
DIPARTIMENTO DI MATEMATICA
“Francesco Brioschi”

POLITECNICO DI MILANO

Convex shape optimization for the

least biharmonic Steklov eigenvalue

Antunes, P.; Gazzola, F.

Collezione dei Quaderni di Dipartimento, numero QDD 111

Inserito negli Archivi Digitali di Dipartimento in data 24-11-2011

Piazza Leonardo da Vinci, 32 - 20133 Milano (Italy)



Convex shape optimization

for the least biharmonic Steklov eigenvalue
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Abstract

The least Steklov eigenvalue d1 for the biharmonic operator in bounded domains gives a bound for the

positivity preserving property for the hinged plate problem, appears as a norm of a suitable trace operator,

and gives the optimal constant to estimate the L2-norm of harmonic functions. These applications suggest

to address the problem of minimizing d1 in suitable classes of domains. We survey the existing results and

conjectures about this topic; in particular, the existence of a convex domain of fixed measure minimizing

d1 is known, although the optimal shape is still unknown. We perform several numerical experiments

which strongly suggest that the optimal planar shape is the regular pentagon. We prove the existence of a

domain minimizing d1 also among convex domains having fixed perimeter and present some numerical

results supporting the conjecture that, among planar domains, the disk is the minimizer.

AMS subject classification: 35P15, 35J40, 65N80

Keywords: biharmonic operator, least Steklov eigenvalue, shape optimization, numerical Method of

Fundamental Solutions.

1 Introduction

Consider a plate, the vertical projection of which is the planar region Ω ⊂ R2. A simple model for its elastic

energy is

J(u) =

∫

Ω

(

1
2 (∆u)2 + (1− σ)

(

u2xy − uxxuyy
)

− f u
)

dxdy, (1)

where f is the external vertical load, u is the deflection of the plate in vertical direction, and σ is the so-called

Poisson ratio which, for any material, satisfies the physical constraint

−1 < σ < 1, (2)

see [22, 25]. Notice that for σ > −1 the quadratic part of the functional J is positive. Moreover, first order

derivatives do not appear in (1), which shows that the plate is free to move horizontally.

The variational formulation in (1) may be found in [14, 19]. For hinged plates the natural boundary

conditions lead to minimize J in the Sobolev space H2 ∩H1
0 (Ω) and to the weak Euler-Lagrange equation

∫

Ω

(

∆u∆v + (1− σ) (2uxyvxy − uxxvyy − uyyvxx)− f v
)

dxdy = 0

for all v ∈ H2 ∩ H1
0 (Ω). A formal integration by parts (see [16, Section 1.1.2] for the details) yields the

strong Euler-Lagrange equation
{

∆2u = f in Ω,
u = ∆u− (1− σ)κuν = 0 on ∂Ω,

(3)
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where uν is the normal derivative of u and κ is the curvature of the boundary, with the sign convention that

κ ≥ 0 for convex boundary parts and κ ≤ 0 for concave boundary parts. The differential equation ∆2u = f

is called the Kirchhoff-Love model [19, 25] for the vertical deflection of a thin elastic plate, whereas the

boundary conditions are named after Steklov due to their first appearance in [33].

More generally, let a ∈ C0(∂Ω), f ∈ L2(Ω), and consider the boundary value problem

{

∆2u = f in Ω,
u = ∆u− auν = 0 on ∂Ω.

(4)

We say that u is a weak solution to (4) if u ∈ H2 ∩H1
0 (Ω) and

∫

Ω
∆u∆v dx−

∫

∂Ω
a uνvν dω =

∫

Ω
fv dx for all v ∈ H2 ∩H1

0 (Ω).

Let us mention that standard elliptic regularity results are available, see [16].

Consider the set H := [H2 ∩H1
0 ] \H2

0 (Ω) and define

d1(Ω) := min
u∈H

∫

Ω
|∆u|2 dx

∫

∂Ω
u2ν dω

. (5)

If Ω is either smooth (∂Ω ∈ C2) or convex, then the minimum in (5) is achieved and the number d1 in

(5) represents the least Steklov eigenvalue, namely the smallest constant value of a for which (4) admits a

nontrivial solution whenever f = 0. In fact, there exists a countable set of eigenvalues. We refer to [12] for

a fairly complete study of the spectrum and to [24] for a corresponding Weyl-type asymptotic behaviour.

