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Abstract. We study the Riccati equation (BSRE) arising in a class of quadratic optimal control

problems with infinite dimensional stochastic differential state equation and infinite horizon cost

functional. We allow the coefficients, both in the state equation and in the cost, to be random.
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real axis that involve quadratic non-linearities and take values in a non-Hilbertian space. We prove
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Key words. Infinite horizon, backward stochastic Riccati equation, linear quadratic optimal

control, stochastic coefficients

AMS subject classifications. 93E20, 60H10

1. Introduction

In this paper we will be concerned with a linear quadratic control problem with stochastic coeffi-
cients and infinite horizon cost. We consider a system governed by the following infinite dimensional
state equation :{

dy(t) = (Ay(t) + A](t)y(t) + B(t)u(t)) dt + C(t)y(t) dW (t), t ≥ 0,
y(0) = x.

(1.1)

where the state y takes values in an Hilbert space H, the control u takes values in another Hilbert
space U , the operator A is unbounded and all the other coefficients are allowed to be random. More
precisely A], B, C are assumed to be bounded adapted stochastic processes taking values in suitable
spaces of bounded linear operators. Our aim is to minimize an infinite horizon cost functional as:

J∞(0, x, u) = E
∫ +∞

0

[〈S(s)y(s), y(s)〉H + |u(s)|2]ds (1.2)

where S is again a bounded adapted processes taking values in the cone Σ+(H) of bounded symmetric
non negative operators in H.

Linear quadratic optimal control problems with stochastic coefficients and the corresponding
backward stochastic Riccati equations (BSREs) were recently intensively studied in the finite-horizon
and finite-dimensional case, see [2], [3], [10], [11], [12], [13], [16], [17]. On the other side linear
quadratic optimal control problems with deterministic coefficients have been treated in the infinite
dimensional case both with finite and infinite horizon case, see [6], [15], [21] covering a large class
of optimal control problems for concrete stochastic partial differential equations with deterministic
coefficients. Finally the infinite dimensional case with stochastic coefficients but with finite horizon
was studied in [8]. We recall that, in this last situation, the Riccati equation is a backward stochastic
differential equation (with final condition at finite time T > 0) that takes values in the space L(H) of
linear and bounded operators. Clearly this is not an Hilbert space as soon as H is infinite dimensional
thus new difficulties are introduced in the picture since some essential tools in stochastic calculus can
not be used. To cope with this difficulty in [8] we have proposed the notion of generalized solution
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to the BSRE that will be widely used in this paper. We notice that this definition characterizes only
the process P . This is nevertheless enough to perform the synthesis of the optimal control.

As in the deterministic coefficients case, see for instance [21], a “finite cost” condition (or “sta-
bilizability” condition) has to be required in order to ensure that the infinite horizon cost is not
trivially equal to +∞. When coefficients are allowed to be random the choice of the notion of stabi-
lizability is not completely obvious. Indeed it turns out here that the right formulation is to impose
that for all t ∈ [0,+∞) and all x ∈ H there exists an adapted control u ∈ L2([t,+∞)× Ω; U) such
that

EFt

∫ +∞

t

(|
√

S(s)yt,x,u(s)|2 + |u(s)|2) ds < Mt,x P− a.s. (1.3)

where Mt,x is a suitable constant that depends on t ad x.
Then one needs to give meaning to the following BSRE equation on the whole real axis and with

values in L(H)

−dP (t) = (A∗P (t) + P (t)A + A∗] (t)P (t) + P (t)A](t)− P (t)B(t)B∗(t)P (t) + S(t)) dt+
Tr[C∗(t)P (t)C(t) + C∗(t)Q(t) + Q(t)C(t)] dt + Q(t) dW (t), t ∈ [0,+∞) (1.4)

For us a solution of equation (1.4) will be any adapted, strongly continuous, process P with values in
Σ+(H) such that, for all T > 0, P restricted to [0, T ] is the unique generalized solution, in the sense
of [8], to the BSRE with final condition, at time T , equal to P (T ) (that is: equal to the solution
itself computed at time T ). We notice that the above defined solution of BSRE is not necessarily
bounded in time, differently from the usual requirement in the theory of infinite horizon backward
stochastic equations, see [9] for the infinite dimensional case and [18], with the bibliography therein,
for the finite dimensional case.

Once the above definitions are suitably given we can prove, by a monotonicity argument, that
stabilizability is equivalent to the existence of a solution to the BSRE (1.4) in [0,∞[. Moreover we
show that, in the above case, a minimal non negative solution of (1.4) exists and that such minimal
solution determines the optimal cost and allows to characterize the optimal feedback (now stochastic)
of the problem. In other words we achieve the synthesis of the optimal control generalizing classical
results holding in the deterministic coefficients case (see for instance [14] and [21] and references
within) with the backward stochastic Riccati equation (1.4) that plays the role that was played in
the quoted papers by the algebraic Riccati equation.

Then we address the problem of the uniqueness of the non negative solution of equation (1.4). We
prove that if the minimal non-negative solution of equation (1.4) stabilizes the state equation with
respect to the identity uniformly with respect to time (see definition 4.3) then it is also maximal
and therefore it is the unique solution of (1.4) (at least among all bounded, adapted, Σ+(H) valued
processes). The condition stated in definition 4.3 is a kind of observability requirement and always
holds if S(t) ≥ εI for all t > 0 and P is bounded uniformly in time. Under the same assumption we
show that the unique non negative solution of equation (1.4) enjoys attractivity properties among
non-negative solutions of finite-horizon Riccati equations.

We also investigate special features of the stationary case. We choose the same framework as in [5]
and [22] in which stationarity is expressed in terms of cocycle, measure preserving, transformations of
the underlying probability space, see definition 5.1. We show that if all the coefficients are stationary
then the minimal non-negative solution of the Riccati equation is stationary. This simplifies the
formulation of many of the results holding in the general case.

Finally we show that our general results can be applied to the concrete case of the optimal, infinite
horizon, linear-quadratic control of a wave equation in random media. We prove stabilizability using
a simple, Lyapunov type, sufficient condition based on existence of a deterministic algebraic super-
solution of equation (2.8) (see proposition 3.8).

The paper is organized as follows: in section 2 we state the problem and fix notations and general
framework. We also recall previous results included the definition of generalized solution to the
backward stochastic Riccati equation in finite horizon and infinite dimensions taken from [8]. In
section 3 we state and prove the main results on existence of a solution to the BSRE (1.4) and on
the synthesis of the optimal control for the infinite horizon problem. In section 4 we study uniqueness
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and attractivity properties of the solution to equation (1.4). Section 5 is devoted to the stationary
case and section 6 to the example on wave equation in random media.

2. Notation, Assumptions and Preliminary results

By H, U and Ξ we will always indicate real separable Hilbert spaces.
If K is an Hilbert space its inner scalar product and norm will be denoted by 〈·, ·〉K and | · |K

omitting the K when no confusion is possible.
For any Banach space E by B(E) we denote its Borel σ-field.
For any pair K1 and K2 of separable real Hilbert spaces we denote by L(K1,K2) the Ba-

nach space of linear and bounded operators from K1 to K2 endowed by the norm |T |L(K1,K2) =
sup{x∈K1,|x|K1=1} |Tx|K2 (as usual L(H) = L(H,H)).

By Σ(H) we denote the subspace of all symmetric and bounded operators and by Σ+(H) the
cone of Σ(H) that contains all positive semidefinite operators.

L2(K, H) denotes the Hilbert space of Hilbert-Schmidt operators from K to H, endowed with
the Hilbert-Schmidt norm |T |2L2(K,H) =

∑∞
i=1 |Tei|2H ({ei : i ∈ N} being an orthonormal basis in

K) and we set L2(H,H) = L2(H). Σ2(H) is the subset of L2(H) that consists in all linear and
symmetric operators and Σ+

2 (H) is the cone of Σ2(H) that consists in all non-negative operators.

The cylindrical Wiener Process
We fix a probability basis (Ω,F , P). A cylindrical Wiener process with value in Ξ is a family

W (t), t ≥ 0, of linear mappings Ξ → L2(Ω) such that:
i) for every h ∈ Ξ, {W (t)h, t ≥ 0} is a real (continuous) Wiener process;
ii) for every h, k ∈ Ξ and t, s ≥ 0, E(W (t)h ·W (s)k) = (t ∧ s)〈h, k〉Ξ.

We denote by Ft its natural filtration augmented with the set N of P-null sets of F . As it is well
known the filtration Ft satisfies the usual conditions. By EFt we denote the conditional expectation
with respect to Ft.

Finally by P we denote the predictable σ-field on Ω× [0, T ].

