2 ≤ 3

3n1 + n2 + n3 ≤ 9

· · ·∑q−1
i=1 3

q−1−ini + nq ≤ 3q−1.
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As a consequence, for q ≥ 1, we have

vq =

q∑

i=1

3−ini = 3−qnq + 31−q

(
q−1∑

i=1

3q−1−ini

)

≤ 3−qnq + 31−q
(
3q−1 − nq

)
≤ 1− 2

3
31−qnq ≤ 1.

�

5. Hodge orthogonal decomposition of elementary 1-forms

The first result of this section is a version of de Rham first theorem, namely the construction
of a form on the gasket given its periods around all lacunas. More precisely, since the sequence
of periods is infinite, we first establish a bound for the periods of an elementary form, and
then, given a sequence of periods satisfying this bound, construct a harmonic form with those
periods. This will provide a Hodge type orthogonal decomposition for elementary 1-forms,
namely a decomposition of an elementary form ω as a sum of an exact one ωE = dUE and
a harmonic one ωH . We will also provide a criterion for local exactness and an explicit
construction of a non locally exact form.

5.1. Reconstructing 1-forms via their periods. Our aim now is to associate to any
elementary 1-form ω a series of the dzσ’s which sums to a harmonic 1-form ωH having exactly
the periods cσ =

∫
ℓσ
ω. Using the coefficients (4.2) and setting

(5.1) kτ =
∑

σ≥τ
aστ cσ, ωH =

∑

τ

kτdzτ ,

we will prove in Theorem 5.3 that the series defining ωH converges in Ω1(K) and, ∀ρ ∈ Σ,

(5.2)

∫

ℓρ

ωH =

∫

ℓρ

ω.

Lemma 5.1. For any elementary 1-form ω there exist finitely many functions fi in F such
that

(5.3) |cσ| ≤
1

2

∞∑

k=|σ|+1

∑

e∈Ek(ℓσ)

∑

i

dfi(e)
2.

Proof. It is enough to prove the result for ω = fdg. Observe that

|cσ| = | lim
n

In(ℓσ)(fdg)| ≤ |I|σ|+1(ℓσ)(fdg)|+
∞∑

k=|σ|+1

|Ik+1(ℓσ)(fdg)− Ik(ℓσ)(fdg)|

Since ℓσ is a closed curve, |I|σ|+1(ℓσ)(fdg)| = |I|σ|+1(ℓσ)((f−const)dg)|. Denoting by x1, x2, x3

the vertices of ℓσ, and choosing const = f(x1), we get

|I|σ|+1(ℓσ)(fdg)| = |df(x1, x2)dg(x1, x2) + df(x1, x3)dg(x2, x3)| ≤
1

2

∑

e∈E|σ|+1(ℓσ)

df(e)2 + dg(e)2.

The thesis follows by eq. (3.6). �
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Lemma 5.2. Let {cσ} be a sequence satisfying estimate (5.3) for suitable functions fi ∈ F,
and let kσ be as in (5.1). Then there exists a positive finite measure µ on the gasket such that

(5.4) |kτ | ≤
(
3

5

)|τ |
µ(Cτ ).

Proof. Indeed,

∑

σ≥τ
|cσ| ≤

1

2

∑

σ≥τ

∞∑

k=|σ|+1

∑

e∈Ek(ℓσ)

∑

i

dfi(e)
2 ≤ 1

2

∞∑

k=|τ |+1

∑

e∈Ek(Cτ )

∑

i

dfi(e)
2(5.5)

≤ 1

2

∞∑

k=|τ |+1

(
3

5

)k∑

i

ECτ
[fi] ≤

3

4

(
3

5

)|τ |∑

i

ECτ
[fi].

As a consequence, by Lemma 4.8,

(5.6) |kτ | ≤
∑

σ≥τ
|cσ| ≤

3

4

(
3

5

)|τ |∑

i

µfi(Cτ ),

where µfi denotes the energy measure associated with fi. �

Theorem 5.3 (De Rham first theorem). (i) Let {cσ} be a sequence satisfying estimate (5.3)
for suitable functions fi ∈ F, and let kσ be as in (5.1). Then, the series

∑
σ kσdzσ converges

to a form in Ω1(K) having the cσ’s as its periods.

(ii) For any ω ∈ Ω1(K), the form ωH :=
∑

σ kσdzσ ∈ Ω1(K) satisfies eq. (5.2).

Proof. (i) A simple calculation shows that Qn(dzσ) ≤ (5/3)|σ|, therefore, by Lemma 5.2,

Qn(kσdzσ) ≤ |kσ|2(5/3)|σ| ≤ (3/5)|σ|µ(Cσ)
2.

Then the series converges absolutely in Ω1(K), since:
∑

σ

(3/5)|σ|/2µ(Cσ) =
∑

k

(3/5)k/2
∑

|σ|=k

µ(Cσ) =
(
1−

√
3/5
)−1

µ(K).

(ii) Now we prove eq. (5.2). Indeed
∫

ℓρ

ωH =
∑

τ

∑

σ≥τ
aστ cσ

∫

ℓρ

dzτ =
∑

σ

cσ

∫

ℓρ

(
∑

τ≤σ
aστ dzτ

)
=

∫

ℓρ

ω,

where the first equality follows from (5.5), the convergence of
∑

σ kσdzσ with respect to the
‖ · ‖2,∞ norm and the continuity of the integral with respect to this topology. �

Theorem 5.4. Any elementary 1-form ω ∈ Ω1(K) may be uniquely decomposed as

ω = dUE +
∑

σ

kσdzσ,

where UE ∈ F, the kσ’s are defined above, and the convergence takes place with respect to the
‖ · ‖2,∞-norm. As a consequence, ωH =

∑
σ kσdzσ is a harmonic form in Ω1(K).

The proof of the Theorem relies on some preliminary Propositions and Lemmas.

Proposition 5.5. Let ω be an elementary 1-form. Then, for any σ,∫

πCσ

ω = −
∑

τ≥σ

∫

ℓτ

ω = −
∑

τ≥σ

∫

ℓτ

ωH =

∫

πCσ

ωH .
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Proof. As above, we may assume ω = fdg. As for the first equation, we have, for any n ≥ |σ|,∫

πCσ

fdg = −
∑

τ≥σ,|τ |≤n

∫

ℓτ

fdg +
∑

τ≥σ,|τ |=n+1

∫

πCτ

fdg.

Therefore we have to prove that the second summand goes to 0 when n → ∞. It is not
restrictive to assume σ = ∅. With estimates similar to those in Lemma 5.1, we get

∑

|τ |=n+1

∫

πCτ

fdg ≤ 1

2

∑

|τ |=n+1

∞∑

k=n+1

∑

e∈Ek(πCτ )

df(e)2 + dg(e)2

≤ 1

2

∞∑

k=n+1

(
3

5

)k

(E[f ] + E[g]) ≤ 3

4

(
3

5

)n

(E[f ] + E[g]) .

The second equation follows by eq. (5.2), and the third by absolute convergence. �

Lemma 5.6. Let ω, kσ, ωH be as above, µω the finite positive measure associated with ω as in
Lemma 5.2, and let γ be an elementary simple path contained in the cell Cσ, |σ| = n. Then,

∣∣∣∣
∫

γ

ωH

∣∣∣∣ ≤ µω(K)(n+ 3)

(
3

5

)n

.

Proof. It is easy to see that
∫
γ
dzτ can be non-zero only if either τ < σ or τ ≥ σ. Moreover,

since γ has no loops, |
∫
γ
dzτ | ≤ 1.

When τ < σ, choosing i such that τi ≤ σ, dzτ is exact in Cτi, hence in Cσ, with OscCτi
(zτ ) =

1/3. According to Lemma 2.2, we get

(5.7)

∣∣∣∣
∫

γ

dzτ

∣∣∣∣ ≤ OscCσ
(zτ ) ≤

1

3

(3
5

)|σ|−|τ |−1
.

Hence, making use of eq. (5.4), we have
∣∣∣∣
∫

γ

ωH

∣∣∣∣ ≤
∑

τ

kτ

∣∣∣∣
∫

γ

dzτ

∣∣∣∣ ≤
∑

τ≥σ
kτ +

1

3

∑

τ<σ

kτ

(
3

5

)n−|τ |−1

≤
∑

τ≥σ

(
3

5

)|τ |
µω(Cτ ) +

1

3

∑

τ<σ

(
3

5

)n−1
µω(Cτ )

≤
∞∑

k=0

(
3

5

)n+k ∑

|τ |=k

µω(Cσ◦τ ) +
1

3
µω(K)

∑

τ<σ

(
3

5

)n−1
≤ µω(K)(n+ 3)

(
3

5

)n

�

Let us now consider the form ω1 = ω − ωH , which has trivial integral along the perimeter
of any cell Cσ. For any n, denoting by Sn the 1-skeleton of the n-th approximation of K,
given two points x, y ∈ Sn, and a path γ in Sn joining them, the integral

∫
γ
(ω−ωH) depends

only on the end points x, y, namely we get a primitive function Un
E on Sn, i.e,

(5.8) ∀e ∈ En,

∫

e

(ω − ωH) = dUn
E(e).