The first purpose of the present paper is to describe the role of the least Steklov eigenvalue in bounded

domains. In functional analysis, we immediately see from (5) that d
−1/2
1 plays the role of the norm of the

compact linear operator

H2 ∩H1
0 (Ω) → L2(∂Ω) u 7→ uν |∂Ω. (6)

From a physical point of view, we shall see that d1 is the sharp upper bound for the function a for the validity

of the positivity preserving property for the hinged plate problem (4). Finally, we shall see that, thanks to

Fichera’s duality principle [13], d1 also gives the optimal constant to estimate the L2(Ω)-norm of harmonic

functions in terms of the L2(∂Ω)-norm of their trace on the boundary.

These applications make particularly interesting the problem of minimizing d1 in suitable classes of

bounded domains. The second purpose of the present paper is to survey the existing results and conjectures

about this topic. Bucur-Ferrero-Gazzola [8] showed that the minimization of d1 among general domains

(both of fixed measure or perimeter) leads to an infimum which is 0 and, of course, is not achieved. More

recently, Bucur-Gazzola [9] proved the existence of an optimal domain when the minimization of d1 is set up

in the class of convex domains of given measure. However, the optimal convex domain (which is certainly

not the disk, see (10) below) is still unknown. Here, we prove that there exists also a convex domain of

fixed perimeter minimizing d1. As we shall see, the measure and perimeter constraints lead to fairly different

optimal shapes.

The third and main purpose of the present paper is to perform several numerical experiments in order to

formulate new conjectures about the shape of the optimal planar convex domain. Among regular polygons

of given measure it appears clearly that the regular pentagon is the minimizer. We also compare the least

Steklov eigenvalue of the regular pentagon with the Steklov eigenvalue of general (not necessarily regular)

polygons having up to 8 sides (triangles, quadrilaterals, polygons, hexagons, heptagons, octagons); even in

this enlarged class (with fixed measure), the regular pentagon appears to have the least Steklov eigenvalue.

Finally, we also consider some “rounded polygons” (the so-called Reuleaux polygons) and the regular pen-

tagon still seems to be a good candidate to be the absolute minimizer. Hence, quite surprisingly, for domains
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having fixed measure our results strongly suggest that the optimal planar shape is the regular pentagon. This

result seems to be connected with a similar result by Bass-Horák-McKenna [6] for a different positivity

preserving property for the biharmonic operator, see Remark 1 below. Then we switch to domains having

fixed perimeter and we show that several “deformation maps” (which are not monotonic for domains having

fixed measure) become monotonic. Moreover, for domains having fixed perimeter our results suggest that

the optimal planar shape is the disk. This is related to a long-standing conjecture by Kuttler [20] which is

false without the convexity constraint, see Theorem 3 below.

This paper is organized as follows. In Section 2 we explain in detail the applications of the least Steklov

eigenvalue. In Section 3 we survey the existing results on the optimization of the least Steklov eigenvalue

d1 and we prove the existence of an optimal domain when the minimization of d1 is set up in the class

of convex domains of given perimeter. In Section 4 we briefly describe the application of the Method of

Fundamental Solutions to the numerical solution of the least Steklov eigenvalue problem. In Section 5 we

compute numerically the least eigenvalue d1 for several planar convex domains; we deal with both classes of

domains of given measure or perimeter.

2 The role of the least Steklov eigenvalue

Throughout this section, Ω is a bounded domain of Rn (n ≥ 2). Although the physical dimension is n = 2,

from a mathematical point of view it is straightforward to extend (3), (4), (5), and (6) to higher dimensions.

In particular, (6) shows that d1 has a deep meaning in functional analysis, regardless of the space dimension.

Moreover, also the estimate in Section 2.2 shows that it is of some interest to consider the general case n ≥ 3.

2.1 Positivity preserving

We are interested in finding conditions on Ω and on a such that the assumption f ≥ 0 implies that the solution

u to (4) exists and is positive. This is the so-called positivity preserving property, namely the property which

ensures that the deflection u has the same sign as the the vertical load f .

For any continuous function φ, the notation φ 	 0 means φ(x) ≥ 0 for all x and φ 6≡ 0. If φ is not

continuous the same is intended a.e.

Denote by d∂Ω = d∂Ω(x) > 0 the distance function from x ∈ Ω to ∂Ω, then the following result holds

Theorem 1 ([7, 17]). Assume that ∂Ω ∈ C2. Let a ∈ C0(∂Ω), f ∈ L2(Ω), and consider the problem (4).

There exists δc := δc(Ω) ∈ [−∞, 0) such that:

1. If a ≥ d1 and if 0 � f ∈ L2(Ω), then (4) admits no positive solutions.

2. If a = d1, then (4) admits a positive eigenfunction u1 > 0 in Ω for f = 0. Moreover, u1 is unique up to

multiples.

