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On the second solution to a critical growth Robin problem

Elvise BERCHIO*

Abstract

We investigate the existence of the second mountain-pass solution to a Robin problem, where
the equation is at critical growth and depends on a positive parameter A. More precisely, we
determine existence and nonexistence regions for this type of solutions, depending both on A and
on the parameter in the boundary conditions.

Mathematics Subject Classification: 35J20, 35J25, 35J91.

1 Introduction and main results

Let @ € R™ (n > 3) be a smooth and bounded domain and let 2* = % be the critical Sobolev
exponent. We consider the Robin problem

~Au=A1+u)>"1 inQ
u>0 in (1)
Uy +cu =0 on 0f2,

where ¢, A > 0 and u, denotes the outer normal derivative of v on 0f2.

As pointed out in the seminal paper [9], the interest in problems like (1) is due to their similarity to
some geometrical and physical variational problems where a lack of compactness also occurs (recall
that the embedding H'(2) C L? () is not compact).

A solution uy to (1) is called minimal if uy < w a.e. in Q, for any other solution u to (1). Furthermore,
we say that a solution w is regular if w € L*°(Q2). From [5] we know

Proposition 1. For every ¢ > 0, there exists \* = X\*(¢) > 0 such that:
(i) for 0 < X < A\* problem (1) admits a minimal reqular solution wy;
(13) for A = X* problem (1) admits a unique regular solution u*;
(731) for A > X* problem (1) admits no solution.
Furthermore, the map ¢ — X*(c) is strictly increasing and X*(c¢) — 0, as ¢ — 0.

When ¢ = 0, (1) reduces to the Neumann problem (for which no positive solutions exist), whereas the
limit case ¢ — 400 may be seen as the Dirichlet problem. Indeed, Proposition 1 includes well-known
results for the Dirichlet problem, see [9, 13, 16, 19].

Under Dirichlet boundary conditions, due to [9], we know that the equation in (1) admits, besides the
minimal solution wuy, a larger mountain-pass solution Uy (see Section 2 for the definition) for every
X € (0,X},,), where A}, is the extremal parameter for the Dirichlet problem. One of the purposes of
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the present paper is to investigate, for any ¢ > 0 and A € (0, A*(c)), the existence of a larger mountain-
pass solution U) to problem (1). This represents a further step towards a complete description of the
set of solutions to (1).

Let H(x) be the mean curvature of 992 at x and let

Hpox := ﬁ%’éﬂ(x) (2)

We show

Theorem 1. Let \*(¢) be as in Proposition 1. For every ¢ > 0, there exists 0 < A(c) < A*(c)
such that problem (1) admits, besides the minimal solution uy, a mountain-pass solution Uy for any
A(e) < A < X(c). Furthermore, the map (0,+00) > ¢ — A(c) is nondecreasing and the following
statements hold

(i) if n=3andc >0 orn>4and 0 < ¢ < 252 Hypy, then A(c) = 0. Moreover, if n = 4,5, then
A(252 Hpax) = 0.

(i1) if n > 4, there exists K = K(Q) > “52 Hyax such that if ¢ > K, then A(c) > 0, Uy exists up to
A = A(c) and does not exist if 0 < X\ < A(c).

Note that, arguing as in [6], any mountain-pass solution to (1) is regular. Hence, by elliptic regularity,
it solves (1) in a classical sense.

When A(c) > 0, one may wonder if different kinds of solutions exist for A € (0,A(c)). If Q@ = B,
the unit ball, in [5] explicit radial solutions to (1) have been determined for every A € (0,\*(c)). We
briefly recall their construction. For ¢ > 0 and n > n9(c), where

Mo (c) := max{0, Lf -1}, (3)

consider the function
[n(n —2)]" % [e(1 + ) —n+2]"y" >

<P(77) = A (1 T n)gn : (4)

It is readily seen that p(n9) = 0= lim ¢(n), that ¢ attains a global maximum at

n——+00

n+2+4+/(n+2)2—4dce(n—2-rc)
2c ’

that ¢ increases on (19,7) and decreases on (77, +00). Hence, for any A € (0, A, (c)), where \,(c) :=

((m)/ =2,
there exist 7; = n;(\,¢) (i =1,2) such that ¢(n;) = A" 2. (5)

If A = \,(c), then 1 = 2 = 7. Finally, we recall by [5]

Proposition 2. Let Q@ = B C R" (n > 3). Then, if A\y(c) >0 and ng < n2 <7 < m are defined as in
(5), we have

(2) for every X € (0, A\, (c)), there exist two radial solutions of problem (1), the minimal solution u,,
and a larger solution uy,, given by

n(n —2)n;\ "2/ o ‘
um(ac) = <(/\)77> (mi + ’xP) (n=2)/2 _ 1, 1=1,2;



(17) the extremal parameter satisfies \*(c) = Ap(c) and the extremal solution u* of (1) is given by
u*(x) = um(x).

Letting ¢ — +o0 in Proposition 2, one recovers known results for the corresponding Dirichlet problem,
see [16, Section 5]. In particular, A\,(c) A}, see also [19, Section VI].

In Section 4 we show that the larger solution u,, in Proposition 2 has high energy when ¢ > ”772 and
A is sufficiently small. Combining this with the fact that u,, and u,, are the only radial solutions to
(1), we prove

Theorem 2. Let @ = B C R" (n > 3) and \,(c) be as in Proposition 2. Then

(1) if0<ec< "772, problem (1) admits, besides the minimal solution, a radial mountain-pass solution
Uy for every 0 < A < Ap(c);

(i1) if ¢ > 252, there ewists Arqq(c) > 0 such that problem (1) admits, besides the minimal solution,
a radial mountain-pass solution Uy if and only if Apqq(c) < A < Ay(c). Furthermore, the map
(%72, +00) 3 ¢ Apgdl(c) is increasing and limc_>(n7_2)+ Araa(c) = 0.

2

In both cases (i) and (ii), Uy = uy, as given in Proposition 2.

Let A(c) be as in Theorem 1. When Q = B, from Theorem 2, we infer A(c) < A4q(c). Hence,
A("T_Z) = 0 for every n > 3. On the other hand, we do not know if, as in the Dirichlet case [17], any
(smooth) solution to (1) in the ball is radially symmetric. Namely, if A(c) = Ayqq(c) for every ¢ > 0.
When n = 3, this is false. Indeed, by combining the statements of Theorems 1 and 2, we deduce the
following

Corollary 1. Let Q = B C R3, ¢ > % and Apqq(c) > 0 be as in Theorem 2. Then, for every
0 < X < Apgd(c), problem (1) admits, besides the minimal solution, a mountain-pass solution which is
not radial.