Lemma 5.7. Let ω = fdg, ωH and Un
E be as above. Set |σ| = n, and choose x0 ∈ Vn ∩ Cσ,

x ∈ Vn+p ∩ Cσ. Then there exists a constant c such that

|Un+p
E (x)− Un+p

E (x0)| ≤ ‖f‖∞OscCσ
(g) + c(E[f ] + E[g])(n+ 3)(3/5)n.
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Proof. First step. Let σ0, σ1, . . . σp be the subsequent multi-indices of length n+ j, σ0 = σ,
such that x ∈ Cσj , j = 0, · · · , p. We shall construct inductively a path γ, joining x0 with x,
given by vertices x0, . . . xp+1 = x, such that

• xj ∈ Vn+j for j ≤ p, xp+1 ∈ Vn+p;
• xj ∈ Cσj , j ≤ p;
• either xj−1 = xj, or xj−1, xj are joined by an edge ej, with ej ∈ En+j if 0 < j ≤ p,
and ep+1 ∈ En+p. In the first case we set ej to be the trivial edge.

Since x0 is given, we only need to describe the inductive step. Suppose we have xj−1, j ≤ p.
If xj−1 ∈ Cσj , we set xj := xj−1. If not, it is connected by an edge ej ∈ En+j to a vertex
xj ∈ Vn+j ∩ Cσj . Finally, xp and xp+1 are both vertices in Vn+p ∩ Cσp , hence either coincide
or are joined by an edge ep+1.
Second step. There exists a constant c1 such that

|
∫

γ

fdg| ≤ ‖f‖∞OscCσ
(g) + c1

(
3

5

)n

(E[f ] + E[g]).

We decompose the restriction of f to γ as f =
∑p+1

k=0 fk, with f0 = f(x0) constantly, and, for
0 < k ≤ p+ 1,

fk(t) =





0 t ∈ ej, j < k,

f(t)− f(xk−1) t ∈ ek,

f(xk)− f(xk−1) t ∈ ej, j > k.

We then get

∫

γ

fdg =

∫

γ

f0dg +

p+1∑

k=1

p+1∑

j=k

∫

ej

fkdg

=f(x0)(g(x)− g(x0)) +

p+1∑

k=1

∫

ek

fkdg +

p∑

k=1

p+1∑

j=k+1

df(ek)dg(ej)

As for the first summand, we clearly have |f(x0)(g(x) − g(x0))| ≤ ‖f‖∞OscCσ
(g). We now

estimate the second summand. First observe that

∣∣∣∣
∫

ek

fkdg

∣∣∣∣ ≤
(
In+k(ek)(fkdg) +

∞∑

r=n+k+1

|Ir(ek)(fdg)− Ir−1(ek)(fdg)|
)

≤
∞∑

r=n+k

(
∑

e∈Er

df(e)2

)1/2(∑

e∈Er

dg(e)2

)1/2

≤ 5

4

(
3

5

)n+k

(E[f ] + E[g]).

Therefore,

∣∣∣∣
p+1∑

k=1

∫

ek

fkdg

∣∣∣∣ ≤
p+1∑

k=1

5

4

(
3

5

)n+k

(E[f ] + E[g]) ≤ 15

8

(
3

5

)n

(E[f ] + E[g]).
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We now consider the third summand. Since, ∀e ∈ Em, |df(e)| ≤ (3/5)m/2
E[f ]1/2, we get

|
p∑

k=1

p+1∑

j=k+1

df(ek)dg(ej)| ≤E[f ]1/2E[g]1/2
∞∑

k=1

(
3

5

)(n+k)/2 ∞∑

j=k+1

(
3

5

)(n+j)/2

=
3

4

√
3√

5−
√
3

(
3

5

)n

(E[f ] + E[g]).

The thesis follows.
Conclusion. Since |Un+p

E (x)− Un+p
E (x0)| = |

∫
γ
(fdg − ωH)| ≤ |

∫
γ
fdg| + |

∫
γ
ωH |, the result

follows by Step 2 and Lemma 5.6. �

Proof of Theorem 5.4. As usual, it is not restrictive to assume ω = fdg. Clearly, the functions
Un
E constructed above are defined up to an additive constant, therefore we choose a vertex

x in V0 and set Un
E(x) = 0 for any n. Let us now observe that the functions Un

E satisfy, for
m ≥ n, Um

E |Sn
= Un

E, therefore they define a function UE on S := ∪nSn. By Lemma 5.7, UE is
uniformly continuous on a dense subset of K, hence it extends to a continuous function on K,
and, by definition,

∫
e
(ω − ωH) = dUE(e). This shows at once that E[UE] = ‖ω − ωH‖22 < ∞,

and ω − ωH = dUE as elements of Ω1(K). �

5.2. Hodge orthogonal decomposition. We have proved that any elementary 1-form ω
may be uniquely decomposed as ω = dUE +

∑
σ kσdzσ and all summands in the second term

are pairwise orthogonal. In particular, the harmonic part ωH =
∑

σ kσdzσ = ω − dUE, being
a linear combination of elementary forms, is itself elementary.

Theorem 5.8.

(i) An elementary 1-form ω vanishes if and only if ‖ω‖2 = 0, namely elementary 1-forms give
a pre-Hilbert space.
(ii) (Hodge decomposition). Any elementary 1-form can be uniquely decomposed as an orthog-
onal sum of an exact form and a harmonic form, the exact part coinciding with dUE, the
harmonic part with ωH =

∑
σ kσdzσ.

(iii) An elementary 1-form is locally exact iff the kσ’s are eventually zero.
(iv) (De Rham second theorem) An elementary 1-form is exact iff all periods cσ vanish.

Proof. (i) Let ω = dUE +
∑

σ kσdzσ. Since, by Proposition 4.2, this decomposition is an
orthogonal decomposition w.r.t. the form Q, then ‖ω‖2 = 0 implies ‖dUE‖22 = E[UE] = 0 and
kσ = 0 for any σ ∈ Σ. As a consequence ω vanishes.
(ii) Since ‖ · ‖2 is a norm on elementary 1-forms, and the space of exact 1-forms is closed
w.r.t. this norm, we may uniquely decompose an elementary 1-form ω as ω = ωE⊕ωH , where
ωE is the projection on the subspace of exact forms.
(iii) Immediately follows by Proposition 4.5.
(iv) The implication (⇒) is obvious. As for the other one, cσ = 0, ∀σ, implies, by equation
(5.1), kσ = 0, ∀σ, hence the result follows from (ii). �

Remark 5.9. (1) An equivalent way to formulate Hodge decomposition theorem is that each
cohomology class has a (unique) harmonic representative.
(2) Hodge decomposition allows us to define a gradient d∗ on forms:

d∗ω = d∗(dUE + ωH) = ∆UE.

Observe that the domain and the range of d∗ depend on the corresponding data for ∆.
(3) Even though the dzσ’s are parametrized by lacunas, they are not the dual basis of the
lacunas, considered as a basis for the homology vector space, as follows by eq. (4.1).
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Corollary 5.10. The space Ω1(K) embeds isometrically (w.r.t. the norm ‖·‖2) in the tangent
bimodule H of vector fields for Dirichlet forms as constructed in [3]. The operator F ∋ f →
df ∈ Ω1(K) from F to H is the derivation associated to the Dirichlet form

(5.9) E[f ] = ‖df‖2
H

f ∈ F .

The space B1(K,R) of exact forms is norm closed, hence the decomposition of Theorem 5.4
extends to the whole space H.

Proof. The first statement follows by eq. (2.2), Theorem 3.5, and statement (i) in the The-
orem above. The map d : F → H is a derivation on the algebra F with values in the
C(K)-module H, i.e. satisfies the Leibniz rule, since it is induced by the universal derivation
defined, in section 3, on F with values in the F-module Ω1(F). Moreover, the representa-
tion (5.9) follows from (3.10). The fact that the C(K)-module H, being the completion of
the module Ω1(K), is non degenerate and the uniqueness (up to unitary equivalence) of the
minimal derivation representing the Dirichlet form (see [3] Theorem 8.3) imply the second
statement.
The closedness of B1(K,R) has been argued in [4] and we show it here for the sake of
completeness.
The space of exact forms B1(K,R) is the range d(F) of the derivation d : F → H. Since the
space of 0-harmonic functions on K is three dimensional, it is enough to prove that the image
d(F0) of the subspace F0 := {f ∈ F : f vanishes on V0} of finite energy functions vanishing
at the boundary V0 of K, is closed in H. By the inequality

‖u‖∞ ≤ c
√

E[u] u ∈ F0

(holding for a finite constant c > 0, see [13] Chapter 2), if {un ∈ F0 : n ≥ 1} is a sequence such
that {dun ∈ H : n ≥ 1} has the Cauchy property, then {un ∈ F0 : n ≥ 1} is itself a Cauchy
sequence in F0 with respect to the uniform norm and we may consider its limit u ∈ F0. As
the quadratic form E comes from an harmonic structure on K (see [13] Example 3.1.5), it is
the pointwise monotone limit of bounded quadratic forms on C(K) and, in particular, it is
lower semicontinuous. Then, if for a fixed ε > 0, N ≥ 1 is such that E[un − um] < ε, for all
n,m ≥ N , then

‖du− dum‖2H = E[u− um] ≤ lim inf
n

E[un − um] < ε m ≥ N

so that the sequence {dun ∈ H : n ≥ 1} converges to du ∈ H. �

5.3. On the existence of non-locally exact forms. On a manifold, all closed forms are
locally exact, namely the difference between closed and exact forms cannot be detected locally.
Due to its exotic topology, this is no longer true on the gasket, as we show below.

