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Pricing Credit Derivatives in a Wiener-Hopf

Framework

Daniele Marazzina, Gianluca Fusai, and Guido Germano

Abstract We present fast and accurate pricing techniques for credit derivative con-

tracts when discrete monitoring is applied and the underlying evolves according to

an exponential Lévy process. Our pricing approaches are related to the Wiener-Hopf

factorization, and their computational cost is independent of the number of monitor-

ing dates. Numerical results are presented in order to validate the pricing algorithm.

Moreover, an analysis on the sensitivity of the probability of default and the credit

spread term structures with respect to the process parameters is considered.

Keywords Credit derivative, probability of default, Lévy process, discrete mon-

itoring, Wiener-Hopf factorization, fast Fourier transform, Hilbert transform, Z-

transform, Euler summation, Spitzer identity.

1 Introduction

In this article we present fast and accurate pricing techniques for credit deriva-

tives, like defaultable coupon bonds, assuming that default is monitored only on

discrete dates and the underlying evolves according to an exponential Lévy process.

Our pricing approaches, which are related to the maturity randomization algorithm
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based on the Z-transform presented by Fusai et al. [7, 8], change the problem of

computing the default probability into a Wiener-Hopf (WH) factorization problem.

This can be solved numerically exploiting the fast Fourier transform (FFT) algo-

rithm. Moreover, the computational cost of our procedures is independent of the

number of monitoring dates: indeed exploiting the Euler summation, which is a

convergence-acceleration technique for alternating series, we can speed up the in-

verse Z-transform.

The WH factorization can be dealt with from two different perspectives, analyt-

ical and probabilistic. The first approach is based on the solution of integral equa-

tions, whilst the second is based on the well known Spitzer identity [16].

The first method, that we call the Z-WH pricing method, is based on a Z-

transform approach which converts the usual backward procedure into a set of inde-

pendent integral equations of WH type. The idea consists in randomizing the con-

tract expiry according to a geometric distribution of a (complex) parameter q [7, 8].1

The randomization transforms the pricing problem into WH integral equations de-

pending on a parameter q. The solution of these WH equations requires to factorize

their kernel into a product of two functions, one analytic in an upper complex half

plane, the other in a lower.

The second method, that we call the Z-WH-S method, is related to the Spitzer

identity [16]. This identity factorizes the characteristic function of a random walk

with iid increments as the product of the characteristic functions of the minimum

and of the maximum of the random walk itself, and all random variables are stopped

at a geometric random time. The Spitzer identity gives a probabilistic interpretation

to these functions in terms of the characteristic function of the extrema of a geo-

metrically stopped random walk. For a recent discussion see Bingham [3] and the

references therein. We consider as application the pricing of defaultable bonds fol-

lowing the so called structural approach. This means that the issuer defaults as soon

as the firm value falls below a preassigned barrier level. The computation of the de-

fault probability is thus computed applying the factorization algorithm to the Spitzer

identity and the Z-transform inversion.

Finally, in this paper we show how the factorization and the inversion can be

performed numerically with high speed and accuracy for a general Lévy process.

In particular, the Z-transform inversion is performed as in [1], and in addition we

implement it by using Euler acceleration. The WH factorization is instead based on

a idea originally proposed in [9, 10].

Numerical results are presented in order to validate the pricing algorithm. More-

over, an analysis on the sensitivity of the probability of default with respect to the

considered Lévy processes’ parameters. The problem of computing the term struc-

ture of the default probability and of the credit spread is also addressed.

The structure of the paper is the following. In Section 2 we introduce the prob-

lem of computing the default probability and the price of a defaultable zero coupon

and we describe the necessary recursive formula. In Section 3 we describe how to

1 The interpretation of transforms as probabilities is also frequently called the method of collective

marks and is usually attributed to van Dantzig [17]. See also Resnick [14, page 564].
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exploit the FFT to obtain our fast and accurate pricing methods. Finally, in Section

4 we validate our procedures with numerical results, taking into consideration both

the accuracy and the computational cost, and we analyze the sensitivity of the prob-

ability of default and of the credit spread term structures with respect to the model

parameters.