A couple of remarks are in order. The proof of Theorem 1 is obtained by studying a suitable Robin
problem at critical growth, see Section 2. The lower order perturbations considered include nonlin-
earities of the form: A(a(z)u + u?), where A > 0, a is a positive measurable function in L*°(2) and
1 < g < 2*—1. A critical threshold for the exponent ¢ turns out to be
2(n—1)

or =", (6)
the so-called trace exponent. If 20 — 1 < g < 2* — 1, existence of mountain-pass solutions to the
corresponding Robin problem is known from [27]. When 1 < ¢ < 27 — 1, A is sufficiently small and ¢
is sufficiently large, we show nonexistence of mountain-pass solutions, see Theorem 4 in Section 2. We
should mention that the role of the trace exponent in existence and nonexistence results is well-known
for the corresponding Neumann problem (with A < 0), see for instance the survey article [15]. In this
case, one has existence if 1 < ¢ < 27 — 1 and nonexistence if 27 — 1 < ¢ < 2* — 1, see [10, 14] and
references therein. The “inversion”, between the existence and nonexistence regions, is basically due
to the sign of \. Roughly speaking, in the Robin case (¢ > 0 and A > 0) the subcritical term lowers
the functional, while in the Neumann case (¢ = 0 and A < 0) it increases the energy of solutions, see
Section 2.
As a by-product of the above mentioned nonexistence results, we derive a Sobolev type inequality.
First, from [22] (see also [1]), we recall that there exists C = C(2) > 252 Hpax such that, for every
¢ > C(Q), there holds

/Q \Vul|® dz + c/aQ u® do > 225/’71 lu3.  for every u € H*(Q). (7)



Here and in the following, |.|, denotes the usual norm in LP(€2) and S is the best Sobolev constant,

namely
S = inf{|Vul3; u € DV3(R™), |u

2» =1} (8)

If Q = B, then C(Q) = 252, see [8]. We also refer to [30] and references therein for some variants to
(7) involving L? interior and L?” boundary norms.

Let a(x) be a positive measurable function in L*>°(2). For every ¢ > 0, we set

M) = g alVuldrtclguido
! weH (Q\{0} Jo a(z)u? dx

Namely, A{(c) is the first eigenvalue (with weight a) of —A under Robin boundary conditions.
Finally, for every 0 < A < A{(c), we define the norm

||u|]§\c ::/ \Vu|2d:c+c/ UZdU—)\/a(CU)UQdJZ (10)
Q o Q

and we state

Theorem 3. Let n > 3, 27 as in (6), C(Q) as in (7), A{(c) as in (9) and |.|[rc as in (10). There
ezists K = K(Q) > C(Q) such that for every ¢ > K there exists 0 < A = A(c) < A(c) such that

2
A|U|2;

(11)

T 4} Ju

4
ull}e > =57 luls [ 1+

’ /n -2 2.2 * 2

2 VI 3+ Aful3!

for every u € HY(Q) \ {0}.
As can be checked, if u € H*(Q) \ {0},

4
eV L+ — — 27 —|>1
n — n- . *
TSN+ A}l + Al

The paper is organized as follows. In Section 2 we give some existence and nonexistence results for a
suitable model problem at critical growth. This allows to prove Theorem 1 in Section 3. In Section 4
we prove Theorem 2, while in Section 5 we derive inequality (11).

2 The model problem

Let Q C R (n > 3) be a smooth and bounded domain and let H'(f2) be the usual Sobolev space

endowed with the norm
|2 ::/ |Vu)? dﬂ:—l—/u2 dx.
Q Q

For any ¢ > 0 fixed, the following norm

|2 ::/ |Vu|2d;v—|—c/ W2 do
Q 15)9)

is equivalent to ||.||, see for instance [25, A.9 Theorem]. As in Section 1, we will denote with |.|, the
usual LP(€2) norm and with 2* and 2p the critical Sobolev and trace exponents.



Motivated by problem (1), in the spirit of [9] (see our Section 3), we consider the following model
problem
—Au=u"""+ fi(z,u) inQ
(P)L u>0 in Q
Uy, +cu=0 on 0,

where A\, ¢ > 0 and f) is a lower order perturbation. More precisely, we assume that
(f1) fa(x,s) > 0 is measurable with respect to x, continuous with respect to s > 0 and sup{ fi(z,s) :

x € Q,0<s<C} < +o0, for every C > 0. Furthermore, the map A — fy(z, s) is increasing for
a.e. x € ) and for every s > 0, and fyo(z,s) = 0;

(f2) fx can be written as fi(z,s) = Aa(z)s + gr(z, s), where a is a positive bounded measurable
function and

gr(z,s) = o(s) as s — 0T, uniformly with respect to a.e. x € Q;
gr(z,8) = o(s* 1) as s — 400, uniformly with respect to a.e. x € Q; (12)
gr(z,s) + 5271 >0, for every s > 0 and a.e. z € (.

The same equation was studied in [9] but under Dirichlet boundary conditions. When ¢ = 0 and
iz, u) = —a(x)u — Aul, problem (Py) was studied in several papers. Existence of least energy
solutions (see (16) for the definition) was proved in [27], for 1 < ¢ < 270 — 1 and n > 3. Existence and
nonexistence of least energy solutions were proved in [10] for ¢ = 27 — 1 and n > 5, and in [14] for
1 <g<2*—1andn>3. See also [3, 12, 28] and the survey article [11].

Less is known under Robin boundary conditions. When fy(z,u) =0and 0 < ¢ < ”T_2 Hpox, with Hypax
as defined in (2), existence of least energy solutions is known from [2]. If f\(z,u) = f(z,u) = a(x)u+
b(x)uf, where b is a bounded and positive function and 27 — 1 < ¢ < 2* — 1, existence of mountain-
pass solutions was shown in [27, Corollary 4.1]. Also we mention that the case fi(x,u) = Aa(z)u
was studied in [23] and [24] by means of a suitable transformation sending the Robin problem into a
Neumann problem. Finally, we refer to [20] and [21] where the case Q@ = B, f\(z,u) = Aa(z)u and u
radial is dealt.

We consider weak solutions u € H(Q) to (Py), namely such that
/ Vu - Vvdx + c/ wdo = / <u2**1 + Aa(z)u + gA(a:,u)) vdx for every v e HY(Q). (13)
Q a9 Q

Let A{(c) be as defined in (9). Standard calculus arguments show that A{(c) is achieved by a unique
positive function ¢§. Testing (13) with v = ¢, by the third assumption in (12), we readily deduce
that (Py) admits solutions if and only if A < A{(c).

On the other hand, for any A € (0, A\{(c)), we set

ull2 = A Jg a(z) u? dz

¢\ )=
Hi(A.©) weHL(Q)\{0} |ul3

, (14)

the first eigenvalue of the operator —A — Aa(x) under Robin boundary conditions. It turns out that
pu$(A,¢) > 0 and the minimum is achieved by a unique (up to a multiplicative constant) function
¢ strictly of one sign in Q, see [5, Lemma 12]. By (14) it follows that, for any ¢ > 0 and for any
A € (0,A{(c)), the norm ||.||x . in (10) is equivalent to ||.|| and, in turn, to ||.]|.