Lemma 5.11. Let fi be the 0-harmonic function on the gasket taking value 1 on the vertex
pi and 0 on the others, and consider the scalar products aijk := Q(dfi, fjdfk), i, j, k = 0, 1, 2.
Then

aijk =





1 if i = j = k;

−1
2

if i = j 6= k or i 6= j = k;
1
2

if i = k 6= j;

0 if the indices are pairwise different.
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Proof. The result directly follows from Theorem 3.5 (ii), together with the relation

2Q(dfi, fjdfj) = Q(dfi, d(f
2
j )) = 〈∆fi, f

2
j 〉 =

{
2 if i = j;

−1 if i 6= j;

where we recall that ∆fi is the sum of twice the Dirac measure concentrated on the vertex
pi minus the Dirac measures concentrated on the other vertices. �

Lemma 5.12. With the notation of the previous Lemma,

Q(dz∅, f0df1) =
1

15
.

Proof. Since dz∅ is invariant under 2π/3 rotations, we have Q(dz∅, f0df1) = Q(dz∅, fidfi+1) for
any i = 0, 1, 2, hence

Q(dz∅, f0df1) =
1

3

∑

i=0,1,2

Q(dz∅, fidfi+1) =
5

9

∑

i,j=0,1,2

Q(dz∅ ◦ wj, (fidfi+1) ◦ wj)

=
5

3

∑

i=0,1,2

Q(dz∅ ◦ w1, (fidfi+1) ◦ w1),

where, in the last equality, we used the fact that
∑

i=0,1,2 Q(dz∅ ◦ wj, (fidfi+1) ◦ wj) does

not depend on j. A simple computation shows that dz∅ ◦ w1 = dg, with g = 1
6
(−f0 + f2),

f0 ◦ w1 =
1
5
(2f0 + f2), f1 ◦ w1 =

1
5
(2 + 3f1), f2 ◦ w1 =

1
5
(f0 + 2f2). As a consequence,

Q(dz∅, f0df1) =
1

15
Q(dg, 2df0 + 4df2 + 3f1df0 + 6f1df2 + 6f0df1 + 3f2df1+

+ 2f0df0 + 2f2df2 + f0df2 + 4f2df0)

=
1

15
Q(dg, 2df2 + 3f1df2 − 3f2df1 + 3f2df0)

=
2

15
〈∆f2, g〉+

1

30
Q(d(−f0 + f2), f1df2 − f2df1 + f2df0)

where in the second equality we used the invariance of the scalar product under the reflection
of the gasket which fixes p1. By Lemma 5.11 the second summand vanishes, while 〈∆f2, g〉 =
1/2, proving the thesis. �

Corollary 5.13. The form f0df1 is not locally exact, indeed all the coefficients kσ of the
decomposition of Corollary 5.4 are non-zero.

Proof. Set α(g, h) = Q(dz∅, gdh). Since dz∅ is harmonic,

α(g, h) = Q(dz∅, gdh) = Q(dz∅, d(gh))−Q(dz∅, hdg) = −Q(dz∅, hdg) = −α(h, g).

Restricting this bilinear form to 0-harmonic functions, we get a bilinear antisymmetric form
on R3 such that α(g, const) = 0 for any g. Moreover it is non-trivial since, by Lemma 5.12,
α(f0, f1) = 1/15. As a consequence, α(g, h) = 0 iff ag + bh = 1, for some constants a, b. For
any index σ we get

Q(dzσ, f0df1) =

(
5

3

)|σ|
Q(dz∅, f0 ◦ wσd(f1 ◦ wσ)) =

(
5

3

)|σ|
α(f0 ◦ wσ, f1 ◦ wσ).

By harmonicity of fi, the map fi → fi ◦ wσ is injective and linear, therefore α(f0, f1) 6= 0
⇔ f0 and f1 do not generate constants ⇔ f0 ◦ wσ and f1 ◦ wσ do not generate constants ⇔
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α(f0 ◦ wσ, f1 ◦ wσ) 6= 0. Finally, by Theorem 5.4, we have

Q(dzσ, f0df1) = kσQ[dzσ],

namely kσ 6= 0 for any σ. �

6. de Rham duality for cohomology of locally exact forms

The main goal of this section is to prove a de Rham duality between the first homology
group of K and the first cohomology group, which we will define in terms of locally exact
forms on K.

6.1. Extension of the notion of integral of locally exact forms. Let us set Tn =⋃
|σ|=n wσ(T ) (see Figure 1 for T1 - T4), where T is the convex hull of K in R2, namely the

full triangle.

Lemma 6.1. Let γ1, γ2 be elementary paths in K which are equivalent in the singular homol-
ogy group H1(Tn). Then, for any n-exact form ω,

∫
γ1
ω =

∫
γ2
ω.

Proof. By assumption, the class [γ1 − γ2] in H1(Tn) is a boundary of a 2-chain, namely a
linear combination of 2-cells ci in Tn. Any such cell is contained in only one of the triangles
constituting Tn, where ω is exact. The thesis follows. �

Lemma 6.2. For any n ∈ N, and any path γ in K, there exists an elementary path γn,
consisting of edges of level n, such that γ and γn are equivalent in H1(Tn).

Proof. We construct γn as follows. Set t0 as the first time for which γ(t0) ∈ Vn, t2 as the first
time for which γ(t2) ∈ Vn with γ(t2) 6= γ(t0), t4 as the first time for which γ(t4) ∈ Vn with
γ(t4) 6= γ(t2), and so on. We then set t1 as the last time in [t0, t2) for which γ(t1) = γ(t0),
and so on. Let us observe that:

• The sequence {tk} is finite. If not, on the one hand γ(tk) would converge, on the other
hand Vn is discrete, giving a contradiction. We call 2p the last even index.

• For any x ∈ Vn, let us denote by U(x) the neighborhood of x consisting of x and
of the (at most two) open cells of size n bounding x. Then γ(t) ∈ U(γ(t2k)) when
t ∈ (t2k−1, t2k+2), where we set t−1 = 0 and t2p+2 = t2p+1 = 1.

The continuous path γn is uniquely defined by the following properties: it traverses the edge
[γ(t2k−1), γ(t2k)] (with linear parametrization) when t ∈ [t2k−1, t2k], for 0 < k ≤ 2p, and is
constant otherwise. By definition, γn is an elementary path. Finally, when t ∈ (t2k−1, t2k+2),
both γ(t) and γn(t) belong to U(γ(t2k)). The thesis follows. �

Definition 6.3. Let γ ⊂ K be a path in and ω a locally exact 1-form. Then the integral∫
γ
ω is defined as

∫
γn
ω (n large enough), where γn is an elementary path γn such that γ and

γn are equivalent in H1(Tn). The definition is well posed because of Lemmas 6.1, 6.2.

Remark 6.4 (A path in K containing no edges). Let pi, i = 0, 1, 2, be the external vertices
of the gasket, ei be the edge in E0 opposite to pi, i = 0, 1, 2, and let r be the rotation of
2
3
π on the gasket. Then, consider the following set of similitudes: {w000, w002, w020 ◦ r, w020 ◦

r2, w022, w200, w202 ◦ r, w202 ◦ r2, w220, w222}. The selfsimilar fractal in K determined by such
similitudes is a von Koch-like curve, and does not contain any edge, see the picture below.
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6.2. Coverings with finitely generated group of deck transformations. Let us recall
that for any n, the Sierpinski gasket K can be written as

K =
⋃

|σ|=n

wσ(K).

Denote by T the triangle which is the convex envelope of K, let Tn =
⋃
|σ|=n wσ(T ), and

ιn : K →֒ Tn be the embeddings.

Proposition 6.5.

(i) The universal cover (T̃n, p̃n, Tn) induces via ιn a regular (also called normal or Galois)

covering (K̃n, p
′
n, K),

(ii) the map ιn induces a map between fundamental groups ιn∗ : π1(K) → π1(Tn) which is an

epimorphism such that ker(ιn∗) = p′n∗(π1(K̃n)),

(iii) the group deck(K̃n) ≡ deck(K̃n, p
′
n, K) of deck transformations is isomorphic to π1(Tn),

hence is a free group, with as many generators as the number of lacunas ℓσ with |σ| ≤ n− 1.

