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INTERSECTING POLYTOPES AND TOMOGRAPHIC RECONSTRUCTIONS

PAOLO DULIO AND CARLA PERI

Abstract. In this paper we deal with the reconstruction problem in Tomography, focusing on some new
classes of subsets of the n-dimensional real space R

n. Such classes are formed by clusters of polytopes mutually
intersecting according to a twisting notion. The importance for tomography comes from their additivity
property, which implies uniqueness of reconstruction. In the case n = 2 we give a detailed description of
their geometric structure, with some insight in the lattice frame. In particular, for a finite set D of directions
in Z

2, we introduce the class of D-inscribable lattice sets, showing that such sets can be considered as the
natural discrete counterpart of the same notion known in the continuous case. Due to their nice tomographic
properties, clusters of twisted polytopes might represent good candidates for approximating real shapes, as
well as for investigating stability problems.

1. Introduction

In this paper we focus on some classes of sets which provides a nice link among various aspects of tomography.
Before presenting our results, we wish to give a detailed description of the background, and provide both
theoretical and practical motivations for our work.

Image reconstruction from projections is one of the main inverse problems which appears in several appli-
cations. The image is usually represented by an unknown real valued function f(x, y), with bounded support.
The values of f are related to physical properties of a two-dimensional section of the object under investigation.
Projections are taken with the help of some kind of rays. For instance, in Computerized Tomography (CT),
a portion of a human body is reconstructed by measuring the coefficient of linear attenuation of each beam
of the X-ray traveling along a line crossing the body. The radiation is produced by photons, issued from a
source and collected by a detector, both translating and rotating around the body. The differences between
issued and collected photons measure the absorption of radiation by different tissues.

The underlying mathematical approach is known since 1917, and goes back to J. Radon, who described a
direct method for inverting the so-called Radon Transform (RT) of f to get the density function f(x, y) of a
planar section K of the body. We shall briefly mention the basic ingredients.

To specify a line of photons in the plane we use two coordinates: r, its distance from the origin, and θ, the
angle that the line of detectors (orthogonal to the lines of photons) makes with the positive x-axis. Then, a
single photon on the line has coordinates

{

x = r cos θ − s sin θ
y = r sin θ + s cos θ,

where the parameter s ∈ R identifies a photon on its line (see Figure 1).
For each r ∈ R and 0 ≤ θ < π, the collected information is given by the integral of f along a line of photons
crossing the body:

pθ(r)(K) =

∫ +∞

−∞

f(r cos θ − s sin θ, r sin θ + s cos θ)ds.

Thus, for each r ∈ R the Radon Transform of f is given by
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(Rf) = {pθ(r)(K) : 0 ≤ θ < π}.
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Figure 1. Collection of data under a rotation θ ∈ [0, π).

The main tool for the RT inversion is the so-called central slice theorem (or projection slice theorem), which

says that the restriction to u = r cos θ, v = r sin θ of the 2-dimensional Fourier transform f̂(u, v) of f(x, y)
equals the 1-dimensional Fourier transform of pθ(r). From the knowledge of (Rf), pθ(r) is known for all θ,

and thus f̂ , so that f can be determined by means of the inverse Fourier Transform [30].
Despite this clear theoretical picture, many problems remain in applications, where the main effort is the

discretization of the whole process, due to different reasons. To begin with, only a finite number of projections
can be taken, i.e. only a finite number of directions can be considered. Moreover, for each direction the X-ray
is not continuous, but actually consists of a finite number of beams. This implies that one can collect only a
finite number of data pθi

(rj), 1 ≤ i ≤ m, 1 ≤ j ≤ n. Being the numerical data discrete, the density function
f must be redefined on a finite gride, so that the inverse problem itself becomes discrete. Consequently, the
implementation of any reconstruction algorithm in CT produces gray-scale digital images, where every gray
level has a finite binary representation.

This leads to a natural connection between CT and Discrete Tomography (DT). In DT one aims to re-
construct finite subsets of the integer lattice Z

n from the knowledge of their line sums in a small number of
directions. The beginning of DT goes back to the DIMACS Mini-symposium that Larry Shepp organized in
1994 on this topic. The original motivation came from High-Resolution Transmission Electron Microscopy
(HRTEM) which is able to obtain images with atomic resolution and provides quantitative information on the
number of atoms that lie in single atomic columns in crystals (see [29, 26, 32]). The high energies required
to produce the discrete X-rays of a crystal mean that only a small number of X-rays can be taken before
the crystal is damaged. Therefore, DT focuses on the reconstruction of images with few different grey levels,
and, in particular, on the reconstruction of binary images from a small number of projections. Here the term
projection is used with different meaning within different reconstruction problems, but, in general, it refers to
a partition of the pixels in the image, such that for each subset in the partition the total number of 1s in the
unknown binary image is given (see, for instance, [4, 23, 18]). There are other real applications of discrete
tomography where one can assume that the image consists of only two grey values, for instance in connection
with the scan of a homogeneous object, where the 1s and the 0s denote, respectively, presence or absence of



INTERSECTING POLYTOPES AND TOMOGRAPHIC RECONSTRUCTIONS 3

material in the corresponding pixels. Further applications of DT include quality control in semiconductor in-
dustry, image processing, data compression and data security, etc. (see, for example [23, 24, 28, 33]). Detailed
accounts of the development and advances that have taken place since 1994 can be found in the two “classical”
books on this subject, [24, 25].