Weak solutions to (Py) are the nonzero critical points of the functional

1 1
Inelw) = sllul . = 5 lu

2 —/Gk(x,u)dx, (15)
Q



where Gx(z,u) = [’ ga(z,s)ds. In order to deal with nonnegative solutions, one has to consider the
modified functional where |u|3. is replaced by |uT|3. and gy(z,u) = 0 for u < 0. These substitutions
do not affect the analysis below.

Exploiting either the fact that ||.||y . is a norm equivalent to ||.|| and the growth conditions assumed
on gy, it is readily seen that J . has a mountain-pass structure for any ¢ > 0 and 0 < XA < X{(c), see
[9, 27]. We set

M(\ ;= inf t
(A ¢ inf max Ine(7(t)),

where I := {y € C° ([0, 1], H*(2)) : 7(0) =0, Jx((1)) < 0}. We also recall that a natural constraint
for Jy . is the so-called Nehari manifold:

N = {u € H'(Q)\ {0} = J} (w)[u] = 0}.

Arguing as in [29, Chapter 4], one may check that, for any v € H*(Q) \ {0}, there exists a unique
tre = tac(u) > 0 such that ¢y (u)u € Ny, and the maximum of Jy .(tu) is achieved at ¢ = t .(u).
The map H'(Q2) \ {0} 2 u — t.(u) € (0,+00) is continuous, while the map u + t, .(u)u defines an
homeomorphism between the unit ball of H'(Q) and N} .. Furthermore, there holds

inf Jy.(u)=  inf Ie(tw) = inf  Jyoltre = M(\c). 16
B = e oy P T el oy P a0 = MO 1)

Minimizers to Jy .(u) in N \,c are usually called least energy solutions to (Py). Hence, we shall equiv-
alently refer to least energy or mountain-pass solutions to (Py).
Some computations show that

el = B @~ [ (o trclwpuuds = 0. a7)
for every u € H*(). Then, since by assumption Aa(z)s? + g(z, s)s = fr(z,s)s > 0 for every s > 0

and a.e. z € ), we get
HU||2 (n—2)/4
ot = () g

Next we state a compactness result which is obtained by slightly modifying [9, Theorem 2.2] and [27,
Theorem 2.1].

Lemma 1. For ¢ > 0 and A € (0,A{(c)), the functional Jy . admits a Palais Smale sequence at level
M = M(),c), namely there exists a sequence {um }m>0 C H*(Q) such that

I c(um) = M, Jﬁ\’c(um) —0 in (HYQ)).
If furthermore
Sn/2
2n

then there is a solution u € HY(Q) of (Py) such that u, — u in HY(Q) (up to a subsequence) and
J)x,c(u) = M()‘a C)'

M\ ) <

Proof. The existence of a Palais Smale sequence {uy, }m>0 follows by the mountain-pass structure of
the functional Jy ., see [9, Theorem 2.2]. We prove the compactness issue.
By assumption, we have that

1

1 *
sl = gl = [ Ga(e ) do = M +0(1) (19

6



and
<wmwh¢—XJWMTQUmwM%:LQA%UmWMwZOWMD for overy p € H'(Q)  (20)

as m — 400, where (.,.)) . denotes the scalar product associated to the norm ||.| 5 .
Writing (20) with ¢ = u,, and inserting this into (19), we get

1 x 1
- |t |5 = / <G>\(x,um) - igA(x,um) um> drx+ M+ o(1). (21)
Q

By (12), for every ¢ > 0 there exists C; > 0 such that
lga(x,8)| <es® "L+ for s> 0.
Exploiting the arbitrariness of € and recalling that gx(z,s) = 0 for s <0, (21) yields

5 < Callumllre+ M +o(1),

|Um
for some Cy > 0. Comparing with (19) and exploiting (12), we conclude that
luml3.e < Csllumllre + Ca+o(1)

for some Cs3,Cy > 0. Hence, {t, }m>0 is bounded in H'(Q). Then, (up to a subsequence) there exists
u € H*(Q) such that
Uy —u in H(Q) and wu, - u ae. inQ,

Um loo— u loq  in L2(0) and u,, —u in LY(Q), for every 1 < ¢ < 2*.
Assume by contradiction that w = 0. As in [9, (2.26) and (2.27)], we deduce that

/ I (T, Upy) U dz — 0 and / Ga(x, up,) dx — 0.
Q Q

Then, (20), with ¢ = u,, gives
V|3 = [uml3- +o(1)

and, in turn, by (21) we get

- =nM+o(l) and |[Vum|3=nM +o(1). (22)

|

This, combined with (7), implies

S *
o(1) +nM = o(1) + [Vuml3 > 5o [uml3. = 57 ( M)** +o(1).
Namely,
n/2
M5 ,
- 2n

a contradiction.
Let u # 0, (20) with ¢ = u,, — u yields

IV (wm, — u)|% = |um — u\%i—i— =o(1),

where we have also exploited the Brezis-Lieb Lemma [7]. Then, since [, GA(z, um) dz — [, GA(z,u) dz,
by (19) and the Brezis-Lieb Lemma, we deduce

Tacl) |V an — )3 = M +0(1). (23

7



Writing (20) with ¢ = u and passing to the limit, we get
Julc = 0l + [ aala)u +o(1).

so that u € N . (the Nehari manifold associated to J) ). Then, by (16), we deduce that Jy .(u) > M.
This, inserted into (23), implies that

1
IVt — )3 < 0(1).
from which the statement follows. O

Recall that the functions

B en(n —2) 2
Us(x) = (an(n . ‘x’2> (e>0) (24)

achieve the best Sobolev constant (8) and solve the equation

—Au=u>"1 R".

By exploiting the functions in (24), we prove
Lemma 2. For every ¢ > 0, the following statements hold:
(i) M(A¢) < 52 for every X € (0,(c));

(i7) the map (0,A{(c)) > X — M(\,c) is nonincreasing (decreasing when M (X, c) < S;—Y/LQ) and

continuous,
n/2
jit) lim M(\ c) = > C(Q), with C(Q2 m (7), and i M\ ¢) =0,
(vi1) Jim, (M) - for every ¢ > C(Q), wi (Q) as in (7), an )\_}(;?(10))7 (A ) for
every ¢ > 0.
Let \% = 11141_1 A (¢) (which exists since X{(c) is increasing). For every A € (0,A%), there exists
c——+00

co > 0 such that A = X\{(co) and

iv) the map (cg,+00) 3 ¢ — M (A, c¢) is nondecreasing (decreasing when M ()X, c) < SM2 ) und con-
g g 2n
tinuous.