2 Default probability and credit derivatives

We model default adopting a structural approach. The firm value S evolves accord-

ing to a stochastic process and default will occur as soon as the value of the firm

falls below a level L before or at maturity T . The boundary L can be related to bond

covenants or to an optimality condition based on the value of equity claims or to the

minimal firm value required to operate the company. Instead than with a standard

geometric Brownian motion process used by Merton [12] and Black and Cox [4],

here we model the firm value with an exponential Lévy process. This fact allows

us to generate a term structure of credit spreads that does not tend to zero as the

time horizon shortens, which cannot happen if we model the firm value according

to a diffusion process. In addition, we assume that the default is monitored only

at discrete dates, such as bond coupon payment or balance sheet reporting dates.

For aim of simplicity, we assume that the N monitoring dates are equally spaced,

so that ∆ = T/N is the time interval between two successive monitoring dates. In

the following, we denote with r the risk-free interest rate and we assume that the

underlying asset S pays a continuous dividend q.

Given a standard filtered probability space, for 0 ≤ t ≤ T the firm value process

S(t) is represented as

S(t) = S(0)eX(t),

where X(t) is a Lévy process, i.e. a stochastically continuous process with indepen-

dent and stationary increment, uniquely identified by its characteristic function

Ψ(ξ ; ∆) = E0

[
eiξ X(∆)

]
. (1)

2.1 Default probability, defaultable coupon bond and credit spread

If L is the default barrier, the default occurs as soon as S(t)≤ L, t being a monitoring

date. The quantity

z =− log
S(t)

L

is commonly known as distance to default. We can also define the default time as

the first hitting time of the level L:



4 Daniele Marazzina, Gianluca Fusai, and Guido Germano

τ = min
j=0,...,N

{ j∆ : S( j∆)≤ L}

The probability of default P(τ ≤ j∆) is related to the distribution of the minimum

value of the underlying asset. Indeed if we define

mi := min
j=0,...,i

X( j∆), i = 0, · · · ,N,

we have

P(τ ≤ j∆) = P(m j ≤ logL).

The probability of default p = P(mN ≤ logL), as well as its complement, the

survival probability 1− p, are the key ingredients to price credit derivatives, like,

for example, defaultable bonds and credit default swaps (CDS). A defaultable zero-

coupon bond written on a risky asset S is a bond which at maturity T pays a unit

notional if the asset price stays above the default threshold L, or pays the recovery

fraction R < 1 of the notional otherwise (R could also be equal to 0).2 The standard

convention among academics and practitioners assumes that the recovery rate is a

constant parameter, even if there is some empirical evidence of a negative correla-

tion between default rates and recovery rate, see for example Altman et al. [2]. We

will follow the standard industry practice, treating R as a constant parameter. Thus,

once the default probability is computed and the recovery rate is assigned, the price

Pd(T ) of the defaultable zero-coupon with maturity T is

Pd(T ) = e−rT (1− p+Rp) .

Given that the price of the risk-free zero-coupon is simply P(T ) = e−rT , the credit

spread, i.e. the difference of the yield to maturity of the two zero-coupon bonds,

defaultable and non-defaultable, with the same maturity, can be computed as

s(T ) =−
1

T
log

Pd(T )

P(T )
=−

1

T
log

(
1− p(1−R)

)
.

2.2 Recursive valuation of the default probability

In order to compute the default probability at time T when N equally spaced moni-

toring dates are considered, we can define the function v(x, j) through the recursion

v(x, j) =
∫ +∞

0
f (z− x; ∆)v(z, j−1)dz, j = 1, . . . ,N, (2)

v(x,0) = 1x>0,

2 This is the standard framework of the so called fractional recovery of face value. Another possi-

bility, not considered here, is the fractional recovery of market value at default
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where 1x>0 is the indicator function which is equal to 1 if x > 0, 0 otherwise, and

f (· ; ∆) is the transition probability density function of the log-return of the under-

lying asset. It holds that

P(mN ≤ logL) = 1− v(x0 − logL,N).

See Fusai et al. [8] for details.

3 Fast pricing methods

The recursion in Section 2.2 can be used to compute directly the probability of de-

fault. However, faster and more accurate pricing techniques can be considered. More

precisely, in Section 3.1 we present the Z-transform approach, that transform the re-

cursive procedure presented in Section 2.2 into the problem of solving independent

integral equations. Since this integral equations are of WH type, in Section 3.2 we

introduce a fast solution method based on the WH factorization. Finally, in Section

3.3 we present a different, but related, approach for computing the probability of

default based on the Spitzer identity. This approach seems to be the fastest and the

most accurate. This fact is numerically discussed in Section 4.

