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Abstract

We present an algorithm specifically tailored for solving model kinetic equations
onto Graphics Processing Units (GPUs). The efficiency of the algorithm is demon-
strated by solving the one-dimensional shock wave structure problem and the two-
dimensional low Mach number driven cavity flow. Computational results show that
it is possible to cut down the computing time of the sequential codes of two order of
magnitude. The algorithm can be easily extended to more general collision models.
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1 Introduction

A recent trend emerging in computational physics stems from the availability
of low cost general purpose Graphics Processing Units (GPUs). GPUs have
been used to accelerate CPU critical applications such as simulations of hyper-
sonic flows [1], magnetized plasma [2] and molecular dynamics [3]. However,
no applications to kinetic theory of gases seem to have been considered yet.
Kinetic theory of gases deals with non-equilibrium gas flows which are met
in several different physical situations ranging from the re-entry of spacecraft
in upper planetary atmospheres to fluid-structure interaction in small-scale
devices [4,5]. The dynamics of dilute (or rarefied) gas flows is governed by the
Boltzmann equation [6] which takes the form
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∂f

∂t
+ v ◦ ∇xf +

1

m
∇v ◦ (F f) = C(f, f) (1)

C(f, f) =
∫

[f(x,v∗|t)f(x,v∗
1|t)−

f(x,v|t)f(x,v1|t)] σ(‖vr‖, k̂ ◦ vr)‖vr‖dv1d
2k̂ (2)

when written for a gas composed by a single monatomic species whose atoms
have mass m. In Eqs. (1,2), f(x,v|t) denotes the distribution function of
atomic velocities v at spatial location x and time t, F (x,v|t) is an assigned
external force field, whereas C(f, f) gives the collisional rate of change of f
at the phase space point (x,v) at time t. As is clear from Eq. (2), C(f, f) is
a non-linear functional of f , whose precise structure depends on the assumed
atomic interaction forces through the differential cross section σ(‖vr‖, k̂ ◦vr).
The dynamics of binary encounters determines σ as a function of the modulus
‖vr‖ of the relative velocity vr = v1 − v of two colliding atoms and of the
orientation of the unit impact vector k̂ with respect to vr [7]. Moreover, since
momentum and energy are conserved, the pre-collisional velocities v∗ and v∗

1

are obtained from v,v1 and k̂ through the relationships

v∗ =v + (vr ◦ k̂)k̂ (3)

v∗
1 =v1 − (vr ◦ k̂)k̂ (4)

For illustration purposes, it is worth mentioning that the collision integral
C(f, f) simplifies to

C(f, f) = d2

2

∫

[f(x,v∗|t)f(x,v∗
1|t)− f(x,v|t)f(x,v1|t)] |k̂ ◦ vr|dv1d

2k̂ (5)

for a dilute gas of hard spheres of diameter d.
Obtaining numerical solutions of the Boltzmann equation for realistic flow
conditions is a challenging task because the unknown function depends, in
principle, on seven variables. Moreover, the computation of C(f, f) requires the
approximate evaluation of a fivefold integral. Numerical methods for rarefied
gas dynamics studies can be roughly divided into three groups:

(a) Particle methods
(b) Semi-regular methods
(c) Regular methods

Methods in group (a) originate from the Direct Simulation Monte Carlo (DSMC)
scheme proposed by G. A. Bird [8]. They are by far the most popular and
widely used simulation methods in rarefied gas dynamics. The distribution
function is represented by a number of mathematical particles which move in
the computational domain and collide according to stochastic rules derived
from Eqs. (1,2). The method can be easily extended to deal with mixtures of
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chemically reacting polyatomic species [8] and to dense fluids [9]. Macroscopic
flow properties are usually obtained by time averaging particle properties. In
steady flows simulations, the averaging time can be long enough to obtain
accurate flow simulations by a relatively small number of particles. Although
DSMC (in its traditional implementation) is to be recommended in simulating
most of rarefied gas flows, it is not well suited to the simulation of low Mach
number or unsteady flows. Attempts have been made to extend DSMC in order
to improve its capability to capture the small deviations from the equilibrium
condition met in low Mach number flows [10,11]. However, in simulating high
frequency unsteady flows, typical of microfluidics application to MEMS [4],
the possibility of time averaging is lost or reduced. Acceptable accuracy can
then be achieved by increasing the number of simulation particles or superpos-
ing several flow snapshots obtained from statistically independent simulations
of the same flow; in both cases the computing effort is considerably increased.
Methods in groups (b) and (c) adopt similar strategies in discretizing the
distribution function on a regular grid in the phase space and in using fi-
nite difference schemes to approximate the streaming term on the l.h.s of
Eq. (1). However, they differ in the way the collision integral is evaluated.
In semi-regular methods C(f, f) is computed by Monte Carlo or quasi Monte
Carlo quadrature methods [12,13] whereas deterministic integration schemes
are used in regular methods [14]. Whatever method is chosen to compute the
collision term, the adoption of a grid in the phase space considerably limits the
applicability of methods (b) and (c) to problems where particular symmetries
reduce the number of spatial and velocity variables. As a matter of fact, a
spatially three-dimensional problem would require a memory demanding six-
dimensional phase space grid. Extensions to polyatomic gases are possible [15]
but the necessity to store additional variables associated with internal degrees
of freedom further limits the applications to multi-dimensional flows. In spite
of the drawbacks listed above, the direct solution of the Boltzmann equation
by semi-regular or regular methods is a valid alternative to particle schemes
in studying unsteady or low speed flows. Actually, when the deviation from
equilibrium is small a limited number of grid points in the velocity space is
sufficient to provide accurate and noise free approximations of f , therefore
simulations of multi-dimensional flows are feasible on modern personal com-
puters in a wide range of Knudsen numbers [16].
An important feature of kinetic equations for dilute gases is the locality of the
collision term; the collisional rate of change C(f, f) at the spatial location x is
completely determined by f(x,v|t). Hence, the time consuming evaluation of
the collision integral can be concurrently executed at each spatial grid point
on parallel computers. As shown below, the numerical algorithm associated
with regular or semi-regular methods is ideally suited for the parallel architec-
ture provided by commercially available GPUs. Hence, the aim of the paper is
to describe an efficient algorithm specifically tailored for solving kinetic equa-
tions onto GPUs using CUDATM programming model [17]. The efficiency of
the algorithm is assessed by solving the classical one-dimensional shock wave
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structure and a low speed two-dimensional driven cavity flow. It is shown that
it is possible to cut down the computing time of the sequential codes of two
order of magnitude by a proper reformulation of the algorithm to be executed
on a GPU.
In order to make the algorithm development easier, the computations pre-
sented here have been performed by replacing C(f, f) with its simpler BGKW
approximation [6]. This choice eliminates the intricacies connected with the
numerical evaluation of the Boltzmann collision integral and allows easier iden-
tification of bottlenecks and optimization strategies. As will be shown in a
separate paper, the full Boltzmann equation can be solved within the same
general algorithmic framework by adopting a Monte Carlo quadrature method.
This paper is organized as follows. Section 2 is devoted to a concise description
of the mathematical model and the adopted numerical method. In Section 3
the key aspects of the GPU hardware architecture and the adopted paral-
lelization strategies are briefly described. Sections 4 and 5 are devoted to the
description of the test problems and the discussion of the results. Concluding
remarks are presented in Section 6.