Some classes of stochastic process
Let K be any separable Hilbert space and let B(K) be its Borel σ-field on K. The following classes
of processes will be used in this work:

• Lp
P(Ω×[0, T ];K), p ∈ [1,+∞] denotes the subset of Lp(Ω×[0, T ];K), given by all equivalence

classes admitting a predictable version. This space is endowed with the natural norm

|Y |p
Lp
P(Ω×[0,T ];K)

= E
∫ T

0

|Ys|pK ds

Elements of this space are defined up to modification.
• Lp

P(Ω;L2([0, T ];K)) denotes the space of equivalence classes of processes Y , admitting a
predictable version such that the norm:

|Y |p
Lp
P(Ω;L2([0,T ];K))

= E
(∫ T

0

|Ys|2K ds
)p/2

is finite. Elements of this space are defined up to modification.
• CP([0, T ];Lp(Ω; K)) denotes the space of K-valued processes Y such that Y : [0, T ] →

Lp(Ω,K) is continuous and Y has a predictable modification, endowed with the norm:

|Y |pCP([0,T ];Lp(Ω;K)) = sup
t∈[0,T ]

E|Yt|pK

Elements of CP([0, T ];Lp(Ω; K)) are identified up to modification.
• Lp

P(Ω; C([0, T ];K)) denotes the space of predictable processes Y with continuous paths in
K, such that the norm

|Y |p
Lp
P(Ω;C([0,T ];K))

= E sup
t∈[0,T ]

|Yt|pK

is finite. Elements of this space are defined up to indistinguishability.
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Now let us consider the space L(H) of linear and bounded operators from a separable Hilbert
space H to H. We introduce the σ-field:

LS = σ
{
{T ∈ L(H) : Tu ∈ A}, where u ∈ H and A ∈ B(H)

}
Following again [7] the elements of LS are called strongly measurable.

We notice that the maps P → |P |L(H) and (P, u) → Pu are measurable from (L(H),LS) to
(R,B(R)) and from (L(H)×H,LS ⊗ B(H)) to (H,B(H)) respectively.

Moreover LS is identical to the weak σ-field:

LS = σ
{
{T ∈ L(H) : 〈Tu, x〉H ∈ A}, where u, x ∈ H and A ∈ B(R)

}
We define the following spaces:
• L∞P,S([0, T ] × Ω; L(H)) the space of essentially bounded, strongly measurable predictable

processes Y : Ω× [0, T ] → L(H). That is Y is measurable from (Ω× [0, T ],P) to (L(H),LS)
and the real valued random valued |Y |L(H) is in L∞(Ω× [0, T ]; R). By |Y |L∞P,S(Ω×[0,T ];L(H))

we indicate the norm of |Y |L(H) in L∞(Ω×[0, T ]; R). Elements of this space are identified up
to modification. Similar definition (with obvious modifications) is given for L∞P,S([0,∞) ×
Ω; L(H))

• L∞S (Ω,Ft;L(H)) is the space of measurable maps Y : (Ω,Ft) → (L(H),LS) such that
|Y |L(H) is in L∞(Ω; R). By |Y |L∞S (Ω;L(H)) we indicate the norm of |Y |L(H) in L∞(Ω; R).

• L1
P,S([0, T ];L∞(Ω, L(H))) is the space of predictable, strongly measurable processes such

that |Y |L(H) is in L1([0, T ];L∞(Ω; R)). By |Y |L1
P,S([0,T ];L∞(Ω,L(H))) we indicate the norm

of |Y |L(H) in L1([0, T ];L∞(Ω; R)). Elements of this space are identified up to modification.
Identical definition is given for L1

P,S([0,∞);L∞(Ω, L(H)))

Similarly (with obvious changes) we define: L∞P,S(Ω× [0, T ]; Σ+(H)), L∞P,S(Ω× [0, T ];L(U,H))),
L1
P,S([0, T ];L∞(Ω,Σ+(H))) and L∞S (Ω,Ft; Σ+(H)). Elements of these spaces are identified up to

modification.

Statement of the problem and general assumptions on the coefficients
We consider the following infinite dimensional stochastic differential equation for t > 0:{

dy(s) = (Ay(s) + A](s)y(s) + B(s)u(s)) ds + C(s)y(s) dW (s) s ≥ t
y(t) = x

(2.1)

where y is an H valued process and representing the state of the system and is our unknown, u is
the control and takes value in U and the initial data x is in H. To stress its dependence on u, t and
x we will denote the mild solution of equation (2.1) by yt,x,u when needed.

Our purpose is to minimize with respect to u the cost functional,

J∞(0, x, u) = E
∫ +∞

0

[〈S(s)y0,x,u(s), y0,x,u(s)〉H + |u(s)|2]ds (2.2)

We also introduce the following random variables representing, for t ∈ [0,+∞) the stochastic
value function of the problem:

J∞(t, x, u) = EFt

∫ +∞

t

[〈S(s)yt,x,u(s), yt,x,u(s)〉H + |u(s)|2]ds

We will work under the following general assumptions on A, A], B and C that will hold throughout
the paper:

Hypothesis 2.1.
A1) A : D(A) ⊂ H → H is the infinitesimal generator of a C0 semigroup etA : H → H with

|etA|L(H) ≤ MAetaA

where MA ≥ 1 and aA ∈ R.
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A2) We assume that A] ∈ L∞P,S((0,+∞)×Ω; L(H)). We denote by MA] a positive constant such
that: |A](t, ω)|L(H) < MA], P-a.s. and for a.e. t ∈ (0,+∞).

Moreover we assume that B ∈ L∞P,S((0,+∞) × Ω; L(U,H)) and we denote by MB a
positive constant such that: |B(t, ω)|L(U,H) < MB, P-a.s. and for a.e. t ∈ (0,+∞).

A3) We assume that C is of the form: C =
∑∞

i=1 Ci(·, fi)Ξ, where {fi : i ∈ N} is an orthonormal
basis in Ξ. Moreover we suppose that Ci ∈ L∞P,S((0,+∞)× Ω; L(H)) and( ∞∑

i=1

|Ci(t, ω)|2L(H)

)1/2

< MC , P−a.s. for a.e. t ∈ (0,+∞)

for a suitable positive constant MC .
A4) S ∈ L1

P,S((0,+∞);L∞(Ω;Σ+(H))).

We recall that under these hypotheses there exists a unique mild solution y ∈ CP([0, T ];L2(Ω; H))
of equation (2.1), see theorem 7.4 in [7].

Results on the finite horizon case
Next we recall some results obtained in [8] for the finite horizon case. We considered there the

following finite horizon backward Riccati equation
−dP (t) = (A∗P (t) + P (t)A + A∗] (t)P (t) + P (t)A](t)− P (t)B(t)B∗(t)P (t) + S(t)) dt+

Tr[C∗(t)P (t)C(t) + C∗(t)Q(t) + Q(t)C(t)] dt + Q(t) dW (t), t ∈ [0, T ]

P (T ) = PT

(2.3)

Two notions of solutions, were introduced according to different hypotheses on the regularity of the
data PT and S.

Definition 2.2. Assume that PT ∈ L2(Ω,FT ; Σ+
2 (H)) and S ∈ L2

P(Ω × [0, T ]; Σ+
2 (H))) and fix

T0 ∈ [0, T ]. A mild solution for problem (2.3), considered in [T0, T ] is a pair (P,Q) with P ∈
L2
P(Ω, C([T0, T ]; Σ2(H)))∩L∞P,S(Ω; C([T0, T ]; Σ+(H))) and Q ∈ L2

P(Ω× (T0, T );L2(Ξ;Σ2(H))) such
that for all t ∈ [T0, T ]

(2.4)

P (t) =
∫ T

t

e(s−t)A∗Tr[C∗(s)P (s)C(s) + C∗(s)Q(s) + Q(s)C(s)]e(s−t)A ds

+e(T−t)A∗PT e(T−t)A +
∫ T

t

e(s−t)A∗ [S(s) + A∗] (s)P (s) + P (s)A](s)]e(s−t)A ds

+
∫ T

t

e(s−t)A∗Q(s)e(s−t)AdW (s)−
∫ T

t

e(s−t)A∗P (s)B(s)B∗(s)P (s)e(s−t)A ds P-a.s.

In the general case, i.e. when PT ∈ L∞S (Ω,FT ; Σ+(H)) and S ∈ L1
P,S([0, T ];L∞(Ω; Σ+(H))) we

have the following:

Definition 2.3. A process P ∈ L∞P,S(Ω× [0, T ]; Σ+(H)), is a generalized solution of equation (2.3)
if there exists a sequence (SN , PN , QN ) where:

(i) SN ∈ L1
P,S([0, T ];L∞(Ω;Σ+(H)))∩L2

P(Ω×[0, T ]; Σ2(H)) and there exists a positive function
c∈L1([0, T ]) such that |SN (t)|L(H) ≤ c(t), for all N ∈ N, P-a.s. for a.e. t ∈ [0, T ].