(iv) The family
{
(K̃n, p

′
n, K) : n ∈ N

}
is projective, that is, for any n ∈ N, there is a map

π′n : K̃n → K̃n−1 such that p′n = p′n−1 ◦ π′n. Moreover, the map π′n is a covering map, hence
surjective, for any n ∈ N.

Proof. (i) It follows from [15], pp. 150, 178, 179. Observe that K̃n = (p̃n)
−1(K) and p′n =

p̃n|K̃n
.

(ii) It follows from [15], p. 179.

(iii) It follows from [15], p. 163, that deck(K̃n) ≡ deck(K̃n, p
′
n, K) is isomorphic to

(6.1)
π1(K)

p′n∗(π1(K̃n))
∼= π1(K)

ker in∗
∼= Im in∗ = π1(Tn).

Finally, since Tn is homotopic to a graph, the thesis follows.
(iv) It follows from [15], pp. 159, 160. �

Remark 6.6 (Fractafolds and coverings). Let us notice that since the projection p′n : K̃n → K

is a local homeomorphism, the covering K̃n is a non compact fractafold with boundary based
on the gasket in the sense of Strichartz [20] (see also [21, 22]). Indeed, in [21], Strichartz studies
many covering fractafolds, called blow-ups of the gasket, even though they are coverings of
the Octahedron Fractafold, OSG, which is a compact fractafold (without boundary) based on
the Sierpinski gasket. Such blow-ups may be described in analogy with what we did above.
First embed the OSG into a space X in which any copy of the gasket is replaced by a full

triangle. Then the universal covering space of X induces a regular covering ÕSG of OSG.
The blow-ups described in [21] are intermediate coverings determined by subgroups of π1(X).
However, such coverings are non-normal, namely the group of deck transformations does not
act transitively on the fibers. In fact, Strichartz shows that the group of deck transformations
is trivial.

The main differences w.r.t. our coverings are the following: (1) our fractafolds, being cov-
erings of the gasket, have boundary; (2) our coverings are normal, hence they are acted upon
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by a (large) group of transformations, making the notion of periodic function an elementary
one, in contrast with Strichartz situation; (3) the blow-ups of Strichartz are equipped with

a tower of compact coverings of OSG, while the tower of the K̃n’s consists of non-compact
spaces; (4) while in Strichartz’s case the groups associated with the coverings are subgroups
of π1(X), the groups associated with our coverings are a fortiori subgroups of π1(K), hence
the cells of the covering are in one-to-one correspondence with sub-cells of the gasket (cf. the
notion of cellular reconstruction in [20], Theorem 2.1). In other terms, while a fundamental
domain in Strichartz’s blow-ups is given by just four cells, for our coverings the number of

cells of a fundamental domain in K̃n increases with n. (5) As a consequence, the Dirichlet

form (E,F) on K extends in a unique way to a Dirichlet form (Ẽn, F̃n) on the covering space

K̃n (see [8]) in such a way that the covering map p′n : K̃n → K transforms the restriction of

Ẽn on any cell of K̃n to the multiple
(
3
5

)n
E of the Dirichlet form of the base K.

By the general theory of Dirichlet forms (see for example [7]), the space of locally finite

energy functions F̃n,loc is then defined as those functions on K̃n which coincide, on any open

set of a suitable open cover of K̃n, with a finite energy function in F̃n. Locally finite energy

functions on K̃n are, in particular, continuous. Potentials of locally exact forms on K, which
we shall introduce below, will be locally finite energy functions on the above considered covers.

6.3. Affine functions. We now construct a potential function on K̃n for any locally-exact

1-form on K. Let us observe that any form ω lifts, in an obvious way, to a deck(K̃n)-periodic

form ω̃ on K̃n.

Lemma 6.7. Let ω be an n-exact form, γ be a path in K̃n joining two points x1, x2 in K̃n.
Then,

∫
γ
ω̃ only depends on the end-points x1, x2.

Proof. Since the universal covering T̃n is simply connected, two paths joining x1 with x2 are

homotopic in T̃n, hence equivalent in H1(T̃n). The thesis follows as in Lemmas 6.1, 6.2. �

Definition 6.8. (Potentials of locally exact forms) Let ω be an n-exact form and choose

x0 ∈ K̃n. Then, we call the function fω : K̃n → R defined as

(6.2) fω(x) =

∫ x

x0

ω̃, x ∈ K̃n,

the potential of ω (vanishing at x0 ∈ K̃n). Since K̃n is arcwise connected, fω(x) is defined

for any x ∈ K̃n. Clearly, changing the reference point x0 ∈ K̃n, amounts to changing the

potential fω by an additive constant only. Notice also that fω ∈ C(K̃n), i.e. potentials of
locally exact forms are continuous functions.

Remark 6.9. Observe that if ω is n-exact, γ is a path in K, and γ̃ is a lifting of γ to K̃n, then∫
γ̃
ω̃ =

∫
γ
ω. Also, if fk

ω is the potential on K̃k, k ≥ n, fk is the periodic lifting of fn to K̃k.

Definition 6.10. (Affine functions) Let G be a topological group acting on a space X. A
continuous function f on X is G-affine if there exists a continuous group homomorphism
ϕ : G → (R,+) such that f(gx) = f(x) + ϕ(g) for all (g, x) ∈ G×X.

Let us observe that, since the group homomorphisms ϕ associated to affine functions
are valued in the abelian group (R,+), they vanish on commutators. In particular, let

[deck(K̃n), deck(K̃n)] and Γn := Ab(deck(K̃n)) = deck(K̃n)/[deck(K̃n), deck(K̃n)] be the

commutator subgroup and the abelianization, respectively, of the group deck(K̃n). Then,
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a deck(K̃n)-affine function on K̃n can be considered as a Γn-affine function on the quotient
space

L̃n := K̃n/[deck(K̃n), deck(K̃n)] ,

which is an abelian covering (L̃n, pn, K) of K (cf. e.g. [18], p. 423, or [23], Theorem 2.2.10)
such that, making use also of eq. (6.1),

(6.3) deck(L̃n) = Γn = H1(Tn).

Let us observe that Γn is a free abelian group with as many generators as the number of

lacunas ℓσ, |σ| ≤ n − 1. We also mention that the abelian coverings L̃n are fractafolds as

are their non-abelian counterparts. See figure 4 for a portion of L̃2, which is an example of
a fundamental domain in the sense of Proposition A.4. Notice that xi and x′i project to the
same point on K.

Figure 4. A fundamental domain for L̃2.

Theorem 6.11. The potential fω of an n-exact 1-form ω, constructed above, is a deck(K̃n)-

affine function on the covering space K̃n, hence it can be considered as a Γn-affine function

on the abelian covering space L̃n. Moreover, for any path γ in K we have

(6.4)

∫

γ

ω = fω(x1)− fω(x0) ,

where x0, x1 are the end-points of a lifting of γ to L̃n.

Proof. Since the r.h.s. in (6.2) is clearly deck(K̃n)-invariant, we obtain

f(x)− f(x0) = f(gx)− f(gx0), ∀g ∈ deck(K̃n),

or, equivalently, f(gx0) − f(x0) = f(gx) − f(x), namely the quantity ϕ(g) = f(gx) − f(x)

only depends on the group element g, and gives rise to a function on the group deck(K̃n),

which is automatically continuous as this group is discrete. Moreover, for g, h ∈ deck(K̃n),

ϕ(gh) = f(ghx)− f(x) = (f(ghx)− f(hx)) + (f(hx)− f(x)) = ϕ(g) + ϕ(h),
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that is ϕ is a homomorphism from deck(K̃n) to (R,+). The continuity of fω and (6.2) follow
directly by the definition of fω. �

6.4. Projective coverings. It follows from Proposition 6.5 that the family
{
(K̃n, p

′
n, K) :

n ∈ N
}
is projective, and has a non-empty projective limit, which we denote by K̃ = lim

←
K̃n,

and we denote by p′ : K̃ → K and q′n : K̃ → K̃n the continuous maps such that p′n ◦ q′n = p′,
and π′n ◦ q′n = π′n−1.

The space K̃ is not a covering space of K, but just a pro-covering, namely a projective
limit of covering spaces. However,

Lemma 6.12. Pro-coverings of a topological space X have the unique path-lifting property.

Proof. We have to prove that if {(Xn, pn)}n∈N is a tower of coverings of X and (X̃, p) is the

associated pro-covering, then for any path γ in X starting in x, and any x̃ ∈ X̃ with p(x̃) = x,

there is a unique path γ̃ in X̃, starting in x̃, such that p ◦ γ̃ = γ. Let qn be the projection

map from X̃ to Xn, x̃n = qn(x̃), γ̃n the unique path starting from x̃n and lifting the path γ

to Xn. We may set γ̃ as the inverse limit of γ̃n, and any lifting γ̃ of γ to X̃ starting from x̃
is of this form. �

Remark 6.13. Even though K is not semilocally simply connected, hence it has no universal

covering space [15], K̃ has some properties of a universal covering space. First of all, being a
pro-covering, it has a covering projection with the unique path-lifting property. Second, the

homotopy group π1(K) embeds injectively in the group of deck tranformations for K̃. Indeed,

the group deck(K̃) of deck transformations for K̃ coincides with the projective limit of the

groups deck(K̃n), hence is the so called Čech homotopy group π̌1(K) of K, cf. [1], Proposition
2.8.