2 Theoretical and numerical background

2.1 Mathematical formulation

Both from the theoretical and computational point of view, it is often conve-
nient to replace the full Boltzmann equation with a model equation having a
simplified collision term. In the kinetic model proposed by Bhatnagar Gross
and Krook [18] and independently by Welander [19], C(f, f) is replaced by the
expression ν (Φ− f). Accordingly, Eq. (1) is turned into the following kinetic
equation:

∂f

∂t
+ v ◦ ∇xf +

1

m
∇v ◦ (F f) = ν (Φ− f) (6)

In Eq. (6) ν is the collision frequency, whereas Φ is the local equilibrium
Maxwellian distribution function given by the expression

Φ(x,v|t) = n(x|t)
[2πRT (x|t)]3/2

exp

{

− [v − V (x|t)]2
2RT (x|t)

}

(7)

If ν does not depend on the velocity v, then conservation of mass, momentum
and energy requires that n, V and T in Eq. (7) coincide with the local values
of density, bulk velocity and temperature obtained from f by the relationships

n =
∫

fdv V =
1

n

∫

fvdv T =
1

3Rn

∫

f(v −V)2dv (8)
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being R the specific gas constant. The above expressions show that Eq. (6)
is a strongly non-linear integro-differential equation, in spite of the linear ap-
pearance of its right hand side.
As is well known, the BGKW model predicts an incorrect value of the Prandtl
number in the hydrodynamic limit [6]. Hence, ν can be adjusted to obtain
either the correct viscosity or heat conductivity, but not both. If viscosity is
selected, then ν is given by the following expression:

ν =
nRT

µ
(9)

being µ(T ) the gas viscosity. Although this paper deals only with the BGKW
kinetic model equation, it should be observed that the algorithm described
below can be extended to deal with more general kinetic equations by intro-
ducing minimal modifications. For instance, the right hand side of Eq. (6)
could be replaced by the ellipsoidal statistical model [6], which retains the
simplicity of the BGKW kinetic model but, at the same time, provides the
correct transport properties in the hydrodynamic limit.

2.2 Outline of the numerical method

In view of the exploratory nature of the present work, Eq. (6) has been solved
by a simple numerical method which will be illustrated on a spatially one-
dimensional problem. The extension to two or three-dimensional geometries
is straightforward.
In absence of external forces and in one-dimensional slab geometry, Eq. (6)
takes the form:

∂f

∂t
+ vx

∂f

∂x
= ν (Φ− f) (10)

where x is the single spatial coordinate and vx the x-component of the velocity
vector v = (vx, vy, vz). The spatial domain is a finite interval of the real axis,
divided into Nx cells of equal size ∆x. The infinite three-dimensional velocity
space is replaced by a rectangular box divided into Nv = Nvx ×Nvy ×Nvz cells
of equal volume ∆V , Nvα being the number of velocity nodes associated with
the velocity component vα. The size and position of the “velocity box” in the
velocity space have to be properly chosen, in order to contain the significant
part of f at any spatial position. The distribution function is assumed to be
constant within each cell of the phase space. Hence, f is represented by the
array fi,j(t) = f(x(i), vx(jx), vy(jy), vz(jz)|t), being x(i), vx(jx), vy(jy), vz(jz)
the values of the spatial coordinate and velocity components in the center of
the phase space cell (i, j) and j = (jx, jy, jz).
The algorithm that advances fi,j(t) to fi,j(t + ∆t) is constructed by time-
splitting the evolution operator into a free streaming step, in which the r.h.s.
of Eq. (10) is neglected, and a purely collisional step, in which spatial motion
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is frozen and only the effect of the r.h.s. is taken into account. More precisely,
the distribution function fn

i,j = fi,j(tn) at time level tn is advanced to its

value fn+1
i,j = fi,j(tn+1) at time level tn+1 = tn + ∆t by first computing an

intermediate value f̃n+1
i,j from the free streaming equation

∂f

∂t
+ vx

∂f

∂x
= 0 (11)