(ii) the pair (PN , QN ) is a mild solution to the Riccati equation (2.3) in the space of Hilbert
Schmidt operators, with forcing term SN and final data PN

T = PN (T ). Namely (PN , QN )
is the unique mild solution of:

−dPN (t) = (A∗PN (t) + PN (t)A + Tr[C∗(t)PN (t)C(t) + C∗(t)QN (t) + QN (t)C(t)]) dt

+(A∗] (t)P
N (t)+PN (t)A](t)−PN (t)B(t)B∗(t)PN (t)+SN (t)) dt + QN (t) dW (t), t ∈ [0, T ],

PN (T ) = PN
T
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such that:
(iii) for all x ∈ H:

SN (t, ω)x → S(t, ω)x in H P a.s. for a.e. t ∈ [0, T ]

(iv) for every t ∈ [0, T ] and for all x ∈ H:

PN (t, ω)x → P (t, ω)x in H P a.s.

In the next propositions we enumerate the results on equation (2.3) that, proved in [8], will be
useful here.

Proposition 2.4. Assume Hypotheses A1)-A4) and choose PT in L∞S (Ω,FT ; Σ+(H)) then
(1) The generalized solution P of equation (2.3) exists and is unique (see [8] theorem 6.6).
(2) There exists a version of P such that for all x ∈ H, P (t)x ∈ CP([0, T ];Lp(Ω;H)) and

P (t) ∈ L(H), P-a.s. (see remark 6.2, lemma 6.5 and relation (6.9) in [8]).
(3) The following “fundamental relation” holds for every 0 ≤ t ≤ s ≤ T , all u ∈ L2

P(Ω×[t, T ];U)
and all x ∈ H:

〈P (t)x, x〉H = EFt〈P (s)yt,x,u(s), yt,x,u(s)〉H + EFt

∫ s

t

(|
√

S(r)yt,x,u(r)|2H + |u(r)|2H) dr

−EFt

∫ s

t

|u(r) + B∗P (r)yt,x,u(r)|2H dr P− a.s.
(2.5)

(see lemma 6.4 in [8]) .

Then it is possible to perform the synthesis on the optimal control for the finite horizon problem.
Setting

JT (t, x, u)=̇ inf
u

EFt

[∫ T

t

(
|
√

S(s)y(s)|2H + |u(s)|2H
)

ds + 〈PT y(T ), y(T )〉H

]
the main result of [8] reads:

remark 2.5. Assume that hypotheses A1)-A4) hold true and that PT in L∞S (Ω,FT ; Σ+(H)). The
following holds for arbitrary 0 < t < T and x ∈ H:

(1) There exists a unique control u ∈ L2
P(Ω× [t, T ];U) such that:

JT (t, x, u) = inf
u∈L2

P(Ω×[t,T ];U)
JT (t, x, u)

(2) If y is the mild solution of the state equation corresponding to u (that is the optimal state),
then y is the unique mild solution to the closed loop equation:{
dy(r) = [Ay(r) + A](r)y(r)−B(r)B∗(r)P (r)y(r)] dr + Cy(r) dW (r) r ∈ [t, T ]
y(t) = x

(2.6)

and the following feedback law holds P-a.s. for almost every s ∈ [t, T ].

u(s) = −B∗(s)P (s)y(s). (2.7)

(3) The optimal cost is given by JT (t, x, u) = infu∈L2
P(Ω×[t,T ];U) JT (t, x, u) = 〈P (t)x, x〉H .

Infinite horizon Riccati equation
Coming to the infinite horizon case, the main object of investigation of the present paper will be

the following backward stochastic Riccati equation on [0,+∞):

−dP (t) = (A∗P (t) + P (t)A + A∗] (t)P (t) + P (t)A](t)− P (t)B(t)B∗(t)P (t) + S(t)) dt+
Tr[C∗(t)P (t)C(t) + C∗(t)Q(t) + Q(t)C(t)] dt + Q(t) dW (t), t ∈ [0,+∞).

(2.8)
We notice that in the above equation the final condition has disappeared but we ask that the solution
can be extended to the whole positive real half-axis.
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Definition 2.6. We say that P is a solution to (2.8) if it is an {Ft}t≥0- adapted process that takes
values in Σ+(H) such that for every fixed T > 0, P|[0,T ] is a generalized solution of the Riccati
equation (2.3) in [0, T ] with final data PT = P (T ).

3. Synthesis of the optimal control in the infinite horizon case

Definition 3.1. We say that (A,A], B,C) is stabilizable relatively to the observation
√

S (or
√

S
stabilizable) if, for all t ∈ [0,+∞) and all x ∈ H there exists a control u ∈ L2

P([t,+∞)×Ω; U) such
that

EFt

∫ +∞

t

(|
√

S(s)yt,x,u(s)|2 + |u(s)|2) ds < Mt,x P− a.s. (3.1)

for some positive constant Mt,x that may depend on t and x.

We have the following:

Proposition 3.2. Assume A1)− A4) and that (A,A], B, C) is
√

S stabilizable, then there exists a
solution of the Riccati equation in the sense of definition 2.6.

Proof. We construct a candidate solution using a natural limit argument.
For every positive integer N > 0 let PN the generalized solution of the finite horizon Riccati

equation (2.3) with final data P (N) = 0. Each PN can be extended to the whole [0,+∞) setting
PN (t) = 0 for t > N .

First of all we notice for each t > 0 fixed the sequence PN (t) is increasing. Indeed by theorem
2.5

〈PN+1(t)x, x〉H = inf
u∈L2

P([t,N+1]×Ω;U)
EFt

∫ N+1

t

(|
√

S(r)yt,x,u(r)|2H + |u(r)|2U ) dr

≥ inf
u∈L2

P([t,N ]×Ω;U)
EFt

∫ N

t

(|
√

S(r)yt,x,u(r)|2H + |u(r)|2U ) dr = 〈PN (t)x, x〉H

Since H is separable and for all t > 0, PN (t) ∈ L(H), P-a.s. the above implies that for all t > 0

P
{
〈PN+1(t)x, x〉H ≥ 〈PN (t)x, x〉H ∀N ∈ N, ∀x ∈ H

}
= 1 (3.2)

Moreover for each t let ū be the ‘stabilizing’ control that exists thanks to definition 3.1 then again
by theorem 2.5

〈PN (t)x, x〉 = |
√

PN (t)x|2 ≤ EFt

∫ N

t

(|
√

S(r)yt,x,ū(r)|2 + |ū(r)|2) dr

≤ EFt

∫ +∞

t

(|
√

S(r)yt,x,ū(r)|2 + |ū(r)|2) dr ≤ Mt,x, P− a.s.

for a suitable constant Mt,x. If we consider the operator
√

PN (t) as a linear operator form H to
L∞(Ω,Ft, P,H) by the Banach-Steinhaus theorem there exists Mt such that

|
√

PN (t)|L(H,L∞(Ω,Ft,P,H)) ≤ Mt.

Again since PN (t) ∈ L(H) - P-a.s. and H is separable the above implies that

P
{
〈PN (t)x, x〉H ≤ Mt|x|2, ∀N ∈ N, ∀x ∈ H

}
= 1 (3.3)

or equivalently
P
{
|PN (t)|L(H) ≤ Mt, ∀N ∈ N

}
= 1 (3.4)

Define φN (t, x, y) := 〈PN (t)x, y〉H . Thank to (3.4) we know that for all t and for all x ∈ H the
sequence {φN (t, x, x) : N ∈ N} is P-a.s. increasing and bounded. Thus if we define

φ(t, x, y) = lim
N→∞

φN (t, x, y) =
1
2

(
lim

N→∞
φN (t, x + y, x + y)− lim

N→∞
φN (t, x, x)− lim

N→∞
φN (t, y, y)

)
then for all t and for all x, y ∈ H the limit holds P-a.s..
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Thanks to (3.4) fixed t > 0 there exists Ω0 with P(Ω0) = 1 such that on Ω0 the maps {φN (t, x, y) :
N ∈ N} are continuous in x and y uniformly in N . Consequently

P{φ(t, x, y) = lim
N→∞

φN (t, x, y), ∀x, y ∈ H} = 1.