In DT, the usual line integrals are replaced simply by counting the number of points on each line L, which
gives a discrete version of RT, the so-called Discrete Radon Transform (DRT). The inversion of DRT aims to
deduce the local atomic structure from the collected counting data. It is worth mentioning that this problem
was considered in its pure mathematical form even before its connection with electron microscopy ([15]). On
this regard, a special class of geometric objects, called additive sets, has been studied in considerable depth
(see Section 2 for the formal definition). It was shown in [15] that a finite subset F of Z

2 is uniquely determined
by its line sums in the coordinate directions if and only if F is additive. The sufficient condition was later
extended to any dimension, pointing out that notions of additivity and uniqueness are equivalent when two
directions are employed, whereas, for |D| ≥ 3 directions, additivity is more demanding than uniqueness.
Actually, every additive set is uniquely determined, but there are nonadditive sets of uniqueness [17]. Further
generalizations have been considered in [16], where the notion of additivity has been extended to n-dimension,
with respect to a set H of linear manifolds (see also Section 2). This suggests that may be quite difficult to
decide whether a lattice set is uniquely determined by its line sums taken in set of more than three directions.
In fact, the inversion of DRT is generally NP-hard ([28]), so that any reconstruction algorithm must consist
of exponentially many steps in the size of F . However, the problem for additive sets becomes affordable if
the discrete approach is relaxed to take advantage of continuous methods. Indeed, the idea is to address the
problem by looking for a fuzzy set with given line sums, namely a function f(z) such that 0 ≤ f(z) ≤ 1 for
all lattice points z ∈ Z

2, and |
∑

z∈L f(z)| = |F ∩ L| for each lattice line L. All such functions form a convex
set, and the functions f such that f(z) ∈ {0, 1} are extreme points. Thus the reconstruction problem can be
formulated in terms of linear programming, and there are algorithms for finding f or proving that no such f
(and hence no corresponding set F ) exists that run in polynomial time (see [17]). One related problem is to
find suitable sub-classes of lattice sets that can be reconstructed in polynomial time (see, for instance [5, 8]),
or to provide uniqueness results from the analysis of the geometric features of the class (see [21, 22]). This
indicates that more significant connections can be made between DT and Geometric Tomography (GT), which
is a geometric relative of CT.

In GT the usual density functions appearing in CT are replaced by geometric objects, and one of the main
goal is to find conditions which guarantee a faithful reconstruction, possibly unique, within a given geometric
class of subsets of R

n. The class of additive sets has been widely considered also in this context. A well-known
result states that a D-additive set in R

n is uniquely determined, among all measurable sets, by its X-rays
taken in the directions in D (in fact a more general result is true, see [20, Theorem 2.3.11]). In the planar
case, the additivity property has an interesting interplay with convexity, and, in particular, with the notion of
inscribability. A convex body K ⊂ R

2 is said to be inscribable with respect to a finite set D of directions, or
simply D-inscribable, if its interior is the union of interiors of convex polygons inscribed in K, each of whose
edges is parallel to some direction in D. If D consists of the set of coordinate directions in the plane, then
D-inscribability and uniqueness by means of X-rays in the directions in D are equivalent (see [27]). Further,
in this case, a planar convex body K is D-inscribable if and only if it is D-additive (see [19]). This result
partially extends to any finite set D of directions: every D-inscribable set is D-additive, but the converse is
not true (see [19] and also [20, Chapter 1] for an overview on this topic).

The previous discussion shows that uniqueness, additivity, and inscribability are mutually entwining notions,
playing an important role in tomography. In particular, a discrete counterpart of inscribable sets could be
desirable. In this paper we investigate such problems as follows. First, we derive the additivity property for
polytopes in R

n, and extend this result to finite unions of polytopes satisfying a special requirement of mutual
intersection (see Section 2). This provides uniqueness results for such clusters of polytopes, also holding in the
n-dimensional integer lattice Z

n. This can be suitable for DT purposes, when few directions are employed,
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for instance the set of coordinate directions. In Section 3 we explore in more detail the geometric structure
of clusters of polygons, i.e. for n = 2. This leads to a discrete notion of inscribable sets, which share several
features with their GT analogous. On the other hand, differently from the continuous scenario, such sets need
not necessarily be convex, and therefore represent a wider class of lattice sets.

The results presented in this paper could be considered also for inverse problems which are not immediately
related to tomography, such as reconstructions of 3D models from image data, typical of computer vision, or the
understanding of physical properties of some materials. Let’s consider, for instance, a combination of crystals.
As it is well known, crystal shapes can be grouped on the basis of their external (i.e. macroscopically visible)
symmetry features into seven systems of three dimensional patterns, namely cubic, tetragonal, hexagonal,
trigonal, orthorhombic, monoclinic, and triclinic. This external shape reflects the characteristic symmetry
of the microscopic pattern of atomic arrangement in the various crystals, which, during their growth (for
instance into a fluid phase), develop and maintain definite polyhedral forms. Due to this, Theorem 3, and
the following Corollary 1 are of special interest. The bounding faces of such polyhedra are perpendicular
to the directions of slowest growth, which are determined by several factors such as temperature, pressure,
chemical conditions, and amount of available space. In a first-step any such form could be approximated
by a polyhedron in Z

3. A combinations of forms belonging to a same crystal class may result in a crystal
cluster, a formation that consists of a number of single-terminated crystals, each adhering to a common base
(see Figg. 2A-D). It turns out that the external structure of a crystal cluster has to do with the different
rates of growth. Components having different growing directions can be approximated by different polyhedra.
By selecting a set of m different growing directions (different colors in Fig. 2B), the crystal cluster remains
approximated by m different intersecting polyhedra (see Figg. 2C-F). Of course, the greater m, the more
accurate reconstruction results.

A B C

 

D E F 

Figure 2. A An amethyst crystal cluster. D A quartz crystal cluster. B-E Some meaningful
directions selected from the shapes. C-F Simple approximations of the crystals by means of
clusters of twisted polytopes.

In Section 2 we focus on the tomography of clusters of polytopes formed according to a special assumption
of mutual intersection. This is selected in analogy with a set of growing directions in a crystal cluster. The
resulting shapes look like that in Figures 2 C-F, so that the study of such a geometric class might be of interest
for applications. Theorem 4 and Corollary 2 seem to be of interest in this view.

One related problem is that of finding stability estimates for reconstruction of such sets. In Section 4 we
give a brief sketch of further researches in this direction.