In the following, we denote the Fourier transform of a function g with

ĝ(ξ ) = Fx→ξ [g(x)](ξ ) =
∫ +∞

−∞
g(x)eiξ xdx

and the inverse transform with

g(x) = F
−1
ξ→x

[ĝ(ξ )](x) =
1

2π

∫ +∞

−∞
ĝ(ξ )e−ixξ dξ .

We recall that the characteristic function of the Lévy process, which is given in

Eq. (1) and known analytically, satisfies

Ψ(ξ ; ∆) = Fx→ξ [ f (x; ∆)](ξ ; ∆).

Notice the exception of using Ψ in place of f̂ . Furthermore we define the projection

operators on the positive (P+
x ) and negative (P−

x ) real axis3

P
+
x g(x) = 1x>0 g(x) and P

−
x g(x) = 1x<0 g(x).

Finally, the index + (−) denotes a function analytic on an upper (lower) complex

half plane including the real axis. For ξ ∈ D , D being a suitable overlapping strip

of the two half planes, we set

3 For numerical purposes it is convenient to use the symmetric Heaviside step function H(x) in

place of the indicator function 1x>0 and 1−H(x) in place of 1x<0, the only difference being for

x = 0, as H(0) = 1/2 = 1−H(0).
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ĝ+(ξ ) = Fx→ξ

[
P

+
x g(x)

]
(ξ ) :=

∫ +∞

0
g(x)eiξ xdx

ĝ−(ξ ) = Fx→ξ

[
P

−
x g(x)

]
(ξ ) :=

∫ 0

−∞
g(x)eiξ xdx.

3.1 The Z-transform approach

Let us consider the recursive evaluation given in Eq. (2) of the function v(x, j) and

let us define the (unilateral) Z-transform V (x,q) of v(x, j) as

V (x,q) :=
∞

∑
j=0

q jv(x, j), q ∈ C. (3)

The Z-transform can be considered a discrete-time relative of the Laplace transform;

the reason for its name might be that usually z = 1/q is used in its definition. If we

apply the Z-transform to the recursive equation (2), it can be shown that the Z-

transform V (x,q) satisfies the integral equation

V (x,q) = q

∫ +∞

0
f (z− x; ∆)V (z,q)dz+φ(x), (4)

with the “forcing” function φ(x) := v(x,0) = 1x>0. The inverse Z-transform is given

by an integral on a closed path around the origin; choosing a circle of radius ρ < 1,

v(x,N) =
1

2πρN

∫ 2π

0
V (x,ρeiu)e−iNudu,

that can be approximated by

vh(x,N)=
1

2NρN

[
V (x,ρ)+2

N−1

∑
j=1

(−1) jReV (x,ρei jπ/N)+(−1)NV (x,−ρ)

]
. (5)

Setting ρ = 10−γ/N leads to an accuracy of 10−2γ [8]. In our numerical tests we

used γ = 6.

Therefore, in order to obtain vh(x,N), one must solve N+1 independent integral

equations given by Eq. (4) with N+1 different values of the parameter q. Moreover,

Fusai et al. [8] proposed to apply the Euler summation or acceleration [13], which

is a convergence-acceleration technique well suited to evaluate alternating series.

The idea of the Euler summation is to approximate vh(x,N) by the binomial average

(also called the Euler transform)

vh(x,N)≈
1

2mENρN

mE

∑
j=0

(
mE

j

)
bnE+ j, (6)
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of the partial sums

bk =
k

∑
j=0

(−1) ja j ReV
(

x,ρei jπ/N
)
,

ranging from k = nE to k = nE +mE, where a0 = 1/2, ai = 1, i = 1, . . . , and mE and

nE are suitably chosen such that mE+nE <N. Thus the number of integral equations

to be solved is min(N,mE +nE)+1. In our numerical experiments we set mE = 20

and nE = 12.

3.2 The Z-WH approach

In the previous section we have shown how the recursive pricing problem presented

in Section 2.2 can be transformed into the solution of integral equations of WH type,

Eq. (4). In this section we introduce an algorithm by Henery [9] well suited to solve

this type of integral equations.