Therefore, by the Riesz Representation theorem, there exists an operator P (t) linear, bounded,
symmetric and non-negative such that with probability 1

φ(t, x, y) = 〈P (t)x, y〉H ∀x, y ∈ H.

and the above relations can be rewritten as:

P
{

lim
N→+∞

〈PN (t)x, y〉 = 〈P (t)x, y〉, ∀x, y ∈ H

}
= 1

and consequently

P
{

lim
N→+∞

PN (t)x = P (t)x, ∀x ∈ H

}
= 1 (3.5)

We finally notice that by construction Px is, for all x ∈ H, predictable.
We claim that for each T ≥ 0 there exists a positive constant CT such that:

|P (t)|L(H) ≤ CT ∀ 0 ≤ t ≤ T, P− a.s..

Indeed, if we fix N > T , by theorem 2.5 we have:

〈PN (t)x, x〉 ≤ EFt〈PN (T )yt,x,0(T ), yt,x,0(T )〉+ EFt

∫ T

t

|
√

S(r)yt,x,0(r)|2 dr. (3.6)

where yt,x,0 is the solution of equation (2.1) corresponding to a control u ≡ 0.
Standard estimates and the Gronwall lemma ensure existence of a positive constant KT such that

supr∈[t,T ] EFt |yt,x,0(r)|2 ≤ KT |x|2 therefore, thanks also to (3.4), for all t ∈ [0, T ], x ∈ H and N ∈ N
one has:

〈PN (t)x, x〉 ≤ KT (MT + |S|L1
P,S((0,+∞);L∞(Ω;Σ+(H))))|x|2 := CT |x|2 P− a.s.

Moreover, since PN (t) ∈ L(H), P-a.s. we deduce that for all t ∈ [0, T ]

P
{
〈PN (t)x, x〉 ≤ CT |x|2, ∀N ∈ N, ∀x ∈ H

}
= 1 (3.7)

and by construction
P
{
〈P (t)x, x〉 ≤ CT |x|2, ∀x ∈ H

}
= 1 (3.8)

We are now in the position to conclude the proof. Let us fix 0 ≤ t ≤ T and chose N > T then,
by (2.5), we have for N > T :

〈PN (t)x, x〉H = EFt〈PN (T )yt,x,u(T ), yt,x,u(T )〉H + EFt

∫ T

t

(|
√

S(s)yt,x,u(s)|2H + |u(s)|2H) ds

−EFt

∫ T

t

|u(s) + B∗PN (s)yt,x,u(s)|2H ds P− a.s.

(3.9)
Thus, thanks to (3.5) and to the uniform bounds (3.7) and (3.8) we can apply the dominated
convergence theorem to get that:

〈P (t)x, x〉H = EFt〈P (T )yt,x,u(T ), yt,x,u(T )〉H + EFt

∫ T

t

(|
√

S(s)yt,x,u(s)|2H + |u(s)|2H) ds (3.10)

− EFt

∫ T

t

|u(s) + B∗P (s)yt,x,u(s)|2H ds P− a.s.

Thus if we define

ĴT (t, x, u)=̇EFt

[∫ T

t

(
|
√

S(s)y(s)|2H + |u(s)|2H
)

ds + 〈P (T )y(T ), y(T )〉H

]

8



Relation (3.10) yields (choosing u = −B∗Py as in the proof of theorem 6.6 in [8])

〈P (t)x, x〉H = inf
u∈L2

P([t,T ]×Ω;U)
ĴT (t, x, u).

Consequently by theorem 2.5 P is the generalized solution to equation (2.3) with final condition
P (T ) at time T so we can conclude that P is the solution to equation (2.8) in the sense of definition
2.6.

As a by-product of the above construction we have the following corollary:

Corollary 3.3. P is the minimal solution of equation (2.8), in the sense that if there exists another
solution P \, then P \(t) ≥ P (t) P− a.s. for every t ≥ 0.

Proof. By (2.5) for N > t we have that:

〈P \(t)x, x〉

= inf
u∈L2

P([t,N ]×Ω);U)
[EFt〈P \(N)yt,x,u(N), yt,x,u(N)〉H + EFt

∫ N

t

(|
√

S(r)yt,x,u(r)|2 + |u(r)|2) dr]

≥ inf
u∈L2

P([t,N ]×Ω);U)
EFt

∫ N

t

(|
√

S(r)yt,x,u(r)|2 + |u(r)|2) dr = 〈PN (t)x, x〉H ,

thus 〈P \(t)x, x〉 ≥ 〈PN (t)x, x〉H , P-a.s. for every x ∈ H by (3.5).
We are in the position to solve the optimal control problem with infinite horizon:

remark 3.4. Assume A1)−−A4) and that (A,A], B, C) is stabilizable relatively to S. Fix x ∈ H,
then the following holds:

(1) There exists a unique control u ∈ L2
P(Ω× [0,+∞);U) such that:

J∞(0, x, u) = inf
u∈L2

P(Ω×[0,+∞);U)
J∞(0, x, u)

(2) If y is the mild solution of the state equation corresponding to u (that is the optimal state),
then y is the unique mild solution to the closed loop equation:{
dy(r) = [Ay(r) + A](r)y(r)−B(r)B∗(r)P (r)y(r)] dr + Cy(r) dW (r), t > 0
y(0) = x

(3.11)

and the following feedback law holds P-a.s. for almost every s.

u(s) = −B∗(s)P (s)y(s). (3.12)

(3) The optimal cost is given by J∞(0, x, u) = 〈P (0)x, x〉H .

Proof. Let us consider the following family of closed loop equations{
dyN (r) = [AyN (r) + A](r)yN (r)−B(r)B∗(r)PN (r)yN (r)] dr + CyN (r) dW (r), t ∈ [0, N ]
yN (0) = x

(3.13)
that for any N admits a unique mild solution yN ∈ Lp

P(Ω; C([0, N ];H)) for every p ≥ 2 and
uN (s) = −B∗PN (s)yN (s). Fix a positive T , then from the construction of P and from (2.5), we
have that for every N > T :

〈P (0)x, x〉H ≥ 〈PN (0)x, x〉H = E〈PN (T )yN (T ), yN (T )〉H + E
∫ T

0

(|
√

S(r)yN (r)|2 + |uN (r)|2) dr

≥ E
∫ T

0

(|
√

S(r)yN (r)|2 + |uN (r)|2) dr (3.14)

Let ȳ the mild solution to (3.11) considered in [0, T ], then the following identity holds

yN (t)− ȳ(t) =
∫ t

0

eA(t−s)A](s)(yN (s)− ȳ(s)) ds

−
∫ t

0

eA(t−s)B(s)B∗(s)(PN (s)yN (s)− P (s)ȳ(s)) ds +
∫ t

0

eA(t−s)C(yN (s)− ȳ(s)) dW (s)
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By standard estimates, we get that:

sup
0≤t≤T

E|yN (t)− ȳ(t)|p ≤ cpM
p
A(Mp

A]
+ M2p

B )E
∫ T

0

|[PN (s)− P (s)]ȳ(s)|pH ds

+ cpM
p
A(Mp

A]
+ M2p

B )
∫ T

0

|PN (s)|p sup
0≤r≤s

E|yN (r)− ȳ(r)|p ds

+ cpM
p
A

(+∞∑
i=1

|Ci|2L(H)

)p/2
∫ T

0

sup
0≤r≤s

E|yN (r)− ȳ(r)|p ds

Thus applying the Gronwall lemma to the function v(s) = sup0≤r≤s E|yN (r)− ȳ(r)|p we obtain:

sup
0≤t≤T

E|yN (t)− ȳ(t)|p ≤ CE
∫ T

0

|[PN (s)− P (s)]ȳ(s)|pH ds

where C is a positive constant depending only on constants introduced in hypotheses 2.1 and 3.1.
Now letting N tend to +∞ we get that, for every fixed T > 0 :

lim
N→+∞

sup
0≤t≤T

E|yN (t)− ȳ(t)|p = 0 (3.15)

Moreover for every s ∈ [0, T ]:

uN (s)− ū(s) = −B∗PN (s)[yN (s)− ȳ(s)]−B∗[PN (s)− P (s)]ȳ(s) P− a.s.

Thus by the dominated convergence theorem we get, thanks to (3.7), (3.8) and (3.15):

lim
N→+∞

E

∫ T

0

|uN (s)− ū(s)|p ds = 0 (3.16)

Thanks to (3.15) and (3.16), we can pass to the limit in (3.14) to get:

〈P (0)x, x〉H ≥ E
∫ T

0

(|
√

S(r)ȳ(r)|2 + |ū(r)|2) dr

Now letting T → +∞ we get:

〈P (0)x, x〉H ≥ E
∫ +∞

0

(|
√

S(r)ȳ(r)|2 + |ū(r)|2) dr = J∞(0, x, ū)

On the other hand, since PN is a generalized solution to (2.3) in [0, N ] with PN (N) = 0, we get by
theorem 2.5 that for every control u ∈ L2

P((0, N)× Ω; U) and every x ∈ H:

〈PN (0)x, x〉H ≤ E
∫ N

0

(|
√

S(r)yt,x,u(r)|2 + |u(r)|2) dr,

in particular for every u ∈ L2
P((0,+∞)× Ω; U) we get

〈PN (0)x, x〉H ≤ E
∫ +∞

0

(|
√

S(r)yt,x,u(r)|2 + |u(r)|2) dr = J∞(0, x, u) (3.17)

This concludes the proof of the theorem.

