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Sharp bounds for the p-torsion of convex planar domains

Ilaria FRAGALÀ - Filippo GAZZOLA - Jimmy LAMBOLEY

Abstract

We obtain some sharp estimates for the p-torsion of convex planar domains in terms of their area,

perimeter, and inradius. The approach we adopt relies on the use of web functions (i.e. functions depending

only on the distance from the boundary), and on the behaviour of the inner parallel sets of convex polygons.

As an application of our isoperimetric inequalities, we consider the shape optimization problem which

consists in maximizing the p-torsion among polygons having a given number of vertices and a given area.

A long-standing conjecture by Pólya-Szegö states that the solution is the regular polygon. We show that

such conjecture is true within the subclass of polygons for which a suitable notion of “asymmetry measure”

exceeds a critical threshold.

2000MSC : 49K30, 52A10, 49Q10.
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1 Introduction

Let Ω ⊂ IR2 be an open bounded domain and let p ∈ (1,+∞). Consider the boundary value problem





−∆pu = 1 in Ω

u = 0 on ∂Ω ,

(1)

where ∆pu = div(|∇u|p−2∇u) denotes the p-Laplacian. The p-torsion of Ω is defined by

τp(Ω) :=

∫

Ω
|∇up|p =

∫

Ω
up , (2)

being up the unique solution to (1) in W 1,p
0 (Ω). Notice that the second equality in (2) is obtained by testing

(1) by up and integrating by parts. Since (1) is the Euler-Lagrange equation of the variational problem

min
u∈W 1,p

0
(Ω)

Jp(u) , where Jp(u) =

∫

Ω

(1
p
|∇u|p − u

)
, (3)

there holds

τp(Ω) =
p

1− p
min

u∈W 1,p
0

(Ω)
Jp(u) .

A further characterization of the p-torsion is provided by the equality τp(Ω) = S(Ω)1/(p−1), where S(Ω) is

the best constant for the Sobolev inequality ‖u‖p
L1(Ω)

≤ S(Ω)‖∇u‖pLp(Ω) on W 1,p
0 (Ω).

The purpose of this paper is to provide some sharp bounds for τp(Ω), holding for a convex planar domain Ω,

in terms of its area, perimeter, and inradius (in the sequel denoted respectively by |Ω|, |∂Ω|, and RΩ). The
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original motivation for studying this kind of shape optimization problem draws its origins in the following

long-standing conjecture by Pólya and Szegö:

Among polygons with a given area and N vertices, the regular N -gon maximizes τp . (4)

A similar conjecture is stated by the same Authors also for the principal frequency and for the logarithmic

capacity, see [13]. For N = 3 and N = 4 these conjectures were proved by Pólya and Szegö themselves [13,

p. 158]. For N ≥ 5, to the best of our knowledge, the unique solved case is the one of logarithmic capacity,

see the beautiful paper [14] by Solynin and Zalgaller; the cases of torsion and principal frequency are currently

open. In fact let us remind that, for N ≥ 5, the classical tool of Steiner symmetrization fails because it may

increase the number of sides, see [9, Section 3.3].

The approach we adopt in order to provide upper and lower bounds for the p-torsion in terms of geometric

quantities, is based on the idea of considering a proper subspace Wp(Ω) of W 1,p
0 (Ω) and to address the

minimization problem for the functional Jp on Wp(Ω). More precisely, we consider the subspace of functions

depending only on the distance d(x) = dist(x, ∂Ω) from the boundary:

Wp(Ω) = {u ∈ W 1,p
0 (Ω) : u(x) = u(d(x))} .

Functions in Wp(Ω) have the same level lines as d, namely the boundaries of the so-called inner parallel sets,

Ωt := {x ∈ Ω : d(x) > t}, which were first used in variational problems by Pólya and Szegö [13, Section

1.29]. Later, in [8], the elements of Wp(Ω) were called web functions, because in case of planar polygons the

level lines of d recall the pattern of a spider web. We refer to [5, 6] for some estimates on the minimizing

properties of these functions, and to the subsequent papers [3, 4] for their application in the study of the

generalized torsion problem. Actually, the papers [3, 4] deal with the problem of estimating how efficiently

τp(Ω) can be approximated by the web p-torsion, defined as

wp(Ω) :=
p

1− p
min

u∈Wp(Ω)
Jp(u) .

While the value of τp(Ω) is in general not known (because the solution to problem (1) cannot be determined

except for some special geometries of Ω), the value of wp(Ω) admits the following explicit expression in terms

of the parallel sets Ωt:

wp(Ω) =

∫ RΩ

0

|Ωt|q
|∂Ωt|q−1

dt , (5)

where q = p
p−1 is the conjugate exponent of p, and RΩ is the inradius of Ω (see [4]).

Clearly, since Wp(Ω) ⊂ W 1,p
0 (Ω), wp(Ω) bounds τp(Ω) from below. On the other hand, when Ω is convex,

τp(Ω) can be bounded from above by a constant multiple of wp(Ω), for some constant which tends to 1 as

p → +∞. In fact, in [4] it is proved that, for any p ∈ (1,+∞), the following estimates hold and are sharp:

∀ Ω ∈ C, q + 1

2q
<

wp(Ω)

τp(Ω)
≤ 1 (6)

where C denotes the class of planar bounded convex domains; moreover the right inequality holds as an

equality if and only if Ω is a disk. Note that, if p → +∞, then q → 1 and the constant in the left hand side of

(6) tends to 1.