2. Additivity of polytopes

As usual, R
n, n ≥ 2, denotes the Euclidean n dimensional space, and {e1, . . . , en} the standard orthonormal

basis for R
n. For any subspace S ⊂ R

n, H⊥ denotes its orthogonal complement.
If A is a measurable set, with respect to the n-dimensional Lebesgue measure λn, we denote by |A|, intA,

clA and conv A the measure, interior,closure, and convex hull of A, respectively. For a pair of sets A,B, we
write A△B for their symmetric difference. Let H ⊂ R

n be a k dimensional subspace, 1 ≤ k ≤ n − 1, and let
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E ⊂ R
n be a bounded measurable set. Denote by λk the k-dimensional Lebesgue measure. The k-dimensional

X-ray of E parallel to H is defined for λn−k-almost all x ∈ H⊥ by λk(E ∩ (H + x)), that is the λk-measure
of the intersection of E with each k-dimensional plane parallel to H (see [20]). Such a definition can easily be
assumed also in the integer lattice Z

n, by replacing λk with the counting measure, namely with the cardinality
of intersections.

Let H be a subspace of R
n. A ridge function orthogonal to H is a function which is constant on each

translate of H. Let H = {Hi : 1 ≤ i ≤ m} be a set of subspaces of R
n of dimension between 1 and n − 1

inclusive. A bounded set E ⊂ R
n is called H-additive if

(2.1) E = {x ∈ R
n :

∑

i

fi(x) > 0},

where fi is a ridge function orthogonal to Hi (see [20, Chapter 2], where a slightly more general definition is
given). The following theorem is proved in [14].

Theorem 1. Any H-additive set is uniquely reconstructible by means of X-rays parallel to the subspaces in
H.

The discrete version of this important result can be obtained as follows (see for instance [16]). Let H =
{H1, ..., Hm} be a set of linear subspaces of R

n, of dimension between 1 and n − 1 inclusive. Then H is said
to be a discrete Radon base if, for all i, j ∈ {1, ..., m} the following hold

(1)
⋂m

i=1 Hi = {0};
(2) i 6= j ⇒ Hi 6⊆ Hj ;
(3) |Hi ∩ Z

n| ≥ 2.

For a discrete Radon base H = {H1, ..., Hm}, let Hk be the family of affine subspaces of R
n formed by all

translates of Hk that have nonempty intersection with Z
n. Hence, H ∈ Hk if and only if H = Hk +a for some

a ∈ R
n, i.e. H = {x + a : x ∈ Hk} for some a ∈ R

n and (Hk + a) ∩ Z
n 6= ∅. Then consider the family T of

all such affine subspaces

T =

m
⋃

k=1

Hk.

For any set E ∈ Z
n, the discrete Radon transform (DRT) of E with respect to T is the function vE : T →

{0, 1, 2, ...} such that

(2.2) vE(H) = |E ∩ H| for all H ∈ T .

A finite set E ⊆ Z
n is a set of uniqueness with respect to a family H of linear subspaces, or simply H-unique, if

E is uniquely determined by its DRT with respect to T . In other words, if F ⊆ Z
n verifies |F ∩H| = |E ∩H|

for all H ∈ T , then F = E. A finite set E ⊆ Z
n is a additive with respect to a discrete Radon base H, or

simply H-additive if some mapping g : T → R exists such that

(2.3) E =

{

x ∈ Z
n,

∑

H∈T

vx(H)g(H) > 0

}

,

where vx is the DRT of {x}, that is vx(H) = 1 if x ∈ H, and vx(H) = 0 otherwise. In [15] (see also [16]) it is
proved the following discrete counterpart of Theorem 1.

Theorem 2. If a set E is H-additive with respect to a discrete Radon base H, then E is also H-unique.
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Remark 1. Any x ∈ Z
n lies in exactly one member of Hi for each i ∈ {1, ..., m}. Therefore, when H ∈ Hi,

vx(H)g(H) is the discrete analogue of a ridge functions orthogonal to Hi. In this view, the two definitions of
additive set coming from (2.1) (continuous case) and (2.3) (discrete case) can be naturally identified.

Let P ⊂ R
n be a convex polytope of full dimension n, and denote by F (k)(P ) the set of k-dimensional

faces of P , 0 ≤ k ≤ n. As usual, the elements of F (n−1)(P ) = {F1, ..., Fm} are called facets of P . A bounding
hyperplane is a hyperplane containing a facet of P . The n − 1-dimensional subspace parallel to a bounding
hyperplane is said to be a bounding subspace of the polytope. For Fi ∈ F (n−1)(P ), i ∈ {1, ..., m}, denote by
Hi the corresponding bounding subspace, and let H⊥

i be the inner (with respect to P ) normal to Hi. The
polytope P is the intersection of m half spaces determined by the bounding hyperplanes of P , each of which
is defined by a linear inequality. Therefore P can be represented as the solution of a system of inequalities
Atx ≥ b. In particular, each row in the matrix At corresponds with a bounding subspace of the polytope P ,
that is the i-th row of At corresponds to the vector H⊥

i , i = 1, ..., m. Denote by Ai the matrix obtained from
A by replacing H⊥

i with −H⊥
i , and by keeping each other row. Analogously, let bi be the array obtained from

b by changing its i-th entry in the opposite and preserving all the other entries.

Definition 1. Let P ⊂ R
n be a convex polytope of full dimension n. Consider the set

R̊(P ) =

m
⋃

i=1

{

x ∈ R
n, At

ix > bi

}

.

The free region determined by P is the set R(P ) obtained as union of R̊(P ) with the portion of its boundary
which does not belong to ∂P (see Remark 3).

Remark 2. Since Ai is just A with the i-th row replaced by the opposite, the set {x ∈ R
n, At

ix > bi}
corresponds with the (possibly unbounded) open region of R

n \ P delimited by Fi and by all the bounding
hyperplanes of P that intersect Fi, i ∈ {1, ..., m}. Such open regions are pairwise disjointed.

Due to the introductory discussion concerning the interplay between uniqueness and additivity, the following
result is important in view of tomographic approximations of natural shapes.

Theorem 3. Let P be a non-degenerate convex polytope in R
n, n ≥ 2. Then P is H-additive with respect to

the set H formed by its bounding subspaces.