Analogously, the family
{
(L̃n, pn, K) : n ∈ N

}
is projective, because, for any n ∈ N, there is

a covering map πn : L̃n → L̃n−1 such that pn = pn−1◦πn. The group Γ of deck transformations

for L̃ coincides with the projective limit of the groups Γn = H1(Tn), and is therefore the first
Čech homology group (cf. e.g. [6], Theorem X.3.1, p. 261), which we shall denote by Ȟ1(K).

The group Γ of deck transformations of L̃ is the abelianized of deck(K̃) and is the direct
product of countably many copies of Z, where generators can be identified with lacunas.

Definition 6.14. We call homological pro-covering of K the projective limit L̃ = lim
←

L̃n,

topologized by the projective limit topology.

Lemma 6.15. For any Γ-affine function f on L̃ there exists n ∈ N and a Γn-affine function

fn on L̃n such that fn lifts to f .

Proof. This is the same as saying that the homomorphism ϕ associated with f satisfies
ϕ(gσ) = 0, for |σ| large enough, where gσ denotes the homotopy class of the lacuna ℓσ.
Assume, by contradiction, that ϕ is continuous, and non-trivial on infinitely many elements
gn = gσn

. Recall that a sequence hn in Γ converges to h in the projective limit topology iff, for
any k ∈ N, qk(hn) = qk(h) for sufficiently large n, where qk : Γ → Γk is the projection; there-

fore, for any sequence {kn} ⊂ Z, limN

∏N
n=1 g

kn
n =

∏∞
n=1 g

kn
n in the projective limit topology.

As a consequence,

ϕ

( ∞∏

n=1

gknn

)
=
∞∑

n=1

knϕ(gn).
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However, one may always find a sequence of integers {kn}n∈N such that the series above
diverges. �

Theorem 6.16.

(i) The homological pro-covering (L̃, p,K) has the unique path-lifting property.

(ii) A quadratic (energy) form EΓ : A(Γ, L̃) → [0,+∞] is well defined on the space A(Γ, L̃) of

Γ-affine functions on the covering space L̃ by

(6.5) EΓ[f ] = lim
n

(
5

3

)n ∑

e∈En

|∂f(e)|2 ,

where the quantity ∂f(e) := f(ẽ+)− f(ẽ−) does not depend on the choice of the lifting ẽ ⊂ L̃
of e ∈ E∗(K).
(iii) The energy of a Γ-affine function f is finite if and only if f is the potential of a locally
exact form ω on K, and, in that case, EΓ[f ] = ‖ω‖22. We shall write df = ω.

Proof. (i) It follows directly from Lemma 6.12.

(ii) Let ẽ1, ẽ2 be two liftings, ẽ1n, ẽ
2
n the corresponding projections on L̃n, gn ∈ Γn be such

that gn(ẽ
1
n) = ẽ2n. The family {gn} is a projective sequence of deck transformations, which

defines a deck transformation g on L̃ satisfying g(ẽ1) = ẽ2. Since f is Γ-affine its variation

is the same for all liftings. Since f is the lifting of a continuous function on L̃m for some m,
the sequence above is increasing for n > m, and this shows the second statement.
(iii) If f is a Γ-affine function of finite energy then, by Lemma 6.15, f is the lifting of a

Γn-affine function fn on L̃n. Set fσ = fn|Cσ
for |σ| = n. Since the covering projection from

L̃n to K is 1:1 on cells of level n, we get the desired form by glueing the dfσ’s. Conversely,
the existence of a potential of a locally exact form has been already shown above, and the
equality EΓ[f ] = ‖ω‖2 follows by Theorem 3.7. �

Notice that the quadratic form just defined on Γ-affine functions on the covering space L̃
reduces to the standard Dirichlet form on the gasket K when evaluated on Γ0-affine functions,
i.e. on (liftings of) functions on K. This is also the reason why the notation df = ω is
consistent with the usual notation for the derivation of a finite energy function on K.

Summarizing the results above, we have

Theorem 6.17. There is a 1:1 correspondence between locally exact forms ω ∈ Ω1
loc(K) and

and their potentials, i.e. Γ-affine, finite energy functions f ∈ A(Γ, L̃) on L̃ such that

(i) df = ω;
(ii)

∫
γ
ω = f(x1)− f(x0) for any path γ ⊂ K, where x0, x1 are the end-points of a lifting

of γ to L̃.

Definition 6.18. We define B1(K,R) as the space of exact forms on K, and

H1
dR(K,R) =

Ω1
loc(K)

B1(K,R)

as the de Rham cohomology group for the Sierpinski gasket.

Remark 6.19. Since the group Γ = Ȟ1(K) has no torsion, its homological information is fully
recovered by the group Ȟ1(K,R) = Γ⊗Z R.
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Theorem 6.20 (de Rham cohomology theorem). The pairing 〈γ, ω〉 =
∫
γ
ω between contin-

uous paths and locally exact forms gives rise to a nondegenerate pairing between elements of
the group Ȟ1(K,R) and elements of the de Rham cohomology H1

dR(K,R). Such a pairing is
indeed a duality.

Proof. Let γ be a continuous closed path inK. For any n, we may associate with γ its singular
homology class [γ]n ∈ H1(Tn), and then its projective limit [γ] = lim

←
[γ]n ∈ Γ = lim

←
H1(Tn).

If ω is k-exact, and ϕω the associated homomorphism, then

ϕω([γ]) = 〈lim
←

[γ]n, ω〉 = 〈[γ]k, ω〉 =
∫

γ

ω.

Since the pairing above is trivial when the form is exact, we get a pairing Γ×H1
dR(K,R) → R.

Such pairing clearly extends to a pairing Ȟ1(K,R)×H1
dR(K,R) → R.

Now we prove the duality relation. On the one hand,H1
dR(K,R) is isomorphic to lim

→
H1

dR(Tn,R),

topologized with the direct limit topology. On the other hand Ȟ1(K,R) = lim
←

H1(Tn,R),

topologized with the projective limit topology. The thesis follows. �

Remark 6.21. Summarizing the main results we get so far, we have that

(1) any locally exact form has a potential defined on the whole covering L̃ which is Γ-
affine;

(2) the integral of a locally exact form along a path can be read as the variation of the
potential at the end points of the lifting of the path;

(3) the pairing above gives rise to a nondegenerate pairing between Ȟ1(K,R) andH1
dR(K,R);

(4) such pairing is indeed a duality.

We shall investigate below how such results generalize to the class of elementary 1-forms.

Before closing this section, we show that L̃ is arcwise connected.

Proposition 6.22. Let (L̃, p,K) be the homological pro-covering of K. Then L̃ is arcwise
connected.

Proof. Let us fix x0 ∈ V1 ⊂ K. Let x̂, ŷ ∈ L̃, and x := p(x̂), y := p(ŷ) ∈ K. Since K
is arcwise connected, there are continuous paths γx, γy in K from x, y to x0. Let γ̃x, γ̃y be
the unique liftings of γx, γy starting at x̂, ŷ, respectively. Then we only need to construct a
continuous path γ̃ from x̃ := γ̃x(1) to ỹ := γ̃y(1). Since p(x̃) = p(ỹ) = x0, there is g ∈ Γ such
that g(x̃) = ỹ. Moreover, g =

∏
σ∈Σ enσ

σ , where, for any σ, nσ ∈ Z, and eσ is a homology

class representing the lacuna ℓσ traversed clockwise. Since L̃ is a projective limit, x̃ = {xn},
ỹ = {yn}, where xn, yn ∈ L̃n, pn(xn) = pn(yn) = x0. We will construct the path γ̃ as the
unique lifting, starting at x̃, of a closed path γ in K, which in turn is obtained as uniform
limit of a sequence of closed paths γn based at x0.

To ease the description of the construction of the γn’s, let us first construct, for any σ ∈ Σ,
T > 0, and a given xσ ∈ ℓσ ∩ V|σ| (i.e. one of the three vertices of the triangle ℓσ), a closed
path γσ ≡ γxσ ,nσ ,T

σ , based at xσ, which is a representative of the homology class enσ
σ . Define γσ

as the continuous closed path which: (0) is defined on [0, T ]; (1) starts at xσ; (2) traverses the
lacuna ℓσ a number nσ of times in the positive (i.e. clockwise) direction in the time interval
[0, tσ], where tσ := T

8
; (3) traverses clockwise the first two edges and the first half of the third,

until it reaches the middle point, in the time interval [tσ, 2tσ]; (4) stays still in this middle
point for a time interval tσ; (5) comes back (i.e. in the counterclockwise direction) until it
reaches the middle point of the second edge, in the time interval [3tσ, 4tσ]; (6) stays still in
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this middle point for a time interval tσ; (7) continues to come back, until it reaches the middle
point of the first edge, in the time interval [5tσ, 6tσ]; (8) stays still in this middle point for a
time interval tσ; (9) comes back to x0, in the time interval [7tσ, 8tσ]. For ease of reference, we
call the path constructed in (2) − (3) the head of γσ, and that constructed in (4) − (9) the
tail.