The main steps for solving the WH integral equations (4) are:

1. Assign q, the forcing function φ(x) and the characteristic function Ψ(ξ ; ∆) and

define

L(ξ ,q) :=
1

1−qΨ(ξ ; ∆)
, φ̂+(ξ ) := Fx→ξ

[
P

+
x φ(x)

]
(ξ ).

2. Factorize the function L(ξ ,q) into a product of two functions (analytical in an

upper or lower complex half plane),

L(ξ ,q) = L+(ξ ,q)L−(ξ ,q), (7)

and thus

logL(ξ ,q) = logL+(ξ ,q)+ logL−(ξ ,q).

3. Define C(ξ ,q) := L−(ξ ,q)φ̂+(ξ ) and decompose it into components analytical

in the appropriate complex half plane,

C(ξ ,q) =C+(ξ ,q)+C−(ξ ,q).

4. The solution is now given by the inverse Fourier transform

V (x,q) = F
−1
ξ→x

[C+(ξ ,q)L+(ξ ,q)](x,q). (8)

The conditions under which the factorization or decomposition gives proper re-

sults are given by Krein [11]. In fact, the major difficulty in the analytic solution of

the WH equation lies in the factorization, that is known only for a few types of ana-

lytic functions. The most important condition for the above scheme is that qΨ(ξ ; ∆)
must not be close to 1 anywhere, otherwise the function L(ξ ,q) to be factorized di-

verges. Provided this condition is fulfilled, one benefit of using numerical methods
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is that one is no longer restricted to functions for which analytic factorizations are

possible. The second advantage of the proposed method is that the basic building

block of this numerical solution of the WH equation is the Fourier transform, which

can be implemented conveniently via the FFT.

3.2.1 Factorization

As shown above, the main step of the proposed solution algorithm is the compu-

tation of the WH factorization. In fact, in order to implement the solution of the

transformed equation, we need to factorize the function L(ξ ,q), as in Eq. (7), into

a product of two functions which are analytic in the overlap of the two half planes.

This factorization can be done through the Hilbert transform Hξ of logL(ξ ,q) [9],

L+(ξ ,q) = exp

[
1

2i
Hξ logL(ξ ,q)

]

:= exp

[
1

2πi
p.v.

∫ +∞

−∞

logL(ξ ′,q)

ξ ′−ξ
dξ ′

]
, Imξ ′ < Imξ , ξ ′ ∈ D ,

where p.v. denotes the principal value, i.e., the value of a complex function along

one chosen branch, in order to make the function single-valued. It can be shown

that, since Im(ξ −ξ ′)> 0,

1

2π

∫ +∞

−∞

logL(ξ ′,q)

i(ξ ′−ξ )
dξ ′ =

∫ +∞

−∞
1x>0

(
1

2π

∫ +∞

−∞
logL(ξ ′,q)e−ixξ ′

dξ ′

)
eiξ xdx.

Therefore, we have

logL+(ξ ,q) = Fx→ξ

[
P

+
x F

−1
ξ→x

logL(ξ ,q)
]
(ξ ,q). (9)

This expression suggests the use of the FFT as a numerical tool for computing

L+(ξ ,q): indeed, given the function L(ξ ,q), the factorization of logL(ξ ,q) can be

performed through the sequence inverse Fourier transform, projection on the pos-

itive real axis, and Fourier transform. In practice, we have to use twice the FFT

algorithm. For details, see Henery [9].

3.2.2 The algorithm and its computational cost

Summarizing, the solution of the WH equation (4) can be computed as in Eq. (8),

V (x,q) = F
−1
ξ→x

[C+(ξ ,q)L+(ξ ,q)](x,q), (10)

where, using the factorization formula (9), C+ and L+ can be computed as follows:

1. L(ξ ,q) := 1/(1−qΨ(ξ ; ∆));
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2. L+(ξ ,q) = exp
{
Fx→ξ [P

+
x F

−1
ξ→x

logL(ξ ,q)](ξ ,q)
}

;

3. L−(ξ ,q) = exp
{
Fx→ξ [P

−
x F

−1
ξ→x

logL(ξ ,q)](ξ ,q)
}
= L(ξ ,q)/L+(ξ ,q);

4. φ̂+(ξ ) := Fx→ξ [P
+
x φ(x)](ξ );

5. C+(ξ ,q) = Fx→ξ [P
+
x F

−1
ξ→x

[L−(ξ ,q)φ̂+(ξ )]](ξ ,q).