Proof. Let F (n−1)(P ) = {F1, ..., Fm}, and let Bj be the bounding hyperplane of P containing Fj . Denote by
B+

j , B−
j the open half-spaces bounded by Bj , where P ⊂ cl(B+

j ). For each j ∈ {1, ...,m}, define the following
function on R

n

fj(x) =







−(m − 1)/m if x ∈ B−
j

1/m if x ∈ cl(B+
j ).

Note that fj is a ridge function orthogonal to Hj , for each j ∈ {1, ..., m}. Now consider the function

(2.4) f(p) =

m
∑

j=1

fj(p),

and compute f(p) for any p ∈ R
n. To this, let I(p) ⊆ {1, ..., m} be the set of indices (depending on p), such

that p ∈ B−
j for j ∈ I(p). Since clB+

j ∪B−
j = R

n for all j ∈ {1, ..., m}, then p ∈ clB+
j for j ∈ {1, ..., m} \ I(p).

From (2.4) we get

f(p) = −|I(p)|
m − 1

m
+ (m − |I(p)|)

1

m
= 1 − |I(p)|.
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If p ∈ R(P ), then, by Remark 2, |I(p)| = 1, and f(p) = 0. If p ∈ R
n \ (P ∪ R(P )), then |I(p)| ≥ 2, so that

f(p) ≤ −1. If p ∈ P , then p ∈ clB+
j for all j = 1, ...,m, and |I(p)| = ∅, which implies f(p) = m(1/m) = 1.

Therefore we have

P =







p ∈ R
n : f(p) =

m
∑

j=1

fj(p) > 0







,

and consequently P is H-additive. ¤

From [14] we have the following result.

Corollary 1. A convex polytope of full dimension is uniquely determined by the X-rays parallel to its bounding
subspaces.

Theorem 3 can be generalized to special union of polytopes. To this we need two more definitions.

Definition 2. Let P1, P2 ⊂ R
n be convex polytopes of full dimension n, and R(P1), R(P2) be the free regions

determined by P1, P2 respectively. Then P1, P2 are said to be twisted polytopes if each one is contained in the
union of the other with the corresponding free region, namely P1 ⊂ P2 ∪ R(P2) and P2 ⊂ P1 ∪ R(P1).

Definition 3. A set C ⊂ R
n is said to be a cluster of twisted polytopes if C is the finite union of pairwise

twisted polytopes.

Theorem 4. Let C ⊂ R
n be a cluster of twisted polytopes P1, ..., Pr. Denote by mi the number of facets of

Pi, and let H be the set of all the bounding subspaces of P1, ..., Pr. Then C is H-additive.

Proof. Denote by mi the number of facets of Pi, i = 1, ..., r, and let {Bij : j = 1, ..., mi} be the set of the
bounding hyperplanes of Pi. Consider the functions

f
(Pi)
j (x) =







−(mi − 1)/mi if x ∈ B−
ij

1/mi if x ∈ clB+
ij ,

for all i = 1, ..., r and for all j = 1, ..., mi. Let f (Pi) be the sum of all f
(Pi)
j , namely

f (Pi)(p) =

mi
∑

j=1

f
(Pi)
j (p).

By Theorem 3, f (Pi)(p) > 0 if p ∈ Pi, f (Pi) = 0 if p ∈ R(Pi), and f (Pi)(p) < 0 if p /∈ Pi ∪ R(Pi). Now define

f(p) =

r
∑

i=1

f (Pi)(p) =

r
∑

i=1

mi
∑

j=1

f
(Pi)
j (p).

If p ∈ C, then there exists a set of indices (depending on p) I(p) ⊆ {1, ..., r} such that p ∈ Pk, for k ∈ I(p).
Therefore, f (Pk)(p) > 0 for k ∈ I(p). Suppose now h /∈ I(p). Since Ph and Pk are twisted polytopes,
Pk△Ph ⊂ R(Ph) for all k ∈ I(p). Consequently, f (Ph)(p) = 0, for all h /∈ I(p), so that f(p) > 0. If p /∈ C,
then p /∈ Pi, and f (Pi)(p) ≤ 0 for all i = 1, ..., r. Therefore f(p) ≤ 0, so that

(2.5) C =

{

p ∈ R
n : f(p) =

r
∑

i=1

f (Pi)(p) > 0

}

.

Let’s label the members of H in some order, so that H = {H1, ..., Hm}, m = m1 + ... + mr, where possible
repetitions might occur if different polytopes have the same bounding subspaces at some of their facets. For
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Hh ∈ H, denote by gh the corresponding ridge function f
(Pi)
j , or the sum of all the corresponding ridge

functions if Hh is repeated. In any case, gh is a ridge function orthogonal to Hh. Consequently we can write

(2.6) f(p) =

r
∑

i=1

mi
∑

j=1

f
(Pi)
j (p) =

m
∑

h=1

gh(p).

Therefore f is the sum of ridge functions, and by (2.5), the cluster C is H-additive. ¤

Remark 3. The crucial step in proving Theorem 4 relies on the fact that, for a single polytope P , Theorem
3 gives f(p) = 0 if and only if p belongs to R(P ). Definition 2 motivates and explains the term free region
associated to P , since it represents the set of points where we are allowed to place further components of the
resulting cluster.

Example 1. Let C = B1 ∪ B2 be a cluster of a square B1 and a rectangle B2. In Figure 3 is represented
the computation of f(p) = f (B1)(p) + f (B2)(p) as in the proof of Theorem 4. Each region is labeled with two
numbers, corresponding to the values of f (B1)(p), f (B2)(p) (the first and the second one, respectively) for p
in that region, showing that C =

{

p ∈ R
n : f(p) =

∑r

i=1 f (Pi)(p) > 0
}

, as required. The 00 labeled regions
allow the displacement of further vertices for possible additions of twisted polygons to form a new cluster.