In this paper, we prove some geometric estimates for τp(Ω) in the class C, which have some implications in

the conjecture (4). More precisely, we consider the following shape functionals:

Ω 7→ τp(Ω)|∂Ω|q
|Ω|q+1

and Ω 7→ τp(Ω)

Rq
Ω|Ω|

. (7)
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Let us remark that the above quotients are invariant under dilations and that convex sets which agree up to

rigid motions (translations and rotations) are systematically identified throughout the paper.

Our main results are Theorems 1 and 6, which give sharp bounds for the functionals (7) when Ω varies in

C. We also exhibit minimizing and maximizing sequences. These bounds are obtained by combining sharp

bounds for the web p-torsion (see Theorem 2 and the second part of Theorem 6) with (6). As a consequence

of our results we obtain the validity of some weak forms of Pólya-Szegö conjecture (4). On the class P of

convex polygons we introduce a sort of “asymmetry measure” such as

∀Ω ∈ P, γ(Ω) :=
|∂Ω|
|∂Ω⊛| ∈ [1,+∞) ,

where Ω⊛ denotes the regular polygon with the same area and the same number of vertices as Ω. Then, if the

p-torsion τp(Ω) is replaced by the web p-torsion wp(Ω), (4) holds in the following refined form:

∀Ω ∈ P , wp(Ω) ≤ γ(Ω)−qwp(Ω
⊛) . (8)

Consequently, on the class PN of convex polygons with N vertices, conjecture (4) holds true for those Ω

which are sufficiently “far” from Ω⊛, meaning that γ(Ω) exceeds a threshold depending on N and p:

∀Ω ∈ PN : γ(Ω) ≥ ΓN,p, τp(Ω) < τp(Ω
⊛) . (9)

The value of the threshold ΓN,p can be explicitly characterized (see Corollary 4) and tends to 1 as p → +∞.

The paper is organized as follows. Section 2 contains the statement of our results, which are proved in Section

4 after giving in Section 3 some preliminary material of geometric nature. Section 5 is devoted to some related

open questions and perspectives.

2 Results

We introduce the following classes of convex planar domains:

C = the class of bounded convex domains in IR2;

Co = the subclass of C given by tangential bodies to a disk;

P = the class of convex polygons;

PN = the class of convex polygons having N vertices (N ≥ 3).

Tangential bodies to a disk are domains Ω ∈ C such that, for some disk D, through each point of ∂Ω there

exists a tangent line to Ω which is also tangent to D. Domains in P ∩Co are circumscribed polygons, whereas

domains in Co \ P can be obtained by removing from a circumscribed polygon some connected components

of the complement (in the polygon itself) of the inscribed disk. In particular, the disk itself belongs to Co.

Our first results are the following sharp bounds for the p-torsion of convex planar domains. We recall that, for

any given p ∈ (1,+∞), q := p
p−1 denotes its conjugate exponent.

Theorem 1. For any p ∈ (1,+∞), it holds

∀Ω ∈ C, 1

q + 1
<

τp(Ω)|∂Ω|q
|Ω|q+1

<
2q+1

(q + 2)(q + 1)
. (10)

Moreover,

• the left inequality holds asymptotically with equality sign for any sequence of thinning rectangles;

• the right inequality holds asymptotically with equality sign for any sequence of thinning isosceles triangles.

3



By sequence of thinning rectangles or triangles, we mean that the ratio between their minimal width and

diameter tends to 0. We point out that, in the particular case when p = 2, the statement of Theorem 1 is

already known. Indeed, the left inequality in (10) holds true for any simply connected set in IR2 as discovered

by Pólya [12]; the right inequality in (10) for convex sets is due to Makai [11], though its method of proof,

which is different from ours, does not allow to obtain the strict inequality.

Our approach to prove Theorem 1 employs as a major ingredient the following sharp estimates for the web

p-torsion of convex domains, which may have their own interest.

Theorem 2. For any p ∈ (1,+∞), it holds

∀Ω ∈ C, 1

q + 1
<

wp(Ω)|∂Ω|q
|Ω|q+1

≤ 2

q + 2
. (11)

Moreover,

• the left inequality holds asymptotically with equality sign for any sequence of thinning rectangles;

• the right inequality holds with equality sign for Ω ∈ Co.