3. If a � d1, then for all f ∈ L2(Ω) there exists a unique solution u to (4). If also a ≥ 0 and f 	 0, then the

solution u is strictly superharmonic in Ω.

4. If δc ≤ a � d1, then 0 � f ∈ L2(Ω) implies u 	 0 in Ω.

5. If δc < a � d1, then 0 � f ∈ L2(Ω) implies u ≥ cf d∂Ω in Ω for some cf > 0.

6. If a < δc, then there are 0 � f ∈ L2(Ω) with 0 � u.

7. If Ω = B, the unit ball, then δc = −∞.

Going back to the hinged plate model discussed in the Introduction, Theorem 1 yields the positivity

preserving property for the hinged plate in planar convex domains. Recall that the physical bounds for the

Poisson ratio are given in (2).

Corollary 1 ([27]). Let Ω ⊂ R2 be a bounded convex domain with ∂Ω ∈ C2 and assume (2). Then for all

f ∈ L2(Ω) there exists a unique u ∈ H2 ∩ H1
0 (Ω) minimizer of the elastic energy functional J defined in

(1). The minimizer u is the unique weak solution to (3). Moreover, f 	 0 implies that there exists cf > 0

such that u ≥ cf d∂Ω and u is strictly superharmonic in Ω.
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2.2 A priori estimates for harmonic functions

Let Ω ⊂ Rn be a bounded domain with Lipschitz boundary ∂Ω. Let g ∈ L2(∂Ω) and consider the problem
{

∆v = 0 in Ω
v = g on ∂Ω .

We are here interested in the optimal constant δ1(Ω) for the a priori estimate

δ1(Ω) · ‖v‖2L2(Ω) ≤ ‖g‖2L2(∂Ω).

In order to characterize variationally δ1, we introduce the space

H := closure of {v ∈ C2(Ω); ∆v = 0 in Ω} w.r.t. the norm ‖ · ‖L2(∂Ω). (7)

Then we define

δ1 = δ1(Ω) := min
h∈H\{0}

∫

∂Ω
h2 dω

∫

Ω
h2 dx

. (8)

The minimum is achieved. To see this, combine the continuous map (for weakly harmonic functions)

H−1/2(∂Ω) ⊂ L2(Ω) (see Théorème 6.6 in Chapter 2 in [23]) with the compact embedding L2(∂Ω) ⊂
H−1/2(∂Ω).

Fichera’s original principle [13] was stated in smooth domains, namely ∂Ω ∈ C2. Here we need the

result for convex domains:

Theorem 2 ([8, 13]). If Ω ⊂ Rn is open bounded with Lipschitz boundary, then δ1(Ω) admits a minimizer

h ∈ H\{0}. If we also assume that Ω is convex then this minimizer is positive, unique up to a constant

multiplier and δ1 (Ω) = d1 (Ω).

This principle may be further extended to nonconvex nonsmooth domains Ω, provided ∂Ω satisfies the

uniform outer ball condition, see [8].

3 Minimization of the least Steklov eigenvalue

In 1968, Smith [31] conjectured that a Faber-Krahn-type inequality holds for the least Steklov eigenvalue:

For any bounded domain Ω ⊂ R2, one has

d1(Ω) ≥ d1(Ω
∗), (9)

where Ω∗ denotes a ball such that |Ω∗| = |Ω|. Smith [31] also gives a proof of (9). However, as noticed by

Kuttler and Sigillito, his proof contains a gap, see the “Note added in proof” in [32] where Smith also writes:

Although the result is probably true, a correct proof has not yet been found.

From [7] we know that d1(B) = n, where B is the unit ball in Rn. Hence, in particular, for planar

domains Ω of measure π (as the unit disk), (9) would mean that d1(Ω) ≥ 2. A couple of years later, Kuttler

[20] showed that for the square Ω4 = (0,
√
π)2 one has d1(Ω4) < 1.9889.... This estimate was subsequently

improved in [12] by

d1(Ω4) < 1.96256. (10)

Therefore, (9) is false. For this reason, Kuttler [20] suggests a different and weaker conjecture.

Let Ω ⊂ Rn be a smooth bounded domain such that |∂Ω| = |∂B|, where | · | represents the (n − 1)-

Hausdorff measure. Then, n = d1(B) ≤ d1(Ω).

Kuttler gives numerical results on some rectangles which support this conjecture. However, the next

result states that it is not true that the ball has the smallest d1 among all domains having the same perimeter.
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Theorem 3 ([8]). Let Dε = {x ∈ R2; ε < |x| < 1} and let Ωε ⊂ Rn (n ≥ 2) be such that

Ωε = Dε × (0, 1)n−2 ;

in particular, if n = 2 we have Ωε = Dε. Then, lim
ε→0+

d1 (Ωε) = 0.