Arguing as in [23, Lemma 3.3], it is not difficult to check that A, corresponds to A{ p;,., the first
eigenvalue (with weight a) of —A under Dirichlet boundary conditions.

Proof. For € > 0, let U-(x) be as in (24). Put

7= L U (x)
V@) = @l

2%

so that, by applying arguments similar to those in [9, Lemma 2.1] (see also (29) below), one has that

_ 1 —
sup J/\,c(tUe> < - HUEHZL’
t>0 n



for every ¢ > 0 and A € (0,A{(c)). By the estimates performed in [1] and [2], we have that

IUElI2 = 557 + anle)

S
22/n
where ay(e) = € + o(e), if n > 4, while as(e) = ¢|log(e)| + O(e), see also (30) below. Then, letting
e — 0, statement (i) follows from (16).

Since the proof of statements (i7) and (iv) is the same as [10, Lemma 3.2], we omit it. The key point
is the exploitation of the characterization (16). This has to be suitably combined with compactness
arguments similar to those applied in the proof of Lemma 1, see also [14, Lemma 11].

Let us consider (7i7). Set

Dl — e . L lll? ) #
I.(u) == —|Jull; — =—|ul3~ and s.:= inf I.(u) = — inf 5 , (25)
2 2% ueN, n ue HH(Q\{0} \ ||ul/5
where N, := {u € H*(Q) \ {0} : I'(u)[u] = 0}, see (16). The estimates given above and (7) yield
se = 522 for every ¢ > C(Q
¢ = T y ¢z C(Q).

Let A, — 07 as m — +o0o. By (i7), there exists lim,, 0o M (A, c) = M, and, by (16), M. < s,
Sn/Q

for every ¢ > 0. If M, = S vz , there is nothing to prove. Assume, by contradiction, that M, <
for ¢ > C(Q). Then, M(/\ ms ) is achieved by u,, € N, . and the sequence {um, }m>0 turns out to be
bounded in H'(), see the proof of Lemma 1. Thanks to (f1) and (f2), we may repeat the proof of
Lemma 1 (with minor changes) to conclude that u,, — u # 0 in H!(Q), where u € N,. In particular,

we get that s, < I.(u) = limy, 400 Ir,,c(tUm) = M. < S;f, which is impossible for ¢ > C(Q).
Now we turn to the second part of (iii). Let ¢{ be the first positive eigenfunction associated to u{ (A, c)

as defined in (14). By the third assumption in (12), we get

t2 a
Daltreoten) < 24D papz o B e . en g reen,

The last term in the above equation goes to zero as A — (A{(c¢))”. Indeed, F(¢{) is bounded by (18)
and, for every ¢ > 0, the map (0, A{(c)) 2 A — pf(A, ¢) is continuous, decreasing and uf (A, c) \, 0 as
A — (A{(c))~. Then, recalling (16), we conclude. O

By Lemma 2, the following infimum is well-defined

Ae) = inf{O <A<Ae) : M(Ac) < S;: } , (26)

for any ¢ > 0. Moreover, we have
Lemma 3. Let A(c) be as in (26), then the map (0,+00) 3 ¢ — A(c) is nondecreasing.

Proof. Let 0 < ¢1 < co. If A(e2) =0, by Lemma 2, we readily get that A(c;) = A(cz). Assume now
A(e2) > 0. Since the map ¢ — A{(c) is increasing, there exists ¢y < CQ such that A(c2) = Af(co) < A{(c),
for every ¢ > ¢g. Then, by Lemma 2-(iv), M (A, c1) < M (A, c2) < 2n , for every X € (A(c2), Af(c1))
and for every ¢y < ¢; < cg. Hence, A(c1) < A(ep), for every ¢p < ¢1 < ¢a. The above argument,
suitably iterated, proves the statement. O

Finally, we prove

Theorem 4. Let Q@ C R" (n > 3), X{(c) be as in (9) and A(c) as in (26). Furthermore, we denote
with by a suitable positive bounded measurable function. Assume that fy satisfies (f1) and (f2), then
problem (Py) admits a mountain-pass solution for every A(c) < A\ < X{(c), where



(i) if 0 < ¢ < 252 Hppax, then A(c) = 0;
(13) if ¢ > "T_Q H.x and
ga(z,8) > bx(z)s? with 2p—1<qg<2"—1 foreverys>0 and a.e. x €, (27)

then A(c) =0. If n >4 and (27) holds with 1 < q < 27 — 1, then A(“52 Hynax) = 0.

(ii7) If

ga(z,s) <bx(z)s? with 1<q<2p—1 foreverys>0 and a.e. x €,

then there exists K(Q) > "52 Hyax such that, for every ¢ > K, A(c) > 0 and (P) admits a
mountain-pass solution if and only if A(c) < X < A{(c).

The first part of Theorem 4 is an immediate consequence of (26) and Lemma 1. A large part of
statements (i) and (éi) is known from [2] and [27]. For completeness, we put the whole proofs in
Section 2.1 below.

Concerning assertion (iii), we note that it includes the cases g)(z,s) = 0 and gy(z,s) < 0. To get
its proof, we apply a blow-up argument as A — (A(c))", in the spirit of the one developed for the
Neumann problem (as A — —o0) in [3, 12, 28]. See also [1], where a similar approach was adopted for
problem (Fp) as ¢ — +o0.

2.1 Proof of Theorem 4-(i) and (i)

We only need to verify that there exists wo € H'(£2), wp > 0 in Q such that

Sn/2
Sy o(t <
21218 \el(two) 5

for every 0 < A < A{(c) and for ¢ in a suitable interval. Once this proved, Lemma 1 gives the
conclusion.
For € > 0, let U.(x) be as in (24). For a > 0, by [4] we recall the following estimates:

n—2 n—2
Ci1e"™ 2 4 (e 2 for a# 25
U &y < n—2 28
/Q’ ()] -T{ 8”/2(01+CQ|IHE|) for a:%‘ (28)
As in the proof of Lemma 2, let
— Ue(2)
Usx) = ——~—.
O el

By applying arguments similar to those of [9, Lemma 2.1], we get that

- 1 thg
Ine(tUe) < EHU‘EH? — / / falz,s)dsdx  for every t >0, (29)
aJo

where t. = t) .(U.) is as in (17). Furthermore, following the proof of [9, Lemma 2.1], we have that

te — 5(7;;3)/4 as € — 0. By the estimates in [2], we know that
— Ue|? S n—2
o2 = MVelle Bn(c— Hnax 0?1 , 30
1Tz U~ 2 + c e + O(e”| log(e)|) (30)

for some B, > 0 and for n > 4. If n = 3, the same estimate holds but with ¢|log(¢)| in place of €
and with O(g) in place of O(g?|log(e)|). Then, since fy(x,s) > 0, statement (i) readily follows by
combining (29) with (30).
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Let us now turn to statement (i7). By assumption, since a(z) is positive, we have that fy(x,s) >
ba(x)s?, where 270 — 1 < ¢ < 2* — 1. Hence, by (28),

tsUs tg+1 7q+1 X (n72)
_/ / fA(x, 8) ds dr S - / b)\(,fL') Ua - _Cny)\gn_(q"‘ )T ,
2J0 qg+1 Jo

with Cy, » > 0 for A > 0. By noting that 0 < n—(¢+ 1)(717;2) < 1, the conclusion follows by combining
this with (29) and (30).