Remark 3.5. Arguing exactly as in the proof of the previous theorem we infer that for each t ≥ 0
and every x ∈ H the following identity holds:

〈P (t)x, x〉H = inf
u∈L2

P([t,+∞)×Ω);U)
EFt

∫ +∞

t

(|
√

S(r)yt,x,u(r)|2 + |u(r)|2) dr

= inf
u∈L2

P([t,+∞)×Ω);U)
J(t, x, u) P− a.s..

In the next result we show that the stabilizability of (A,A], B, C) is also a necessary condition
for the existence of a solution of equation (2.8).

Corollary 3.6. Assume A1)−−A4). The following two assertions are equivalent:
(i) (A,A], B,C) is stabilizable relatively to

√
S;
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(ii) there exists a solution of (2.8) in the sense of definition 2.6.

Proof. It lasts to prove (ii)⇒ (i). Let P ∗ be a solution to (2.8). Then arguing as in corollary 3.3
we obtain P ∗(t) ≥ PN (t). Thus (3.3) holds and, proceeding as in the proof of proposition 3.2, we
obtain the existence of a minimal solution P . Hence we can find an optimal control ū = −B∗P (t)ȳ(t)
(where ȳ is the solution to (3.11)) that stabilize the coefficients (A,A], B, C). Indeed from (3.10)
we have that for every t ∈ [0,+∞) and every x ∈ H,

EFt

∫ +∞

t

(|
√

Sȳt,x(s)|2 + | −B∗P (s)ȳt,x(s)|2) dt ≤ 〈P (t)x, x〉 < +∞, P− a.s..

Remark 3.7. Notice that as in the deterministic case, if the (A,A], B, C) is stabilizable relatively to√
S, then it is stabilizable by a (stochastic) linear feedback.

We end this section with a standard sufficient condition for stabilizability that will be used in the
example, see Section 6.

Proposition 3.8. Assume that there exists X ∈ Σ+(H) such that ∀t ≥ 0, ∀x ∈ D(A) and for some
c > 0{

2〈Ax, Xx〉+ 2〈A](t)x,Xx〉 − |B∗(t)Xx|2 +
∑∞

i=1〈Ci(t)x, XCi(t)x〉 ≤ −c〈S(t)x, x〉, P -a.s.,
(3.18)

then (A,A], B,C) is
√

S-stabilizable.

Proof. Let us fix t ≥ 0 and x ∈ H and consider the following equation associated to X:{
dy(s) = (Ay(s) + A](s)y(s)−B(s)B∗(s)Xy(s)) ds + C(s)y(s) dW (s) s ≥ t
y(t) = x

(3.19)

This equation has a unique mild solution y ∈ Lp
P(Ω;C([t,+∞);H)) for any p ≥ 2, see for instance

theorem 7.4 of [7]. In order to apply condition (3.18) we introduce the operators Jn = n(nI −A)−1

for every n > aA and consider yn(s) : Jny(s) that has the following representation

yn(s) = e(s−t)AJnx +
∫ s

t

e(s−r)AJnA](r)y(r) dr −
∫ s

t

e(s−r)AJnB(r)B∗(r)Xy(r) dr

+
∫ s

t

e(s−r)AJnC(r)y(r) dW (r)

Since yn(t) ∈ D(A) we can apply the Itô formula to 〈Xyn(t), yn(t)〉 to get the following identities
P- a.s.:

EFt〈Xyn(T ), yn(T )〉 − 〈XJnx, Jnx〉

= EFt

∫ T

t

[〈XA∗yn(s), yn(s)〉+ 〈Xyn(s), Ayn(s)〉] ds

+ EFt

∫ T

t

[〈XJnA](s)y(s), yn(s)〉+ 〈Xyn(s), JnA](s)y(s)〉] ds

− EFt

∫ T

t

[〈XJnB(s)B∗(s)Xy(s), yn(s)〉+ 〈Xyn(s), JnB(s)B∗(s)Xy(s)〉] ds

+ EFt

∫ T

t

〈Tr[(JnC(s))∗XJnC(s)]y(s), yn(s)〉 ds

= EFt

∫ T

t

[〈(XA + A∗X)yn(s), yn(s)〉+ 〈(XA](s) + A∗] (s)X)yn(s), yn(s)〉〉] ds

− 2EFt

∫ T

t

〈XB(s)B∗(s)Xyn(s), yn(s)〉] ds + EFt

∫ T

t

〈Tr[C(s)∗XC(s)]yn(s), yn(s)〉 ds + Mn
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where

Mn = EFt

∫ T

t

〈XJnA](s)y(s)−XA](s)yn(s)), yn(s)〉 ds

+ EFt

∫ T

t

〈XJnA](s)y(s)−XA](s)yn(s)), yn(s)〉 ds

+ 2EFt

∫ T

t

〈XB(s)B∗(s)Xyn(s)−XJnB(s)B∗(s)Xy(s), yn(s)〉 ds

+ EFt

∫ T

t

〈Tr[(JnC(s))∗XJnC(s)]y(s)− Tr[C(s)∗XC(s)]yn(s), yn(s)〉 ds

Taking into account (3.18) we obtain:

EFt〈Xyn(T ), yn(T )〉 − 〈XJnx, Jnx〉

≤ −c EFt

∫ T

t

〈S(s)yn(s), yn(s)〉 − EFt

∫ T

t

|B∗(s)Xyn(s)|2 ds + EFtMn P− a.s.

By standard estimates since |Jn| is uniformly bounded and Jnx → x as n tends to +∞, we get
EFtMn → 0, P− a.s. as n → +∞. Thus letting n tend to +∞:

EFt〈Xy(T ), y(T )〉 − 〈Xx, x〉 ≤ −c EFt

∫ T

t

〈S(s)y(s), y(s)〉 − EFt

∫ T

t

|B∗(s)Xy(s)|2 ds P− a.s.

(3.20)

Notice that equation (3.19) corresponds to equation (2.1) with u(s) = −B(s)Xy(s). The claim is
proved.

Remark 3.9. Notice that when condition (3.18) applies, the constant Mt,x that appears in definition
3.1 can be chosen to be independent of t.

4. Attractivity and Maximality properties of the solution of the Riccati equation

In the whole section we will assume A1) − −A4) and that (A,A], B, C) is stabilizable relatively
to
√

S. We introduce the following definitions:

Definition 4.1. We say that a solution P of equation (2.8) is bounded, if there exists a constant
M > 0 such that for every t ≥ 0

|P (t)|L(H) ≤ M P− a.s.

Remark 4.2. Whenever the constant Mt,x that appears in definition 3.1 can be chosen independently
of t, for instance when condition (3.18) is verified, then the minimal solution P is automatically
bounded, see remark 3.5.

Moreover we introduce the following definition:

Definition 4.3. Let P be a solution to (2.8). We say that P stabilize (A,A], B, C) relatively to I
uniformly in time if for every t > 0 and x ∈ H there exists a positive constant M , independent of t,
such that

EFt

∫ +∞

t

|yt,x(r)|2H dr ≤ M P− a.s., (4.1)

where yt,x is the mild solution to: dyt,x(s) = [A−B(s)B∗(s)P (s)]yt,x(s) ds + C(s)yt,x(s) dW (s), s ≥ t

yt,x(t) = x
(4.2)

We can prove the following result

Proposition 4.4. Let P1 and P2 be two solutions of equation (2.8) that are bounded. If P1 stabilizes
(A,A], B,C) relatively to I uniformly in time then for every t ≥ 0:

P1(t) ≥ P2(t), P− a.s.
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Proof. Let us set Z(t) = P1(t)−P2(t), since both P1 and P2 are generalized solutions in any [0, T ],
from (2.5) we get for every t ∈ [0, T ], x ∈ H:

〈Z(t)x, x〉 = EFt〈Z(T )yt,x
1 (T ), yt,x

1 (T )〉+ EFt

∫ T

t

|B∗P2(s)y
t,x
1 (s)−B∗P1(s)y

t,x
1 (s)|2 ds P- a.s.,

where yt,x
1 is the solution to (4.2) with P = P1. Thus

〈Z(t)x, x〉 ≥ EFt〈Z(T )yt,x
1 (T ), yt,x

1 (T )〉 P- a.s. and ∀x ∈ H

Thanks to (4.1) one can find a sequence {Tn}n∈N, with limn→+∞ Tn = ∞ such that

lim inf
n→+∞

EFt |yt,x
1 (Tn)|2 = 0

Since Z is bounded

〈Z(t)x, x〉 ≥ lim inf
n→+∞

EFt〈Z(Tn)yt,x
1 (Tn), yt,x

1 (Tn)〉 = 0

From corollary 3.3 and the last proposition we deduce the following:

Corollary 4.5. If P stabilize the coefficients (A,A], B, C) with respect to I uniformly in time and
it is bounded, then P is the unique bounded solution of equation (2.8).