Note that with a suitable scaling, for any bounded domain Ω and any k > 0, one has

d1(kΩ) = k−1d1(Ω). (11)

The homogeneity property (11) shows that d1(kΩ) → 0 as k → ∞. This suggests that d1(Ω) becomes

“smaller” when the domain Ω becomes “larger”. However, in view of Theorem 3, we know that the map

Ω 7→ d1(Ω) is not monotone decreasing with respect to domain inclusion. This fact makes the minimization

problem very delicate. For this reason, and since the lower bound

d1(Ω) ≥ n min
x∈∂Ω

κ(x)

is available when ∂Ω ∈ C2 has positive mean curvature κ (see [12, 29]), Bucur-Gazzola [9] have addressed

the problem of minimizing d1(Ω) among convex domains Ω of fixed measure. In this class, they proved that

the optimal shape does exist.

Theorem 4 ([9]). Among all convex domains in Rn having the same measure as the unit ball B, there exists

an optimal one, minimizing d1.

As suggested in [9], Theorem 4 should be complemented with the description of the optimal convex

shape. This appears quite challenging since, in view of (10), we know that the optimal planar convex domain

is not a disk. In Section 5.1 we show numerical results which suggest that the optimal shape could be the

regular pentagon.

With similar arguments, complemented with a continuity result from [10], we prove here the following

Theorem 5. Among all convex domains in Rn having the same perimeter as the unit ball B, there exists an

optimal one, minimizing d1.

Proof. Consider a sequence {Ωm} ⊂ Rn of convex domains having the same perimeter as the unit ball

B ⊂ Rn such that d1(Ωm) → inf d1, where the infimum of d1(ω) is taken among all convex sets ω whose

perimeter equals |∂B|. By [9, Lemma 5.3] we know that the sequence {Ωm} is bounded (up to a translation,

it is contained in some fixed ball of sufficiently large radius R > 0), since otherwise d1(Ωm) → +∞.

This fact, combined with Blaschke selection Theorem [30, Theorem 1.8.6], shows that, up to a subsequence,

{Ωm} converges in the Hausdorff metric to a convex domain Ω. Hence, by [9, Theorem 5.1] (continuity of

the map Ω 7→ d1(Ω) with respect to Hausdorff convergence of convex domains), we know that

d1(Ω) = lim
m→∞

d1(Ωm) = inf
|∂ω|=|∂B|

d1(ω) .

In view of [10, Lemma 4.4] we know that |∂Ω| = |∂Ωm| = |∂B| so that Ω is an absolute minimizer in the

class of domains having perimeter equal to |∂B|.

Also Theorem 5 should be complemented with the description of the optimal shape. In Section 5.2 we

show numerical results which suggest that the optimal shape could be the disk.
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4 Brief description of the numerical method

In this section we describe the application of the Method of Fundamental Solutions (MFS) for the numer-

ical solution of the Steklov eigenvalue problem. The MFS is a meshfree numerical method for which the

approximations are made by particular solutions built using the fundamental solution associated to the par-

tial differential equation of the problem. For the Steklov eigenvalue problem, we consider the fundamental

solution of the biharmonic equation

Φ(r) = r2 log(r), where r = |x|. (12)

The MFS approximation is given by a linear combination

u(x) ≈ ũ(x) =
N
∑

j=1

αjΦ(|x− yj |) +
N
∑

j=1

βj∂nyj
Φ(|x− yj |), (13)

where yj , j = 1, ..., N are distinct source points placed on an admissible source set (see e.g. [1]). For

instance, when Ω is bounded and simply connected, we can take the boundary of an enclosing open set

Γ̂ = ∂Ω̂ with Ω̂ ⊃ Ω̄. By ∂nyj
Φ(|x− yj |) we denote the normal derivative of the function Φ(|x− yj |) at the

point yj ∈ Γ̂. We remark that the fundamental solution Φ in (12) is an analytic function except at the origin

where it has a singularity and thus, the MFS approximation (13) is analytic in Ω because the source points

do not intersect Ω̄.