Define γ0 := γ
x0,n∅,1
∅ . To define γ1, modify the tail of γ0, by attaching, to each of the

vertices xσ ∈ V2 \ V1 traversed by γ0, the closed path γxσ ,nσ ,8−1

σ , and call tails of γ1 the tails
of the three γσ’s. Therefore, γ1 is the path obtained by traversing first the head of γ0, and
then the tail of γ0 modified in such a way that, instead of waiting for 8−1 time units at each
vertex in V2 \ V1, we go around each path γσ, |σ| = 1.

To define γ2, modify the tails of γ1, by attaching, to each of the vertices xσ ∈ V3 \ V2, the

closed path γxσ ,nσ ,8−2

σ , and call tails of γ2 the tails of the nine γσ’s.
In general, assume that γn has already been defined. Then, γn+1 is obtained by modifying

the 3n tails of γn, by attaching, to each of the vertices xσ ∈ Vn+2 \ Vn+1, the closed path

γxσ ,nσ ,8−n−1

σ . Call tails of γn+1 the tails of the 3n+1 γσ’s.
It is now easy to prove that the sequence {γn} converges uniformly to a continuous closed

path γ in K, based at x0.

It follows from Lemma 6.12 that there is a unique path γ̃ in L̃ starting at x̃, and covering
γ. We only need to prove that γ̃(1) = ỹ. Indeed, because of Lemma 6.12 there are unique

paths γ̂n, γ̃n in L̃n, starting at xn, and covering γn and γ, respectively. It is easy to see that
γ̃n(1) = γ̂n(1) = yn. But this implies that γ̃(1) = ỹ. �

7. Potential Theory of elementary 1-forms

In this section we introduce compatible metrics dN (associated to seminorms N on nu-

merical sequences) on the homological pro-covering L̃ of the Sierpinski gasket K, and a
corresponding subgroups ΓN of the group of its deck transformations. This will allow to

select a class of paths in K, having a lifting of finite length in each metric component of L̃.
By suitably choosing the seminorm N , we prove all elementary 1-forms admit potentials (or

primitives) as ΓN -affine functions on metric components of L̃.

7.1. Compatible pseudo-metric on the homological pro-covering L̃.

Definition 7.1. A pseudo-metric d on a space X is a metric which is allowed to be infinite.
A d-component of X is a subset of points in X with mutually finite distance. A pseudo-metric
is finer than a topology T on X if the topology induced by d is finer than T.

A pseudo-metric d on L̃ is Γ-invariant if d(γx, γy) = d(x, y) for any γ in the group Γ of deck

transformations on L̃.
We now denote by zσ the Γn-affine potential on L̃n of the n-exact form dzσ, n = |σ|+ 1, and
by ϕσ : Γ → R the corresponding homomorphism. Let us observe that ϕσ(ℓτ ) 6= 0 implies
τ ≤ σ.
If a = {aσ}σ∈Σ ∈ cc(Σ) is a finitely supported, real valued sequence on Σ, denote by ak :=
{akσ}σ∈Σ its k-th truncation, namely akσ = aσ if |σ| ≤ k and akσ = 0 otherwise.

Definition 7.2. LetN be a norm on the space cc(Σ) such thatN(ak) ≤ N(a) for all a ∈ cc(Σ),
and extend N to the space RΣ of all sequences via N(a) = limk N(ak), thus getting a norm
on the subspace {a ∈ RΣ : N(a) < ∞}.
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For x, y ∈ L̃, consider the sequence z•(x) − z•(y) ∈ cc(Σ) defined by (z•(x) − z•(y))σ :=
zσ(x)− zσ(y) for all σ ∈ Σ and set

dN(x, y) = N
(
z•(x)− z•(y)

)
.

Theorem 7.3. The function dN is a Γ-invariant pseudo-metric which is finer than the pro-
jective limit topology.

Proof. The value dN(x, y) is obtained by composing the norm N on sequences indexed by
Σ with the (semi-definite) distances dσ(x, y) = |zσ(y) − zσ(x)|. Therefore, on the one hand

d is a (possibly semi-definite) pseudo-metric on L̃, on the other hand the topology induced
by dN is stronger than the weak topology induced by the zσ’s, which is the projective limit
topology, by Lemma A.4 in the Appendix. Since the projective limit topology is Hausdorff,
this shows at once that dN is positive definite and that is a finer pseudo-metric. Finally, for
all g ∈ Γ we have

dN(gx, gy) = N
(
z•(gy)− z•(gx)

)
= N

(
z•(y)− z•(x)

)
= dN(x, y) .

�

Remark 7.4. We observe that, since L̃ is arcwise connected, it is also connected in the projec-
tive limit topology. On the other hand, it is not connected in general in the topology induced
by dN .

Proposition 7.5. Let x be a point in L̃, g ∈ Γ. Then, the quantity ℓN(g) := dN(x, gx) does
not depend on x, and ℓN(g) = 0 iff g is the identity. The set ΓN = {g ∈ Γ : dN(x, gx) < ∞}
does not depend on x, and is a subgroup of Γ.

Proof. For any σ ∈ Σ, let ϕσ ∈ hom(Γ,R) be the homomorphism associated to the Γ-affine

function zσ on L̃ in such a way that zσ(gx) − zσ(x) = ϕσ(g) for all g ∈ Γ. Let us denote by
ϕ•(g) ∈ RΣ the sequence σ 7→ ϕσ(g). Definition 7.2 then shows that

dN(x, gx) = N
(
z•(gx)− z•(x)

)
= N

(
ϕ•(g)

)
,

and the first statement follows. Since dN is a pseudo-metric, ℓN(g) = 0 means gx = x for any
x, namely g = e. The last property is obvious. �

Remark 7.6. The function g ∈ Γ → ℓN(g) ∈ [0,+∞] is a generalized length function on Γ
since it clearly satisfies

ℓN(g1g2) ≤ ℓN(g1) + ℓN(g2) g1 g2 ∈ Γ

and is a length function on the subgroup ΓN .

We shall say that a path γ ⊂ K has finite effective length if

(7.1) λ(γ) := dN(γ̃(1), γ̃(0)) < ∞.

where γ̃ is the lifting of γ to L̃.

Remark 7.7. Let us observe that, for any loop γ whose liftings are loops in L̃, λ(γ) = 0. On
the other hand, any such path gives rise to a zero chain in homology, namely λ(γ) may be
considered as a length for homology chains.

Lemma 7.8. The projection map p restricted to a dN -component is surjective ⇐⇒ for all
x, y ∈ K there is a continuous path γ in K between them which has finite effective length.
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Proof. (⇐=) Let us fix x̃0 ∈ L̃, and let x0 := p(x̃0). Then, for any x ∈ K there is a continuous
path γ in K, starting in x0 and ending in x, which has finite effective length. Denote by γ̃

its unique lifting to a path in L̃ starting at x̃0 ∈ L̃. Then π(γ̃(1)) = x, and γ̃(1) belongs to
the same dN -component of x̃0.

(=⇒) Let x, y ∈ K. By assumption, there are x̃, ỹ ∈ L̃ such that dN(x̃, ỹ) < ∞ and p(x̃) = x,

p(ỹ) = y. Because of Proposition 6.22, there is a continuous path γ̃ in L̃ between x̃ and ỹ.
Set γ := p ◦ γ̃, which automatically has finite effective length. �

Lemma 7.9. Let N be a norm on the space cc(Σ) of finitely supported sequences as in
Definition 7.2, such that

(1) N is invariant under permutations π : Σ → Σ of indices preserving the length, namely

N(a) = N(aπ), if (aπ)σ := aπ(σ) , |π(σ)| = |σ| , σ ∈ Σ;

(2) there exists c > 0 such that N(Sia) ≤ cN(a) for any finitely supported sequence
a = {aσ}, where the i-shift operator Si, i = 0, 1, 2, acts as

(Sia)σ =

{
aτ if σ = i · τ
0 otherwise.

Then we have:

(a) an edge has finite effective length iff any elementary path has finite effective length;

(b) if all edges have finite effective length and c < 1, then any dN -component of L̃ projects
surjectively on K.

Proof. First we observe that the effective length is sub-additive. Indeed, if γ1, γ2 are consec-

utive paths, γ̃1 is a lifting of γ1 starting from some point x̃0 ∈ L̃, and γ̃2 is a lifting of γ2
starting from x := γ̃1(1), then

λ(γ1 · γ2) = dN(γ̃1(0), γ̃2(1)) ≤ dN(γ̃1(0), x) + dN(x, γ̃2(1)) = λ(γ1) + λ(γ2).