Let us now discuss the implications of the above results in the shape optimization problem which consists in

maximizing τp in the class of convex polygons with a given area and a given number of vertices:

max
{
τp(Ω) : Ω ∈ PN , |Ω| = m

}
. (12)

We recall that, for any Ω ∈ P , Ω⊛ denotes the regular polygon with the same area and the same number of

vertices as Ω. Moreover, we set

∀Ω ∈ P, γ(Ω) :=
|∂Ω|
|∂Ω⊛| ;

notice that by the isoperimetric inequality for polygons (see Proposition 7), γ(Ω) ∈ [1,+∞) and γ(Ω) > 1 if

Ω 6= Ω⊛. With this notation, it is straightforward to deduce from Theorem 2 the following

Corollary 3. The regular polygon is the unique maximizer of wp over polygons in P with a given area and a

given number of vertices. More precisely, the following refined isoperimetric inequality holds:

∀Ω ∈ P , wp(Ω) ≤ γ(Ω)−qwp(Ω
⊛) . (13)

As a consequence, using (6), we obtain some information on the shape optimization problem (12):

Corollary 4. Let ΓN,p :=
(wp(Ω

⊛)

τp(Ω⊛)

)1/q 2

(q + 1)1/q
. Then,

∀Ω ∈ PN , τp(Ω) < Γq
N,pγ(Ω)

−qτp(Ω
⊛) .

In particular, the p-torsion of the regular N -gon is larger than the p-torsion of any polygon in PN having the

same area and an asymmetry measure larger than the threshold ΓN,p:

∀Ω ∈ PN , γ(Ω) ≥ ΓN,p ⇒ τp(Ω) < τp(Ω
⊛) . (14)

Some comments on Corollary 4 are gathered in the next remark.

Remark 5. (i) Using again (6) we infer

1 < ΓN,p <
2

(q + 1)1/q
< 2 ∀N, p , lim

p→+∞
ΓN,p = 1 .

Hence, asymptotically with respect to p, the condition γ(Ω) ≥ ΓN,p appearing in (14) becomes not restrictive.

Moreover, if p = 2, we have ΓN,2 ≤ 2/
√
3 ≈ 1.15 and the dependence on N of ΓN,2 can be enlightened by

using the numerical values given in [6]:
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N 3 4 5 6 7 8 9 10 20

ΓN,2 ≈ 1.054 1.089 1.108 1.121 1.129 1.135 1.138 1.141 1.149

(ii) Though the validity of (4) is known for triangles, in order to give an idea of the efficiency of Corollary 4,

consider the case N = 3 and p = 2. The equilateral triangle

T⊛ :=

{
(x, y) ∈ IR2; y > 0 , −1

2
+

y√
3
< x <

1

2
− y√

3

}

satisfies |T⊛| =
√
3
4 and |∂T⊛| = 3. The solution to (1) is explicitly given by

u(x, y) =

√
3

8

(
y − 4√

3
y2 +

4

3
y3 − 4x2y

)

so that τ2(T
⊛) =

√
3/640. Moreover, by (27) below we find w2(T

⊛) =
√
3/768 and, in turn, that Γ3,2 =√

10/3 ≈ 1.054.

Consider now the isosceles triangles Tk having the basis of length k > 0 and the two equal sides of length

ℓk =

√
3

4k2
+

k2

4
so that |∂Tk| = k +

√
3

k2
+ k2 and |Tk| =

√
3

4
= |T⊛| ,

(notice that T1 = T⊛). Therefore,

γ(Tk) =
k +

√
3
k2

+ k2

3

and γ(Tk) ≥ Γ3,2 if and only if 2
√
10 k3 − 10 k2 + 3 ≥ 0, which approximatively corresponds to k 6∈

(0.760, 1.301).

We conclude this section with a variant of Theorems 1 and 2.

Theorem 6. For every p ∈ (1,+∞), it holds

∀Ω ∈ C, 1

(q + 2)2q−1
≤ τp(Ω)

Rq
Ω|Ω|

<
2q

(q + 1)2
(15)

∀Ω ∈ C, 1

(q + 2)2q−1
≤ wp(Ω)

Rq
Ω|Ω|

<
1

q + 1
. (16)

Moreover,

• the left inequality in (15) holds with equality sign for balls;

• the left inequality in (16) holds with equality sign for Ω ∈ Co;

• the right inequality in (16) holds asymptotically with equality sign for a sequence of thinning rectangles.

The right inequality in (15) is not sharp. In fact, for p = 2, one has the sharp inequalities

∀Ω ∈ C, 1

8
≤ τ2(Ω)

R2
Ω|Ω|

≤ 1

3
,

see [13, p. 100] for the left one, and [11] for the right one.

Using the isoperimetric inequalities (15) and (16), one can also derive statements similar to Corollaries 3 and

4, where γ(Ω) is replaced by another “asymmetry measure” given by

γ̃(Ω) =
RΩ⊛

RΩ
.
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3 Geometric preliminaries

In this section we present some useful geometric properties of convex polygons, which will be exploited to

prove Theorem 2. First, we recall an improved form of the isoperimetric inequality in the class P , whose

proof can be found for instance in [3, Theorem 2]. For any Ω ∈ P , we set

CΩ :=
∑

i

cotan
θi
2
, being θi the inner angles of Ω . (17)

Proposition 7. For every Ω ∈ P , it holds

|Ω| ≤ |∂Ω|2
4CΩ

, (18)

with equality sign if and only if Ω ∈ P ∩ Co, namely when Ω is a circumscribed polygon.