The coefficients αj and βj will be calculated by fitting the boundary conditions. As in [2] or [3] we

define m collocation points x1, ..., xm almost equally spaced on Γ and the approximated normal vectors

ñi = (xi − xi−1)
⊥ + (xi+1 − xi)

⊥,

where (v1, v2)
⊥ := −(v2, v1) for all (v1, v2) ∈ R2. The source points are defined by the sum

yi = xi + β
ñi

|ñi|
,

for a constant β > 0 chosen such that the source points remain outside Ω̄. Thus, imposing the boundary

conditions of the Steklov eigenvalue problem at the collocation points we obtain a (2m) × (2m) linear

system
{

ũ(xi) = 0, i = 1, ...,m
∆ũ(xi)− dũν(xi) = 0, i = 1, ...,m.

(14)

We will denote by M(d) the matrix of this linear system. The numerical approximations for the Steklov

eigenvalues are determined by seeking the values d for which the matrix M(d) is not invertible, for example

solving the nonlinear equation in d, det(M(d)) = 0. As in [2], we consider the real function

g(d) = log (|det(M(d))|)

and search for the local minima of this function using an algorithm based on the golden ratio search method.

Using the logarithmic function, the null determinant becomes a singularity that can be seen in the graph plot

of the function g. To illustrate this fact, in Figure 1 we plot the function g(d) obtained for the unit disk with

m = 40 and β = 0.4. The dashed lines are the exact Steklov eigenvalues of the unit disk, see [12, Theorem

1.3]. Once we have calculated an approximated Steklov eigenvalue d̃, a corresponding eigenfunction is

obtained using a collocation method with m + 1 points, x1, · · · , xm on Γ, a point xm+1 ∈ Ω and an extra

source point ym+1 ∈ Ω̄C . The approximation is given by

u(x) ≈ ũ(x) =

m+1
∑

j=1

αm+1Φ(x− ym+1) +

m
∑

j=1

βm∂nym
Φ(x− ym)
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Figure 1: Plot of the graph of g(d) for the unit disk.

and to exclude the trivial solution ũ(x) ≡ 0, the coefficients αj and βj are obtained by solving the system







ũ(xi) = 0, i = 1, ...,m
ũ(xm+1) = 1

∆ũ(xi)− d̃ũν(xi) = 0, i = 1, ...,m.

5 Numerics

In this section we describe our numerical results. We computed the least Steklov eigenvalue d1(Ω) for

several planar convex domains. We performed a large scale study on convex polygons as in a recent paper

[5]. We considered the shape optimization problem both with area and perimeter constraints. In the next two

subsections we present the numerics that we gathered for both problems.

5.1 Results with area constraint

Throughout this subsection we denote by Ωn a regular n-polygon of measure π having n sides and by D the

unit disk. In the next table we display the numerically found values of d1(Ωn).

n 3 4 5 6 7 8 9 10

d1(Ωn) 2.02522 1.96179 1.95702 1.96164 1.96733 1.97255 1.97654 1.97974

Several remarks are in order. First, it appears that the equilateral triangle Ω3 is the maximizer. Moreover,

according to (10) we know that for the square Ω4 we have d1(Ω4) < 1.96256 while we find that d1(Ω4) ≈
1.96179. Note also that the regular pentagon Ω5 appears as the minimizer, a first good reason to believe it is

also the minimizer among general convex domains. Finally, it seems that n 7→ d1(Ωn) tends monotonically

to 2 = d1(D) for n ≥ 5 and n → ∞, see the dots in Figure 2.

Remark 1. Let Ω ⊂ R2 be a bounded domain, let c > 0 and let f ∈ L2(Ω). Consider the equation

∆2u + cu = f in Ω under Navier boundary conditions u = ∆u = 0 on ∂Ω. This problem represents

a simply supported plate whose projection on the plane is Ω; f is the external load, c is the “stiffness of

the resistance to deformation” whereas u is the vertical deformation of the plate. One is again interested in

the positivity preserving property, namely under which conditions on c > 0 and Ω the assumption f ≥ 0

implies that the solution u exists and is positive. This problem was addressed by McKenna-Walter [26] and,

some years later, intensively studied by Kawohl-Sweers [18]. It is known that there exists a maximal interval
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(0, c∗(Ω)] of values of c > 0 for which the positivity preserving property holds. One is then interested in

finding the optimal (largest) value of c∗(Ω) when Ω varies among convex planar domains of given measure.

Numerical results obtained in [6, Table 1] show, that among regular polygons, the maximum is attained by

the pentagon Ω5. Since d1(Ω) is the threshold for a in order to have the positivity preserving property in (4),

see Section 2.1, one can wonder if this result is somehow connected with our result.