Eq. (11) is solved by a simple first order explicit upwind scheme

f̃n+1
i,j =























(

1− vx(jx)∆t

∆x

)

fn
i,j +

vx(jx)∆t

∆x
fn
i−1,j vx(jx) ≥ 0

(

1 +
vx(jx)∆t

∆x

)

fn
i,j −

vx(jx)∆t

∆x
fn
i+1,j vx(jx) < 0

(12)

where the absolute value of the Courant number C = vx(jx)∆t/∆x must be
less than or equal to 1 to ensure the stability of the numerical method. In
the vast majority of applications, the largest velocities in the velocity space
grid, associated with the tail of f , limit the time step to a value considerably
smaller than the one dictated by accuracy requirements. Such limitation can
be easily removed by noting that the exact solution of Eq. (11) is

f(x,v, t+∆t) = f(x− vx∆t,v, t) (13)

Thus, for each molecular velocity and for, vx(jx), the value of the distribution
function in the cell (i, j) of the phase space can be obtained by first translating
the distribution function by a number of cells equal to the integer part of the
Courant number, [C], and then applying expressions (12) for the residual time
step advancement.
After completing the free streaming step, macroscopic variables ni, V i and Ti
are computed at each spatial grid point and fn+1

i,j is finally obtained by solving
the homogeneous relaxation equation

∂f

∂t
= ν(Φ− f) (14)

Since n, V and T are conserved during homogeneous relaxation, Eq. (14) can
be exactly solved to obtain

fn+1
i,j = [1− exp(−ν̃i∆t)] Φ̃i,j + exp(−ν̃i∆t)f̃n+1

i,j (15)

in each cell (i, j) of the phase space. It should be observed that the density,
bulk velocity and temperature obtained from the discretized Maxwellian dis-
tribution function Φ̃i,j are not exactly equal to ñi, Ṽ i and T̃i. To ensure exact
conservation of mass momentum and energy, the discretized Φ̃i,j should be
computed from Eq. (7) by using effective values n̄i, V̄ i and T̄i which are ob-
tained by requiring that the moments of the discretized Maxwellian coincide
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with ñi, Ṽ i and T̃i [12]. However, numerical tests have shown that calculating
effective local values n̄i, V̄ i and T̄i to force exact conservation of collisional
invariants did not affect appreciably the solutions of the problems described
below, not even for coarse velocity space grids.
Since neither the streaming step nor the collision step are subject to stability
constraints, the choice of the time step is determined only by considerations
related to the accuracy of the numerical solution. As a rule of thumb, ∆t has
been determined by requiring that, at each spatial node, the distance traveled
in one time step by atoms flying at the mean velocity V is less than the mean
free path λ =

√
2RT/ν, the natural scale of spatial gradients. The condition

stated above leads to the inequality ν∆t <
√
2RT/V . It should also be ob-

served that a second time step limitation comes from the relaxation step since
ν∆t should be less than one to avoid distorting relaxation processes. Since
the ratio

√
2RT/V is essentially the reciprocal of the Mach number, it is clear

that the time step is limited by the first condition in high speed flows, whereas
the second one dictates the time step to be used in low speed flows. Finally, it
worth mentioning that the described numerical method has been designed for
unsteady flow computations. The algorithm will be tested on steady problems
just because accurate numerical solutions were already available. However, it
is possible to consider extending the parallel GPU implementations that will
be discussed in the next section to either fully implicit time advancing schemes
or iterative schemes, based on the steady form of the kinetic equation, which
could obtain steady solution by smaller effort.

3 Parallelization strategies in CUDATM

Splitting the time evolution of f into a free streaming and a collision step al-
lows breaking each one into a large number of independent calculations which
can be concurrently executed. As a matter of fact, each atomic group with
velocity vx(jx) is independently transported according to Eq. (11), during the
free streaming. Similarly, the local structure of the collision operator allows
its concurrent evaluation at each spatial grid node. The intrinsic parallelism
of the algorithm can be exploited by the development of a program to be
executed on a NVIDIArGPU consisting of a set of multiprocessors with a
SIMD-like architecture. During each clock cycle, each core of the multiproces-
sor array executes the same instruction but operates on different data. The
program is organized into a serial program which runs on the host CPU and
one or more kernels which define the computation to be concurrently per-
formed. Kernels are executed by threads, i.e. by program units which can be
independently executed and assigned to GPU individual processors for con-
current execution. Threads are organized into a two-level grid and block hier-
archy which mirrors GPU architecture. One may think of a grid as the GPU
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itself, a block as multi-processor of the GPU and a thread as a single core
in the multi-processor. GPU memory has also a hierarchical structure whose
understanding is of fundamental importance for code optimization. Actually,
data transfer from and to the global memory is the rate limiting step in most
applications particularly when the memory access are not synchronized with
threads activity (non-coalescent). [17]. Each thread may access private, low
latency memory registers. Threads belonging to the same block are allowed
to synchronize with each other and to share data through a shared memory
which is as fast as registers. However, threads from different blocks may coor-
dinate only via operations in the slower global memory. Threads concurrently
execute the same instructions on different data unless a conditional statement
in the code leads them to follow different execution paths. In this case thread
divergence occurs and the different branches are executed sequentially. Then,
the total run time is the sum of all the branches. Threads divergence and
re-convergence are managed in hardware but have a negative impact on per-
formances. Figure 1 summarizes the organization of the grid of threads and
the relationship between threads and available memory spaces.
Following the algorithm structure described above, the code is organized into
a host program, which deals with all memory management and other setup
tasks, and two kernels running on the GPU. The first kernel performs the
streaming step whereas the second kernel performs the collision step.
Figure 2 illustrates the parallelization strategy used for implementing the
streaming kernel. Each block of the streaming kernel is associated with a
velocity vx(jx) and is composed by a one dimensional grid of threads of di-
mension Ns, having each thread associated with one cell of the physical space.
When a block becomes active, each thread loads one element of the distri-
bution function from global memory, stores it into shared memory, updates
its value according to the CFL-free upwind scheme and then saves it back to
the global memory. This procedure is repeated sequentially Nx/Ns times. In
order to obtain a coalesced access to the global memory and hence maximize
the memory bandwidth [17], values of the discretized distribution function in
spatially adjacent cells are stored in contiguous memory locations.
Figure 3 illustrates the parallelization strategy used for implementing the col-
lision kernel. The collision or relaxation step is concurrently performed on the
whole spatial domain by a kernel whose threads are associated with a spatial
cell. Each thread operates on the distribution function at a given spatial loca-
tion by computing first the local values of density, velocity and temperature
which define the local Maxwellian, then the distribution function is updated
according to Eq. (15). It is worth observing that alternative parallelization
schemes are possible. For instance, the relaxation step could have been orga-
nized by assigning a block of threads to each spatial cell, having each thread
associated to a a phase space cell where f changes according to Eq. (15). How-
ever, the choice presented here seems to possess a few advantages. Actually,
the concurrent execution of relaxation in the phase space can be performed
only after the evaluation of macroscopic quantities at each spatial location.
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Such evaluation is more naturally performed by the adopted scheme which
avoids using parallel reduction algorithms [1] by associating threads to spatial
cells. Therefore, it seems reasonable to keep the same thread association and
perform the relaxation step within the kernel computing macroscopic vari-
ables. Such strategy also reduces the number of data transfer from and to the
global memory.
The computations described below have been performed on a commercially
available GPU GeForce GTX 260 produced by NVIDIArusing CUDATM ver-
sion 2.0. The GTX 260 GPU model consists of 24 streaming multiprocessors
with 8 streaming processors (SP) each for a total of 192 units. Each SP is
clocked at 1.242 GHz and performs up to 3 floating point operation (FLOP)
per clock cycle, yielding a peak theoretical performance of 715.4 GFLOPs
(192× 1.242× 3). Each group of SP shares one 16 kB of fast per-block shared
memory while the GPU has 896 MB of device memory with a memory band-
width of 111.9 GB/s. The graphic processing unit has been hosted by a per-
sonal computer equipped with 4 GB of main memory and an Intelr Core Duo
Quad Q9300 CPU, running at 2.5 GHz. The host machine has also been used
to run the sequential version of the program to obtain the speed-up data. The
host code has been compiled using the gcc/g++ compiler with optimization
option “-O3”.