11 

10 

10 

01 01 

00 00 

00 00 

00 00 

0 -1 0 -1 

0 -1 0 -1 

-10 -10 

-10 -10 

-1-1 -1-1 

-1-1 -1-1 

00 

00 

Figure 3. A two-dimensional cluster formed with a pair of twisted boxes.

From Theorem 1 we immediately get the following corollary.

Corollary 2. A cluster of twisted polytopes of full dimension is uniquely reconstructible, among all measurable
sets, by X-rays parallel to the family of its bounding subspaces.

Corollary 2 shows that approximating a natural shape with a cluster of polytopes could be tomographically
meaningful, since the two-dimensional sections with planes orthogonal to the specified directions uniquely
determine the cluster. See, for instance, Figure 2 in the Introduction.

Since a convex lattice polytope (i.e. a convex polytope whose vertices belong to Z
n) can still be determined

in Z
n as the solution of a system of inequalities, all the previous definitions concerning free-regions, twisted

polytopes and clusters of polytopes can be considered also in the lattice Z
n, n ≥ 2. It is then natural to ask

whether the above results extend to this discrete setting.

Theorem 5. Let C ⊂ Z
n, n ≥ 2, be a cluster of twisted lattice polytopes P1, ..., Pr, r ≥ 1, and let H be the

family of its bounding subspaces. Then the following hold.

(1) C is H-additive.
(2) C is uniquely reconstructible from the X-rays parallel to the hyperplanes in H.
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Proof. (1) The proof of Theorem 3 does not depend on the continuous structure of R
n, but just on the set of

ridge functions orthogonal to the bounding subspaces of the convex polytope P . Therefore we can reproduce
precisely the same proof even in the case when P ⊂ Z

n (see also Remark 1). Moreover, it is easy to see that the
family H formed by the bounding subspaces of a lattice convex polytope P is a discrete Radon base. Therefore
P is H-additive, which proves the statement for r = 1. If r > 1, the proof of Theorem 4 can be reproduced
without changes, but in the case of Z

n we need to show that the set H = {H1, ..., Hm} of bounding subspaces
is a Radon base. Of course conditions (1) and (3) in the definition of a Radon base trivially hold, since these
are already fulfilled by the bounding subspaces of each Pi forming the cluster. In the case where different
polytopes in C have common bounding subspaces to some of their facets, we have Hi = Hj for different
indices i, j, which would contradict condition (2). However a Radon base can be determined from H simply
by including just once such hyperplanes. This implies the replacing of the corresponding ridge functions with
their sum. Consequently, formula (2.6) still implies that f in (2.5) is a sum of ridge functions, so proving that
C is H-additive.

(2) The statement immediately follows by (1) and by Theorem 2. ¤

Remark 4. We are not aware of other uniqueness results for higher dimensional X-rays different from that
presented in Theorem 5-(2) (see also the comment in [22]). On the other hand such a result can be restated
in terms of lower dimensional X-rays as follows. Let E ⊂ R

n be H-additive with respect to a set H of
k-dimensional subspaces. Let j < k, and assume we know the j-dimensional X-rays of E with respect to
some j dimensional subspace SH of H, for each H ∈ H. Let S be the family of these j-dimensional X-rays.
Suppose that, for all H ∈ H, F has the same X-rays of E for all SH ∈ S. Then, by the Cavalieri principle,
λk(F ∩H) = λk(E ∩H) for all H ∈ H. Since E is H-additive, then E is H-unique, and consequently F = E.
In other words, we know that E is the set of points where the sum of the given ridge functions orthogonal
to H, for all H ∈ H, is positive. Such ridge functions can also be regarded as ridge functions orthogonal
to j dimensional subspaces of H, so that E is S-additive with respect to such a family S, and therefore is
S-unique. In particular, from data concerning 1-dimensional X-rays, Corollary 2 (or Theorem 5-(2) in the
lattice case) guarantee uniqueness of reconstruction for cluster of twisted polytopes having facets parallel to
the given directions.

The results in Theorem 5 appear to be useful in view of applications. However, as explained in the
Introduction, in DT it is also important to employ a limited number of directions. This suggests to look for
clusters where all the twisted polytopes share a common discrete Radon base. The simplest way to get such
a cluster is to employ the discrete Radon base formed by the coordinate hyperplanes, so that the employed
polytopes are coordinate boxes, namely parallelepipedes with sides parallel to the coordinate directions. In
this case the above results have an interesting further connection with the reconstruction algorithms of CT.
As well known, these are mainly based on the back-projection method, consisting in the smearing of the
various projections back onto each other, along the X-rays directions. Let B ⊂ Z

n be a coordinate box. If
F ∈ F (k)(B), then F is the intersection of n − k bounding hyperplanes. The outer normal unit vectors to

the bounding subspaces at F span a closed cone Γn−k
F of dimension n − k. For each point x0 in the relative

interior of F , let Γn−k
F (x0) be the normal cone to F at x0, that is the image of Γn−k

F under the translation of
the origin to x0.

Definition 4. The back-projection of F in R
n is the set

(2.7) b(F ) =
⋃

x0∈relintF

int Γn−k
F (x0),

where relintF means the relative interior of F .

¤
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If F is a facet of B, then b(F ) corresponds with the unbounded open region of R
n \ B delimited by F and

by the bounding hyperplanes intersecting F . Therefore, by Remark 2, and according to Definition 1, we have

R(B) =
⋃

F∈F(n−1)(B)

(cl b(F )) \ F.

Example 2. In Figure 4 the computation of f(p) as in Theorem 3 is shown when P is a cube.

-2 

0 

-1 

1 

Facet back-projection 
Edge back-projection 
Vertex back-projection 

Figure 4. The sum of the ridge functions in a cube and in the back-projection of its faces.

Theorem 4 and Corollary 2 can be reformulated in the case of clusters of twisted coordinate boxes, so matching
the requirement of few directions, typical of DT, with the back-projection algorithm of CT, which allows easy
constructions of such clusters (see for instance Figure 5)

Figure 5. An example of cluster of twisted boxes in Z
3
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Approximations of 2-dimensional sections of natural shapes, also with curvilinear boundary, can also be
considered by means of clusters of twisted polygons, and interesting related geometric problems could be
formulated concerning special construction producing such clusters. See, for instance Figure 6, where different
copies of a square, rotated about its center, have been mutually intersected. By employing more and more
rotations the resulting cluster might be used to approximate a disc.