The computational cost of this Z-WH pricing procedure is of 6 Fourier transforms

for each integral equation, i.e., 6(min(N,nE+mE)+1)m logm operations. However,

we can easily decrease the computational cost applying the Z-transform inversion

directly in the Fourier space, i.e., considering Eqs. (5) and (10), if we define

V̂ (ξ ,q) :=C+(ξ ,q)L+(ξ ,q),

it holds that

vh(x,N) =
1

2NρN
ReF

−1
ξ→x

[
V̂ (ξ ,ρ)+2

N−1

∑
j=1

(−1) jV̂ (ξ ,ρei jπ/N)

+(−1)NV̂ (ξ ,−ρ)

]
(x,N),

or, using the Euler summation (6)

vh(x,N)≈
1

2mE NρN
ReF

−1
ξ→x

[
mE

∑
j=0

(
mE

j

)
bnE+ j(ξ )

]
,

where

bk(ξ ) =
k

∑
j=0

(−1) ja j V̂
(

ξ ,ρei jπ/N
)
.

Moreover, the computation of φ̂+(ξ ) = Fx→ξ [P
+
x φ(x)](ξ ) can be performed only

once. Thus to compute the default probability 4(min(N,nE +mE)+1)+2 FFTs are

necessary.

3.3 The Z-WH-S approach

In this section we discuss how to compute the probability of default exploiting the

Spitzer identity. The Spitzer identity [16] is strictly related to the solution of WH

integral equations. Indeed, in the Z-WH approach integral equations are solved com-

puting a decomposition into two functions, one analytic in an upper complex half

plane, the second one in a lower complex half plane; the two half planes overlap in

a strip that includes the real axis. The Spitzer identity consists in providing a proba-

bilistic interpretation of these two functions in terms of the characteristic function of

the minimum of a geometrically stopped random walk. More precisely, the Spitzer
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identity states that

+∞

∑
j=0

q j
E0

[
eiξ m j

]
= L+(0,q)L−(ξ ,q),

where L+ and L− have been defined previously in Section 3.2. Thus, once the WH

factorization is computed as above, we can invert the Z-transform as in Eq. (6)

exploiting the Euler acceleration, obtaining an approximation of the characteristic

function of the discrete minimum mN . Finally, applying an inverse Fourier trans-

form, we obtain the probability density function of the minimum pmN
(x; ∆), i.e., if

N > nE +mE,

pmN
(x; ∆)≈

1

2mE NρN
ReF

−1
ξ→x

[
mE

∑
j=0

(
mE

j

)
bnE+ j(ξ )

]
,

where

bk(ξ ) =
k

∑
j=0

(−1) ja j L+

(
0,ρei jπ/N

)
L−

(
ξ ,ρei jπ/N

)
.

Summarizing, the Z-WH-S algorithm is the following.

1. Compute the WH factorization as suggested above:

a. L(ξ ,q) := 1/(1−qΨ(ξ ; ∆));

b. L−(ξ ,q) = exp
{
Fx→ξ [P

−
x F

−1
ξ→x

logL(ξ ,q)](ξ ,q)
}

;

c. L+(0,q) = L(0,q)/L−(0,q).

2. Compute the inverse of the Z-transform exploiting the Euler acceleration, obtain-

ing the characteristic function of the minimum mN .

3. Compute the inverse Fourier transform of the characteristic function of the min-

imum to obtain its distribution pmN
(· ; ∆).

4. Compute the cumulative density function l → P(mN ≤ l) and thus the default

probability.

In this case we have to compute only 2(min(N,nE+mE)+1)+1 Fourier transforms.

4 Numerical experiments

In this section we present numerical results in order to validate the pricing algorithm.

More precisely, in Section 4.1 we price a defaultable bond with the Z-WH and the

Z-WH-S methods, for different maturities, comparing both the accuracy and the

computational costs. As a benchmark, we consider the method of Feng and Linetsky

[6]. Moreover, an analysis on the sensitivity of the probability of default and the

credit spread with respect to the model’s parameters is considered in Section 4.2.