4 Shock wave

4.1 Formulation of the problem

The propagation of a planar shock wave is a classical application of kinetic
equations and it is a rather natural choice as a benchmark problem because
of the considerable number of previous studies [20,21]. Moreover, the numer-
ical treatment of the problem is made particularly simple by the boundary
conditions which assign prescribed equilibrium states to the upstream and
downstream distribution function. In the wave front reference frame, the sta-
tionary flow field is assumed to be governed by the one-dimensional steady
BGKW equation

vx
∂f

∂x
= ν(Φ− f) (16)

x being the spatial coordinate which spans the direction normal to the (planar)
wave front. It is further assumed that, far from the wave front, the distribution
function f(x,v) satisfies the boundary conditions

lim
x→∓∞

f(x,v) = Φ∓(v) =
n∓

(2πRT∓)3/2
exp

[

−(vx − V ∓)2 + v2y + v2z
2RT∓

]

(17)
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where n∓, V ∓ and T∓ are the upstream and downstream values of number
density, velocity and temperature, respectively. The parameters of the equi-
librium states specified by Eq. (17) are connected by the Rankine-Hugoniot
relationships

V −

V +
=
n+

n−
=

4(M−)2

(M−)2 + 3

T+

T−
=

[5(M−)2 − 1] [(M−)2 + 3]

16(M−)2
(18)

In Eqs. (18) M− denotes the upstream infinity Mach number defined as

M− =
V −

(γRT−)1/2
(19)

being γ = 5/3 the specific heat ratio of a monatomic gas.
The numerical scheme described in Section 2.2 has been adopted to obtain
approximate solutions of Eq. (16) with boundary conditions (17) as long-time
limit of solutions of Eq. (10) with identical boundary conditions and initial
condition

f(x,v|0) =






Φ−(v) x < 0

Φ+(v) x > 0
(20)

The computations reported have been carried out for both a weak,M− = 1.5,
and a medium strength,M− = 3, shock wave. The collision frequency has been
obtained from Eq. (9), assuming that the viscosity is given by the expression

µ(T ) = µ0

(

T

T0

)0.74

(21)

In Eq. (21), T0 is a reference temperature and µ0 is the value of the viscosity
at the reference temperature. The temperature exponent has been set equal
to 0.74 to match the computational conditions of Ref. [20] whose results have
been used to asses the accuracy of the calculations presented here. A non-
dimensional form of the Eq. (10) has been adopted in actual computations
by normalizing velocity v to

√
2RT−, time t to τ− = 1/ν− and spatial co-

ordinate x to the mean free path λ− =
√
2RT−τ−. The reference value ν−

for the collision frequency has been obtained by setting T0 = T− in Eq. (21).
The infinite physical space has been replaced by the finite interval [−L/2, L/2]
which has been divided into Nx identical cells of width ∆x = L/Nx. The non-
dimensional size L of the spatial domain has been set equal to 70, varying Nx

between 128 and 18432. The cell number Nx has been increased well above
the limit imposed by accuracy in order to investigate the GPU performances
as a function of computational load. Similarly, the velocity space has been
replaced by a parallelepiped in which each velocity component vα varies in a
finite interval, divided into Nvα equal cells. Both position and dimension of the
parallelepiped in the velocity space as well as the number of velocity cells vary
with the chosen Mach number. In case of the weak shock wave,M− = 1.5, the
same number of grid points has been used for the three normalized velocity
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components by setting Nvα = 16, with vx ∈ [−5, 7] and vy, vz ∈ [−6, 6]. In
case of the M− = 3 shock wave, the grid point setting has been changed to
Nvα = 30, with vx ∈ [−10, 12] and vy, vz ∈ [−11, 11]. Finally, the normal-
ized time step ∆t has been set equal to 0.05. Before describing the algorithm
implementation and discussing the results, it is worth observing that, for spa-
tially one and two-dimensional problems, the dimensionality of the velocity