Figure 6. Cluster of five mutually intersecting squares.

3. Discrete D–inscribable sets

The aim of this section is to investigate the geometric structure of clusters of polytopes in the planar case
and show that our definition provides a discrete counterpart of the existing notion of D-inscribable sets in the
continuous case. We start recalling the original definition and some peculiar properties of this class of sets
[20, Chapter 2].

Let D be a finite set of at least two distinct directions in R
2. A convex body K ⊂ R

2 (i.e. a compact
convex set with non-empty interior) is D-inscribable if each point p in the boundary of K is the vertex of a
polygon inscribed in K (i.e. having all its vertices in the boundary of K) whose edges are parallel to some
directions in D. Such a polygon may be degenerate if it contains the intersection with K of each line through
its vertices parallel to a direction in D. In [19] the geometric structure of D-inscribable sets was analyzed in
order to show that D-inscribable sets are D-additive and hence D-unique. For earlier results concerning the
case where D consists of the coordinate directions, and additional information see [20, Note 2.3].

We now reinterpret the previous notion in a discrete setting, namely in the integer lattice Z
2. We need

some preliminaries. A lattice line is a line containing at least two points in Z
2. A lattice direction is a lattice

vector in Z
2 \ {o} whose coordinates are relatively prime. We refer to a finite subset of the integer lattice Z

2

as a lattice set. A convex lattice set is a finite subset F of Z
2 such that F = (conv F ) ∩ Z

2. A lattice set F is
line-convex along a lattice direction u ∈ Z

n \ {o} if the intersection of any line parallel to u and F is a convex
lattice set, possibly empty.

Given two distinct lattice directions u, v ∈ Z
2\{o}, we denote by Zuv

k , where k ∈ {0, 1, 2, 3}, the closed cones
determined by the pairs of vectors {−u,−v}, {u,−v}, {u, v}, {−u, v}, respectively. For any point p ∈ Z

2, the
translation of Zuv

k by p is denote by Zuv
k (p), and called a quadrant centred at p.

Let D be a finite set of at least two distinct directions and let F be a lattice set in Z
2. The D-boundary

of F is the set of points p ∈ F such that there exists a quadrant Zuv
k (p) centred at p, with u, v ∈ D and

k ∈ {0, 1, 2, 3}, such that (intZuv
k (p)) ∩ F = ∅, see Figure 7. Let p ∈ F be a point in the D-boundary of F , a

quadrant Zuv
k (p) such that (intZuv

k (p)) ∩ F = ∅ is called a support quadrant of F at p.

Definition 5. Let D be a finite set of at least two distinct directions and let F be a lattice set in Z
2. A

non-degenerate convex lattice polygon P ⊂ F , whose edges are parallel to some directions in D, is called
D-inscribed if the following conditions hold:
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(i) each vertex of P belongs to the D-boundary of F ;
(ii) the support quadrant of P at a vertex p ∈ P bounded by the two semi-lines parallel to the edges of P

issuing from p is a support quadrant of F at p.

A D-inscribed polygon may degenerate to a segment parallel to a direction in D. In this case it must contain
the intersection with F of each line through its endpoints parallel to a direction in D.

Notice that condition (ii) corresponds to the usual local condition for the tangent cones of two planar convex
bodies touching each other and with one contained in the other one. Actually, (i) easily follows from (ii), but
we prefer to give this extended definition in order to emphasize the analogy with the continuous case.

We now present the discrete notion of inscribable sets.

Definition 6. Let D ⊂ Z
2 be a finite set of at least two distinct lattice directions. A lattice set F ⊂ Z

2 is
said to be D-inscribable if each point of F is contained in a D-inscribed polygon.

Examples of D-inscribable sets are shown in Figures 7, 8, 9, and 13.

Figure 7. A D-inscribable set, for D = {e1, e2} (the D-boundary of the set consists of the
circled points).

If all the D-inscribed polygons of a D-inscribable set F degenerate to segments parallel to some directions
in D (see Figure 8), we say that F is a degenerate D-inscribable set. A D-inscribable set which contains a
non-degenerate D-inscribed polygon is called non-degenerate.

Figure 8. A degenerate D-inscribable set, for D = {e1, e2}.

It is worth remarking that our notion of D-inscribable sets does not require any convexity property for the
set. In fact, Figure 7 shows an example of a non convex lattice set which is D-inscribable. There are also
weaker convexity conditions that are relevant in discrete tomography, e.g. Q-convexity. A lattice set F is Q-
convex (quadrant-convex), with respect to a set D = {u, v} of two distinct lattice directions, if Zuv

k (p)∩F 6= ∅,
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for all k ∈ {0, 1, 2, 3}, implies p ∈ F . A lattice set F is Q-convex with respect to a finite set D of directions
if it is Q-convex with respect to every pair of directions in D. Notice that if F is Q-convex with respect to a
finite set D of directions, then F is line-convex along any direction in D. For an introduction to the known
results on Q-convex sets and their applications, see [7, 12, 13] . The example in Figure 7 is Q-convex with
respect to D = {e1, e2}, without being convex. Figure 9 shows an example of D-inscribable set which is not
Q-convex with respect to D = {e1, e2, u = (1, 1)}, since it is not line-convex in the vertical direction.

On the other hand, if F is assumed to be convex, then Definition 6 is equivalent to require that each point
in the boundary of F is vertex of an inscribed polygon, so matching the definition of the continuous case.

p

Figure 9. A D-inscribable set which is not line-convex along the directions in D =
{e1, e2, u = (1, 1)} (p does not belong to the set).