To get the proof of the second part of statement (ii), we simply note that, when n > 4, the above
estimate still holds for 1 < g < 2p — 1. The only difference is that, here, 1 < n — (¢ + 1)@ < 2.
When ¢ = ”T_Z Hyppz, by (29) and (30), this suffices to lower the functional under the compactness
threshold. If n = 3 and ¢ = 1 Hyyqq, the term to be lowered is O(e) and the growth condition (27)

cannot be weakened.

2.2 Proof of Theorem 4-(iii)

For n > 3, we show that that there exists C"(€2) > 5% Hyax, such that M(A(c),c) is attained for
every ¢ > C'. Were A(c) = 0, there would exist a sequence of functions {u, }m>0 in H(Q) which
achieve M (A, c) as Ay, — 01, Arguing as in the proof of Lemma 2-(iii), we deduce that u,, — u
in H'(Q) and u # 0 (if u = 0, one gets a contradiction by repeating the proof below). Moreover,
u achieves s, as defined in (25). But s. is constant, hence, it cannot be attained for ¢ > C(f),
with C(Q) as in (7) (s, is strictly increasing when achieved). We conclude that A(c) > 0, for every
¢ > K(Q) := max{C(Q),C'(Q)}. Similarly, when X € (0,A(c)), M(A(c),c) is constant and cannot be
achieved.

Let ¢ > C'(Q), with C'(Q) > 252 Hyax to be fixed later, and A, — (A(c))T. Then, by Lemma 1,
M (A, c) is achieved by a function u,, € H'(Q). The sequence {u}m>o is bounded in H(Q) (see
the proof of Lemma 1). Hence, up to a subsequence, u,, — u in H'(Q) as m — +o0o. We assume that
u = 0. Otherwise, by arguing as in the proof of Lemma 1, u is a mountain-pass solution to (P,) and
we conclude. It follows that

. Sn/2

. 2 _ . 2 _ . _
mlgnoo |vum’2 o w%gnoo |um|2* o n%gnoo TLM()\m, C) o9

see (22).

By this, invoking [3, Lemma 3.7], we obtain that there exist d,, > 0 and P,, € 92 such that

lim &, =0, lim M

m—o0 m— 00 (5m

=0 and lim |V(upm —Us, p,)3=0, (31)
m— 00

where, recalling (24), we denote with U, ,(x) := U.(x — y) for € > 0 and y € R"™. Therefore, up to a
subsequence, P,, — P € 0f2.
Then, putting

M:={CU.y: CeR,e>0,yeci}

and
d(p, M) :=inf{|V(p — )3 € M},

[3, Lemma 3.1] implies that d(u,,, M) is achieved by some C,,U.
mo >0, m >0, Cpp € R, Yy € 0, Wy, € HY() such that

More precisely, there exist

myYm *

U, = CrUs + wy, for every m > myg.

myYm

11



Furthermore, by [3, Lemma 2.3], up to a subsequence, &,,/0,, — 1, Cp, = 1, Y, = P and wy, — 0 in
H'(Q). Moreover, we have

/ Vwn - VUe,, 4, dz =0 for every m > my.
Q

Now we recall some estimates. By [2], we know that

o Sn/2
‘Usm,ym 2% = 9 Angm +o(em) (32)
for some A,, > 0.
By [3, Lemma 3.5] (with L = 2),
o 2 2% | ok 21 2% 1 2"(2° =1) vy 22 9 2
[um |3« = Cpy [Ue,py ym 2+ +2°Cpy, o Uz g @m =+ 9 Cm 0 Uz, @i+ o([lom|[7) . (33)
By [14, (7.33)]
| V2 de = 0B lonl).
where
Em ifn>5
Bn(em) = em|log(em)|?® ifn=4
5%2 ifn=3
and, by [14, (7.34)],
[ vE ke = Ol ). (34)

Hence,
|um|§* = Cq%m

Furthermore, by [1, (3.25)],

Ue iy 3+ O(Bu(em)lwmll + llwml|?) - (35)

/ Uer g @ diz = OB (Em) |-
o0

Finally, by [14, (7.28)],
/Q Uer. g 0m 02 = O(y(Em)) |,

where
€2, ifn>7
Ylem) = €2 log(em)??  ifn =6
eI ifn=34,5.

Hence, v (em) = 0(Bn(em)), for every n > 4, and 75(em) = B(em).
Next we get a lower bound for ||wy||A,..c-

Lemma 4. Let n > 3, there exist § > 0 and mg > 0 such that, for all m > my,
lfe 2 (27 =148 | U232 0 o+ OB (em) ol

for every ¢ > 0 and for all w orthogonal to the tangent space to the manifold M at (1,&m, Ym).
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Proof. ~ The proof follows the lines of [3, Lemmas 3.3 and 3.4]. The main difference is that the
eigenvalue problem considered there has to be replaced by

—Au — Apa(z)u = uUfLﬁnu in Q (36)
U, +cu=0 on 0f).
Let {uje,, };>1 be a complete set of orthonormal eigenfunctions to (36), that is
/ Ug;;%nuivgmujygm dr = 5ij s
Q
with corresponding eigenvalues fi; ¢, .
Now, putting Q,, := Q;Zm, for every u € H'(Q), we define
U(x) = e 2D 2u(epmz +ym) T € Q.
There holds
. . 252~ ~\2
o ptie, =p; and - lim o Ul ~“(Ujep, — uj)”dz =0, (37)

where the y; and u; are the eigenvalues and eigenfunctions of

—Au =y Uf*_Qu in R’}
Uy = 0* on 8RZL (38)
Jrn U 2u?de =1.

T

We refer to [3, Lemma 3.3] for the details of the proof of (37). We simply note that, to get (37),
one first writes (36) in terms of u. Then, the “convergence” to (38) is ensured by the fact that
limy, 400 Qm = R, by (31), €Ay — 0 (since A, is bounded) and ce,, — 0.