space associated with kinetic model equations having the structure of Eq. (6)
can be accordingly reduced to one and two, respectively [22]. The standard
form of the simple reduction method leads to a system of two coupled kinetic
equations which govern the behavior of two distribution functions defined on
the reduced velocity space and keep the same form of the original BGKW
equation. Application of the projection method allows a considerable reduc-
tion of memory demand but destroys compatibility with the solver of the full
Boltzmann equation which always requires a three-dimensional velocity space.
Hence, a full three-dimensional velocity space has been used in most of the
calculations presented here and the application of the reduction method has
been limited to a few cases (described below) where the memory saving allows
a spatial resolution level which would not otherwise possible, because of the
GPU memory limits.

4.2 Results and discussion

In this section, we first validate the code by solving the plane shock structure
problem and then we evaluate its performance by comparing the GPU and
CPU execution times.
Figures 4a and 4b show the velocity and temperature profiles versus the x
coordinate. Solid and dashed lines are the results from the numerical solution
of Eq. (16) for M− = 1.5 and M− = 3, respectively. Solid circles and squares
are the results presented in Ref. [20] for M− = 1.5 and M− = 3, respectively.
The agreement is good and provides a validation of the numerical code.
The performance of the GPU implementation is compared against the sequen-
tial version running on the single core of the CPU by computing the speed-up
factor S = TCPU/TGPU, where TCPU and TGPU are the times used by the CPU
and GPU, respectively. Times are measured after initial setup, e.g., after file
I/O, and do not include the time required to transfer data between the disjoint
CPU and GPU memory spaces. Figure 5 reports the obtained speed-up data
as a function of the number of spatial grid points Nx. The curve marked by
circles refers to the case M− = 1.5 and Nvα = 16, whereas squares mark the
speed-up curve for M− = 3 and Nvα = 30. The maximal value of Nx is differ-
ent for the two curves because the memory storage, proportional to NxNv, is
limited by the size of the GPU memory pool. A comparison of the two curves
in the common range Nx < 6000 shows that speed-up grows rapidly and it
is mainly determined by Nx, the overall storage having a smaller effect on

11



performances. In the M− = 1.5 case it is possible to further increase Nx and
show that the speed-up levels up at about 600 if Nx approximately exceeds
104. This behavior is the result of the parallel set up of the collision step in
Nx independent threads assigned to cells of the physical space. As discussed
below, the collision step absorbs most of the computational resources and its
execution strongly affects the overall performances. As shown by the speed-up
curve of the M− = 1.5 case, the GPU power is not fully exploited till the
number of concurrent threads reaches a threshold. Beyond, the speed-up sat-
urates and the computing time approximately behaves as a linear function of
Nx, as reported in Refs. [1,3].
Figures 6a and 6b show the relative time spent to perform the streaming ker-
nel, Ts, and the collision kernel, Tc, versus the number of cells in the physical
space, for M− = 1.5 and M− = 3, respectively. As expected, the collision
kernel is more time consuming than the streaming kernel which takes at most
35% of overall computing time. Moreover, the relative time does not appear
to depend appreciably on the number of cells in the velocity space.
The increasing importance of streaming shown by Figures 6 recommends a
closer examination of the algorithm efficiency, in view of the application to
the two-dimensional problem discussed in the next session. A strongly simpli-
fied evaluation of ideal performances of the streaming step can be obtained
by observing that a single application of Eq. (12) requires the execution of
four floating point operations (the Courant number is computed once at the
beginning of the loop) and two accesses to the global memory (one for load-
ing the distribution function to the shared memory and one for updating its
value). As mentioned above, the GPU delivers 715.4 GFLOPs but the transfer
rate to/from the main memory is limited to 111.9 GB/s. Since in the case of
streaming the ratio of number of floating point operations to the number of
bytes accessed is low (4 : 8), it is reasonable to obtain the number of floating
point operation per second (FLOPs) from the transfer rate alone. Hence, the
ideal number of FLOPs can be obtained by assuming that four floating point
operations will be executed in the time required to transfer eight bytes from
the main memory. Accordingly, this simple argument yields an ideal perfor-
mance of 56 GFLOPs. A similar performance analysis can be performed on
the collision kernel whose threads compute macroscopic fields in each spatial
cell and perform the local homogeneous relaxation step according to Eq. (15).
The computation of density, velocity, temperature and a few selected stress
tensor components in addition to the distribution function update requires
about 30 floating point operations and 3 float accesses on the main memory,
for each element of the distribution function array. Again, assuming that ideal
performances can be estimated from memory bandwidth, the resulting ideal
performance amounts to 280 GFLOPs.
Timing the execution of the separate kernels and counting the number of
associated floating point operations provides the real kernels performance, re-
ported in Fig. 7 where GFLOPs are shown as a function of Nx in theM− = 1.5
case. Solid line with circles, dashed line with squares and dot-dashed line with
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triangles are the measured performances of streaming kernel, collision kernel
and overall code, respectively. It is possible to note that the performance of
the streaming kernel grows with Nx and quickly levels at about 30 GFLOPs,
approximately one half of the estimated ideal performance. The difference
can be justified by observing that the real CUDATM implementation of the
finite difference scheme [23] is not free from thread divergence and ancillary
tasks whose effects can be evaluated with difficulty. The collision kernel per-
formance closely patterns the speed-up behavior: it rapidly grows in the range
Nx < 104, then it reaches a peak value of about 175 GFLOPs. After the peak,
the GFLOPs rate oscillates around 150 GFLOPs. The main reason why the
collision kernel performs better that the streaming kernel is its higher FLOP
to memory operation ratio which allows a more efficient use of GPU comput-
ing power. The absence of thread divergence is also a feature which positively
affects performances.