Next, we recall that, denoting by RΩ the inradius of any Ω ∈ P , for every t ∈ [0, RΩ], the inner parallel sets

of Ω are defined by

Ωt := {x ∈ Ω : dist(x, ∂Ω) > t}
(notice in particular that ΩRΩ

= ∅). Then we focus our attention on the behaviour of the map t 7→ CΩt
on the

interval [0, RΩ], and on the related expression of Steiner formulae. For every Ω ∈ P , we set

rΩ := sup
{
t ∈ [0, RΩ] : Ωt has the same number of vertices as Ω

}
.

Clearly, if rΩ < RΩ, the number of vertices of Ωt is strictly less than the number of vertices of Ω for every

t ∈ [rΩ, RΩ).

Proposition 8. For every Ω ∈ P and t ≥ 0, Ωt ∈ P and the map t 7→ CΩt
is piecewise constant on [0, RΩ).

Moreover, for every t ∈ [0, rΩ], it holds

|Ωt| = |Ω| − |∂Ω|t+ CΩt
2 and |∂Ωt| = |∂Ω| − 2CΩt. (19)

Finally, for every t ∈ [0, RΩ], it holds

|∂Ωt| ≤ |∂Ω| − 2πt. (20)

Proof. For t small enough, the sides of Ωt are parallel and at distance t from the sides of Ω, and the corners

of Ωt are located on the bisectors of the angles of Ω. rΩ is actually the first time when two of these bisectors

intersect at a point having distance t from at least two sides, see Figure 1.

ΩrΩ

∂Ωt

θi θi+1

rΩ

Figure 1: Intersection of bisectors

Therefore, for t < rΩ, Ωt has the same angles as Ω (so CΩt = CΩ by (17)), and we notice that the perimeter

of grey areas in Figure 2 is 2t cotan(θi/2), and their areas are t2 cotan(θi/2), which gives (19) (still valid for

t = rΩ by continuity).
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θi θi+1t

Figure 2: How to derive Steiner formulae

Let us now show that the map t 7→ CΩt
is piecewise constant on [0, RΩ), assuming that rΩ < RΩ. Once

t = rΩ, Ωt still has sides parallel to the ones of Ω but loses at least one of them. Again, CΩt
is constant for

t ≥ rΩ until the next value of t such that another intersection of bisectors appears (we now consider bisectors

of ΩrΩ). The number of discontinuities of t 7→ CΩt
is finite since Ω has a finite number of sides, and therefore

iterating the previous argument, we get that t 7→ CΩt
is piecewise constant.

Finally, from (17) we infer that CΩ ≥ π for any Ω ∈ P , so that (20) follows from the concavity of the map

t 7→ |∂Ωt| on [0, RΩ] (see [1, Sections 24 and 55]). �

A special role is played by polygons Ω ∈ P such that rΩ = RΩ, namely polygons Ω whose inner parallel sets

all have the same number of vertices as Ω itself. These are polygonal stadiums, characterized by the following

Definition 9. We call S the class of polygonal stadiums, namely polygons P ℓ ∈ P such that there exist a

circumscribed polygon P ∈ P ∩ Co having two parallel sides, and a nonnegative number ℓ such that, by

choosing a coordinate system with origin in the center of the disk inscribed in P and the x-axis directed as

two parallel sides of P , P ℓ can be written as

P ℓ :=
(
P− −

( ℓ
2
, 0
))⋃([

− ℓ

2
,
ℓ

2

]
×
(
−RP , RP

))⋃(
P+ +

( ℓ
2
, 0
))

, (21)

where P− (resp. P+) denotes the set of points (x, y) ∈ P with x < 0 (resp. x > 0), and RP is the inradius of

P , see Figure 3.

RP

P

×O

RP

ℓ P ℓ

×
O

Figure 3: A circumscribed polygon P and a polygonal stadium P ℓ

Proposition 10. Let Ω ∈ P . There holds rΩ = RΩ if and only if Ω ∈ S .

Proof. We use the same notation as in Definition 9. Assume that Ω = P ℓ ∈ S . Then the bisectors of the

angles of Ω intersect either at (− ℓ
2 , 0) or at ( ℓ2 , 0), which are at distance RΩ from the boundary, see Figure 4.

In particular, if Ω is circumscribed to a disk, namely if ℓ = 0, then the bisectors of the angles of Ω all intersect

at the center of the disk. Therefore, Ωt has the same number of sides as Ω if t < RΩ.

7



RΩ

ℓ

Ωt

Figure 4: Parallel sets of a polygonal stadium P ℓ

Conversely, assume that RΩ = rΩ. The set {x ∈ Ω : d(x) = RΩ} is convex with empty interior, so either it

is a point, or a segment. If it is a point, then its distance to each side is the same, and therefore the disk having

this point as a center and radius RΩ is tangent to every side of Ω, so that Ω is circumscribed to a disk. If it is a

segment, we choose coordinates such that this segment is
[(
− ℓ

2 , 0
)
;
(
ℓ
2 , 0

)]
for some positive number ℓ. Every

point of this segment is at distance RΩ from the boundary, so Ω contains the rectangle
(
− ℓ

2 ,
ℓ
2

)
× (−RΩ, RΩ).