If we add some constant curvature on the sides of Ω3 and we consider the so-called Reuleaux triangle

R3 [34], we numerically find d1(R3) ≈ 1.9812 < d1(Ω3). This suggests that one could lower the value

of d1(Ω5) by taking the corresponding Reuleaux pentagon R5 [34]. This does not seem to be the case. In

Figure 2 we compare these values for polygons having an odd number of sides. It turns out that only for the

triangle, the Reuleaux polygon decreases d1. So, Ω5 remains a good candidate to be the absolute minimizer.

5 10 15 20 25

1.96

1.98

2.00

2.02

Figure 2: The maps n 7→ d1(Ωn) (regular polygons, dots) and n 7→ d1(Rn) (Reuleaux polygons, circles).

In Figure 3 we plot the results for triangles of measure π, as a function of their perimeter. The minimum

is attained by the equilateral triangle (large grey point), which has also the smallest perimeter. According

to [5, Definition 2.1] we say that an isosceles triangle is subequilateral (resp. superequilateral) if the angle

between its two equal sides is smaller (resp. larger) than π/3. The cloud of points in Figure 3 is bounded

above and below (respectively) by subequilateral and superequilateral triangles. Hence, all the triangles on

the boundary of the cloud of points are isosceles triangles. The fact that the isosceles triangles appear as

extremal sets in the class of triangles has already been observed in [4] when studying bounds for the spectral

gap of the Laplacian.

8.5 9.0 9.5 10.02.00

2.05

2.10

2.15

2.20

2.25

2.30

Figure 3: The correspondence |∂Ω| 7→ d1(Ω) for triangles Ω of measure π.
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In Figure 4 we add to the plot of Figure 3 similar results for quadrilaterals identified with black dots. The

rectangles are marked with grey rectangles, and thus, for fixed perimeter (and area equal to π) they maximize

the eigenvalue d1 among polygons having at most 4 sides. On the other hand, for fixed perimeter and area

equal to π, superequilateral triangles minimize d1 among polygons having at most 4 sides. The square and

the equilateral triangle are marked with a large grey point.

7.0 7.5 8.0 8.5 9.0 9.5 10.0

2.0

2.2

2.4

2.6

2.8

Figure 4: The correspondence |∂Ω| 7→ d1(Ω) for triangles and quadrilaterals Ω of measure π.

In Figure 5 we add the pentagons also identified with black dots. The regular pentagon is the absolute

minimizer. Rectangles (grey rectangles) maximize the eigenvalue d1 among polygons (of area equal to π)

having at most 5 sides, only if the fixed perimeter is sufficiently large. Moreover, for fixed perimeter and area

equal to π, superequilateral triangles minimize d1 among polygons having at most 5 sides. Regular polygons

are marked with a large grey point.

7.0 8.0 8.5 9.0 9.5 10.0

2.2

2.4

2.6

2.8

Figure 5: The correspondence |∂Ω| 7→ d1(Ω) for polygons Ω of measure π having n ≤ 5 sides.
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In Figure 6 we plot the same map for regular polygons with n sides, for 3 ≤ n ≤ 8; the black dots now

represent hexagons, heptagons, and octagons. Our sample of polygons has 6100 triangles, 16000 quadrilat-

erals and 32500 n-polygons with 5 ≤ n ≤ 8. Again, we see that for fixed perimeter and area equal to π,

superequilateral triangles minimize d1 among polygons having at most 8 sides. Regular polygons are marked

with a large grey point.

6.5 7.0 7.5 8.0 8.5 9.0
1.90

1.95

2.00

2.05

2.10

2.15

2.20

Figure 6: The correspondence |∂Ω| 7→ d1(Ω) for n-polygons Ω up to n = 8 (measure π).

We note that, even among these irregular polygons, the minimum eigenvalue is attained by the regular

pentagon. We performed some optimization procedures of minimizing the least Steklov eigenvalue with

convexity constraint and keeping area equal to π. In all experiments, we started with different octagons and

our numerical method reached the regular pentagon. Thus, we believe that the regular pentagon is a good

candidate to be the absolute minimizer among general convex domains.
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We also studied the evolution of the eigenvalue d1 from the disk D to the equilateral triangle Ω3. We

start with three overlapped disks and then we move their centers on the vertices of an equilateral triangle

having sides of length L. Consider the convex hull of the union of the three disks, so that we obtain convex

domains such as in Figure 7.

L=0. L=0.6 L=1.2 L=1.8

Figure 7: Deformation of the disk into a triangle.

Each domain is normalized in such a way that its measure is always equal to π. In Figure 8 we plot d1 as

a function of L which varies between L = 0 (disk D) and L = 2
√
π/ 4

√
3 ≈ 2.69 (equilateral triangle Ω3).