5 Driven cavity

The driven cavity flow is a classical spatially two-dimensional benchmark prob-
lem which, in spite of its simple geometry, contains most of the features of
more complicated problems described by kinetic equations. In particular, the
handling of the streaming step is made more complicated by the presence of
impermeable walls. Since regular and semi-regular schemes are particularly
effective in capturing small deviations from equilibrium, the computations de-
scribed in this section refer to very low Mach number driven cavity flows. The
results are compared with previous investigations of the same flow geometry
where low Mach rarefied gas flows, governed by the BGKW kinetic model,
have been studied adopting the linearized form of the model and varying the
degree of rarefaction [16]. As shown below, the results of linearized theory can
be obtained as a particular application of the full non-linear BGKW equation
by the numerical method described in Section 2.

5.1 Formulation of the problem

A monatomic gas is confined in the two-dimensional square cavity

C = {(x, y) : 0 < x < L, 0 < y < L}

The flow is driven by a uniform translation of the top with velocity Vwêx,
being êx a unit vector parallel to x direction. The gas flow is governed by the
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two-dimensional steady BGKW equation

vx
∂f

∂x
+ vy

∂f

∂y
= ν(Φ− f) (22)

It is further assumed that all the walls are kept at uniform and constant
temperature Tw and that the gas atoms which strike the walls are re-emitted
according to the Maxwell’s scattering kernel with complete accommodation

f(x,v) =
nw(x)

(2πRTw)3/2
exp

{

− [v − V w(x)]
2

2RTw

}

, (v − V w) ◦ n̂ > 0 (23)

where x is a point of the boundary, n̂(x) the inward normal at x, Vw(x)
is the wall velocity, different from zero only on the top wall, Tw the wall
temperature and nw(x) the wall density which is determined by impinging
mass flux through the following relationship

nw(x) =
(

2π

RTw

)1/2 ∫

(v−V w)◦n̂<0
|(v − V w) ◦ n̂|f dv (24)

which ensures zero net mass flux at boundary points.
The straightforward two-dimensional extension of the numerical scheme de-
scribed in Section 2.2 has been adopted to obtain approximate solutions of
Eq. (22) with boundary conditions (23) as long time limit of the unsteady
problem. It is assumed that the initial gas state, at time t = 0, is described
by the uniform equilibrium Maxwellian

f(x,v|0) = Φ0(v) =
n0

(2πRT0)3/2
exp

(

− v2

2RT0

)

(25)

being n0 and T0 = Tw the initial values of the uniform density and tempera-
ture, respectively. The computation stops when a certain global flow quantity
ǫs falls below a fixed threshold, i.e., 10−4 for the computations described in
the following section. ǫs is obtained as the largest relative error defined as
|(ψ(x, t)−ψ(x, t−ts))/ψ(x, t−ts)| in the computational domain, where ψ(x, t)
represents the density, temperature and velocity fields. The time ts between
two successive snapshots is set equal to L/

√
2RTw. The non-dimensional form

of the governing equation is easily obtained by adopting the reference mean
free time τ0 = 1/ν0 and mean free path λ0 =

√
2RT0τ0 as time and length

units, respectively. It is also immediately seen that the problem solutions de-
pend on the dimensionless wall velocity Vw/

√
2RT0 and the rarefaction param-

eter δ = L/λ0 which is the reciprocal value of the Knudsen number Kn = λ0/L.
As mentioned above, in Ref. [16], cavity flows have been studied by the lin-
earized BGKW equation, assuming that Vw ≪

√
2RT0. In order to reproduce

these results by the full non linear model equation considered here, the di-
mensionless lid velocity has been set equal to 0.01. The gas is thus in a weakly
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non-equilibrium state and the non-linear results approach the linearized ones.
The cavity problem has been solved for three values of the rarefaction param-
eter δ = 0.1, 1, 10. Two series of computations have been performed. The first
one is based on a computer code version, called V1, which uses a fully three-
dimensional grid in the velocity space. This code version is compatible with
the full Boltzmann equation solver which keeps the same streaming kernel but
replaces the simplified BGKW collision model with the Monte Carlo evalua-
tion of the collision integral in Eq. (1). Although more general the code is quite
memory demanding and, for some flow conditions, the grid refinement process
was stopped by the GPU memory limits, before satisfactory agreement with
the reference solutions was reached. Hence a second series of computations
has been performed by using the BGKW specific code, called V2, based on
the reduction method which eliminates the z velocity component and allows
finer grids in the reduced phase space. This second series of computations has
the only aim of assessing accuracy. Actually, the parallel performances of the
code have been investigated using the first and more general version, not the
reduced one. As in the case of the shock problem, a sequential version of the
algorithm, using the three-dimensional velocity space, has been run on the
CPU to obtain speed-up data.

5.2 Results and discussion

The square cavity, [0, δ]× [0, δ], has been divided into Nx ×Ny identical cells.
Since the deviation form equilibrium is small, a cubic velocity space has been
constructed by varying each normalized velocity component vα in the inter-
val [−3, 3]. The velocity box has been divided into a number of identical cubic
cells, by evenly distributing Nvα velocity nodes along each velocity component.
Finally, the time step has been varied in the range 10−4 − 10−2 depending on
the rarefaction parameter.
Figures 8a and 8b show the profiles of the normalized velocity component,
Vx/Vw, along the vertical line x/L = 1/2 and the normalized velocity compo-
nent, Vy/Vw along the horizontal line crossing the center of the main vortex
which forms in the cavity, respectively. The lines represent the results of the
V1 code whereas the symbols are the results reported in Ref. [16]. Each fig-
ure reports the results for two different values of the rarefaction parameters:
δ = 0.1 (dashed lines and squares) and δ = 10 (solid lines and circles). The
results of the V 1 parallel code have been obtained by setting Nx = Ny = 160
and Nvα = 20. The total memory occupation amounts to about 819Mb which
is very close to the GPU physical memory limit. The grid resolution is suffi-
cient to obtain good agreement with the reference solutions velocity fields. In
order to obtain a more detailed comparison, we introduce two global flowfield
properties, namely the mean dimensionless shear stress, D, on the moving wall
and the dimensionless flow rate, G, of the main vortex. The two quantities are
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defined as