Considering

P :=
(
Ω ∩

{
x ≤ − ℓ

2

}
+
( ℓ
2
, 0
))⋃(

Ω ∩
{
x ≥ ℓ

2

}
+
(
− ℓ

2
, 0
))

,

we have that P is circumscribed and Ω = P ℓ. �

Remark 11. Thanks to Proposition 10, for any polygonal stadium P ℓ, the validity of the Steiner formulae (19)

extends for t ranging over the whole interval [0, RP ℓ ]. Moreover, the value of the coefficients |P ℓ|, |∂P ℓ| and

CP ℓ appearing therein, can be expressed only in terms of |P |, RP , and ℓ (see Section 4). It is enough to use

the following elementary equalities deriving from decomposition (21)

|P ℓ| = |P |+ 2ℓRP , |∂P ℓ| = |∂P |+ 2ℓ , CP ℓ = CP , RP ℓ = RP ,

and the following identities holding for every P ∈ P ∩ Co

CP =
|P |
R2

P

, |∂P | = 2|P |
RP

. (22)

Finally, we show that the parallel sets of any convex polygon Ω are polygonal stadiums for t sufficiently close

to RΩ:

Proposition 12. For every Ω ∈ P , there exists t ∈ [0, RΩ) such that the parallel sets Ωt belong to S for every

t ∈
[
t, RΩ

)
.

Proof. We define t as the last time t < RΩ such that Ω loses a side (we may have t = 0). Therefore

∀t ∈
[
t, RΩ

]
,Ωt has a constant number of sides, and so is in the class S by Proposition 10. �

4 Proofs

4.1 Proof of Theorem 2

We first prove Theorem 2 for Ω ∈ P , then we prove it for all Ω ∈ C.
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• Step 1: comparison with inner parallel sets. For a given Ω ∈ P , we wish to compare the value of the energy
wp(Ω)|∂Ω|q

|Ω|q+1 with the one of its parallel set Ωε for small ε. To that aim, we use the representation formula (5)

for wp(Ω), and Steiner’s formulae (19). In applying them we recall that, by Proposition 8 the map t 7→ CΩt

is piecewise constant for t ∈ [0, RΩ), and in particular it equals CΩ on [0, rΩ]. Taking also into account that

(Ωε)t = Ωε+t, as ε → 0 we have

wp(Ωε)|∂Ωε|q
|Ωε|q+1

=

∫ RΩ−ε
0

|(Ωε)t|q
|∂(Ωε)t|q−1dt |∂Ωε|q

|Ωε|q+1
(23)

=

[
wp(Ω)−

∫ ε
0

|Ωt|q
|∂Ωt|q−1dt

]
[|∂Ω| − 2CΩ ε]q

[|Ω| − |∂Ω| ε]q+1 + o(ε),

=
|∂Ω|q
|Ω|q+1

[
wp(Ω)−

|Ω|q
|∂Ω|q−1

ε

] [
1− 2q

CΩ

|∂Ω|ε
] [

1 + (q + 1)
|∂Ω|
|Ω| ε

]
+ o(ε),

=
wp(Ω)|∂Ω|q

|Ω|q+1
+

[
(q + 1)

|∂Ω|q+1

|Ω|q+2
wp(Ω)−

|∂Ω|
|Ω| − 2q

CΩwp(Ω)|∂Ω|q−1

|Ω|q+1

]
ε+ o(ε),

so that

wp(Ωε)|∂Ωε|q
|Ωε|q+1

− wp(Ω)|∂Ω|q
|Ω|q+1

=

[
(q + 1)

|∂Ω|q+1

|Ω|q+2
wp(Ω)−

|∂Ω|
|Ω| − 2q

CΩwp(Ω)|∂Ω|q−1

|Ω|q+1

]
ε+ o(ε) . (24)

As we shall see in the next steps, formula (24) will enable us to reach a contradiction if (11) fails.

• Step 2: if (11) fails for some convex polygon then it also fails for a polygonal stadium. Let Ω ∈ P \ S , and

assume that (11) fails. We have to distinguish two cases.

First case: Assume that
wp(Ω)|∂Ω|q

|Ω|q+1
>

2

q + 2
. (25)

Using the isoperimetric inequality (18) and (25), one gets

[
(q + 1)

|∂Ω|q+1

|Ω|q+2
wp(Ω)−

|∂Ω|
|Ω| − 2q

CΩwp(Ω)|∂Ω|q−1

|Ω|q+1

]
≥ q + 2

2

|∂Ω|
|Ω|

[
wp(Ω)|∂Ω|q

|Ω|q+1
− 2

q + 2

]
> 0 .

Inserting this information into (24) shows that

wp(Ωε)|∂Ωε|q
|Ωε|q+1

− wp(Ω)|∂Ω|q
|Ω|q+1

> 0

for sufficiently small ε. In fact, more can be said. By Proposition 8 we know that CΩt
= CΩ for all t ∈ [0, rΩ).

By extending the above argument to all such t, we obtain that, if (25) holds, then the map t 7→ wp(Ωt)|∂Ωt|q
|Ωt|q+1 is

strictly increasing for t ∈ [0, rΩ). In particular, by (25),

wp(Ωε)|∂Ωε|q
|Ωε|q+1

>
wp(Ω)|∂Ω|q

|Ω|q+1
>

2

q + 2
∀ε ∈ (0, rΩ].