In our numerical experiments we set the risk-free rate r = 0.05 and we assume that
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the underlying asset pays a dividend equal to q = 0.02. The asset price at time 0 is

S(0) = 1, the default barrier is L = 0.3 and the recovery is R= 0.5. All the numerical

experiments have been performed with Matlab R2009b running under Windows 7

on a personal computer equipped with an Intel Dual-Core 2.70 GHz processor and

4 GB of RAM. The characteristic exponents of the considered Lévy processes are

reported in Table 1.

Table 1 Characteristic exponents of some parametric Lévy processes.

Model Characteristic Exponent

G − 1
2

σ2ω2

NIG −δ
(√

α2 − (β + iω)2 −
√

α2 −β 2
)

CGMY CΓ (−Y )
(
(M− iω)Y −MY +(G+ iω)Y −GY

)

DE − 1
2

σ2ω2 +λ
(
(1−p)η2

η2+iω + pη1
η1+iω −1

)

JD − 1
2

σ2ω2 +λ
(

eiωα− 1
2 ω2δ 2

−1
)

4.1 Numerical validation

In Table 2 we report the default probabilities p and the defaultable zero-coupon

bond prices considering different maturities T and 52 monitoring dates a year. We

assume that the underlying asset evolves as an exponential Normal-Inverse Gaussian

(NIG) process with the same parameters as those used by Feng and Linetsky [6], i.e.,

α = 5, β =−1, γ = 0.75. Finally, we denote with m the number of grid points used

to compute the FFT. Our results are tested considering as a benchmark the method

of Feng and Linetsky [6] based on the Hilbert transform (HILB).

Table 2 Defaultable zero-coupon bonds with weekly monitoring: price and CPUtime (in seconds).

Z-WH Z-WH-S HILB

T m p (%) price CPUt p (%) Price CPUt p (%) price CPUt

1 212 0.9335 0.946789 0.17 0.9329 0.946792 0.13 0.9330 0.946791 0.29

1 214 0.9330 0.946791 0.66 0.9330 0.946791 0.48 0.9330 0.946791 0.58

2 212 4.5656 0.884181 0.17 4.5650 0.884184 0.14 4.5652 0.884183 0.35

2 214 4.5652 0.884183 0.68 4.5652 0.884183 0.46 4.5652 0.884183 0.88

5 212 21.5713 0.694801 0.18 21.5702 0.694806 0.13 21.5703 0.694805 0.58

5 214 21.5703 0.694805 0.69 21.5703 0.694805 0.43 21.5703 0.694805 1.99

10 212 42.9653 0.476321 0.17 42.9663 0.476228 0.14 42.9670 0.476226 0.73

10 214 42.9624 0.476240 0.70 42.9670 0.476226 0.44 42.9670 0.476226 3.45
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As expected, the HILB method rapidly reaches a six decimal digits accuracy

due to its exponential convergence [6]. However our methods show a similar ac-

curacy, and have a computational cost independent of the number of monitoring

dates, as shown in Table 2. Thus the Z-WH and Z-WH-S algorithms appear to

be the best methods when more than 2 years with weekly monitoring (i.e., 104

monitoring dates) are considered. Finally, the Z-WH-S method appears to outper-

form the Z-WH algorithm in both accuracy (especially with a small number of

grid points) and speed. We recall that the Z-WH-S method requires approximately

2min(N,mE +nE)m logm operations, while the Z-WH 4min(N,mE +nE)m logm.

4.2 Credit spread term structure

In Figure 1 we show the default probability and the credit spread term structures.

We consider a weekly monitoring and 30 different maturities from 2 weeks to 30

years, comparing the HILB method with the Z-WH-S with m = 214 grid points. The

two methods provide the same term structure, however the CPU time necessary to

obtain the term structures is 9.35 seconds with the Z-WH-S algorithm and 47.82

seconds with the HILB method.

Fig. 1 Credit spread (left) and default probability (right) term structure.

In Figure 2 we show the default probability and the credit spread term structures,

assuming that the underlying asset evolves according to a Gaussian process with

different values of the volatility σ . The term structures are computed with the Z-

WH-S method with m = 214 grid points. In this figure we can see how both the

default probability and the credit spread increase as the parameter σ increases, as

we should expect.