Once (37) is proved, the very same arguments of the proof of [3, Lemma 3.4] (see also [14, Lemma
16]) give the statement. O

Next we estimate

t? 2 t* 2* Lt q+1
M (M, c) = JAm,C(tAm,C(um)um) > igg 9 ||u”)\m,c T ox U |3+ — g+ 1 B(Am) ‘um‘q-i-l )
where
i < =
B(/\):{ 0 ¥fg,\(x,s)_00rgA(x,s) 0,
loa(z)|oe  if gr(z,s) > 0.
Then, putting
[Jull3..
Q)x,c(u) = 5
|u|2*
if gx(z,s) <0 or gx(z,s) =0, we get
1 n
M (A, c) > n (Q,\Wc(um))Q . (39)

If gx(z,s) > 0, we get

n—2
lumll%,, .\ *
M(/\m,c) > J)\m,c TumZE Um
’ (40)

n—2 q+1
z B>\m ,c\Um 4 1
> 4 (Qualn)f - B2 (40 o]

[tm [ox

13



|um|2* ‘u’m-|2*

n—2
2 . n_-2
where we have exploited the fact that W) < Qoclum)) T

From the estimates recalled before stating Lemma 4, we have that

lwmll3,, .
Qrclitn) = (@relUen) + s + O Bulemllinl) + OO 20 el

(41)
@“MiglwJb@%ﬁwm+0wa%MWMD+dm%wQ.
For n > 4, by (28), |Us,, ym|3 = 0o(em) and, by (30), we deduce
S n—2
QA’IYL7 ( 57n7y’m) 22/77, + B < T Hmax) Em + O(€m) . (42)

If n = 3 (recall that |Us,, 4,13 = O(em)), the same estimate holds but with &,,|log(e,,,)| instead of &,
and with O(ey,) instead of o(ey,).
In what follows we consider separately the case gy(z,s) < 0 and gx(x,s) > 0.

Case g)(z,s) <0 or gy(z,s) =0. Inspired by [14, (7.37)], we use the inequality
B (em)
2y

¢ B (Em) |wml| < %men? n for all 7 > 0.

This and (42), inserted into (41), give

(2*—1) 2% _92 lwmlls,,,.
Q)\,,“c(um) Q)\m, ( €m7ym) - 2 (sn/2/2 (n 2)/n fQ Uam,ym m + (Sn/Q/Q)W(LnC—Q)/n

O(cBn(em)llwml) + o(lwm|?)

(43)
= 57w + Ba (¢ = %52 Hmaa) €m + 0lem)
202
et [ 71— Wl — (2~ 1) fy U] - o)
where 71 > 0 and 72 > 0 can be arbitrarily small (recall that the norms ||.|| and |[|.|| . are equivalent,

for every A < A{) and 73 > 0. More precisely, we choose 7; and 72 so small that, by Lemma 4, the

quantity in the square parentheses is greater than or equal to o(/32(e,,)). We conclude that, for every

n >4,

n—2
2

c* Bz (€m)

273
Since B2(em) = o(em), for ¢ > C'(Q) = 252 Hyax, the above inequality with (39) contradicts the
definition of A(c). When n = 3, the same estimate holds with &,,|log(e,,)| instead of e, and with
O(ey,) instead of o(g,,). Then, since 33(g,,) = o em|log(em)|), we conclude as for n > 4.

S
Q)\m,c(um) > % + B, (C — Hmax) Em T+ O(é‘m) —

Case g, (z, s) > 0. The proof works s1m11arly, except that now one has to take into account the extra
term |up, |2+ +1’ where 1 < ¢ <27 —1= 2.
By [3, Lemma 3.5] (with L = 2) we have that

|umlgﬁ — eft fQ Ug::i,m dr + (¢ +1)CF, fﬂ U2 ymm dz
(44)
+22ED oat [ gLl w2 de + O( [y, |wm|1T da) .

em,ymYm
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By Holder inequality, Sobolev embedding and the estimates (28), we deduce

[ U880 < Ul sy Wl < OCuglem) e

where
6”—(‘14‘1)"7_2 . n>6and1<qg<2p—1or
m n=34,5and 505 < g <27 -1
q — n+2 n
Pl = el log(en i =345 and g = 223
egnz jfn:3’4,5and1<q<2(7;:22)-

A further application of Holder inequality and Sobolev embedding, together with (28), give

< m

o<5” (a+1)55 H Wi ||2 ifl<qg<2r—1
O (em|log(em)[¥? lwm|?) ifg=2p—1.

1 2
/ Ud o w2 dr < |Uam,ym| (g— 1 )(n/2) | |5+

By inserting the above estimates into (44), we get

n—(g+1) 252

[uml§i1 < Olem =)+ 0 02em) lloml) + olem]®) (45)

where 1 < n— (q—l—l)"T_2 <2,if 1 < q¢<27—1, whilen— (q+1)"T_2 =1, if ¢ = 27 — 1. Furthermore,
if n >4, 6L(em) = o(em), for every 1 < q < 270 — 1, and 6, 4(ep) = O(em), if =27 — 1. Inn =3,
0% (em) = 0(B3(em)), for every 1 < ¢ < 27 — 1.

By (34) and (43), we have that

n—2
2

S
Quclum) = g+ B (= 52 Hnae ) £+ Ol (e oml) + Ol ) + ()
and subsequently, by (32) and (35), that

Um, (n—2)/4 ne
CoclumD ™0 — Du (14 B, (¢ — %52 Hynas) €m + 0(em) + O(¢ Bulem)llwml) + O(l|wm|))

[wm[ox

(14 O(em) + O(Bu(zm) lwmll + llwm?))

= Do (14 Encem + O(em) + O(cBa(em)llwmll) + O(wml?))

for some D,,, E,, > 0. Note that, if n = 3, one has to replace ce,, with cep,|log(ep,)|. Finally, by (45),
we conclude that

u ) =2)/4\ 7
((QO’C(W’")@* unlf 1} < O ") 4 ofem) + ofcem) + ol lom).

with, if n = 3, o(cem|log(em)|) instead of o(cey,) and adding the term o(B3(em)||wml|) from (45).
By repeating the proof of the case gy(z,s) < 0 and exploiting Lemma 4 (whose proof does not depend
on q), by (40), we get that

n/2 _ n—
M(Am, C) > S2n + B7,1 <C - n 5 2 Hmaz) Em + O( (et ) + 0(5m) + O(Csm)

LD, [(1—%)”%”%%0—(2 y [z m} |
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where 3 > 0 can be chosen so small that the term in the square parentheses is greater than or equal

to o(32(em))-

Summarizing, for n > 4,

n/2 _
M(Am,c) > SQn + B), <c _n 5 2 Hmaz> Em + O( (gt % ) + o(em) + o(cem) -

If n = 3, replace &, with e,|log(enm)|, o(cen) with o(cen,|log(em)|) and o(ey,) with O(ep,).

Hence, in both cases, there exists C'(Q) > "TQ H oo such that, for any ¢ > C’(2), the above estimate
contradicts the definition of A(c).