D =

∫ L
0 pxy(x, L) dx

Lp0
Vw√
2RT0

, G =

∫ L
0 |vx(L/2, y)| dy

LVw
(26)

being p0 the pressure in the reference initial state.
Table 1 compares the predictions of D and G obtained by solving Eq. (22) by
the V 1 parallel code with the values reported in Ref. [16] where the linearized
BGKW equation has been solved by a discrete velocity method. Although the
overall agreement is good for δ = 0.1, slightly larger discrepancies are observed
for δ = 1.0 and δ = 10, the largest deviation being found for D at δ = 10.
The version V 2 of the code has then been used to refine the phase space grid
and investigate the convergence properties of the numerical scheme. The D
and G values obtained by grid refinements are also reported in Table 1 and
marked by an asterisk. The data for δ = 1.0 have been obtained by setting
Nx = Ny = 416 and Nvα = 24 whereas the grid setup Nx = Ny = 544 and
Nvα = 18 has been used for δ = 10. The comparison shows that the grid
refinement brings the results closer to the reference solution. The correction
on G is quite modest since the coarser grid used by the V 1 code was sufficient
to obtain a good approximation of the velocity field. However, a finer grid is
required for an accurate evaluation of the stress distribution on the moving
wall.
Grid size effects on the profile of the xy component of the stress tensor have
been evaluated by means of the V2 code and are shown in Figure 9. As a
part of the validation process, the total mass variation in the cavity dur-
ing the simulations has been computed. In fact, as mentioned in Section 2.2,
the non-conservative approximation of the Maxwellian distribution function
could cause a variation of the total mass inside the domain. Numerical tests
have shown that the V1 code with the reference discretization reported above
produce percentage mass errors per time step equal to 2.8 × 10−6% and
11.7 × 10−6% for the streaming and collision step, respectively. The overall
percentage mass error at the end of the simulation is about 0.059%. The er-
ror can be further reduced by increasing the number of cells in the velocity
space or by using a local correction procedure [12] whose computational cost
is comparable with the parallel evaluation of macroscopic variables.
As mentioned in Section 4.2, the performance of the GPU implementation is
compared against the sequential version running on the single core of the CPU
by computing the speed-up factor. The results for the V 1 code are summarized
in Figures 10 and 11. The former shows the behavior of the speed-up ratio S as
a function of the number of spatial cells Ns = Nx×Ny. The speed-up behavior
is similar to the one observed in the one-dimensional test case and it can be
justified by means of the same arguments given in Section 4.3. A more detailed
account of the code parallel performances for different grid setups is given in
Table 2 which shows that the number of grid nodes in the velocity space does
not appreciably affect parallel performances because of the threads organiza-
tion described in Section 4.3. It should be also observed that the maximum
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speed-up achieved by the two-dimensional code is about 340, almost one half
of the one-dimensional code peak performances. The reason for the speed-up
worsening can be more clearly understood by the separate analysis of the per-
formances of the collision and streaming kernels presented in Figure 11 which
shows the measured GFLOPs rates associated with the collision and stream-
ing kernels in addition to the overall code GFLOPs rate. As expected, the
collision kernel keeps the same performance level reached in the one dimen-
sional case (see Figure 7). However, the streaming kernel performance drops
from about 34 GFLOPs to 22.5 GFLOPs. This is due to the greater number
of both divergent threads and non-coalescent memory accesses in the present
case with respect to the one-dimensional problem. The instruction overhead
increases as well, thus leading to a further reduction of the estimated ideal
performance. As a result of its poorer performances, the streaming kernel ab-
sorbs about 65% of the total execution time and reduces overall performances
accordingly. As is evident from its definition, the speed-up factor also depends
on the execution time of the sequential code. The results reported in Fig-
ures 5 and 10 show that the measured speed-up may exceed the number of
GPU cores whose working frequency is considerably lower than the CPU clock
frequency of the host computer. One may thus wonder whether the reported
high speed-up ratios are due to a poor optimization of the sequential codes
and not to a real gain in computational time of their parallel counterparts. As
mentioned above, CPU-based codes developed here have not been optimized
beyond the level of standard optimization options made available by an open
source compiler. A crude estimate of the sequential code performances can
be obtained along the same lines as for the GPU-based code. The main dif-
ference is that the time the CPU requires to execute floating point operations
is no longer negligible when compared with the time required to transfer data
to/from the main memory. Accordingly, it has to be taken into account in the
estimate of the ideal number of GFLOPs. The CPU maximum bandwidth and
the nominal computing performance per single core have been respectively set
equal to 12.8 GB/s and 20 GFLOPs, as obtained from Ref. [24] for the CPU
model used in the numerical tests. The CPU GFLOPs rate has been obtained
as

GFLOPs =
Nop

Top
(27)

where Nop and Top are the number of operations and the computing time
necessary to complete a full cycle which includes the advection step, the com-
putation of the moments and the homogeneous relaxation step. Adopting a
simplified view which ignores the complex CPU internal data flow and the
presence of a memory cache, Top can be obtained by summing the time to
transfer Ndata to the time to perform Nop operations on the transferred data

Top =
Ndata

12.8 GB/s
+

Nop

20 GFLOPs
(28)
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Then, the ideal CPU GFLOPs rate can be estimated as

GFLOPs =
1

Ndata

Nop

1

12.8 GB/s
+

1

20 GFLOPs

(29)