Let now compute the sequence aτ,iσ =
∫
wτ ei

dzσ, where ei is the edge opposite to the vertex

pi. If σ and τ are not ordered, Cσ and wτei do not intersect, hence
∫
wτ ei

dzσ = 0. If σ ≥ τ ,
namely σ = τ · ρ, Cσ intersects wτei iff ρ does not contain the letter i, and in this case∫
wτ ei

dzσ = −1/3 =
∫
ei
dzρ. For σ < τ , one can estimate the integral with the oscillation of

zσ on Cτ , which in turn is estimated by (1/3)(3/5)|τ |−|σ|−1. As a consequence,

aτ,iσ = (Sτa
∅,i)σ + bτ,iσ ,

where Sτ is the composition of |τ | shift operators and bτ,iσ satisfies

|bτ,iσ |
{
≤ 1

3

(
3
5

)|τ |−|σ|−1
when σ < τ

= 0 otherwise.

Since bτ,i has finite support, the finiteness ofN(aτ,i) is equivalent to the finiteness ofN(Sτa
∅,i),

which only depends on |τ | by assumption (1), showing that the finiteness of λ(wτei) = N(aτ,i)
is equivalent to the finiteness of λ(wρej) for any |ρ| = |τ |, and any j = 0, 1, 2. Then, if all
edges of level k have finite effective length, all edges of level ≤ k have finite effective length
by sub-additivity. Finally, by assumption (2),

(7.2) N(aτ,i) ≤ N(bτ,i) + c|τ |λ(ei),

showing that finiteness propagates to edges of all levels. The finiteness of the effective length
of elementary paths follows by sub-additivity, thus proving (a).
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We now prove (b). As shown in Lemma 7.8, the thesis is equivalent to the connectedness of
K by means of paths of finite effective length. We have shown in Lemma 5.7 that a vertex
v0 ∈ V0 can be connected to any vertex of level p by an elementary path consisting of at most
1 edge of level j, j ≤ p, proving that v0 can indeed be connected to any point x in K by a
path consisting of (possibly infinitely many) edges, at most 1 of them for any level. Denoting
by τ j the j-th truncation of τ , and by δρ = {δρσ} the sequence equal to 1 for σ = ρ and to 0
otherwise, we have, if c 6= 3

5
,

N(bτ,i) ≤ 1

3

|τ |−1∑

j=0

(
3

5

)|τ |−j−1
N(δτ

j

) ≤ N(δ∅)

3

(
3

5

)|τ |−1 |τ |−1∑

j=0

(
5c

3

)j

≤ N(δ∅)

3

(3/5)|τ | − c|τ |

3/5− c
,

and N(bτ,i) ≤ 1
3
N(δ∅)|τ |(3

5
)|τ |−1, if c = 3/5. By the inequality 7.2 we get, for an edge en ∈ En,

(7.3) λ(en) ≤
{

1
3
N(δ∅) (3/5)

n−cn
3/5−c + cnλ(e1), c 6= 3

5
,

5
9
N(δ∅)n(3

5
)n + cnλ(e1), c = 3

5
.

The thesis follows since the series
∑∞

n=0 λ(en) converges for c < 1. �

7.2. Potentials of elementary 1-forms. We now choose a particular norm on sequences,

and consider the distance d on L̃ and the length ℓ on Γ associated to this norm. This choice
is motivated by Theorem 7.11 below. Let us consider

N(a) =
∑

n≥0
(3/5)n sup

|σ|=n

|aσ|.

Proposition 7.10. Any d-component of L̃ projects surjectively on K, and elementary paths
have finite effective length. In particular, for an edge en ∈ En, the following estimate holds:

λ(en) ≤
(
1

3
n+

3

2

)(
3

5

)n−1

Proof. Properties (1) and (2) of Lemma 7.9 are satisfied with c = 3/5, hence the statement
follows. As for the estimate on the effective length, we observe that

N(δ∅) = 1, λ(e1) =
5

2
,

hence eq. (7.3) becomes

λ(en) ≤
1

3
n(3/5)n−1 +

5

2
(3/5)n =

(
1

3
n+

3

2

)(
3

5

)n−1
.

�

For any elementary form ω = dUE +
∑

σ kσdzσ, one has, by (5.4),

(7.4) (5/3)n
∑

|τ |=n

|kτ | ≤
∑

|τ |=n

µω(Cτ ) = µω(K).

Proposition 7.11. To any elementary 1-form ω is associated a function U = UE + UH in

any d-component of L̃, where UE was described in Theorem 5.4 and UH may be written as

UH(x) =
∑

σ

kσ(zσ(x)− zσ(x0)),

for any fixed x0 in the given d-component. The series defining U converges uniformly on

compact sets. U is a d-continuous ΓN -affine function on any d-component of L̃.
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Proof. Let us recall that UH is defined up to an additive constant. Let us choose x0 ∈ L̃ and,
for any x in the same d-component, we set

UH(x) =
∑

σ

kσ(zσ(x)− zσ(x0)).

Since ω satisfies (7.4), given two points x1, x2 in the same d-component, we have

|UH(x2)− UH(x1)| =
∣∣∣∣
∑

σ

kσ(zσ(x2)− zσ(x1))

∣∣∣∣ =
∣∣∣∣
∑

n

∑

|σ|=n

kσ(zσ(x2)− zσ(x1))

∣∣∣∣

≤
(
∑

n

(3/5)n sup
|σ|=n

|zσ(x2)− zσ(x1)|
)
sup

n
(5/3)n

∑

|σ|=n

|kσ|


(7.5)

≤ µω(K)d(x1, x2),

where the last inequality follows by Lemma 5.2. As a consequence, UH is Lipschitz d-
continuous. In particular, if ℓ(g) < ∞, then x and gx belong to the same d-component,
and

UH(gx)− UH(x) =
∑

σ

kσϕσ(g),

namely UH is ΓN -affine. Since UE is continuous on K, it lifts to a Γ-invariant function on L̃,
continuous in the projective limit topology, hence also in the (stronger) d-topology. �

Lemma 7.12. Let ω = dUE +
∑

σ kσdzσ ∈ Ω1(K) be the decomposition of an elementary
1-form and γ a path in K with ℓ(γ) < ∞. Then the following limit exists and is finite:

(7.6) lim
n

∫

γ

dUE +
∑

|σ|≤n
kσ

∫

γ

dzσ.

Proof. The thesis follows as in (7.5). �

Definition 7.13. Let ω be an elementary 1-form, γ a path in K with ℓ(γ) < ∞. We define∫
γ
ω by the limit in eq. (7.6).

Theorem 7.14. The function U associated to the form ω in Proposition 7.11 is a potential
for ω, namely, for any path γ in K with ℓ(γ) < ∞, we have

(7.7)

∫

γ

ω = U(γ̃(1))− U(γ̃(0)) < ∞,

where γ̃ is a lifting of γ to L̃.

Corollary 7.15. We have proved that

(1) any form in Ω1(K) has a potential defined on any d-component of L̃ which is ΓN -
affine;

(2) the integral of a form in Ω1(K) along a dN -finite path can be read as the variation of
the potential at the end points of a lifting of the path;

(3) the pairing above gives rise to a nondegenerate pairing between ΓN and equivalence
classes of forms in Ω1(K) modulo B1(K,R).

Remark 7.16.
(1) Corollary above may be considered as a weak form of a de Rham theorem for elementary
1-forms.
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(2) The considerations above work for any choice of the norm N , up to the surjectivity of
the d-components. Other norms will select larger or smaller d-components, and consequently
smaller or larger classes of 1-forms admitting a finite primitive on d-components.

Appendix A. The projective limit topology on L̃ is generated by potentials

Lemma A.1. Let Cσi be one of the three subcells of the cell Cσ, denote by ziσ the potential
of dzσ on Cσi, and by xi

σ = wσ(pi) the common vertex of Cσi and Cσ. Then

(a) The set {x ∈ Cσi : z
i
σ(x) = ziσ(x

i
σ)} coincides with the intersection Ai

σ of Cσi with the
axis of the edge eiσi = wσi(ei) opposite to xi

σ in Cσi.
(b) All points in Ai

σ are vertices.

Proof. It is not restrictive to assume that σ = ∅, i = 1, z(p1) := z1∅(p1) = 0. We first prove
the following statement.

Claim A.2. For any n ∈ N, denote by 1n the multi-index of length n and taking only the
value 1, and let Θn := {1k : k = 1, . . . , n}. Then,
(A.1) C1 = C1n

∪
⋃

ρ∈Θn−1

Cρ0 ∪ Cρ2.

(i) If x ∈ Cρ0, ρ ∈ Θn−1, and z(x) = 0 then x = wρ0(p2), hence is on the axis A := A1
∅.