We now examine the link between the discrete notion of D-inscribable sets and that of clusters of twisted
polygons introduced in the previous section. We shall show that these two classes are the same, provided we
extend the definition of clusters of twisted polygons by including degenerate polygons. In particular, let C be
a finite union of polygons P1, ..., Pr, not all degenerate, whose edges are parallel to some directions in D. We
say that C is a D-cluster of twisted polygons if any two full dimensional polygons Pi, Pj are twisted polygons,
according to Definition 2, and each degenerate polygon Pk of the union is a segment, parallel to some direction
in D, which contains the intersection with C of each line through its vertices parallel to a direction in D.

Proposition 1. Let D ⊂ Z
2 be a finite set of at least two distinct lattice directions and let F ⊂ Z

2 be a lattice
set. The following statements are equivalent

(1) F is a D-cluster of twisted polygons.
(2) F is a non degenerate D-inscribable set.

Proof. Both these classes of sets consist of finite unions of polygons whose edges are parallel to some direction
in D. Moreover, the requirement for degenerate polygons to belong to one set in each class is the same. Thus
the statements follows from the fact that condition (ii) in Definition 5, applied to any pair of non degenerate
D-inscribed polygons, is equivalent to the requirement of being a pair of twisted polygons. ¤

We now turn to the question of reconstruction of lattice sets from their X-rays. We have seen in the previous
section that clusters of polytopes are H-additive and hence also H-unique. Since we use here a slightly more
general notion we have to prove that such uniqueness result holds even in the case of D-cluster of twisted
polygons. To this end, we notice that in the planar case the additivity proof in the case of cluster of full
dimensional polygons can be completed by adding also the degenerate case as follows.

Lemma 1. Let D be a finite set of at least two distinct directions in R
2. Each segment parallel to some

direction in D is D-additive.
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Proof. Consider a segment [a, b], with end points a, b ∈ R
2, parallel to a direction uk ∈ D. Let L[a, b] denote

the line through a and b. For each uj ∈ D, where j 6= k, we denote by Lj the closed strip containing the
segment [a, b] and bounded by the lines through a, b, respectively, parallel to uj .
For p ∈ Z

2, we define

fj(p) =

{

0 if p ∈ Lj

−1 if p /∈ Lj
for j 6= k, and fk(p) =

{

1 if p ∈ L[a, b]
0 if p /∈ L[a, b]

Notice that the function fj , fk are ridge functions, i.e. they are constant on each line parallel to uj , uk,
respectively.
Then we define

f(p) =

m
∑

j=1

fj(p)

where m is the number of directions in D.
If p ∈ [a, b] then p ∈ Lj for all j, so that

f(p) =

m
∑

j=1

fj(x) = fk(x) = 1.

If p ∈ L[a, b] \ [a, b] then p /∈ Lj for all j, so that

f(p) =
∑

j 6=k

fj(p) + fk(p) = −(m − 1) + 1 ≤ 0,

as m ≥ 2.
If p ∈ (

⋂

j 6=k Lj) \ [a, b] then f(p) = 0. If p ∈ R
2 \ (

⋂

j 6=k Lj) then there exists j0 6= k such that p ∈ R
2 \Lj0 ,

so that fj0(p) = −1 and

f(p) = fj0(p) + fk(p) +
∑

j 6=k,j0

fj(p) ≤ −1 + 1 +
∑

j 6=k,j0

fj(p) ≤ 0.

Therefore, it follows that

[a, b] =







p ∈ R
2 : f(p) =

m
∑

j=1

fj(p) > 0







,

and consequently the segment [a, b] is D-additive. ¤

Notice that if p ∈ [a, b] then f(p) = 1, and if p ∈ (
⋂

j 6=k Lj) \ [a, b] then f(p) = 0. Therefore, in the planar
case the proof of Theorem 4 can be easily extended to the case of cluster containing degenerate segments to
get the following result.

Theorem 6. Let D be a finite set of at least two distinct directions in R
2. Every D-cluster of twisted polygon

is D-additive.

This results, together with Theorem 1 enable us to state the following uniqueness result.

Theorem 7. Let D be a finite set of at least two nonparallel lattice directions. Then the class of non-degenerate
D-inscribable sets is D-unique.

Notice that Theorem 7 does not hold for degenerate D-inscribable sets, as it is shown in Figure 10.
Figure 10 shows a typical situation of sets which are not D-unique and form a so-called switching component.
Switching components play a key role in the study of non D-unique sets both in the continuous and discrete
setting (see [20, Chapter 2] and [16]). When D = {e1, e2}, non degenerate discrete D-inscribable sets contain
all the lattice sets corresponding to maximal binary matrices as characterized by Ryser [31].
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Figure 10. Two degenerate D-inscribable sets E = {•}, F = {◦} with the same X-rays in
the directions in D = {e1, e2}.

We wish to point out that the proof of D-additivity for D-inscribable sets given in the continuous case (see
[19]) is more involved, with respect to the one presented here, and it is based on an interesting geometric
property which we illustrate in what follows.
Let D = {u1, ..., um} be a finite set of distinct lattice directions, where m ≥ 2, arranged in order of increasing
angle with the positive x-axis. Let P be a convex lattice polygon whose edges aj , where 1 ≤ j ≤ n, are
parallel to some directions in D. We label the edges aj anticlockwise around the boundary of P , from the
edge making the smallest angle with the positive x-axis. Let uij

∈ D denote the direction of the edge aj , we
call the n-tuple (i1, ..., in) the D-type of P . Two D-inscribed polygons with same D-type and an even number
of edges have interlacing boundaries if all the edges of one polygon whose labels have same parity meet the
boundary of the second polygon, and the remaining edges all lie outside. In other words, the consecutive edges
of one polygon have alternatingly an empty and a non-empty intersection with the second polygon. Examples
of hexagons with interlacing boundaries for D = {e1, e2, u = (1, 1)} are illustrated in Figure 13. In [19] it
was shown that if a planar convex body K is strictly convex, i.e. its boundary does not contain segments,
then any two inscribed polygons with same D-type and an even number of edges have interlacing boundaries.
This properties holds even in the discrete setting, with strictly convexity assumption replaced by the following
property, which represents a more restrictive notion of twisted polygons.