The algorithm analysis shows that the ratio Ndata/Nop can be assigned a value
of 0.51 bytes/FLOP. Therefore, the sequential code may ideally deliver 11.1
GFLOPs, in marked contrast with the effective measured performance which
amounts to about 0.34 GFLOPs. The reasons for the large discrepancy be-
tween ideal and effective CPU performances are not clear. However, although
the CPU ideal GFLOPs rate might have been overestimated, this simple anal-
ysis suggests that the high speed-up factors may be also explained by insuf-
ficient optimization of the sequential code. Nevertheless, we point out that
the sequential code performances reported here are comparable to those of
similar codes described in literature. For instance, in Ref. [16] the numerical
solution of the cavity flow problem is obtained in about 3 hours. The speed-up
factor evaluated on the basis of this execution time would then drop to 265.
Therefore, speed-up data may change in favor of CPU-based codes by using
more efficient compilers or exploiting parallel programming tools on multicore
machines. In the latter case the speed-up factor will be ideally divided by the
number of cores, provided that the sequential code is properly redesigned to
achieve high parallel efficiency. At present, however, GPU acceleration seems
to offer speed-up ratios which will safely remain beyond the capabilities of any
optimization strategy on the CPU version of the class of algorithms considered
here.

6 Conclusions

The aim of this paper is to explore the possibility of exploiting the compu-
tational power of modern GPUs to solve kinetic equations by regular and
semi-regular numerical methods. Two benchmark problems have been studied
by adopting the Bhatnagar-Gross-Krook-Welander (BGKW) kinetic model for
the collision term in combination with a simple finite difference scheme. The
results lead to concluding that, adopting a particularly simple form of the nu-
merical scheme (rectangular phase space cells, uniform and fixed grid size) the
porting of the sequential code onto GPUs allows a reduction of the computing
time of two orders of magnitude. This is a quite encouraging result in view
of the applications of this class of methods to steady and unsteady low Mach
number flows, since it also applies to the full Boltzmann equation version of
the scheme, as it will be reported in a forthcoming paper. However, the test
problems examined here have clearly shown that the size of physical memory,
not the number crunching capability, is the main obstacle toward the applica-
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tion to complex two or three-dimensional flows. The memory constraint can
be simply alleviated by using multi-GPU hardware. However, a number of
new issues related to the application development process and resource man-
agement should be addressed, since programming a multi-GPU application is
similar to programming an application on multicore hardware [17]. Therefore,
further progress in this direction will require the adoption of several strategies.
The first one is to develop adaptive grids both in the physical and velocity
space as well as more accurate differencing schemes. The second one is the
development of hybrid CPU-GPU codes in which the computational domain
is split into a number of sub-domains which are sequentially submitted to the
GPU. The data transfer overhead decreases the overall speed-up, but a proper
design of the algorithm can still obtain good performances.
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Fig. 4. Dimensionless (a) mean velocity and (b) temperature profiles versus the
dimensionless x coordinate. Solid and dashed lines are the results obtained with
the parallel code for M− = 1.5 and M− = 3, respectively. Solid circles and squares
are the results presented in Ref. [20] for M− = 1.5 and M− = 3, respectively.
Nx = 1024, Nvα = 16 (M− = 1.5) and Nvα = 30 (M− = 3).
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Fig. 5. Overall speed-up, S, versus the number of cells in the physical space, Nx.
Solid line with circles and dashed line with squares are the results obtained with
the parallel code for M− = 1.5 and M− = 3, respectively. Nvα = 16 (M− = 1.5)
and Nvα = 30 (M− = 3).
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Fig. 7. GFLOPs versus the number of cells in the physical space, Nx. Solid line with
circles: streaming kernel; dashed line with squares: collision kernel; dot and dashed
line with triangles: overall code. M− = 1.5, Nvα = 16.
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dashed lines: numerical solutions obtained with the parallel code for δ = 10 and
δ = 0.1 respectively; solid circles and solid squares: numerical solutions reported in
Ref. [16] for δ = 10 and δ = 0.1 respectively. Vw/
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Nvα = 20.
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Fig. 10. Overall speed-up, S, versus the number of cells in the physical space, Ns.
δ = 1, Vw/
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Fig. 11. GFLOPs versus the number of cells in the physical space, Ns. Solid line
with circles: streaming kernel; dashed line with squares: collision kernel; dot and
dashed line with triangles: overall code. δ = 1, Vw/

√
2RTw = 0.01, Nvα = 20.
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δ D D (Ref. [16]) G G (Ref. [16])

0.1 0.675 0.676-0.678 0.0975 0.0973-0.0976

1
0.624

0.631∗
0.625-0.631

0.103

0.104∗
0.104-0.105

10
0.393

0.411∗
0.412-0.415

0.143

0.145∗
0.145-0.145

Table 1
Drag coefficient, D, and flow rate of the main vortex, G, versus the rarefaction
parameter, δ, obtained with the V1 code; Nx = Ny = 160, Nvα = 20. Starred data
are the results obtained with the V2 code; Nx = Ny = 416, Nvα = 24 for δ = 1 and
Nx = Ny = 544, Nvα = 18 for δ = 10. Vw/

√
2RTw = 0.01.
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Nx = Ny Nvα Time (s) speed-up GFLOPs

160 14 139 331 74.5

160 16 207 331 74.7

160 18 295 331 74.7

64 20 75.7 281 63.8

96 20 151 319 71.9

128 20 254 340 76.1

160 20 404 331 74.7

416∗ 24∗ 825 - -

Table 2
Execution time (in seconds), speed-up and GFLOPs versus the number of cells in
the physical space, Nx = Ny, and the number of cells in the velocity space, Nvα ,
obtained with the V1 code. Starred data are the results obtained with the V2 code.
Vw/

√
2RTw = 0.01.
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