Now we study the attractivity property of the minimal solution P . To this purpose we introduce
the following notion. Let us define a two parameter linear semigroup, TP (u, t) : L2(Ω,Ft, P;H) →
L2(Ω,Fu, P;H), 0 ≤ t ≤ u < +∞, TP (t, u)η = yt,η(u), where yt,η(u) is the mild solution of equation
(4.2) with initial condition η. Condition (4.1) is equivalent to the existence of a constant M > 0
such that for every t ≥ 0:

P
(
EFt

∫ +∞

t

|TP (r, t)x|2H dr ≤ M |x|2, ∀x ∈ H
)

= 1 (4.3)

Indeed it is possible to consider (4.2) as a state equation with B = 0. Thus (4.3) is the analogous
of (3.8). Notice that since the constant M in (4.1) does not depend on t the same holds for the
constant M in (4.3).

We can prove that a version of the stochastic Datko theorem, see [4] and [15], holds in our
situation:

Proposition 4.6. Let us assume that a solution P of equation (2.8) stabilizes the coefficients
(A,A], B, C) relatively to I uniformly in time and is bounded. Then there exist C > 0 and a > 0
such that, for every x ∈ H and for every t ≥ 0,

EFt |TP (u, t)x|2 ≤ Ce−a(u−t)|x|2, P− a.s. and ∀u ≥ t. (4.4)

Proof. First of all we notice that applying the Gronwall lemma we find that for every t ≥ 0 and
every η in L2(Ω,Ft, P;H) there exists a constant C > 0 (independent of t and of η) such that,

EFt |TP (u, t)η|2 ≤ CeC(u−t)|η|2 ∀u ≥ t P− a.s. (4.5)

Thus by (4.3) we have, for every x ∈ H and every t ≥ 0:

EFt |TP (u, t)x|2
∫ u

t

C−1e−C(u−r) dr =
∫ u

t

C−1e−C(u−r)EFtEFr |TP (u, r)TP (r, t)x|2 dr

≤
∫ u

t

C−1e−C(u−r)CeC(u−r)EFt |TP (r, t)x|2 dr=
∫ u

t

EFt |TP (r, t)x|2 dr ≤ M |x|2, P− a.s. and ∀u ≥ t.

Note that the exceptional set may depend on r, unless we choose the continuous version of TP . Now
fix L > 0 such that: ∫ L

0

C−1e−Cs ds = K

thus for every x ∈ H and every t ≥ 0:

EFt |TP (u, t)x|2 ≤ M

K
|x|2 P− a.s. and ∀u ≥ t ≥ 0 : u− t ≥ L. (4.6)
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Combining (4.6) and (4.5) for every x ∈ H and every t ≥ 0 we find an R > 0 (independent of t and
of x) such that:

EFt |TP (u, t)x|2 ≤ R|x|2 ∀u ≥ t ≥ 0 (4.7)

Therefore:

(u− t)EFt |TP (u, t)x|2 =
∫ u

t

EFt |TP (u, t)x|2 dr =
∫ u

t

EFtEFr |TP (u, r)TP (r, t)x|2 dr (4.8)

≤ R

∫ +∞

t

EFt |TP (r, t)x|2 dr ≤ R M |x|2

Thus for any r ∈]0, 1[ there exists L = L(r) such that, for every t ≥ 0 and x ∈ H:

EFt |TP (u, t)x|2 ≤ RM

(u− t)
|x|2 ≤ r|x|2 P− a.s. and ∀u ≥ t ≥ 0 : u− t ≥ L (4.9)

Finally for any u− t > L let n be an integer that verify nL ≤ u− t < (n + 1)L. Therefore one can
find a partition u = tn+1 ≥ tn > · · · > t1 ≥ t0 = t such that ti+1 − ti ≥ L, i = 0, . . . , n − 1. Hence
for every t ≥ 0 and x ∈ H we get:

EFt |TP (u, t)x|2 ≤ EFt . . . EFtn−1 EFtn |TP (u, tn) · · · · · TP (t1, t)x|2

≤ REFt . . . EFtn−2 EFtn−1 |TP (tn, tn−1) · · · · · TP (t1, t)x|2

≤ rnR|x|2 ≤ R

r
e

ln r
L (u−t) P− a.s. and ∀u : u− t ≥ L

Therefore setting a = − ln r
L , one gets for every t ≥ 0 and x ∈ H:

EFt |TP (u, t)x|2 ≤ Me−a(u−t)|x|2, P− a.s. and ∀u ≥ t ≥ 0

where M = max{R
r , ReaL}.

We will use previous result in the following:

Proposition 4.7. Assume that S ≥ βI for some β > 0 and that the minimal solution P to equation
(2.8) is bounded. Let {P̂N}N∈N be any sequence of processes in L∞P,S(Ω × [0, T ]; Σ+(H)) such that
for each N , P̂N is a generalized solution of (2.3) in [0, N ]. If |P̂N (N)| ≤ c, ∀N ∈ N P− a.s. for
some positive c then there exist two constants M > 0, a > 0 such that ∀t ∈ [0, N ],

|P (t)− P̂N (t)|L(H) ≤ Me−a(N−t) P− a.s.

Proof. We divide the proof in three steps.
Attractivity from above. Assume that P̂N (N) ≥ P (N), P− a.s., replacing in (2.5) first P by P̂N

and then P by P and in both cases using ū = −B∗P ȳt,x, one deduces for every t ∈ [0, N ] and every
x ∈ H:

0 ≤ 〈(P̂N (t)− P (t))x, x〉H = EFt〈(P̂N (N)− P (N))ȳt,x(N), ȳt,x(N)〉H

− EFt

∫ N

t

|B∗P̂N (s)ȳt,x(s)−B∗P (s)ȳt,x(s)|2 ds P− a.s.

Thanks to the hypotheses on P̂N (N) there exists a constant C > 0 such that:

〈(P̂N (t)− P (t))x, x〉H ≤ EFt〈(P̂N (N)− P (N))ȳt,x(N), ȳt,x(N)〉H ≤ CEFt |ȳt,x(N)|2

Now notice that S ≥ βI and P is bounded, so P stabilize (A,A], B,C) relatively to the identity
uniformly in time. Thus, applying proposition 4.6 to ȳt,x, one gets that for every t ∈ [0, N ] and
every x ∈ H there exist positive constants C and a such that the following holds:

|(P̂N (t)− P (t))x|2H ≤ Ce−a(N−t)|x|2 P− a.s. (4.10)
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Attractivity from below. Let PN the approximating sequence introduced in proposition 3.2. We
recall that PN (N) = 0. Again relation (2.5) yields that for every t ∈ [0, N ] and every x ∈ H:

〈(P (t)− PN (t))x, x〉H = EFt〈P (N)yt,x
N (N), yt,x

N (N)〉H

− EFt

∫ N

t

|B∗PN (s)yt,x
N (s)−B∗P (s)yt,x

N (s)|2 ds P− a.s. (4.11)

where yt,x
N is the solution to dyt,x(s) = [A−B(s)B∗(s)PN (s)]yt,x(s) ds + C(s)yt,x(s) dW (s), s ∈ [t,N ]

yt,x(t) = x
(4.12)

Let us extend the process yt,x
N outside [0, N ] in the usual way by setting yt,x

N (s) = 0, P−a.s. and ∀s ≥
N . Moreover since yt,x

N and −B∗PN (s)yt,x
N are respectively the optimal state and the optimal control

(relatively to S) and PN (N) = 0 one has for every t ≥ 0 and x ∈ H:

EFt

∫ +∞

t

(|yt,x
N (s)|2 + |B∗PN (s)yt,x

N |2) ds = EFt

∫ N

t

(|yt,x
N (s)|2 + |B∗PN (s)yt,x

N |2) ds (4.13)

≤ 1
β

EFt

∫ N

t

(|
√

S(s)yt,x
N (s)|2 + |B∗PN (s)yt,x

N |2) ds ≤ 1
β

EFt

∫ N

t

(|
√

S(s)yt,x(s)|2 + |B∗P (s)yt,x|2) ds

=
1
β

EFt

∫ +∞

t

(|
√

S(s)yt,x(s)|2 + |B∗P (s)yt,x(s)|2) ds = 〈P (t)x, x〉H ≤ C|x|2 P− a.s.

where C, thanks to the hypothesis on P , depends neither on t nor on x. Moreover by standard
estimates and the Gronwall lemma one can find a constant C, independent on N (since all PN are
bounded by P ) such that for every t ≥ 0 and x ∈ H:

EFt |yt,x
N (σ)|2 ≤ CeC(σ−t)|x|2 P-a.s. and ∀σ ≥ t. (4.14)

Arguing as in the proof of proposition 4.6 relations (4.13) and (4.14) (which are the analogous of
(4.3) and (4.5)) imply that we can find positive constants M and a, independent of N such that for
every t ≥ 0 and every x ∈ H:

EFt |yt,x
N (N)|2 ≤ Me−a(N−t)|x|2 P-a.s..