Definition 7. Let P1, P2 ⊂ R
2 be non degenerate twisted polygons, and R(P1), R(P2) be the free regions

determined by P1, P2 respectively. Then P1, P2 are said to be strictly twisted polygons if the vertices of P1, P2

are contained in intR(P2), intR(P1), respectively.

A D-cluster of strictly twisted polygons is a cluster of polygons such that any two non degenerate polygons
are strictly twisted.

Proposition 2. Let D ⊂ Z
2 be a finite set of at least two distinct lattice directions and let F be a D-cluster

of strictly twisted polygons. Then

(i) two polygons of the cluster with same D-type and an even number of edges have interlacing boundaries;
(ii) there exists at most one polygon in the cluster with a given D-type and an odd number of edges.

Proof. (i) Let P and Q be two strictly twisted polygons with same D-type (i1, ..., in) and an even number n
of edges. We label the vertices pj , qj of P, Q, respectively, anticlockwise around the boundary of P, Q, where
1 ≤ j ≤ n. By assumption, either qj ∈ intR(P ) or pj ⊂ intR(Q). We may assume qj ∈ intR(P ), up to
exchanging the role of P and Q. Denote by Aj , where j ∈ {1, ..., n}, the component of the free region intR(P )
bounded by the edge aj = [pj , pj+1] of P (see Figure 11).
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pjpj+1

Aj

P

Figure 11

Let bj = [qj , qj+1] denote the edge of Q parallel to aj . Since P and Q have same D-type, then bj is parallel
to aj , so that bj ⊂ Aj . We have to show that both the edges bj−1, bj+1 have nonempty intersection with aj .
Let us assume that one of the edges bj−1, bj+1 does not intersect aj , say bj+1. Then the support quadrant of
Q centered at qj+2, bounded by the semi-line parallel to the edges bj+1, bj+2, contains the vertex pj+2, which
contradicts the assumption that P and Q are twisted (see Figure 12). In the same way we can show that bj−1

intersects aj .

pj pj+1

Aj

aj

aj+1
P

bj

Q bj+1

qj+2

pj+2

Figure 12

(ii) We first consider the non-degenerate case. Let P and Q be two distinct strictly twisted polygon with
same D-type and an odd number of edges. Then we can prove, as in the previous case, that two parallel edges
aj ∈ P and bj ∈ Q do not intersect, whereas aj meets bj+1 or bj meets aj+1, for each j. Since P and Q have
an odd number of edges this yields a contradiction.
Let us now consider an inscribed segment Q parallel to u ∈ D. Since F is a D-cluster of twisted polygons,
it contains a non-degenerate D-inscribed polygon P . Since Q contains the intersection with F of each line
through its endpoints parallel to a direction in D, the endpoints of Q belong to different regions Aj , associated
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to the polygon P as in (i). This also implies that there exists at most one inscribed segment parallel to
u ∈ D. ¤

This proposition shows that the class of clusters of twisted polytopes represents a natural extension of the
class of D-inscribable sets.

Notice that two D-inscribed polygons with different D-types may have empty intersection, as it is shown
in Figure 13

Figure 13. A D-inscribable set, for D = {e1, e2, u = (1, 1)}, with two disjoint non-degenerate
D-inscribed polygons (the shaded ones).

4. Conclusion and perspectives

We have introduced a new class of discrete lattice sets, namely cluster of twisted polytopes, giving motiva-
tions to their importance in image reconstruction. It is worth remarking that questions of stability are also
relevant for any inverse problem, since noise in the data cannot be avoided for all practical applications. Let
us briefly mention some important results in DT on this topic. The papers [2, 3] show that the reconstruction
of lattice sets from X-rays taken along more than two directions is highly unstable. This instability persists
even when the X-rays uniquely determine the object. In [6], S. Brunetti and A. Daurat proved that if the sets
are additive then a stability result holds when the error on the data is “small”. In particular, they obtained
an upper bound for the symmetric difference of two lattice sets depending on the distance of their X-rays and
the maximal size of the sets. However, the additivity assumption is not enough to get general stability results
if the number of directions is larger than two, as it is shown in [3], where the constructed counterexamples are
additive. Experimental results in [6] suggest the conjecture that convex lattice sets are additive. This would
imply a stability result which is in agreement with the continuous case, where the reconstruction of convex
bodies is well posed [34]. Positive stability results when the X-rays are taken in two directions were obtained
in [1], under the assumption that the error on the data is small. Recently, these results have been generalized
and sharpened in [9, 10, 11]. In a second paper, which continues the present one, we show that the geometric
structure of cluster of twisted polytopes leads to positive stability results which depend only on the data error,
differently from all the positive known results, where the sizes of the sets are also involved.



18 PAOLO DULIO AND CARLA PERI

References

[1] A. Alpers and S. Brunetti, Stability results for the reconstruction of binary pictures from two projections, Image and
Vision Computing 25, (2007), pp. 1599–608.

[2] A. Alpers and P. Gritzmann, On stability, error correction, and noise compensation in discrete tomography, SIAM J.
Discrete Math. 20 (2006), pp. 227–39.

[3] A. Alpers, P. Gritzmann, and L. Thorens, Stability and instability in discrete tomography , in Digital and Image Geometry
2000 , Lecture Notes in Computer Science 2243, Springer. Berlin, 2001, pp. 175–86.

[4] K. J. Batenburg and J. Sijbers Generic iterative subset algorithms for discrete tomography, Discrete Appl. Math. 157
(2009), pp. 438-451.

[5] S. Brunetti and A. Daurat, An algorithm reconstructing lattice convex sets, Theoret. Comp. Sci. 304 (2003), pp. 35–57.
[6] S. Brunetti and A. Daurat, Stability in discrete tomography: Some positive results, Discrete Appl. Math 147 (2005),

pp. 207–26.
[7] S. Brunetti and A. Daurat, Reconstruction of Q-convex Lattice Sets, in Advances in Discrete Tomography and its Appli-

cations, G. Herman A. Kuba eds, Birkhäuser Boston, 2007, pp. 31-54.
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