So, if ΩrΩ ∈ S , we are done since it violates (11). At t = rΩ the number of sides of Ωt varies. If ΩrΩ /∈ S ,

we repeat the previous argument to the next interval where CΩt remains constant. Again, the map t 7→
wp(Ωt)|∂Ωt|q

|Ωt|q+1 is strictly increasing on such interval. In view of Proposition 12, this procedure enables us to

obtain some polygonal stadium such that (25) holds.

Second case: Assume that
wp(Ω)|∂Ω|q

|Ω|q+1
≤ 1

q + 1
. (26)
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Hence, [
(q + 1)

|∂Ω|q+1

|Ω|q+2
wp(Ω)−

|∂Ω|
|Ω| − 2q

CΩwp(Ω)|∂Ω|q−1

|Ω|q+1

]

= (q + 1)
|∂Ω|
|Ω|

[ |∂Ω|q
|Ω|q+1

wp(Ω)−
1

q + 1
− 2q

q + 1

CΩwp(Ω)|∂Ω|q−2

|Ω|q
]
< 0 .

Inserting this into (24) and arguing as in the previous case, we see that the map t 7→ wp(Ωt)|∂Ωt|q
|Ωt|q+1 is strictly

decreasing for t ∈ [0, RΩ). In view of Proposition 12, this proves that there exists some polygonal stadium

such that (26) holds.

• Step 3: explicit computation for a polygonal stadium. Let Ω = P ℓ ∈ S be a polygonal stadium. We are

going to derive an explicit expression for the function

F (ℓ) :=
wp(P

ℓ)|∂P ℓ|q
|P ℓ|q+1

∀ ℓ ≥ 0 .

We point out that, in the special case ℓ = 0, Ω ∈ P ∩ Co (namely Ω is a circumscribed polygon), and it is

proven in [4, Proposition 2] that

∀Ω ∈ Co,
wp(Ω)|∂Ω|q

|Ω|q+1
=

2

q + 2
. (27)

In particular, formula (27) shows that the upper bound in (11) is achieved when Ω ∈ Co.

We now show that the above formula can be suitably extended also to the case ℓ > 0. Our starting point is the

representation formula (5). Therein, we use the Steiner formulae (19); in particular, by Propositions 8 and 10,

we know that CΩt
≡ CΩ for every t ∈ [0, RΩ). Moreover, since P ∈ P ∩ Co, we can exploit identities (22).

Setting for brevity

A := |P | , R := RP , x :=
2Rℓ

A
,

we obtain

F (ℓ) =

(
2A
R + 2ℓ

)q

(A+ 2Rℓ)q+1

∫ R

0

(
A+ 2Rℓ− 2ℓt− 2A

R t+
A
R2 t

2
)q

(
2ℓ+ 2A

R − 2 A
R2 t

)q−1 dt

=
(x+ 2)q

(x+ 1)q+1

∫ 1

0

(1 + x− xt− 2t+ t2)q

(x+ 2− 2t)q−1
dt

=
(x+ 2)q

(x+ 1)q+1

∫ 1

0

tq(x+ t)q

(x+ 2t)q−1
dt . (28)

Of course, taking x = 0 in (28) gives again (27); on the other hand, taking x → ∞ gives the asymptotic

behaviour for thinning polygonal stadiums.

• Step 4: In view of equality (28) obtained in Step 3, the estimate (11) will be proved for any polygonal

stadium, provided we show that for all q ∈ (1,+∞) one has

1

q + 1
<

(x+ 2)q

(x+ 1)q+1

∫ 1

0

tq(x+ t)q

(x+ 2t)q−1
dt <

2

q + 2
∀x ∈ (0,+∞). (29)

With the change of variables t = xs, the inequalities in (29) become

1

q + 1

(x+ 1)q+1

xq+2(x+ 2)q
<

∫ 1/x

0

sq(1 + s)q

(1 + 2s)q−1
ds <

2

q + 2

(x+ 1)q+1

xq+2(x+ 2)q
∀x ∈ (0,+∞).
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In turn, by putting y = 1/x, the latter inequalities become

1

q + 1

yq+1(1 + y)q+1

(1 + 2y)q
<

∫ y

0

sq(1 + s)q

(1 + 2s)q−1
ds <

2

q + 2

yq+1(1 + y)q+1

(1 + 2y)q
∀y ∈ (0,+∞). (30)

In order to prove the right inequality in (30), consider the function

Φ(y) :=

∫ y

0

sq(1 + s)q

(1 + 2s)q−1
ds− 2

q + 2

yq+1(1 + y)q+1

(1 + 2y)q
y ∈ (0,+∞)

and we need to prove that Φ(y) < 0 for all y > 0. This is a consequence of the two following facts:

Φ(0) = 0 , Φ′(y) = − q

q + 2

yq(1 + y)q

(1 + 2y)q+1
< 0 .