0.5 1.0 1.5 2.0 2.5

1.99

2.00

2.01

2.02

Figure 8: The map L 7→ d1(Ω) when Ω is deformed as in Figure 7.

Similarly, if we start with four overlapped disks and then we move their centers on the vertices of a

square having sides of length L, we consider the convex hull of the union of the four disks. Here L varies

between L = 0 (disk D) and L =
√
π ≈ 1.77 (square Ω4) and the corresponding map L 7→ d1 is represented

in Figure 9.

0.5 1.0 1.5

1.97

1.98

1.99

2.00

Figure 9: The map L 7→ d1 when the disk is transformed into a square.

Note that both the maps in Figures 8 and 9 are not monotone.
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We then deform in a similar way the unit disk D into a regular pentagon Ω5 having same measure π. The

geometric deformation is well described in Figure 10.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
L=0

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
L=0.4

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

L=0.8

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

L=1.2

Figure 10: Deformation of the disk into a pentagon.

Here L varies between L = 0 (disk D) and L =

√

4π
√

5− 2
√
5/5 ≈ 1.35 (pentagon Ω5) and the map

L 7→ d1 is displayed in Figure 11.

0.2 0.4 0.6 0.8 1.0 1.2

1.97

1.98

1.99

2.00

Figure 11: The map L 7→ d1(Ω) when Ω is deformed as in Figure 10.

Finally, in Figure 12 we plot the map L 7→ d1 from L = 0 (disk) to L =
√

2π/3
√
3 ≈ 1.1 (hexagon)

for the same deformation.

0.2 0.4 0.6 0.8 1.0

1.970

1.975

1.980

1.985

1.990

1.995

2.000

Figure 12: The map L 7→ d1 when the disk is transformed into an hexagon.

Note that both the maps in Figures 11 and 12 are strictly decreasing.
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Now we consider ellipses with boundary defined by
{(

R cos(t), 1
R sin(t)

)

, t ∈ [0, 2π[
}

, for R ≥ 1,

which have area equal to π. In Figure 13 we plot the map R 7→ d1 which is strictly increasing. Note that by

[28, Formulae (5.11)-(5.12)] (see also [9, Lemma 5.3]) d1 → +∞ as R → +∞.

2 3 4 5

2.5

3.0

3.5

4.0

4.5

5.0

Figure 13: The map R 7→ d1 for ellipses from R = 1 (disk) to R → ∞ (segment).

Finally, we consider stadiums defined by the union of a rectangle whose sides have lengths equal to L1

and L2 and two semi-circles with diameter equal to L2, as represented in Figure 14. Then, in order to keep

area equal to π, we take L1 = π
L2

− πL2

4 . The ball corresponds to the case L2 = 2, for which we obtain

L1 = 0. Again, in view of [28], we know that d1 → +∞ as L2 → 0. In the left graph of Figure 15 we plot

the map L2 7→ d1 and in the right graph of the same Figure we present a zoom in a region near the ball. We

can observe that the map is not monotone.

L1

L2

Figure 14: A stadium.

0.8 1.0 1.2 1.4 1.6 1.8 2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

1.4 1.5 1.6 1.7 1.8 1.9 2.0
2.00

2.01

2.02

2.03

2.04

2.05

Figure 15: The map L2 7→ d1 for stadiums of measure π.
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5.2 Results with perimeter constraint

In this subsection we present some numerical results for the minimization of the Steklov eigenvalue d1 among

convex planar domains with a given perimeter. All the domains considered in this section have perimeter

equal to 2π. Note that for any k > 0 we have

|∂(kΩ)|2
|kΩ| =

|∂Ω|2
|Ω| .

This property, together with (11), enables us to transform the results for regular n-polygons Ωn of measure

π into similar results for regular n-polygons Ω♯
n of perimeter 2π according to the formula

d1(Ω
♯
n) =

√

n

π
tan

π

n
d1(Ωn) .

In the next table we show the numerical values of d1(Ω
♯
n).

n 3 4 5 6 7 8 9 10

d1(Ω
♯
n) 2.60458 2.21364 2.10443 2.05987 2.03791 2.02586 2.01830 2.01336

In Figure 16 we plot the eigenvalue d1(Ω
♯
n) for regular n-polygons with perimeter equal to 2π, as a

function of the number of sides n of the polygons for 3 ≤ n ≤ 25. It may not be completely evident from

the Figure, but the sequence is monotone decreasing.

10 15 20 25

2.1

2.2

2.3

2.4

2.5

2.6

Figure 16: The map n 7→ d1(Ω
♯
n) for regular n-polygons with perimeter equal to 2π.
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In Figure 17 we plot results for triangles having perimeter equal to 2π, as a function of the area. The min-

imum is attained by the equilateral triangle (large grey point), which has the largest area. The region defined

by the points is bounded above and below (respectively) by subequilateral and superequilateral triangles.