Therefore coming back to (4.11) one has that for every t ≥ 0 and for every x ∈ H:

〈(P (t)− PN (t))x, x〉H ≤ EFt〈P (N)yt,x
N (N), yt,x

N (N)〉H
≤ CEFt |yt,x

N (N)|2 ≤ M̃e−a(N−t)|x|2, P− a.s.

Conclusion. If P̂N is a general sequence then we let ˆ̂
PN (N) = P̂N (N)+dI where d ≥ |P (t)|L(H), P−

a.s.. Clearly, for every t ∈ [0, N ]

PN (t) ≤ P̂N (t) ≤ ˆ̂
PN (t) P− a.s.

and

PN (t) ≤ P (t) ≤ ˆ̂
PN (t) P− a.s.

Thus, by the previous steps for every t ∈ [0, N ]

|P̂N (t)− P (t)|L(H) ≤ | ˆ̂PN (t)− PN (t)|L(H) ≤ Ce−a(N−t), P− a.s..
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5. Stationary Case

We set a stationary framework as in [5] and [22]. Namely (Ω, E , (Ft)t≥0, P) is a stochastic base
verifying the usual conditions. Moreover {Wt : t ≥ 0} is a Ξ-valued, (Ft)t≥0-Wiener process and
we assume that {Wt : t ≥ 0} is independent of F0 and that Ft = σ{F0;Ws, s ∈ [0, t]}. Finally we
introduce the semigroup (θt)t≥0 of measurable mappings θt : (Ω, E) → (Ω, E) verifying

(1) θ0 = Id, θt ◦ θs = θt+s, for all t, s ≥ 0
(2) θt is measurable: (Ω,Ft) → (Ω,F0) and {{θt ∈ A} : A ∈ F0} = Ft

(3) P{θt ∈ A} = P(A) for all A ∈ F0

(4) Wt ◦ θs = Wt+s −Ws

We notice that here we no longer have Ft = σ(Ws, s ∈ [0, t]) as assumed in the previous sections.
On the other hand, since F0 has been chosen to be independent from {Wt : t ≥ 0}, nothing changes
in relation to the martingale representation theorem, see [5].

Definition 5.1. We say that a stochastic process X : [0,∞[×Ω → E, (where E is an arbitrary
Banach space) is stationary if for all s > 0

Xt ◦ θs = Xt+s P-a.s. for a.e. t ≥ 0

In the rest of this section we will assume stationarity of the data of the problem, namely:

Hypothesis 5.2. A] : [0,+∞[×Ω → L(H), B : [0,+∞[×Ω → L(U,H), S : [0,+∞[×Ω → L(H),
Ci : [0,+∞[×Ω → L(H), i = 1, 2, ... are stationary processes.

We start from the following consequence of our definition of stationarity which comes immediately
from the construction of the Itô integral.

Lemma 5.3. Assume that X : [0,∞[×Ω → L2(Ξ,H) is a predictable stationary process such that
E
∫ T

0
|Xt|2L2(Ξ,H)dt < +∞ for some (and consequently for all) T > 0 then fixed any s > 0 it holds

with probability one: ∫ b+s

a+s

XtdWt =

(∫ b

a

XtdWt

)
◦ θs ∀a, b ≥ 0, a < b.

Due to the uniqueness of the solution of the finite horizon BSREs in the Hilbert-Schmidt case
(see [8] Section 5 and in particular theorem 5.13) the above immediately yields:

Lemma 5.4. Fix T > 0 and beside Hypothesis 2.1 and 5.2 assume that S ∈ L2
P(Ω× (0, T ); Σ+

2 (H))
and PT ∈ L2(Ω,FT ; Σ+

2 (H)) (where Σ+
2 (H) denotes the cone of the non-negative symmetric opera-

tors in the Hilbert space of Hilbert-Schmidt operators H → H).
Let (P,Q) with P ∈ L2

P(Ω;C([0, T ]; Σ2(H))) ∩ L∞P,S(Ω; C([0, T ]; Σ+(H))) and Q ∈ L2
P(Ω ×

[0, T ];L2(Ξ;Σ2(H))) be the mild solution of the finite horizon BSRE see theorem 5.13 in [8]:
−dP (t) = (A∗P (t) + P (t)A + A∗] (t)P (t) + P (t)A](t)− P (t)B(t)B∗(t)P (t) + S(t)) dt+

Tr[C∗(t)P (t)C(t) + C∗(t)Q(t) + Q(t)C(t)] dt + Q(t) dW (t), t ∈ [0, T ]

P (T ) = PT

(5.1)
For fixed s > 0 we define P̂ (t + s) = P (t)θs, Q̂(t + s) = Q(t)θs then (P̂ , Q̂) is the (unique) mild
solution in [s, T + s] of the equation

−dP̂ (t) = (A∗P̂ (t) + P̂ (t)A + A∗] (t)P̂ (t) + P̂ (t)A](t)− P̂ (t)B(t)B∗(t)P̂ (t) + S(t)) dt+
Tr[C∗(t)P̂ (t)C(t) + C∗(t)Q̂(t) + Q̂(t)C(t)] dt + Q̂(t) dW (t), t ∈ [s, T + s]

P (T + s) = PT ◦ θs

(5.2)

The above result can be extended to generalized solution.
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Lemma 5.5. Fix T > 0 and assume Hypothesis 2.1, 5.2 and that PT in L∞S (Ω,FT ; Σ+(H)) . Let
P be the generalized solution of equation 5.1. Fixed s > 0 define P̂ (t + s) = P (t)θs, then P̂ is the
(unique) generalized solution in [s, T + s] of the equation 5.2.

Proof. Let {ei : i ∈ N} be an orthonormal basis in H and let ΠM be the orthogonal projection
on the space generated by e1, ..., eM . Let SM (t) = ΠMS(t)ΠM , PM

T = ΠMPT ΠM . Notice that
SM ∈ L2

P(Ω × (0, T ); Σ+
2 (H)) and PM

T ∈ L2(Ω,FT ; Σ+
2 (H)). Moreover let (PM , QM ) be the mild

solution of equation:
−dPM (t) = (A∗PM (t) + PM (t)A + A∗] (t)P

M (t) + PM (t)A](t)− PM (t)B(t)B∗(t)PM (t))dt

+SM (t)dt + Tr[C∗(t)PM (t)C(t) + C∗(t)QM (t) + QM (t)C(t)] dt + QM (t) dW (t),

PM (T ) = PM
T

and let (P̂M , Q̂M ) be the mild solution of equation:
−dP̂M (t) = (A∗P̂M (t) + P̂M (t)A + A∗] (t)P̂

M (t) + P̂M (t)A](t)− P̂M (t)B(t)B∗(t)P̂M (t)) dt+
+SM (t) + Tr[C∗(t)P̂M (t)C(t) + C∗(t)Q̂M (t) + Q̂M (t)C(t)] dt + Q̂M (t) dW (t),

PM (T + s) = PM
T ◦ θs

Then by lemma 5.4, ∀t ≥ 0, P̂M (t + s) = PM (t) ◦ θs, P-a.s..
Relation (6.10) in [8] says that for all t ≥ 0, P{P̂M (t + s)x → P̂ (t + s)x ∀x ∈ H} = 1 and

P{PM (t)x → P (t)x ∀x ∈ H} = 1. Moreover being θs measure preserving we have P{(PM (t)◦θs)x →
(P (t) ◦ θs)x ∀x ∈ H} = 1 and the conclusion follows.

Proposition 5.6. Beside Hypothesis 2.1 and 5.2 assume that (A,A], B,C) is
√

S stabilizable, then
the minimal solution P of the infinite horizon stochastic Riccati equation (2.8) is stationary.