We note that, when n =3 or n >4 and g < 27 — 1, one can choose C' = "T_Q Hor-

Remark 1. Even if this is beyond the scope of the present work, we make a couple of remarks
concerning the limit case ¢ — +00. As already noticed, A\{(c) converges to A{ Dir» the first eigenvalue
(with weight a) of —A under Dirichlet boundary conditions. On the other hand by Lemma 3, there
exists lime—, 100 A(c) = A and Ay > 0, if case (i) of Theorem 4 occurs. For every X € (Ao, A{ p;1)s
as in [23, Theorem 3.6], it can be proved that any least energy solution to problem (P) converées in
H'(Q), as ¢ — 400, to a least energy solution of the corresponding Dirichlet problem.

3 Proof of Theorem 1

Let A\*(c) be as in Proposition 1. For any A € (0, A*(¢)), as in [13], we look for a second solution to
problem (1) of the form Uy = uy + A~ ("=2/4y, where uy is the minimal solution and » > 0 in Q.
Then, u solves problem (Py) of Section 2 with

ala,w) = A0 puy) 4 w)? 7= N )2 — w2 > 0. (46)

Since the map (0, A*(¢)) 2 A — uy(z) is increasing for a.e. z € Q (see [5]), a direct inspection shows
that also the map (0,A*(c)) > A — fa(z,s) is increasing, for a.e. x € Q and for every s > 0, and
fo(x,s) = 0. Namely, assumption (f1) holds. On the other hand, write fy(z,s) = Aa(z)s + ga(z, s),
where @(x) := (2 — 1) (1 + uy(2))?> ~2. Clearly, @ is a measurable positive and bounded function
(recall that uy is bounded). Since some computations show that gy satisfies (12), then (f2) holds.
For our purposes, we notice that

gr(z,s) <0 itn>7
ga(z,s) =0 ifn==6
0<g,\(:z: )<n/\3/4(1+u>\) 43 for some n if n =75 (47)
ga(z,5) = 3AV2(1 + uy)s? ifn=4
ga(x,8) > BAVA(L + uy)s? ifn=3

for every s > 0. Namely, fy(z,s) is linear, up to a bounded weight, only when n = 6 (sub-linear if
n > 7 and super-linear for n = 3,4, 5).
The role of A\{(c) in Section 2 is assumed here by \*(¢) (recall that the map ¢ — A\*(c) is increasing by
Proposition 1). In particular, if we define u§(\,c) as in (14), the same arguments of [13, Proposition
2.15] yield that pf(\,¢) = 0 as A = A*(c¢), for every ¢ > 0. Then, all the analysis performed in the
previous section applies and we may set A(c) as in (26) (with A*(c) instead of A{(c)).
To conclude, we note that, if u is a mountain-pass solution to (Py), with fy as in (46), and Uy =
uy + A~ ("=2/4y then

A

Ine(u) = An=2/4 < U2 — > / (1+ UA)T) + Oy := AL (Uy) + Cy,.
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Here, J). is as in (15), 1), is the functional associated to (1) and C\ = A"/2(3 [(1 + uy)? dz —
% fQ(l + uA)Q*_lu,\ dz). Namely, u and U, have the same variational characterization.
Finally, the proof of Theorem 1 follows by combining the statement of Theorem 4 with (47).

4 Proof of Theorem 2

For n > 0, we denote by

(nn(n — 2))(n=2/4
(n+a2) "%

Let A, (c), up, and u,, be as in Proposition 2, where n; = n1(X, ¢) and 72 = n2(A, ¢) are as in (5). For
c>0and 0 <A< A\,(c), we set

V() = r€EB.

n—2

Wi(x) :== AT(U??Q (z) — Uy (z)) = Vﬂz(:E) — Vi (zr) ze€B.

Recall that u,, and u,, solve problem (1) and that u,, = u,, the minimal solution to (1). Then, W)
solves (Py), as defined in Section 2, with 2 = B and f\ as in (46). Furthermore, this is the only radial
solution to (Py), see [5, proof of Theorem 5].
By (5), for every ¢ > 0, n1(A,¢) /400 and n2(\, ¢) Ny no(c) as A — 0F. Hence, if ¢ € (0,n — 2), since
no(c) > 0, we get

lim Wy(z) = V,,(z) forae. €,

A—01

where V,, (x) is known to be the only radial solution to (F). More precisely, by [27, Theorem 4.2],
(Py) admits a positive radial solution if and only if ¢ € (0,7 — 2) and the solution is explicitly given
by Vi ().

Let Jy. be as in (15) with = B and let f) be as in (46). We have that

1

1
Ine(Wy) = 5 IWAllZ - o

( [ Oy () + W)~ N () d:c)

+An+2)/4 /B (1 + up, (2))¥ Wy (2) da.

On the other hand, since u,, and w,, solve problem (1), we deduce that

g 2 = A /B (1t gy ()2 gy () dzy gy 2 = A /B (14 1y (2))7 Mty ()

and

tn @y &) 7 = A [ (14 13 @) (0)

/B Vi, (z) - Vg, (z) dz + ¢ /

0B
Exploiting the above identities, recalling the definition of W) and that u,, = A~ (n=2)/ 4Vm — 1, we
conclude that

- o *
BelW) == [ (V@) =V @) de - 2 [ @) -V N @de. )

Next we show
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Proposition 3. Let Jy .(Wy) be as in (48), there holds

n/2
Ire(W)y) < for all A € (yn(c), \n(c)),
where
0 if0<c< 2
n = n(n— c—(n— 4/(n—2) .
Yn(c) (42) (2 gc 2)) if o> n=2

and lime_, 4 oo Y (€) = liMey 400 An(c) = A];,.-
Furthermore, we have that

n/2
. . ale) € (0,25) for0<ec<n—2
1 Ine(Wy) =0 d lim Jy.(W)) = n n
H(Alff%c))— RALEY and oy (W) { ST/2 forc>n—2,
where the map (0,n —2) 3 ¢ — a(c) is increasing, hrél alc) =0, a (252) = S;iz and (limQ) alc) =
C—> c—(n—2)™

Sn/2

.

Proof.  First we prove the second part of the statement. As A — (A,(c))™, m(A ¢) ¢ 77 and
n2(X, ¢) /7, for every ¢ > 0, with 77 as in (5). Hence, Wy — 0 and Jy (W) — 0 for a.e. € B.
Let A — 0T, by (5), for every ¢ > 0, n1(\,¢) /400 and nz2(A, ¢) N\, no(c), with ng as in (3). In turn,

/ z)dr =0, / V,f:*l(a:) dr — 0 and / Vf;il(x) dz — no(c)2/1C,
B B

for some C,, > 0. Hence,

1 X
lim Jy (W) = i = | v¥ dx.
AE& /\’( Ny 772\1:%(5)”/3 m O

If c€ (0,n —2), no(c) > 0 and we have

[ vz = -2y [ e = -y [
g o o (o + |z[2)" Mo T — dr.