In order to prove the left inequality in (30), consider the function

Ψ(y) :=

∫ y

0

sq(1 + s)q

(1 + 2s)q−1
ds− 1

q + 1

yq+1(1 + y)q+1

(1 + 2y)q
y ∈ (0,+∞)

and we need to prove that Ψ(y) > 0 for all y > 0. This is a consequence of the two following facts:

Ψ(0) = 0 , Ψ′(y) =
2q

q + 1

yq+1(1 + y)q+1

(1 + 2y)q+1
> 0 .

Both inequalities in (30) are proved and (29) follows.

We point out that, in the case q = 2, some explicit computations give the stronger result that the map

x 7→ (x+ 2)q

(x+ 1)q+1

∫ 1

0

tq(x+ t)q

(x+ 2t)q−1
dt

is decreasing. We believe that this is true for any q, but we do not have a simple proof of this property.

• Step 5: conclusion. Let Ω ∈ P and assume for contradiction that Ω violates (11). Then by Step 2 we know

that there exists a polygonal stadium which also violates (11). This contradicts Step 4, see (29). We have so

far proved that (11) holds for all Ω ∈ P . By a density argument we then infer that

∀Ω ∈ C, 1

q + 1
≤ wp(Ω)|∂Ω|q

|Ω|q+1
≤ 2

q + 2
. (31)

Therefore, in order to complete the proof we need to show that the left inequality in (31) is strict. Assume for

contradiction that there exists Ω ∈ C such that

wp(Ω)|∂Ω|q
|Ω|q+1

=
1

q + 1
. (32)

Take any sequence Ωk ∈ P such that Ωk ⊃ Ω and Ωk → Ω in the Hausdorff topology. Similar computations

as in (23), combined with (20), enable us to obtain

wp(Ω
k
ε)|∂Ωk

ε |q
|Ωk

ε |q+1
≤

[
wp(Ω

k)−
∫ ε
0

|Ωk
t |q

|∂Ωk
t |q−1

dt
] [

|∂Ωk| − 2π ε
]q

[|Ωk| − |∂Ωk| ε]q+1

≤ wp(Ω
k)|∂Ωk|q

|Ωk|q+1
+

[
(q + 1)

|∂Ωk|q+1

|Ωk|q+2
wp(Ω

k)− |∂Ωk|
|Ωk| − 2q

πwp(Ω
k)|∂Ωk|q−1

|Ωk|q+1

]
ε+ αε2,
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where α is some positive constant, depending on Ω but not on k. Therefore, since Ωk
t → Ωt for all t ∈ [0, RΩ],

we have

wp(Ωε)|∂Ωε|q
|Ωε|q+1

− wp(Ω)|∂Ω|q
|Ω|q+1

=
wp(Ω

k
ε)|∂Ωk

ε |q
|Ωk

ε |q+1
− wp(Ω

k)|∂Ωk|q
|Ωk|q+1

+ o(1)

≤
[
o(1)− 2q

πwp(Ω
k)|∂Ωk|q−1

|Ωk|q+1

]
ε+ αε2 + o(1)

where o(1) are infinitesimals (independent of ε) as k → ∞. Hence, by letting k → ∞ and taking ε sufficiently

small, we obtain
wp(Ωε)|∂Ωε|q

|Ωε|q+1 < 1
q+1 , which contradicts (31).

4.2 Proof of Theorem 1

The inequalities (10) follow directly from (11) and (6) so we just need to show that they are sharp.

For the right inequality, take a sequence of thinning isosceles triangles Tk. Then, by Theorem 2 we have

wp(Tk)|∂Tk|q
|Tk|q+1

=
2

q + 2
for all k .

On the other hand, by [4, Proposition 3] and (6) we know that

lim
k→∞

wp(Tk)

τp(Tk)
=

q + 1

2q

and therefore

lim
k→∞

τp(Tk)|∂Tk|q
|Tk|q+1

=
2q+1

(q + 2)(q + 1)
.

For the left inequality, we seek an upper bound for τp(Ω) by using the maximum principle. For all ℓ ∈ (0,+∞)

let Ωℓ = (− ℓ
2 ,

ℓ
2)× (−1, 1) and let uℓ be the unique solution to

−∆puℓ = 1 in Ωℓ , uℓ = 0 on ∂Ωℓ .

Let u∞(x, y) = p−1
p (1− |y|p/(p−1)) so that

−∆pu∞ = 1 in Ωℓ , u∞ ≥ 0 on ∂Ωℓ .

By the maximum principle, we infer that u∞ ≥ uℓ in Ωℓ so that

τp(Ω
ℓ) =

∫

Ωℓ

uℓ ≤
∫

Ωℓ

u∞ =
2(p− 1)

p
ℓ

∫ 1

0
(1− yp/(p−1)) dy =

2(p− 1)

2p− 1
ℓ =

2ℓ

q + 1
.

Hence,

1 ≥ lim inf
ℓ→∞

wp(Ω
ℓ)

τp(Ωℓ)
≥ lim inf

ℓ→∞
(q + 1)wp(Ω

ℓ)

2ℓ
= 1

where the last equality follows from Theorem 2. Combined with Theorem 2, this proves that

lim
ℓ→∞

τp(Ω
ℓ)|∂Ωℓ|q

|Ωℓ|q+1
=

1

q + 1
.
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4.3 Proof of Theorem 6

Since it follows closely the proof of Theorem 1, we just sketch it. We first prove the counterpart of Theorem

2 and we follow the same steps.