Analogously, if x ∈ Cρ2, ρ ∈ Θn−1, and z(x) = 0 then x = wρ2(p0) ∈ A.
(ii) The values of z at the points w1n

(p0), w1n
(p2) are, respectively, −1/6 · 5−n+1, 1/6 · 5−n+1.

Proof of the Claim. The statement clearly holds for n = 1. Suppose now it is true for some
n. Since C1n

= C1n0 ∪ C1n1 ∪ C1n2, equality (A.1) still holds. By harmonic extension, the
boundary values of z on C1n0 are −1/6 · 5−n+1, −1/6 · 5−n and 0, hence, by the maximum
principle, the value 0 is assumed only on the vertex, proving (i). The proof of (ii) also follows
by harmonic extension. �

Now we turn to the proof of the Lemma. If z(x) = 0, either x ∈ A or x ∈ ∩nC1n
, which

means x = p1 ∈ A. Conversely, if x ∈ A, either x is a vertex and z(x) = 0 or x ∈ ∩nC1n
,

which means x = p1 hence z(x) = 0. Both (a) and (b) then follow. �

Lemma A.3. For any g ∈ Γn, there exists |σ| < n such that ϕσ(g) is a non-vanishing integer,
where ϕσ is the homomorphism associated with the Γn-affine potential zσ.

Proof. The element g may be uniquely decomposed as g =
∏
|τ |<n g

kτ
τ , where gτ denotes the

homology class of the lacuna ℓτ according to the identification Γn = H1(Tn). If we choose σ
of minimal length such that kσ 6= 0, we have

ϕσ(g) =
∑

|σ|≤|τ |<n

kτϕσ(gτ ) =
∑

|σ|≤|τ |<n

kτ

∫

ℓτ

dzσ = kσ,

where we used the fact that, as observed at the beginning of Subsection 4.2,
∫
ℓτ
dzσ is non-zero

only if τ ≤ σ. �

Proposition A.4. The weak topology T(zσ) induced by {zσ : σ ∈ Σ} on L̃ coincides with the
projective limit topology.

Proof. We shall prove that, given a point x̃ ∈ L̃ and one of its neighborhoods Ũ in the
projective limit topology, there exists a set Ω, open in the weak topology induced by {zσ :

σ ∈ Σ}, such that x ∈ Ω ⊆ Ũ . This proof will in some points split in three cases:
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(c1) p(x̃) 6∈ V∗,
(c2) p(x̃) ∈ V0,
(c3) p(x̃) ∈ V∗ \ V0,

where p : L̃ → K is the covering projection. In the course of the proof, we will use the
stardard notation X◦, resp. ∂X for the (topological) interior, resp. boundary, of X ⊂ K. To
avoid misunderstanding, we will denote by Cι

σ, resp. bCσ, the combinatorial interior, resp.
boundary, of a cell Cσ. Observe that C◦σ = Cι

σ and ∂Cσ = bCσ ⇐⇒ Cσ doesn’t contain one
of the vertices p0, p1, p2.

About the neighborhood Ũ . By definition, there exists n ∈ N such that Ũ is the preimage

in L̃ of a neighborhood U of x0 ∈ L̃n, where x̃ projects onto x0. It is not restrictive to assume,
possibly passing to a higher covering, that

(c1-c2) the open set U is the interior of a cell of level n in L̃n.

(c3) the open set U is a butterfly shaped neighborhood made of two cells of level n in L̃n

in such a way that pn(U) is not contained in a cell of level n− 1, where pn : L̃n → K
is the covering projection.

The choice of a fundamental domain. As a closed fundamental domain F in L̃n, we pick

a finite union of closed cells of level n in L̃n such that F is connected, pn(F) = K and pn|F◦ is
injective, and with the further property that, for any |τ | = n− 1, p−1n (Cτ ) ∩ F is connected.
We also require that

(c1-c2) the neighboring cells of U in L̃n, whose projection to K lie in the same cell of level
n − 1 containing pn(U), still belong to F. If pn(U) = C◦σi [i.e. pn(U) = Cι

σi or
pn(U) = Cι

σi ∪ {pn(x0)}], we get in particular that U is in the middle of the preimage
p−1n (Cσ) ∩ F.

(c3) same as above for the two subcells of the butterfly neighborhood U . If pn(U) =
(Cσi ∪ Cρj)

◦ [where, by the above assumption, σ 6= ρ and i 6= j], we get in particular
that U ∩ p−1n (Cσ)) is in the middle of the preimage p−1n (Cσ) ∩ F, and U ∩ p−1n (Cρ) is
in the middle of the preimage p−1n (Cρ) ∩ F.

The normalization of the zτ ’s. We have asked the preimage in F of any cell Cτ , |τ | = n−1
to be connected. Since such preimage consists of three cells of level n, only one of them is
intermediate, namely has a vertex in common with the others. For |τ | = n− 1, we set zτ to
be zero on the third vertex of such intermediate cell, so that the range of zτ on p−1n (Cτ ) ∩ F

is [−1/2, 1/2]. We normalize the zτ for |τ | ≤ n − 2 such that, again, the range of zτ on
p−1n (Cτ ) ∩ F is [−1/2, 1/2]. In particular,

(c1) the range of zσ on U = p−1n (Cι
σi) ∩ F is (−1/6, 1/6), because U is the intermediate

cell, so that, by Lemma A.1, zσ(x0) 6= 0,
(c2) the range of zσ on U = p−1n (Cι

σi ∪ {pn(x0)}) ∩ F is (−1/6, 1/6) and, by Lemma A.1,
zσ(x0) = 0,

(c3) the ranges of zσ and zρ on U = p−1n ((Cσi ∪Cρj)
◦)∩F are equal to (−1/6, 1/6) and, by

Lemma A.1, zσ(x0) = zρ(x0) = 0.

F
◦ is open in the topology T(zσ). By definition of F, for any x ∈ F

◦, and for any
|τ | < n, the position zFτ (pn(x)) := zτ (x) gives a well defined function on pn(F

◦). As a
consequence, with the normalization above, zFτ takes values in (−1/2, 1/2) on the open cell
C◦τ , and is constant on the other cells, with values −1/3, 0, 1/3. Therefore, for any |τ | < n,
{zτ (x) : x ∈ F

◦} = (−1/2, 1/2). If x 6∈ F, there exists x′ ∈ F and a non trivial g ∈ Γn such
that x = gx′. By Lemma A.3 there exists |τ | < n such that ϕτ (g) is a non zero integer, hence
zτ (x) = ϕτ (g) + zτ (x

′) ∈ (−∞,−1/2] ∪ [1/2,+∞). Also, if x ∈ ∂F, pn(x) ∈ Vn \ V0, hence
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∃!τ , |τ | < n such that pn(x) is a vertex of ℓτ and zτ (x) = ±1/2. Then,

(A.2) {x ∈ L̃n : zτ (x) ∈ (−1/2, 1/2), |τ | < n} = F
◦

The construction of Ω.

(c1) Set Ω =
⋂

τ 6=σ,|τ |=n−1
z−1τ (−1/2, 1/2)∩z−1σ {(−1/6, 0)∪(0, 1/6)}. The result above implies

Ω ⊂ F
◦. By the chosen normalization, the values of zFσ on the cells different from Cσ

can only be −1/3, 0 or 1/3, hence the values in (−1/6, 0)∪ (0, 1/6) are only assumed
in C◦σi ≡ Cι

σi. Therefore Ω ⊂ U .

(c2) Set Ω =
⋂

|τ |=n−1
z−1τ (−1/6, 1/6). Again Ω ⊂ F

◦. Since pn(x0) is in V0, the values of zFσ

on the cells different from Cσ can only be −1/3 or 1/3, namely the values (−1/6, 1/6)
are only assumed in C◦σi ≡ Cι

σi ∪ {pn(x0)}. Therefore Ω ⊂ U .

(c3) Set Ω =
⋂

|τ |=n−1
z−1τ (−1/6, 1/6). Again Ω ⊂ F

◦. By construction, the removal of the

cell C◦σ disconnects pn(F
◦), and we call Dσ(−1/3), Dσ(0), Dσ(1/3) the (connected)

components according to the value of zFσ on them. In the same way, the removal of
the cell C◦ρ disconnects pn(F

◦), and we call Dρ(−1/3), Dρ(0), Dρ(1/3) the components

according to the value of zFρ on them. Note that, by the simple connectedness of Tn,
Dσ(0) = {pn(x0)}⊔C◦ρ⊔Dρ(−1/3)⊔Dρ(1/3) and Dρ(0) = {pn(x0)}⊔C◦σ⊔Dσ(−1/3)⊔
Dσ(1/3), where ⊔ denotes disjoint union. Then, the prescription zFσ (y) ∈ (−1/6, 1/6)
selects C◦σi ∪ Dσ(0), the prescription zFρ (y) ∈ (−1/6, 1/6) selects C◦ρj ∪ Dρ(0), both
select (Cσi ∪ Cρj)

◦, implying Ω ⊂ U .

Since in all three cases Ω ∈ T(zσ), we have proved the thesis.
�
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