1.2 1.4 1.6 1.8

2.5

3.0

3.5

4.0

Figure 17: The correspondence |Ω| 7→ d1(Ω) for triangles Ω with perimeter equal to 2π.

In Figure 18 we add the plot of similar results for quadrilaterals identified with black dots. The rectangles

are again marked with grey rectangles, so that they maximize d1(Ω) for polygons with at most 4 sides having

perimeter 2π and fixed area |Ω|. Again, for fixed area and perimeter equal to 2π, superequilateral triangles

minimize d1 among polygons having at most 4 sides. The square and the equilateral triangle are marked with

a large grey point.

1.2 1.4 1.6 1.8 2.0 2.2 2.4
2.0

2.5

3.0

3.5

4.0

4.5

5.0

Figure 18: The correspondence |Ω| 7→ d1(Ω) for quadrilaterals and triangles Ω with perimeter equal to 2π.
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In Figure 19 we add the same plot for pentagons also identified with black dots. The rectangles (grey

rectangles) seem to maximize d1(Ω) for polygons with at most 5 sides having perimeter 2π only when the

fixed area |Ω| is small. Note also that for fixed area and perimeter equal to 2π, superequilateral triangles

minimize d1 also among polygons having at most 5 sides. Regular polygons are marked with a large grey

point.

1.5 2.0 2.5
2.0

2.5

3.0

3.5

4.0

4.5

5.0

Figure 19: The correspondence |Ω| 7→ d1(Ω) for polygons Ω with perimeter 2π having n ≤ 5 sides.

In Figure 20 we display similar results for regular polygons with n sides, with 3 ≤ n ≤ 8. The black

dots represent hexagons, heptagons, and octagons, whereas the regular polygons are marked with large grey

points. Also in this enlarged class rectangles (grey rectangles) seem to maximize d1(Ω) only when the fixed

area |Ω| is small whereas superequilateral triangles minimize d1(Ω) for any area.

1.5 2.0 2.5 3.0

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Figure 20: The correspondence |Ω| 7→ d1(Ω) for n-polygons Ω up to n = 8 (perimeter 2π).

In all these classes of n-polygons we observe that the eigenvalue d1 is minimized by the regular polygon

Ω♯
n. We believe that the same type of property holds for other classes of n-polygons with n > 8.
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Again we studied the evolution of the eigenvalue d1 from the disk D to regular polygons Ω♯
n, for n =

3, 4, 5, 6. We start with n overlapped disks with radius equal to R and move their centers on the vertices of

a regular n-polygon having sides of length L. Then we consider the convex hull of the union of the n disks

and, for 0 ≤ L ≤ 2π
n , we define R = 1 − nL

2π so that the domains have perimeter equal to 2π. In Figure 21

we display the maps L 7→ d1, for n = 3, 4, 5, 6. All these maps are monotone increasing.

0.5 1.0 1.5 2.0

2.1

2.2

2.3

2.4

2.5

0.5 1.0 1.5

2.05

2.10

2.15

2.20

0.2 0.4 0.6 0.8 1.0 1.2

2.02

2.04

2.06

2.08

0.2 0.4 0.6 0.8 1.0

2.01

2.02

2.03

2.04

2.05

Figure 21: The maps L 7→ d1(Ω) when Ω is deformed from the disk to regular polygons Ω♯
n, n = 3, 4, 5, 6.

Finally we considered the same map for stadiums as displayed in Figure 14. To keep perimeter equal

to 2π we define L1 = π
(

1− L2

2

)

and in Figure 22 we plot d1 as a function of L2 and a zoom of the same

graph in a region near the ball. We can observe that the map is now monotone decreasing.

0.8 1.0 1.2 1.4 1.6 1.8 2.0

2.5

3.0

3.5

1.80 1.85 1.90 1.95 2.00
2.000

2.005

2.010

2.015

2.020

Figure 22: The map L2 7→ d1 for stadiums with perimeter equal to 2π.

The monotonicity of the maps in Figures 16, 21 and 22 was not present in the case of domains of fixed

measure, see Figures 2, 8, 9, and 15. This fact, together with all the numerical results we found, suggests

that among all convex planar domains with a fixed perimeter, d1 is minimized by the disk. Equivalently, for
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any convex planar domain Ω we would have

d1(Ω) ≥
4π

|∂Ω| ,

with equality if Ω is a ball.
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