• Step 1. Given Ω ∈ P and using RΩε
= RΩ − ε+ o(ε) we prove:

wp(Ωε)

RΩε
|Ωε|

− wp(Ω)

RΩ|Ω|
=

ε

Rq
Ω|Ω|

(
wp(Ω)

[
q

RΩ
+

|∂Ω|
|Ω|

]
− |Ω|q

|∂Ω|q−1

)
+ o(ε) . (33)

• Step 2. We prove that, if (16) fails for some Ω ∈ P , then it also fails for a polygonal stadium. To that end,

we estimate the sign in (33) with the help of the following classical geometric inequalities (see [1])

∀Ω ∈ C, |Ω|
RΩ

< |∂Ω| ≤ 2|Ω|
RΩ

.

• Step 3. Again, explicit computations can be done for a polygonal stadium, and with the same notation as in

the proof of Theorem 2, we get:

wp(P
ℓ)

Rq
P ℓ |P ℓ| =

1

x+ 1

∫ 1

0

tq(x+ t)q

(x+ 2t)q−1
dt ∀P ℓ ∈ S .

• Step 4. In view of Step 3, estimate (15) is proved for any polygonal stadium, provided for all q ∈ (1,+∞)

one has
1

(q + 2)2q−1
<

1

x+ 1

∫ 1

0

tq(x+ t)q

(x+ 2t)q−1
dt <

1

q + 1
∀x ∈ (0,+∞). (34)

With the change of variables t = xs and putting y = 1/x, the inequalities in (34) become

yq+2 + yq+1

(q + 2)2q−1
<

∫ y

0

sq(1 + s)q

(1 + 2s)q−1
ds <

yq+2 + yq+1

q + 1
∀y ∈ (0,+∞). (35)

Some tedious but straightforward computations show that

yq+1

2q−1
+

q + 1

(q + 2)2q−1
yq <

yq(1 + y)q

(1 + 2y)q−1
<

q + 2

q + 1
yq+1 + yq ∀y ∈ (0,+∞)

and (35) follows after integration over (0, y).

• Step 5. The previous steps leads to (16) for polygons and by density for convex domains. The strict right

inequality in (16) can be obtained by reproducing carefully the computations in Step 1, similarly as done in

Step 5 of Section 4.1.

Now the counterpart of Theorem 2 is proved, and we may use (6) in order to get (15) from (16). Balls realize

equality in the left inequality of (15) because the are at the same time circumscribed and maximal for the

quotient wp/τp.

5 Some open problems

We briefly suggest here some perspectives which might be considered, in the light of our results.

Sharp bounds for the p-torsion in higher dimensions. In higher dimensions the shape functionals τp and wp

can be defined in the analogous way as for n = 2. In [2], Crasta proved the following sharp bounds:

∀ Ω bounded convex set ⊂ IRn ,
n+ 1

2n
<

w2(Ω)

τ2(Ω)
≤ 1 .
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Therefore it seems natural to ask: what kind of isoperimetric inequality can be proved for wp and τp among

convex sets in IRn? In this direction, let us quote an inequality proven in [7], obtained by a strategy similar to

our approach, that is by looking at the level sets of the support function:

∀ Ω bounded convex set ⊂ IRn ,
τ2(Ω)|∂Ω|
RΩ|Ω|2

≥ τ2(B)|∂B|
RB|B|2 (B is a ball of IRn ).

Sharp bounds for the principal frequency. A notion of “web principal frequency” can be defined (in any space

dimension) similarly as done for the web torsion, that is

λ+
1 (Ω) := inf

{∫
Ω |∇u|2∫
Ω u2

: u ∈ W2(Ω)

}
.

Writing the optimality condition in the space W2(Ω), one can express λ+
1 (Ω) as

λ+
1 (Ω) = inf

{∫ RΩ

0 αρ′2
∫ RΩ

0 αρ2
: ρ ∈ H1(0, RΩ) , ρ(0) = 0

}
, where α(t) = |∂Ωt|.

It is clear that λ+
1 (Ω) ≥ λ1(Ω), with equality sign when Ω is a ball. On the other hand, the following questions

can be addressed:

• Find a sharp bound from above for the ratio λ+
1 (Ω)/λ1(Ω) among bounded convex subsets of IRn.

• Is it possible to apply successfully the same strategy of this paper, that is find sharp bounds for λ+
1 (Ω)

and then use the estimates on the ratio λ+
1 (Ω)/λ1(Ω), to deduce sharp bounds for λ1(Ω)? In particular, this

approach might allow to retrieve the following known inequalities holding for any bounded convex domain

Ω ⊂ IR2 (see [10, 11, 12]):

π2

16
≤ λ1(Ω)

|Ω|2
|∂Ω|2 ≤ π2

4
and

π2

4
≤ λ1(Ω)R

2
Ω ≤ j20 .
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