In Figure 3 we report similar plots considering the NIG process and four different

sets of parameters:

1. α = 5, β =−1, γ = 0.75;

2. α = 2, β =−1, γ = 0.75;

3. α = 5, β =−0.5, γ = 0.75;

4. α = 5, β =−1, γ = 1.
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Fig. 2 Term structure of the credit spread (left) and of the default probability (right) when the

log-firm value evolves according to a Gaussian process.

We recall that for the NIG process the variance is given by α2δ (α2 − β 2)−1.5.

Thus the four sets of parameters have variance equal to 0.1599, 0.5774, 0.1523 and

0.2126, respectively. In Figure 3 we see a behavior similar to the one in Figure 2:

increasing the variance, both term structures increase.

Fig. 3 Term structure of the credit spread (left) and of the default probability (right) when the

log-firm value evolves according to a NIG process.

Finally in Figures 4-5 we compare the term structures for different Lévy pro-

cesses, assuming again a weekly monitoring. More precisely, in Figure 4, in order

to make the term structures comparable across models, the parameters (see Table 1)

have been chosen assuming that the CGMY model, as estimated by Schoutens [15],

is the true one:

C = 0.0244, G = 0.0765, M = 7.5515, Y = 1.2945.

Therefore, we calibrate the other models by minimizing the square integrated dif-

ference between the real part of the characteristic functions of the CGMY and

the other models. Thus the calibrated parameters for the Merton jump diffusion

(JD) model are σ = 0.126349, α =−0.390078, λ = 0.174814 and δ = 0.338796,

while the calibrated parameters for the Kou double exponential (DE) model are

σ = 0.120381, λ = 0.330966, p = 0.20761, η1 = 9.65997 and η2 = 3.13868. The

risk-free rate is 3.67% per year, and the dividend yield is set equal to zero.

We recall that considering non-Gaussian processes allows us to generate term struc-

tures of credit spreads that do not tend to zero as the time horizon shortens: this can

be easily seen in Figure 4.
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Fig. 4 Term structure of the credit spread (left) and of the default probability (right) when the

log-firm value evolves according to a CGMY, DE or JD process.

In Figure 5 we consider the parameters used by Černý and Kyriakou [5], where

the models are calibrated in order to achieve volatility 0.3, and, for the non-Gaussian

distributions, skewness -0.5 and kurtosis 3.7; more precisely, for the Gaussian pro-

cess (G) we set σ = 0.3, for the NIG model α = 12.34, β =−5.8831, γ = 0.7543,

and finally for the CGMY model C = 0.6509, G = 5.853, M = 18.27, Y = 0.8. The

risk-free rate is 4% per year, and the dividend yield is set equal to zero.

Fig. 5 Term structure of the credit spread (left) and of the default probability (right) when the

log-firm value evolves according to a CGMY, NIG or Gaussian (G) process.

Figure 5 shows that, once the different Lévy processes are calibrated in order to ex-

hibit the same variance, skewness and kurtosis, the term structures of credit spreads

and default probabilities are very similar. Therefore, the model risk related to the

choice of different exponential Lévy processes is quite limited. We also notice a dif-

ference with respect to the Gaussian case. For example, from Figure 5 we observe

a higher (lower) probability of default and a higher (lower) credit spread for small

(large) maturities. This behavior is still related to the presence of jumps that gen-

erate a different behavior as the time horizon shortens with respect to the Gaussian

case.

5 Conclusions

In this article, adopting a structural approach and assuming that the firm value

evolves according to an exponential Lévy process, we have proposed two algorithms
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for computing the default probability based on the Wiener-Hopf factorization: the

Z-WH method, in which a set of integral equations has to be solved, and the Z-

WH-S ones, which is based on the Spitzer identity. We have shown that the two

methods are accurate and fast, and that they are convenient when a large number of

monitoring dates is considered, since the computational cost is independent of this

number thanks to the Euler acceleration which improves the Z-transform inversion.

Moreover, we have provided numerical experiments to validate the algorithms. Fi-

nally, we have shown how to compute the probability of default and the price of de-

faultable zero-coupon bonds and the corresponding term structure of credit spreads,

performing also some comparative analysis across different Lévy processes.
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