Proof. Extending the notation of the proof of proposition 3.2 for all ρ > 0 we denote by P ρ the mild
solution of equation (2.3) with final condition P ρ(ρ) = 0. Exactly as in the proof of proposition 3.2
we can show that, for all t ∈ [0, ρ], P ρ+s(t) ≥ P ρ(t), P-a.s.. Thus in particular, denoting by bρc the
integer part of ρ, for all N for all t ∈ [0, bN + sc], P bN+sc(t) ≤ PN+s(t) ≤ P bN+sc+1(t), P-a.s..

Recalling that, for all t ≥ 0, P-a.s. P (t)x = limN→∞ P
N

(t)x for all x ∈ H the above monotonicity
immediately yields that for all s > 0, t ≥ 0, P-a.s. P (t)x = limN→∞ P

N+s
(t)x for all x ∈ H.

Now we can conclude noticing that by lemma 5.5

PN+s(t + s) = PN (t) ◦ θs.

Thus letting N → +∞ we obtain that for all t ≥ 0, and s > 0:

P
{
P (t + s)x = P (t)x ◦ θs, ∀x ∈ H

}
= 1.

Remark 5.7. Under the assumption 5.2, to verify that (A,A], B,C) is
√

S stabilizable, it is enough to
check condition 3.1 for t = 0. Namely if for all x ∈ H there exists a control u ∈ L2

P([0,+∞)×Ω; U)
such that

EF0

∫ +∞

0

(|
√

S(s)y0,x,u(s)|2 + |u(s)|2) ds < Mx P− a.s. (5.3)

then (A,A], B,C) is stabilizable. Indeed using the same notation as above and proceeding as in the
proof of proposition 3.2 we see the condition (5.3) implies that for all ρ:

P
{
〈P ρ(0)x, x〉H ≤ M |x|2, ∀x ∈ H

}
= 1

But for arbitrary t > 0 lemma 5.5 yields (for ρ > t) P ρ(t) = P ρ−t(0) ◦ θt and consequently

P
{
〈P ρ(t)x, x〉H ≤ M |x|2, ∀x ∈ H

}
= 1

Thus relation (3.3) holds and the rest of the proof of proposition 3.2 can be repeated to obtain
existence of a solution to the Riccati equation (2.8) then by corollary 3.6 we can conclude that
(A,A], B,C) is

√
S stabilizable.
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We finally notice that any stationary solution of equation (2.8) is automatically bounded as stated
in definition 4.1. Consequently, in the stationary case, all the results in Section 4 assume a simpler
aspect. For instance we have:

Proposition 5.8. Let P1 and P2 be two stationary solutions of equation (2.8). If P1 stabilizes
(A,A], B,C) relatively to I then for every t ≥ 0:

P1(t) ≥ P2(t), P− a.s.

Consequently if the minimal solution P of equation (2.8) stabilizes (A,A], B, C) relatively to I then
it is the unique solution of equation (2.8).

6. Wave equation in random media; stabilization and optimal control

We assume that the system is evolving in a random media and this influences its evolution in
two ways: through a stochastic force of elastic type (the term

∑∞
i=1 ci(t, ζ)ξ(t, ζ)dβi(t) below) and

through a stochastic damping (the term µ(t, ζ)∂tξ(t, ζ) below).
We consider the state equation
dt∂tξ(t, ζ)=

[
∆ζξ(t, ζ)+µ(t, ζ)∂tξ(t, ζ)+b(t, ζ)u(t, ζ)

]
dt+

∞∑
i=1

ci(t, ζ)ξ(t, ζ)dβi(t), ζ∈D, t≥ 0,

ξ(t, ζ) = 0, ζ∈∂D, t ≥0,
ξ(0, ζ) = x0(ζ), ∂tξ(0, ζ) = v0(ζ) ζ ∈ D,

(6.1)
and the cost functional

J(0, x, u) = E
∫ +∞

0

∫
D

[
ξ2(t, ζ) +

∣∣∣∣∂ξ

∂ζ
(t, ζ)

∣∣∣∣2
Rd

+
(

∂ξ

∂t
(t, ζ)

)2
]

dζ dt + E
∫ +∞

0

∫
D

u2(t, ζ)dζ dt

(6.2)
In the above formulae D ⊂ Rd is a bounded domain with regular boundary. By B(D) we denote the
Borel σ-field in D.

Moreover {βi : i = 1, 2...} are independent standard (real valued) brownian motions defined on
(Ω,F , P). We set Ft = σ{βi(s) : s ∈ [0, t], i = 1, 2...} and denote by P the predictable σ-field in
Ω× [0, T ].

On the coefficients we assume the following:
(1) µ is a bounded measurable process defined on ([0, T ] × Ω) × D endowed with the σ-field

P ⊗ B(D) with values in R+ (with Borel σ-field).
(2) b and ci, i = 1, 2, .. are bounded measurable maps [0, T ] × D → R. We assume that there

exists a constant α > 0 such that:

|b(t, ζ)| ≥ α for a.e. t ∈ [0,+∞) and a.e. ζ ∈ D.

(3) There exists a constant M > 0 such that
∑∞

i=1 |ci(t, ζ)|2 ≤ M for a.e. t ∈ [0, T ] and a.e.
ζ ∈ D.

We set:
(1) H = H1

0 (D)× L2(D), U = L2(D)
(2) W (t) =

∑∞
i=1 fiβi(t) where {fi : i = 1, 2, ...} is an orthonormal basis in an arbitrary separa-

ble real Hilbert space Ξ
(3) D(A) =

[
H2(D) ∩H1

0 (D)
]
×H1

0 (D) and(
A

(
ξ
v

))
(ζ) =

(
v(ζ)

∆ζξ(ζ)

)
,

(
ξ
v

)
∈ D(A)(

A](t)
(

ξ
v

))
(ζ) =

(
0

µ(t, ζ)v(ζ)

)
,

(
ξ
v

)
∈ H

(4) (B(t)u)(ζ) =
(

0
b(t, ζ)u(ζ)

)
,

(
Ci(t)

(
ξ
v

))
(ζ) =

(
0

ci(t, ζ)ξ(ζ)

)
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(5) S(t) = IH , x =
(

x0

v0

)
With this setting the state equation (6.1) is equivalent to (2.1) and the cost (6.2) is equivalent to

(2.2), see [1].
In order to prove stabilizability of (A,A], B,C) with respect to I we choose the control

ū(t) = b−1(t)[−m∂tξ̄(t)− µ(t)∂tξ̄(t)],

where ξ̄ solves the following equation:
dt∂tξ̄(t, ζ) = ∆ζ ξ̄(t, ζ)dt−m∂tξ̄(t, ζ)dt +

∞∑
i=1

ci(t, ζ)ξ(t, ζ)dβi(t), ζ∈D, t≥ 0,

ξ(t, ζ) = 0, ζ∈∂D, t ≥0,
ξ(0, ζ) = x0(ζ), ∂tξ(0, ζ) = v0(ζ) ζ ∈ D,

(6.3)

(clearly the solution of (6.1) corresponding to u is ξ).
If we set (

Am

(
ξ
v

))
(ζ) =

(
v(ζ)

∆ζξ(ζ)−mv(ζ)

)
,

(
ξ
v

)
∈ D(Am) = D(A),

then equation (6.3) can be rewritten in abstract form as:{
dỹ(t) = Amỹ(t) dt + Cỹ(t) dW (t), t ≥ 0,
ỹ(0) = x,

(6.4)

Notice that equation (6.4) is an abstract stochastic evolution equation as (2.1) in the special case
B = 0, consequently the sufficient condition (3.18) for the stabilization of the coefficients relatively
to the identity reads:

2〈Amx,Xx〉+
∞∑

i=1

〈Ci(t)x,XCi(t)x〉 ≤ −c|x|2, for some c > 0, P -a.s., ∀t ≥ 0, ∀x ∈ D(Am).

(6.5)
From proposition 3.5 in [19] we know that setting

Xm :=
(

I − m2

2 A−1 −m
2 A−1

m
2 I I

)
it holds 〈XmAmx, x〉H ≤ −m|x|2H . Moreover by direct computation

|
∞∑

i=1

〈Ci(t)x,XmCi(t)x〉|H ≤ M |x|2H .

Thus for m large enough relation (6.5) is verified and by proposition 3.8 we get that (A,A], B, C) is
stabilizable relatively to I uniformly in time. Taking into account remarks 3.9 and 4.2, by proposition
3.2 and corollary 4.5 we can conclude that there exists a unique solution to the corresponding Riccati
equation (2.8) which is bounded in time and globally attractive as specified in proposition 4.7. Finally
theorem 3.4 can be applied to obtain the synthesis of the optimal control.
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