For every 1 > 0, set h(n) := n""/? fol ?’"J: ~dr. Then,

(n—2)/2 1.2 N\ .n-1 (n—2)/2
/ _ NWwn1 (T 77)T . nwpm
h (77) - 2 A (77 + r2)n+1 dr =: 2 9(77)

Clearly, g(n) < 0 for any n > 1.
Let now n € (0,1), then

N T2_777ﬂn71 1 7"2—777"7171
9(17)2/ (2)71+1dT+/ %dr
o (m+r?) vi (m+1?)

1 L2 = 1)1 /M (22 _ 1)y 1
= / W 3y+1 dy+/ w 2)y+1 dy
nm \Jo (1+y?)" 1 (1+y2)"
1 /1 (yQ _ 1) y’nfl /1 (1 _ 82) S’nfl
= — —————dy + —5———ds | <0.
" < s (11 g2)ntt si (L4 s2)et
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Hence, h(n) is a decreasing function Since the map (0,n —2) 3 ¢ no(c) € (0,+00) is decreasing,
we conclude that (0,n —2) 3 c— alc) = f B x) dz is increasing.
Since no(252) = 1, we have

n—2 1 " 1 Lo, rnt

== — —9))/? n
«("F) = a [ @=L -ny [
n—1

)
= Ly [T L gy, L2
B 2n( ( 2)) /0 (1+T2)nd - Qn( ( 2)) 2T(n)

_ 202 an =mn(n — L(n/2)\*"
= Ty M4 5=l 2)< r<n>> ’

2 Sn/2
n

Recall that

see [26].
When ¢ — (n — 2)~, then ny(c) N\, 0 and similarly one gets

1v/m(e) , pn—1 " _gn/2

im a(c)= lim lnn— n/2
lim  of¢)= lm = (n( 2))/0

e (n-2)- 10(¢)\O 1 (142" n
Since 79(c) = 0 for any ¢ > n — 2, the same holds for any c in this range
Let now A > 0. Computations analogous to those done above give an ( % B ) < 0 for all o > 0,
if n>1 (and also if n € (0,1), when a = 2*). Then, when 72 > 1, we deduce
1 o o 1 . Sn/2

PelW3) < /B(Vm ()~ V2 (2)) dz <+ / vydr < © /Bv1 (0o ="
If ¢ € (0,252], mo(c) > 1 and subsequently na(X, ¢) > 1, for every A € (0, A\n(c)). Namely, the above
estimate holds for every A € (0, An(c)). When ¢ > 252 by (5), 2(A, ¢) > 1if X € (v,(c), An(c)), where
Yn(e) == o(1)Y/("=2) with ¢ as in (4). To conclude we note that 7 \, 1 as ¢ — +oo. O

Proof of Theorem 2 completed.

The proof of statement (i) is a straightforward consequence of Lemma 1 and Proposition 3.
Let us now turn to (ii). For ¢ > 252 we set

n/2
Arad(c) :=inf {O <A< Mle) 0 Mpga(N o) < S2n } ,

where

Mmd()\,c) inf J)\ c( )

UEN ad
and Nqq = {u € H'(Q) \ {0} : uw(z) = u(|z|) and J{ .(u)[u] = 0}. As in the nonradial case, the map
A= M,qq(\, ¢) is nonincreasing and continuous, see Section 2.
Since W), is a radial solution to (Py) (with fy as in (46)), we infer W) € N,4q. Then, by Proposition
3, Apaq is well-defined and A,qq4(c) < vn(c), for every ¢ > 0. Hence, lim, L(ns2y+ Arad(c) = 0. The fact
that the map ¢ — A,qq(c) is nondecreasing (increasing if M, qq(Arqq(c), c) is achieved) follows as in
Lemma 3.
On the other hand, by Lemma 1, for every A > A, .4, (Py) admits a mountain-pass solution Uy which
turns out to be radial. Furthermore, Uy = W) (since there are no other radial solutions). Were
Avag = 0, W) would be a mountain-pass solution to (Py), for every A € (0, A\,(c)). Since the map
A= Jy (W)) is continuous (n; and 72 depend continuously from \), this contradicts Proposition 3.

Hence, when ¢ > ”7_2, Ire(Wy) > % for every 0 < A < Apqa(c) and Jy(W)) < %7;2 for every

A € (Araa(c), An(c), with Avga(c) > 0. By continuity, Jy, . (c),c(Wa,ou(e) = 55712 and we conclude.
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5 Proof of Theorem 3

We follow the same notations of Sections 1 and 2. In the spirit of the computations performed in [10,
Appendix A] (see also [18]), we deduce (11) from the nonexistence result of Theorem 4-(ii7).
Consider problem (Py) of Section 2, with fy(x,u) = a(z)u + Au?7~1. Assumptions (f1) and (f2)
are satisfied. For every 0 < A < A{(c), let ¢y .(u) be as in (17). With this choice of fy, t) (u) can be
explicitly computed and we get

n—
2

-%W!-+JVWWT+MWMAM§
2Julf. |

tA,C( ) =

see [10, Appendix A]. This allows us to determine explicitly the function Wy .(u) := Jy c(txc(uw)u).
More precisely, for every ¢ > 0, 0 < A < A4(c) and u € H(Q2) \ {0}, we set

27
A U
5)\,c(u) = 9 | |2T

2*
| el 2/

and we get W) .(u) = L (@A,C(u))”ﬂ, where

n

Py c(u) == Qxc(u) ( 5§70(u) +1- 6>\7c(u)>4/2* [1 2 Oxc(u) ( 5?\70(16) +1-— 5,\,c(u)>] 2/n )

27
with @) c(u) as in Section 2.2.
We note that

1 2
0 < (03, (0) 1= Gre(w) <1 and 0.<dye(u) (/800 + 1= dnelw)) < 5 <

Then, recalling that

9 2/n 4 27
1——y 14 y|] <1 forevery 0 <y < —,
27 n-2p 2

we estimate
Qxc(u) .
(1+ 77 0ne@) (/33 () + 1= 8rc(w) )

Let K = K(Q) C(Q) > 52 Hyax, with C(Q) as in (7), be as given in Theorem 4-(iii). Then,
M\ c) = for every ¢ > K(Q) and for every A € (0,A(c)], with 0 < A = A(c) < Al(c). This and

(I)A,c(u) <

2n ’
(16) yield Wy o(u) > SQ—n for any u € H'(Q2) \ {0}, ¢ > K(2) and A € (0, A(c)]. By noting that
el Alul3h
Bre(w) (/03 o) + 1= drofw)) = —=—2 (w) .
o)+ Lt nelu) B2+ Al Jul + Al

then the statement follows from the estimate of ® .(u) (and, in turn, of ¥ .) just performed.
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